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Abstract

Automated systems are equipped with an increasing number of diverse sensors
to deal with more and more complex tasks. Accurate sensor calibration is an
essential prerequisite for fusing information from multiple sensors that enables
high reliability in important tasks, such as localization and object detection.
In this work, we present novel methods for multimodal sensor calibration. We
introduce a spherical calibration target that can be observed by a wide range of
sensors, such as cameras, LiDARs and radars. Our target has multiple favor-
able characteristics that lead to accurate detections and a compact calibration
problem formulation.
Our Euclidean calibration framework is the simplest of three multimodal cal-
ibration methods that are presented in this work. The Euclidean calibration
framework minimizes Euclidean distances between sphere center observations
to find the sensors’ poses. The second method, additionally, takes observation
uncertainties into account by using a probabilistic formulation of the calibration
problem. Our last and most advanced calibration method enables calibrating
both, intrinsic sensor parameters and sensor poses.
In our simulation environment and on real data, we evaluate all three proposed
calibration methods. We show that even our simplest method provides state of
the art results with a mean error of less than 3 mm in translation and 0.1 ◦ in
rotation for a sensor setup consisting of a camera and a LiDAR. Additionally,
our evaluation shows that taking observation uncertainties into account leads
to significantly improved results. Finally, we show that the estimation of in-
trinsic camera parameters can benefits from the complementary measurements
of range sensors.
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Zusammenfassung

Automatisierte Systeme werden mit einer zunehmenden Anzahl unterschied-
licher Sensoren ausgestattet, um immer komplexere Aufgaben zu bewältigen.
Präzise Sensorkalibrierung ist eine essentielle Voraussetzung, um die Informa-
tionen der Sensoren zu fusionieren und wichtige Aufgaben wie Lokalisierung
und Objekterkennung zuverlässig zu bewerkstelligen.
In dieser Arbeit werden neue Methoden zur multimodalen Sensorkalibrierung
vorgestellt. Es wird ein spherischer Kalibrierkörper entwickelt, der von
einer Vielzahl an Sensoren, wie beispielsweise Kameras, Laserscannern und
Radaren, detektiert werden kann. Der Kalibrierkörper hat mehrere günstige
Eigenschaften, welche akkurate Detektionen ermöglichen und zu einer sim-
plen Problemformulierung führen. Es werden drei Kalibriermethoden präsen-
tiert. Die erste Methode minimiert euklidische Distanzen zwischen Beobach-
tungen des Kugelzentrums, um die Sensorposen zu schätzen. In der nächst
fortgeschritteneren Methode werden durch eine probabilistische Problemfor-
mulierung zusätzlich Beobachtungsunsicherheiten miteinbezogen. In der drit-
ten Methode werden, neben den Sensorposen, auch intrinsische Sensorparam-
eter geschätzt.
Die drei Methoden werden in Simulation und mittels Realdaten evaluiert.
Es wird gezeigt, dass bereits die einfachste Methode sehr gute Ergebnisse
liefert, mit einem Durchschnittsfehler von weniger als 3 mm in Position und
0.1 ◦ in Orientierung für einen Sensoraufbau mit einer Kamera und einem
Laserscanner. Außerdem wird in der Evaluation ersichtlich, dass die Berück-
sichtigung von Beobachtungsunsicherheiten zu einer deutlichen Verbesserung
der Kalibrierergebnisse führt. Schließlich wird experimentell gezeigt, dass
die Schätzung der intrinsischen Kameraparameter von den komplementären
Messungen der Tiefensensoren profitieren kann.
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1 Introduction

Automation is one of the key technologies that raises our living standards. It
started in the controlled environments of production lines and spread further to
public places and even our homes. In the beginning, robots were locked away
from humans, whereas today, they are integrated in our daily lives and even
interact with us. Autonomous mobile platforms guide us through museums,
autonomous vacuum cleaners scan and navigate through our homes, modern
cars perceive and analyze their environment to make driving more secure and
comfortable for us. Robots are capable of completing increasingly complex
tasks in unstructured environments and achieve increased reliability which is
why we trust these systems more and more.

There are multiple technological developments that brought robots closer
to humans. On the one hand, improvements in methods for e.g. localization
and perception enabled robots to better understand and interact with their
environment. On the other hand, hardware innovations lead to a significant
increase in computational power and new sensors provide more accurate, di-
verse and dense data. The combination of innovation in software and hardware
enabled robots to become our assistants for many tasks.

1.1 Motivation

The boost in computational power enabled to process significantly more sen-
sor data simultaneously. That is why robots, such as autonomous cars, can
be equipped with more and more sensors to scan the environment. For over
a decade, series cars are equipped with multiple radars. In todays high-end
series cars, a multi camera setup provides 360 ◦ surround view for the driver.
To make driver assistance more intelligent, LiDARs start to get into series cars.
In fully autonomous experimental vehicles, 3D LiDARs are heavily used for
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1 Introduction

tasks like localization and object detection. In combination with data from
cameras and radars, many experimental vehicles are capable of driving safely
in many scenarios.

To fuse data from multiple sensors, it has to be transformed to a common
reference coordinate system. This is only possible if intrinsic sensor pa-
rameters and the relative position and orientation of the sensors to each other
are known. The process of finding these parameters is called sensor calibration.

Sensor calibration is an increasingly important topic because more sensors
are mounted on robots and the demands on accuracy are raised due to the
growing complexity of the tasks. Additionally, more diverse sensors are com-
bined in a setup. Diversity of the sensors adds complexity to the calibration
problem because of different measurement principles and sensor character-
istics. There are well understood standard methods for camera calibration,
however, multimodal calibration for cameras, LiDARs and radars is less re-
searched. Often, calibration of a multimodal sensor setup is split up into
multiple calibration procedures which is time consuming and suboptimal for
accuracy from a theoretical point of view. This motivates the scope of this
work.

1.2 Scope

We present a calibration framework for cameras and range sensors like 3D
LiDARs, 2D LiDARs and radars. The number and combination of sensors is
arbitrary. Our calibration method allows for estimating the relative poses of
the sensors and internal sensor parameters. The calibration accuracy, which
we aim for, complies with the accuracy needed for state of the art sensor fusion
methods used for e.g. autonomous driving. We use a dedicated spherical
calibration target which is moved around the sensor setup. The calibration
process can take place indoors and outdoors. The process is highly automated.
Only the calibration target has to be moved manually around the sensor setup.
The complete calibration process takes between 1 min and 10 min depending
on the number and types of sensors.

