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Abstract & Motivation to the work B Pre-built Simulink blocks for DEMO applications B Partial Simulink model for DEMO HCPB plant

d The tritium handling (generation, accumulation, extraction and parasitic losses) d Generic 1D physical domain 0 TER: Adsorption on Reactive & Cryogenic Molecular Sieve Beds
iIn an FPP like DEMO - important for a safe and economically-viable . . L
operation. - Permeator (Solid physical domain with surface flux) 0 BZ: T generation/Transport/Permeation through cooling structures

4 Pipe (Physical Domain + Permeator)

QO HCPB BB: tritium extraction carried by a helium purge gas (PG) doped with Jd NM: T generation/retention/permeation through cooling structures

hydrogen. 1 Heat Exchanger (Pipe + Shell Fluid domain)

d Assumption: fixed partial pressure from EcomsimPro calculation of

d The PG mass flow rate and the composition influence size of TERS, and plant H,/HT/T, gas — coolant side
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Inventories and permeation losses. = A system analysis approach is needed. T permeation modelling of DEMO HCPB plant

d FUS-TPC+ code = a modular and flexible Simulink frame. d HCPB BB design concept (ceramic breeder, high pressure He coolant)

»C in PG TERS C out PG

A set of parametric studies on PG mass flow rate and composition performed. d Intermediate heat transfer system with molten salt energy storage

d Tritium extraction and removal based on low pressure He-H, purge gas)
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