2



1.3 Contributions

1.3 Contributions

Contributions of this work are summarized in the following:

• A spherical calibration target that can be accurately detected in camera,
LiDAR and radar data is designed. The spherical shape has many benefits
such as view invariance and ease of modeling. Further, it has practical
advantages such as the Styrofoam sphere being a cheap off-the-shelf
product and its light weight. We present target detectors for cameras and
range sensors that achieve sub-resolution detection accuracy.

• An extrinsic calibration framework that provides live feedback and cali-
bration results on runtime is developed. Visualizations and quantitative
checks allow the user to assess the quality of the calibration while record-
ing and to decide whether more data is needed or not. This simplifies
and speeds up the calibration process significantly.

• We propose a probabilistic formulation of the calibration problem. This
allows to incorporate observation and measurement characteristics of
the sensors in the calibration problem. We show that this significantly
improves calibration quality compared to ignoring the different charac-
teristics.

• We present a joint calibration framework that simultaneously calibrates
extrinsic and intrinsic parameters of a multimodal sensor setup. Individ-
ual noise characteristics of every individual measurement is taken into
account. Measurements are integrated continuously by using a spline to
model the target trajectory. We show that camera calibration can benefit
from additional information of range sensors.

• We propose a simple but effective method to calibrate a sensor setup
relative to keypoints such as the rear axle of a car or an antenna. By
temporarily extending the sensor setup with additional sensors, the key-
points can be observed. The position of the keypoints relative to the
main sensor setup can be derived by calibrating the main sensor setup to
the temporarily added sensors. We show the practicability of the method
in our evaluation.

3



1 Introduction

1.4 Outline

The outline of this work is as following:
We begin with an overview of the current state of the art in calibration of
cameras, LiDARs and radars (chapter 2). First, we summarize methods that
use calibration targets. We survey methods that only calibrate cameras, then
we look at approaches for camera to LiDAR calibration, and finally, we also
look at publications on radar calibration. Next, calibration methods without a
dedicated calibration target are summarized. We finish our literature survey
with the topic of measurement noise in the context of multimodal calibration.
In chapter 3, we discuss the fundamentals that are used in our calibration meth-
ods. We cover the topics sensors, computer vision, statistics, 3D geometry and
model fitting. Fundamentals are only presented in chapter 3 to keep the chap-
ters in which our calibration methods are presented more compact and clean.
Experienced readers can simply skip the fundamentals and dive right into the
following methodology chapters.
In chapter 4, we introduce our calibration target. We define criteria that the
calibration target should fulfill. Construction details are given to easily repli-
cate the target. In chapter 5, we introduce our target detectors for cameras,
LiDARs and radars.
Our Euclidean calibration framework is presented in chapter 6. It solves the
calibration problem by minimizing Euclidean point-to-point, point-to-ray and
ray-to-ray distances between sphere center observations. Linear interpolation
is used to generate time-synchronized target observation pairs to link multiple
sensors.
The advancement of the Euclidean framework is our probabilistic calibration

framework which is presented in chapter 7. It uses a probabilistic formulation
of the calibration problem to incorporate different observation characteristics
of the sensors. A universal sensor model is introduced which leads to a simple
and efficient solution.
In chapter 8, we present our most advanced calibration framework which we
call joint calibration framework. Instead of using sphere center observations,
it takes raw measurements as input data. This allows to estimate extrinsic and,
additionally, intrinsic sensor parameters.
In chapter 9, we present a simple but effective method to calibrate a sensor
setup relative to keypoints. A step-by-step instruction for calibrating a sensor
setup to the rear axle of a car is given. This chapter marks the end of the

4



1.4 Outline

methodology part.
An evaluation of the presented methods is given in chapter 10. We use sim-
ulated and real data to evaluate the target detectors and compare calibration
results of our different calibration frameworks in multiple experiments.
Chapter 11 provides a conclusion and proposes several promising extensions
to our work.
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2 State of the Art

Sensor calibration is a well researched topic. A large amount of methods is
published in literature. In the following, we summarize the most important
calibration methods.

2.1 Calibration with a Target

In this chapter, we provide a survey on calibration methods that make use of a
calibration target.

2.1.1 Camera Calibration with a Target

For almost half a century, camera calibration is an active research topic in
e.g. the photogrammetry and the computer vision community. Hence, a huge
amount of methods has been published in literature. Since our work is more
focused on multimodal sensor calibration than camera calibration, we only
discuss a small part of state of the art camera calibration that is relevant for
our work.

The approach presented in [Zha00] represents a milestone of camera cali-
bration. The authors propose to calibrate a camera by using a single planar
board with printed squares of known size and relative position on it. The
novelty is the simplicity of the target. It is easy and cheap to build, and
therefore, is available to almost everyone. Previously published methods need
more complex targets which makes calibration more effortful. Multiple views
on the target are captured by moving the board or the camera. The corners of
the printed squares are detected and the camera parameters are estimated by
solving a minimization problem over the reprojection error. The authors report
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2 State of the Art

state of the art results while keeping costs for equipment very low. Others pro-
posed to use circle prints [Hei00,KB06] but squares of a checkerboard pattern
are considered the standard today because of their high detection accuracy.
This simple calibration procedure is evaluated on a pinhole model in [Zha00]
and is applied to more complex camera models in e.g. [KB06,SMS06,BS18].
The resulting accuracy is sufficient for common tasks like image undistortion
and 3D reconstruction [SMS06,Str15].

Besides the popular planar calibration boards, there are also 3D calibration
targets, one of which is a sphere. In [DDL94], a single camera is calibrated
by observing multiple spheres. A simple pinhole camera model with principal
point, skew and focal length is used. The projection of a sphere on a pinhole
model is an ellipse. In a first step, the principal point and skew is estimated.
Then, the focal length can be derived from a single sphere. The authors report
high errors on the focal length estimation.
In the work [TX02], a more theoretical view on camera calibration with spheres
is presented. By using the concept of absolute conics, the authors show that
each sphere of unknown size provides five constraints, three of which are
needed to estimate the relative size and position of the sphere. So, two con-
straints can be used to infer the camera intrinsics. The authors use a minimum
of three spheres to calibrate their pinhole camera model with five parameters.
They solve for all parameters at once by minimizing the reprojection error.
Since the minimization needs a good initialization, an efficient closed-form
solution based on an algebraic error is proposed in [AD03]. The authors
also extend the approach to multi-camera setups. They calibrate intrinsic and
extrinsic parameters of all cameras at the same time. They highlight the advan-
tage that a sphere can be observed from every position which is not possible for
planar targets. However, they recognize problems for their solving procedure
when an ellipse degenerates to a circle. Further, they notice that the calibration
quality highly depends on the accuracy of edge detections.

Compared to a checkerboard, a spherical calibration target has some down-
sides for camera calibration. We will later see that these downsides can be
compensated in a multimodal calibration method and a sphere even shows
potential to improve camera calibration.
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2.1 Calibration with a Target

2.1.2 Camera-LiDAR Calibration with a Target

Calibration of cameras and LiDARs is usually performed with a dedicated
calibration target. In contrast to camera calibration, there is no standard target
for camera-LiDAR calibration which is used by a majority. Instead, a great
variety of targets were introduced in literature in the last two decades.

The earliest published methods on camera-LiDAR calibration are designed
for a camera and a 2D LiDAR (measurements only in one plane).
The method introduced in [ZP04] is one of the first that addresses the prob-
lem of calibrating a camera and a 2D LiDAR. The authors propose to use
a checkerboard that is observed from different views. They use an iterative
solving scheme that estimates the poses of the checkerboard and the pose
difference between the sensors. The final solution is based on minimizing the
camera reprojection error and the point-to-plane error for the LiDAR data.
These two cost terms cannot be directly compared to each other. Therefore, a
scaling factor that has to be tuned by the user is introduced. The authors report
high influence of the scaling factor and cannot provide a rule to find a good
choice. This makes the method unreliable.
With the goal to provide a more reliable calibration method, the approach
presented in [LLD+07] uses another cost term. Again, a 2D LiDAR is cali-
brated to a single camera. The target is a planar board that is shaped like an
arrow (see Figure 2.1 b). The edges of the target are detected in the camera
images and the LiDAR points that are closest to the edges are segmented.
These points are then projected to the image and the point-to-line errors are
minimized for multiple views of the target. No weighting factor is needed as
in the previous method because only one type of cost term is used. Direct
comparison to [ZP04] shows increased reliability and improved accuracy in
orientation.
Neither of both previously discussed approaches is fully automatic. The user
has to segment edge points in the LiDAR data and corresponding edges in the
camera images. [KP10] proposes a fully automatic detection pipeline and an
improved checkerboard corner detector. This results in improved convenience
and accuracy compared to the previously discussed methods.
The authors of [VBN12] use the same approach as [ZP04]. A checkerboard
is observed from different views and a final calibration is calculated by mini-
mizing the reprojection error and the point-to-plane error which is scaled by a

9



2 State of the Art

Figure 2.1: Different targets used for camera-LiDAR calibration in literature. a) A standard
checkerboard such as the one used for camera calibration. b) An arrow shape.
The orange edges are detected and matched in camera and LiDAR. c) A cardboard
with marker [DCRK17]. d) A planar board with circle and markers [ABB12]. e)
Planar board of precisely known dimensions [PYW+14]. f) Cardboard with four
holes [VSMH14]. g) Corner of a wall that forms a trihedron with the ground
plane [GLL13]. h) Cardboard box with texture printing [HMES16].

manually tuned weighting factor. The contribution of [VBN12] lies in the very
efficient generation of a few hypotheses that serve as strong initial solutions.
This makes the calibration process more efficient and robust compared to the
original method.
To summarize, for calibrating a camera and a 2D LiDAR, usually, a planar
target is used and most approaches minimize a combination of reprojection
and point-to-plane errors.

For calibrating a 3D LiDAR, the diversity of targets is high. As for 2D LiDARs,
also planar targets are popular.
[GMCS12] uses multiple checkerboards which are distributed in the environ-
ment. With a single scan of the static scene, multiple cameras and a LiDAR
can be calibrated. The sensor setup is calibrated sequentially, starting with
standard intrinsic and extrinsic calibration of the cameras which is based on
minimizing a reprojection error. Then the LiDAR is calibrated to the cam-
eras. The 3D positions of the checkerboard corners are determined from the
cameras, and the LiDAR points hitting the checkerboards are segmented. The
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2.1 Calibration with a Target

final solution is calculated based on minimizing point-to-point distances of the
LiDAR and camera point clouds with the popular iterative closest point (ICP)
algorithm. Since both point clouds are sparse, ICP does not reliably provide
high accuracy results for the pose difference between camera and LiDAR.
In [DCRK17], a rectangular cardboard with a marker printed on it is used (see
Figure 2.1 c). The corner points of the cardboard are detected in camera and
LiDAR and the calibration problem is solved by minimizing 3D point-to-point
distances of the corner correspondences. The authors argue that this is more
accurate than the method discussed before since their point pairs represent the
same object points.
The authors of [ABB12] also use a planar board but they print a circle on it
with a corner marker that is placed on the circle center (see Figure 2.1 d).
They detect the board in the 3D point cloud of the LiDAR and the circle which
appears as an ellipse in the camera image. From the ellipse and the corner
marker, the 3D position of the circle center can be derived. The calibration
problem is formulated as a minimization problem of point-to-plane distances
of the circle center from camera to the plane from LiDAR for multiple views.

The previously discussed approaches all use a pattern or marker on a pla-
nar board. Another approach is to only use the shape of the board such as
the authors of [PYW+14]. They use a polygonal board of precisely known
dimensions (see Figure 2.1 e) and detect the 3D corner points in the LiDAR
point cloud and 2D corners in the image. They minimize the reprojection error
of the corners for multiple views.
Some methods use circular holes in a target. A single circular hole in a board
is used in [RFFB08]. Around this hole, a circle is drawn so that in camera and
LiDAR data the 3D center of the hole can be determined. Point-to-point dis-
tances are minimized as an initial solution which is then refined by also taking
the orientation of the target into account. Since the target is comparably small,
the 3D position estimation in LiDAR data is not very accurate. Therefore, the
calibration results of this early method are not reliable.
The authors of [VSMH14] use a planar board with four circular holes (see
Figure 2.1 f). They estimate the 3D circle centers as well and calculate an
initial calibration result in a single shot. The authors recognize that the cali-
bration quality based on holes is not high enough. For refinement, they take
all edges in the scene into account and minimize the reprojection error such
as in [LT13]. For optimizing over all edges, a good initial solution is essential
due to many local minima.
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In [DKG19], the same planar board with four circular holes is used but the
target is significantly larger. They also minimize point-to-point distances of
corresponding circle centers. Because of the larger target, the circle based
calibration is more accurate than the one in [VSMH14].

Planar calibration targets are not ideal for 3D LiDAR data. The problem
is that the target cannot be localized with high accuracy. The position is esti-
mated by using edge points but an edge is in between a point on the target and a
point in the background, so, the exact edge location cannot be measured. The
more scan lines a LiDAR has, the more edge discontinuities can be measured
and the better the estimate becomes due to averaging. But still, many people
recognized this problem and decided to use a 3D calibration target that can be
well localized in 3D point clouds.
The authors of [GLL13] use an arbitrary trihedron to calibrate a camera and
a 3D LiDAR (see Figure 2.1 g). The three planes can be in arbitrary angles
to each other, as long as they are not coplanar. They proposed to use a house
corner with some texture on it. They move the sensors around the trihedron
and manually segment it in the point clouds and the images. For each view, the
full pose of the LiDAR is estimated relative to the trihedron based on fitting
three planes. Salient points are detected and matched over all camera images
and the camera motion is estimated. The calibration problem is formulated
as a minimization problem with cost terms enforcing planarity and motion
consistency. An advantage of this method is that the calibration target can be
very large which theoretically allows for accurate pose and motion estimation.
The downside of using a house corner is that it might not be exactly planar.
In [HMES16], a cardboard box with texture prints on it is used to calibrate a
stereo camera and a 3D LiDAR (see Figure 2.1 h). By detecting the structure
on the box and matching it from one to the other camera, a 3D point cloud
is created with the precalibrated stereo camera. This pointlcoud is aligned to
the point cloud from the LiDAR by using ICP. This method cannot be used
with arbitrary texture to calibrate a mono camera and a LiDAR. In this case, a
known checker pattern could be used.
Also the authors of [PEH18] use a cardboard box but without texture. A single
camera and a 3D LiDAR are calibrated by estimating three planes in the LiDAR
data and the corresponding corner point in the image. User input is needed
to segment the appropriate regions in the 3D point cloud and the image. The
link between LiDAR and camera is established by minimizing the distance
between projected 3D corner points and 2D corners in the camera image. A
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problem of this approach is that the corners are not precisely detectable in the
camera image. Further, a lot of user input is needed which is inconvenient.

This survey shows, how diverse the calibration targets and the problem formu-
lations for camera-LiDAR calibration are. An important lesson to learn from
this survey is that the classical checkerboard is not ideal for calibrating 3D
range sensors. 3D targets can be more accurately detected in 3D range data.

2.1.3 Radar Calibration with a Target

Radars are very common sensors in the automobile industry and since cameras
and LiDARs started to get into series cars, the calibration of radars to cameras
and LiDARs became increasingly important. Yet, in scientific literature, radar
calibration is not very popular. In the following, we summarize the most
popular and important approaches.

In [STTO04], a radar is calibrated to a camera. The authors use a metal
corner reflector which is well visible in radar data. The reflector is moved up
and down orthogonally to the scanning plane of the radar to generate a sig-
nature in the radar cross-section signal that is used to segment the calibration
target from the rest of the reflecting objects in the environment. Template
matching is used to detect the corner reflector in images. The accuracy of such
detections is questionable. Instead of directly estimating the relative rotation
and translation between the two sensors, the authors estimate the homography
between image plane and radar scanning plane. A qualitative evaluation shows
decent results for this early approach.
The authors of [WZXM11] also calibrate a radar to a camera but this time
with a rectangular metal panel. The only benefit of a metal panel compared
to a metal corner reflector is that it is easier to build. The downside is that
the strength of the reflected signal highly depends on the orientation of the
panel which makes the calibration process more cumbersome. Again, the
homography between radar scanning plane and image plane is estimated.
For the method presented in [NAAR+15], multiple corner reflectors are placed
next to each other. The authors present two approaches for radar and camera
calibration. For the first approach, the distances between the reflectors must
be known. For the second approach, the reflectors are only assumed to be
fixed and the exact distances do not need to be known. In this case, the sensor
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setup is moved around the targets to observe the scene from multiple views
so that the distances between the reflectors can be estimated precisely. The
detection of the corner reflectors is not automatic. In radar and camera data,
the corners of the reflectors have to be marked manually, whereas a Harris
corner detector supports the user in images. Further, because multiple targets
are used simultaneously, the user has to determine the correct associations
between target detections in radar and in camera data.
Up to now, all discussed methods are used to calibrate a radar to a cam-
era. [PMP19] proposes a calibration target that allows to calibrate a radar, a
camera and a LiDAR. The target is build from a Styrofoam triangle on which
a checkerboard pattern is printed. A corner reflector is attached in the center
of mass of the triangle. A camera can estimate the pose of the target based
on the checkerboard pattern. The triangular shape is detected in LiDAR data.
The corner reflector is needed to locate the target in radar data. To refine
the estimated scanning plane of the radar, the authors assume that the radar
cross-section of a measurement is influenced only by the elevation angle to the
scanning plane of the radar. A quadratic curve is fitted to measured pairs of
radar cross-section and elevation angle to define a characteristic curve. The
scanning plane of the radar is then refined by minimizing the difference of the
measured radar cross-sections to the values resulting from the characteristic
curve. The assumption that the radar cross-section only depends on the eleva-
tion angle of the measurement is not correct in practice. E.g. the orientation
of the corner reflector influences the radar cross-section as well. That is why
determining the elevation angle only based on the radar cross-section is very
noisy.
One of the core problems of calibrating radars to cameras and LiDARs is that
the observation accuracy of a radar is significantly lower than for the other
sensors. The previously discussed approaches ignore the different observa-
tion accuracies. The authors of [DKG19] propose to use the Mahalanobis
distances between observations. By minimizing these distances, the poses and
covariances are optimized. The covariances ideally represent the different ob-
servation accuracies of the sensors. Estimating the covariances simultaneously
to the poses can lead to problems since by varying the covariances also the sets
of outliers and inliers are redefined. This often leads to unreliable optimization
results and the covariances do not represent the real observation accuracies.
Prior knowledge of the observation noise improves reliability significantly.
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2.2 Targetless Calibration

Sensor calibration without a dedicated calibration target is compelling because
of many reasons. Depending on the calibration target, it may take some time
to construct and build it. Some calibration targets are heavy or very large
so that transportation is not easy. In this case, calibration is only possible
at the location of the immobile target. Further, targetless calibration allows
for calibration during operation which is not possible with a target. This is
desirable because calibration parameters often can change over time due to
forces on the sensor platform, temperature changes or aging. For some sensor
setups, changes during operation are applied on purpose such as for zoom
lenses or sensors with controlled tilting.
In the following, we review existing approaches for targetless camera and
camera-LiDAR calibration.

2.2.1 Targetless Camera Calibration

Calibrating cameras without a target is a research topic for many years. How-
ever, the number and especially the diversity of publications is significantly
lower than for targetless calibration of cameras and LiDARs.

In the work [BMRS12], a single camera is calibrated without a target. A
pinhole model with radial and tangential distortion is used. The camera must
observe a scene from different orientations and positions. It is essential that the
scene is static, rich in texture and does not contain symmetric patterns. Salient
landmarks are extracted from the scene and matched in each image. The
reprojection error of these landmarks is minimized by estimating the camera
pose for each image and the intrinsic camera parameters. This is possible only
up to the scale.
In [RKBL17], the intrinsic and extrinsic parameters of a stereo camera are
estimated. Bundle adjustment is used to optimize 3D positions of landmarks,
sensor movement, extrinsic parameters and intrinsic parameters up to the scale.
The novelty of this work is to split up the expensive calculations of bundle
adjustment into several stages which separately can be computed in real time.
This enables calibration during operation.
The authors of [DHS09] also use salient landmarks for camera calibration.

15



2 State of the Art

Their setup consist of two cameras. The authors propose to use a recursive
optimization schema (iterated extended Kalman filter) to continuously refine
the calibration with low computational costs. An epipolar criteria is developed
that does not rely on temporal matching of landmarks. This leads to a robust
calibration even if objects are moving in the scene.
In [MW16], the extrinsic parameters of a camera pair are calibrated. Addi-
tional IMU measurements are used to infer the scale. Again, landmarks are
detected and tracked. An Unscented Kalman Filter is used to iteratively opti-
mize landmark positions and the sensor poses. The downside of this approach
is that substantial angular rotation around two axis is required. This is often
not possible for on-road vehicles.

Targetless camera calibration suffers in general from multiple problems. With-
out additional information, cameras can only be calibrated up to the scale. The
most accurate methods are based on bundle adjustment which is highly de-
pendent on the amount of static salient points in the scene. Often, to make
the calibration more stable, not all parameters are calibrated with a targetless
method. E.g. the calibration problem is constrained by given sensor positions
or tangential distortion parameters.

2.2.2 Targetless Camera-LiDAR Calibration

In literature, many approaches for calibrating cameras and LiDARs without a
target are presented. They differ significantly in their underlying principles,
degree of automation, practicability and computational expense.

A very common approach that became popular with the work [VW97] is
based on mutual information. Mutual information is a concept of information
theory. It is a measure of the dependency of two random variables. More
precisely, the mutual information I(X;Y ) measures how much information of
the random variable X can be inferred by observing the random variable Y .
In [VW97], mutual information is used to register multimodal images. E.g.
magnetic resonance images and computed tomography images are aligned by
maximizing the mutual information between the data. This concept is the basis
for many publications about targetless camera and LiDAR calibration.
In [MKF09], a setup for collecting aerial data consisting of a camera and a
terrestrial LiDAR are calibrated based on mutual information. An image with
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elevation and reflectance channel is generated from the LiDAR data. The
extrinsic parameters of the sensor setup are then optimized based on a mutual
information score function. The authors recognize that the depth disconti-
nuities (or elevation jumps in aerial data) are highly correlated with changes
in the visual image. The reflectance information provides additional useful
information but only leads to minor improvement.
The authors of [PMSE12] present a mutual information approach that only
uses LiDAR reflectivity and camera images. They show by experiment that
in many scenes there is a high correlation between the intensities of a camera
image and the reflectivity data of a LiDAR. Further, they show that, for a
sufficient number of views, the sample variance of the estimated parameters
empirically converges to the Cramer-Rao-Lower-Bound. They infer that their
method is a minimum variance unbiased estimator. Experiments with real data
show limitations of the approach. The authors notice that a high amount of
edges in the camera image that do not correspond to edges in the reflectivity
image from the LiDAR cause a degradation of the estimation quality. One type
of such misleading edges is large shadows that appear in the camera image but
are not present in the reflectivity data of the LiDAR.
An insightful benchmarking of the just mentioned approach is presented
in [ON15]. The approach is compared to a method that uses a dedicated cali-
bration target. Based on real data, they show that the targetless method cannot
compete against the method with a calibration target in terms of accuracy.
They explain that outlier detection and rejection is simpler and more reliable
with a known target than in an unknown environment. This is the reason why
the mutual information approach is less robust and, on average, less accurate.
They conclude that, at least for high precision applications such as ground
surveying, the approach based on mutual information is not sufficient.

A closely related concept to mutual information is χ2 statistics. In [BPDA00],
the authors use a χ2 similarity measure to align depth maps from LiDAR
with camera images to register the sensors. They report that the registration
quality with their χ2 similarity measure is comparable to the approach with
mutual information. They report a great number of local minima that makes
finding the global minimum hard. This is also a problem when using mutual
information. As a conclusion, the authors claim that the mutual information
measure, which is considered to be a standard, can be substituted by other
information theoretic similarity measures.
Also in [WLH+04], the authors use the χ2 similarity measure to calibrate a
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camera and a LiDAR. They not only use depth but also reflectivity information
from the LiDAR. The 3D LiDAR data is rendered to a 2D image with depth
and reflectivity channels. As with mutual information, they also report that
registration from arbitrary misalignments is not possible due to many local
minima. So, they also have to use initialization routines to already start at a
good solution.

The previously discussed methods for targetless calibration of camera and
LiDAR are global methods which use the complete scene. Another approach
is to focus on local features.
The authors of [SA01] propose to use rectangular structures which are iden-
tified and matched in the camera and 3D LiDAR data. They mainly focus on
urban scenes in which these rectangular structures often occur. They initialize
rotation by extracting vanishing points. 2D lines that intersect in a vanishing
point are matched to parallel 3D lines. The matching of rectangular structures
in images and 3D data is based on a sampling-based approach. The final
calibration is calculated based on comparing 3D lines which are projected
onto the camera image and 2D lines which are detected in the camera image.
The exact matching score is not given by the authors.
In the work [TK13], a method that calibrates a camera and a LiDAR based on
arbitrary planar structures is presented. The 3D planar structures from LiDAR
are projected into the camera image and an alignment cost is minimized. The
authors compare their method to mutual information based approaches. They
report that the accuracy is in between mutual information approaches that
use only depth information and approaches that additionally use reflectivity
information. One drawback of this method is that it is not fully automatic. The
user has to identify planar regions in the camera image and match them with
the corresponding region in the 3D data.
Also the authors of [SHS07] present a method that needs user input to identify
features in a scene. The main contribution is a special visualization of range
data which allows the user to simply match corresponding points in LiDAR and
camera. An advantage of this method is that it does not rely on the presence
of special features such as planar regions and is therefore applicable in a wide
range of scenes.
A fully automatic approach is introduced in [Bil09]. A camera and a LiDAR
are calibrated based on a multi-stage process consisting of multiple initializa-
tion steps and a final optimization stage. For the final stage, points at depth
discontinuities are projected to the camera image. These points are associated
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to close edges and the according distances are minimized. The method heavily
relies on a good initialization due to possibly wrong associations with a bad
starting configuration. The authors report that the approach is not as stable as
methods which use a known calibration target.
The method introduced in [LT13] is also based on optimizing the distance
between projected depth discontinuities and edges in the image. The main
idea is to start with a very good calibration which is determined based on
a reliable method with a known target. The proposed framework can detect
and correct for changes in the sensor poses during operation. Due to a very
good initialization, the optimization can be bounded to a small range in which
usually only one minimum, the global minimum, exists. The authors argue
that this is the reason why their method is very reliable.
In the work [CKB16], another method that is based on aligning depth dis-
continuities in 3D data with 2D edges in an image is presented. The authors
combine calibration with depth upsampling. The motivation behind this is
to extend the alignment measure with the additional upsampling to create a
stronger similarity measure. They optimize upsampling and calibration based
on one common cost function. The authors argue that the upsampling process
provides useful information to the calibration and vise versa so that both the
upsampling and the calibration are improved.
Another feature-based approach is presented in [NKB19]. Thin objects like
poles and traffic signs are used as features. In contrast to the other previously
explained methods, the costs are not calculated in the 2D image space but in
3D. A sequence of images is used to generate a point cloud based on structure
from motion. The same feature extractor is used on the point cloud from cam-
era and the one from LiDAR. The features are aligned in 3D by optimization
of the sensor poses.

After discussing global methods (mutual information and χ2 similarity) and
local feature-based approaches (planar regions, edges, thin objects, ...), we
look at methods that use motion as another information that can be deduced
from both camera and LiDAR data.
In [AKU+06], the authors present a method to calibrate a camera and a LiDAR
based on the motion of detected objects. The objects can be arbitrary but
should not be occluded. The similarity of the objects’ motion is scored by
mutual information.
The authors of [IOI18] present a method that also registers a camera and a
LiDAR based on motion. The difference to the previous approach is that the

19



2 State of the Art

motion of the sensors is used instead of the motion of other objects. The
motion of the LiDAR is estimated based on ICP. Camera motion is derived
by tracking feature points in consecutive images. Since a monocular camera
is used, the scale of the motion cannot be measured directly. In an iterative
process, the scale of the camera motion is derived from the 3D data of the
LiDAR. 3D points are projected into the image and tracked in both domains.
By minimizing the reprojection error, the scale and the calibration parameters
can be estimated. One major disadvantage of this method is that the sensors
have to be rotated around all axes. This is hard for wheeled platforms such as
autonomous cars, as steep hills would be needed.

We conclude that there are mainly three different approaches in literature
for extrinsic calibration of camera and LiDAR without a target. Global ap-
proaches that do not use specific features are usually fully automatic but
suffer from many local minima which makes a strong initialization essential.
Feature-based methods suffer from the same issue of local minima but can be
robustified by user input to resolve the association problem. We also discussed
motion as multimodal information. Approaches of this type are usually fully
automatic but also suffer from assumptions such as objects not being occluded
(if motion of objects is used) or rotation about all axes (if sensor motion is
used).
Each targetless approach that is compared to a method which uses a calibration
target is reported to be less accurate and less robust than this reference method.
This is the reason why, in practice, targetless methods are only used to monitor
the quality of the calibration or correct for small changes.

2.3 Measurement Noise

Most calibration methods neglect measurement noise completely. In this case,
all measurements equally influence the calibration result even if they have sig-
nificantly different noise distributions. For calibration of a single sensor type,
ignoring the measurement characteristics can be a reasonable simplification
because the measurements can be modeled similarly. This is not the case for
sensors of different types. E.g. the range noise of a 3D point measured with a
LiDAR is almost independent of the distance of the point but for a stereo cam-
era the range noise increases with distance. Neglecting such characteristics in
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multimodal calibration leads to suboptimal results.
The influence of weighting measurements from different sensor types is dis-
cussed in [ZP04]. A simple weighting factor is introduced to compare mea-
surements from a camera and a LiDAR. The authors report that the weighting
factor has a major influence on the quality and reliability of their calibration
method.
Also in [ZD12], the problem of varying measurement noise is recognized. A
camera and a LiDAR are calibrated with a checkerboard. The authors argue
that for each view on the checkerboard the detection accuracy in the camera is
different because of e.g. the viewing angle. In contrast to this, they recognize
that the observations from a LiDAR show less variance in accuracy. So, their
method uses estimated covariances of the camera observations to weight costs
from different views in their optimization problem. Still, their approach is not
fully consistent since their weighting is only based on the observation charac-
teristics of the camera and LiDAR measurement noise is neglected.
To the best of our knowledge, there is no multimodal calibration method pre-
sented in literature that fully and consistently propagates the measurement
characteristics through the complete problem.
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In this chapter, we present fundamental concepts and techniques that are used
in our calibration methods. We first discuss the working principles of common
sensors in robotics. Next, we present computer vision tools that are later used
to detect the calibration target in images. Then, statistical tools are discussed.
They will be used for a probabilistic formulation of the calibration problem
and for error propagation. Up next, concepts of 3D geometry are summarized.
This chapter is concluded with the topic of model fitting which is essential to
solve the formulated calibration problem.

3.1 Sensors

In the following, we introduce the most relevant sensor types for many robotic
applications such as automated driving. We discuss their functional principles
and how to model them.

3.1.1 Camera

Cameras provide a lot of useful information about the environment. The hu-
man eye proofs that the visual information from cameras is even sufficient to
drive a car safely. Cameras are small and cheap which makes them popular for
many applications.

Cameras can be represented as a photosensitive sensor and a lens. Light
is bundled by the lens and directed to the sensor. The three dimensional
environment is then represented as a two dimensional projection on the sensor.
A camera model is used to model this projection.
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Figure 3.1: Visualization of different coordinate systems for the camera model.
a) A 3D scene point pc is projected onto the sensor (image plane). The projected point
is denoted as pi (blue) and appears in the image coordinate system (u, v) (orange). We
introduce a shifted and scaled image coordinate system (u�, v�) (green) to explain the
camera model. To express the 3D viewing ray (red) that corresponds to the projected
point pi , we introduce the camera coordinate system (xc, yc, zc ).
b) The point pi can be expressed in polar coordinates (r, ϕ).
c) A ray in camera coordinate system described by the inclination angle θ and the
azimuthal angle ϕ.

More formally, a camera model is a mapping between a 3D scene point
pc in camera coordinates and a 2D image point pi in image coordinates (see
Figure 3.1). Only in special cases, this mapping is invertible. Usually, we have
to decide which direction of the mapping should be solvable in closed form.
A forward model P f :R3 → R2 defines the mapping from a 3D scene point to
a 2D image point. A backward model Pb:R2 → R

3 defines the 3D viewing
ray that corresponds to a given image point. Depending on the application, it
is more important to work with image points (use a forward model) or with
viewing rays (use a backward model).

When searching for a suitable camera model, the most important factor is
the lens. There are different camera models which are commonly used for
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special types of lenses. In the following, we summarize a modular backward
camera model presented in [Str15] that allows to handle a wide range of lenses:
Let (u, v) be a point in the image space. First, this point is centered by the
principal point (u0, v0) and normalized by the focal length f :�

u�

v
�

�
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f

�
u − u0
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. (3.1)

The principal point is usually close to the center of the sensor and represents the
rotation center in case of a rotation symmetric mapping. The focal length is a
measure of how strongly the lens converges rays of light and can be interpreted
as the distance in which the rays, coming from infinity, are focused in the
optical center. Normalizing with the focal length is used to improve numerical
stability when estimating a distortion model.
Our distortion model differentiates between radial and tangential distortion.
Tangential distortion usually is due to errors in manufacturing and assembly.
Radial distortion models distortion effects especially of small lenses or wide
angle lenses. Mathematically, we use the following distortion model:�
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with r2
= u�2

+ v
�2, the distortion difference (∆u,∆v) and the undistorted

point (ud, vd). In Equation 3.2, the first terms u�(k1r2
+ k2r4

+ ...) and
v
�(k1r2

+k2r4
+ ...) remove radial distortion. The other terms remove tangential

distortion.
We use a projection model to describe the main rotation symmetric character-
istic of the lens. If the projection model suits the lens, the radial distortion
is small and can be described with only a few parameters. Mathematically,
we define a projection model as a function A that maps from the inclination
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angle θ of the ray (see Figure 3.1) to the (normed) point radius. The following
projection models are commonly used in lens design:

Projective: A(θ) = tan(θ) (3.4)

Stereographic: A(θ) = 2 tan

�
θ

2

�
(3.5)

Equiangular: A(θ) = θ (3.6)

Equisolid: A(θ) = 2 sin

�
θ

2

�
. (3.7)

By inverting the projection model, we find the inclination angle θ = A−1(rd),

where rd =

�
u2
d
+ v

2
d
. With the azimuthal angle ϕ = arctan(vd/ud), we

calculate the direction d of the 3D ray as

d =
����
sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

����
. (3.8)

In section A.1, we derive explicit formulas of the direction d for all four
projection models.
Many lenses can be modeled with a single focal point. For wide-angle lenses
this is often not the case. The focal point depends on the direction of the ray.
A simple but often suitable model is to relate the position of the focal point
along the optical axis z to the inclination angle θ:

z(θ) =

�
1

sinc(θ)
− 1

� N�
i=0

siθ
2i
, (3.9)

where N = 2 is already sufficient for most cases.

3.1.2 LiDAR

LiDAR is short for light detection and ranging. It is an active sensor, sending
light pulses which are then reflected in the environment and captured again by
the sensor. Based on the time between sending and receiving the light pulse,
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the distance to the reflecting surface can be determined. By combining the dis-
tance with the precisely known direction in which the light pulse was sent, the
LiDAR provides 3D point measurements. Currently, common LiDARs consist
of a few diodes (1-128) that are rotated or their light pulses are deflected by
a rotating mirror to measure a wide angular range of the environment. The
diodes measure several thousand times per second to create a 3D point cloud.

LiDARs are popular for many robotic applications such as automated driving
since they provide precise range information without additional processing.
This is a big advantage compared to cameras. Based on the point clouds of a
LiDAR, 3D environment models can be created. This information can be used
e.g. for localization and mapping ([2, 7]).

3.1.3 Radar

Radar is short for radio detection and ranging. The working principle is
comparable to LiDAR. It is an active sensor that sends out an electromagnetic
signal that is reflected in the environment and captured again by the sensor.
The radar cross-section (RCS) is a measure of how much energy is reflected
back to the source. It is mainly dependent on the material, shape and size of
the reflecting surface. The distance of an object is inferred based on the time
the signal needs to return. Further, due to the Doppler effect, a shift in the
frequency of the signal allows to estimate the relative velocity of the reflecting
surface. A major difference between a radar and a LiDAR is the wavelength
of the signal. Radars use radio waves which have a longer wavelength than
the light waves of LiDARs. This has several consequences: Radar signals are
strongly reflected by conductive materials but only weakly by other materials.
Automotive radars are less accurate than automotive LiDARs and usually only
provide 2D measurements (range and azimuthal angle). An advantage of radars
is that objects can be detected at far ranges (> 200 m) which is not possible
with most common LiDARs.

3.1.4 GNSS

Global Navigation Satellite Systems (GNSS) such as GPS or GLONASS consist
of multiple satellites that surround the earth in precisely known orbits. They
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continuously send out signals which can be received on earth. If signals of at
least four satellites are received, global positioning and velocity estimation is
possible.

3.1.5 Wheel Odometry

Wheel odometry estimates position and orientation of a wheeled platform
based on encoder readings from wheels and steering angle readings. By using
a precisely known vehicle model, the wheel rotation speeds and the steering
angle describe the movement of a vehicle when assuming no slip of the wheels.
Wheel odometry is considered to be very reliable and usually provides a high
quality movement estimation with low drift. Same as the vehicle model, the
wheel odometry is usually defined relative to the center of the rear axle.

3.2 Computer Vision Tools

In this section, we discuss fundamental computer vision methods that are
needed for detecting our calibration target in camera images.

3.2.1 Edge Detection

In the field of computer vision, an edge is defined as a sharp change of bright-
ness. Edges are often important because they are indicators of change e.g.
change from one to another object, change in depth or change of lighting. Many
tasks, such as background segmentation and object detection, focus on these
changes. So, edge detection is often used as a data reduction and filtering step.
This makes edge detection a fundamental low-level task in image processing.

Edge detection is a well-researched standard task but still considered to be
challenging depending on the requirements of the application. The main
challenge is to cope with the varying appearance of edges due to changes in
lighting, blur and contrast. Further, pixel noise has to be filtered by image
smoothing which leads to even more blur on the edges. If an edge is detected,
it has to be localized accurately. Usually, the high gradient of an edge stretches
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over multiple pixels so that determining the exact location is challenging. For
many applications, e.g. cartography, even sub-pixel localization accuracy is
needed.

In literature, many approaches for edge detection are presented. The de-
tectors can be split into two classes [JS09]. Detectors of the first class use
an operator to estimate the first order derivative of an image. Popular first
order derivative operators are Prewitt [Pre70], Sobel [DH73] and Robert oper-
ator [Dav75]. The positions of maxima and minima of the first order derivative
are potential edge points. Detectors of the second class use an estimate of the
second order derivative. Edge candidates are the zero crossings of the second
order derivative. Finding zero crossings is computationally less expensive than
finding local maxima and minima which makes the second class of detectors
more efficient [BM12]. The downside of using second order derivatives is the
higher influence of noise compared to using first order derivatives.

Finding edge candidates by the previously described operators is only one
step for robust and accurate edge detection. Many false positive edges are
generated by noise and false negatives occur due to low contrast, to name just a
few problems. In the work of Canny [Can86], a multi step process is described
to robustly extract relevant edges. This process is named after its inventor and
is considered the standard method for edge detection with pixel precision.

Canny Edge Detection

The following details on Canny Edge Detection are taken from [Can86, JS09,
BM12] . The process of Canny Edge Detection can be split up into five steps:

1. Smoothing of the image by convolution with a Gaussian kernel.

2. Determination of edge strength and rough orientation by calculating the
absolute intensity gradient and its direction.

3. Suppression of edges which have stronger edges in their direct neighbor-
hood.

4. Thresholding to classify points in no ,weak and strong edge.

5. Tracking of edge connectivity to eliminate weak edges.
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First Step: Pixel noise can induce high local gradients which are misinter-
preted as relevant edges. By smoothing the image, the pixel noise can be
reduced. Canny proposed to use a Gaussian kernel which is convolved with
the image. On the one hand, the size of the kernel should not be set too large
because too much smoothing blurs the edges which deteriorates localization
accuracy. On the other hand, the kernel size should be large enough to reduce
noise to an acceptable amount.
Second Step: The Canny Edge Detector works on the first order deriva-
tive of the image intensity. A vertical and a horizontal Sobel mask are used
to estimate the gradients in vertical and horizontal directions, respectively.
The absolute gradient at a pixel position is not exactly calculated because the
square root which would be needed for the computation of the norm is too
expensive for practical applications. Instead, the absolute gradient |G | is ap-
proximated by the sum of the absolute vertical |Gv | and horizontal gradient
|Gh | (|G | ≈ |Gv | + |Gh |). The orientation of the gradient is calculated by the
2-argument arctangent atan2(Gv,Gh). The orientation is reduced to four angle
bins which represent vertical, horizontal and two diagonal directions.
Third Step: Ideally, an edge is a step in intensity over one pixel. Locating an
ideal edge is trivial. The gradient peaks at the single pixel position of the edge.
But, due to blur, an edge appears as a smooth step over multiple pixels. So, the
gradient is high over multiple pixels. It is assumed that the true edge location
is the position with the highest absolute gradient. To isolate the positions with
highest absolute gradients, non-maximum suppression is applied. For each
pixel position, the value of the absolute gradient is compared to the values
of the two neighboring pixels in edge direction which is orthogonal to the
gradient orientation. If one of the two neighboring pixels has a higher absolute
gradient, the considered pixel position is suppressed by setting the gradient to
zero. This process is also called edge thinning since the edges are reduced to
single pixel width.
Fourth Step: Not all pixel positions with a non-zero absolute gradient are
edge positions. The absolute value of the gradient defines the saliency of an
edge. Two thresholds are used to classify pixel positions based on the absolute
gradient value. If the value is smaller than the lower threshold then the pixel
position is classified as no edge. A weak edge has a value between the lower
and the upper threshold. For a value higher than the upper threshold the pixel
position is categorized as strong edge.
Fifth Step: A final consideration to decide on weak edges is needed. On
the one hand, a weak edge can be the result of noise, and therefore, is irrele-
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vant. On the other hand, a relevant edge can have a moderate gradient due to
lighting, contrast and blur. A simple criterion to reason about weak edges is
connectivity to a strong edge. Weak edges are preserved if they are connected
to a strong edge and discarded if not.

Steger Method

Canny Edge Detection provides reliable edge detections but only with pixel
precision. Steger developed a method to detect and localize curvilinear struc-
tures with sub-pixel precision [Ste98]. His approach can also be used to detect
edges because edges appear as lines in the absolute gradient image. The fol-
lowing details are based on his work [Ste98].

A good starting point for the Steger method is to use the Canny Edge De-
tector for initial edge candidates. These detections are refined by the following
process:
For a candidate edge pixel, the gradient is calculated in the neighborhood by
e.g. the Sobel operator. The direction n = (nx, ny) orthogonal to the edge is
calculated by means of the Hessian H |G | of the absolute gradient |G | at that
pixel position:

H |G |(x, y) =

�
|G |xx |G |xy

|G |xy |G |yy

�
(3.10)

The eigenvector with the largest corresponding eigenvalue of the Hessian
H |G | points in orthogonal edge direction n. The second order derivatives
|G |xx, |G |xy and |G |yy needed for the Hessian are reliably calculated by using
a local bicubic facet model (two-dimensional cubic polynomial fit) for the
absolute gradient |G | [HWL83]. The edge is located at the zero-crossing along
the orthogonal edge direction. By using a second order Taylor polynomial the
sub-pixel offset for the edge position can be derived:

(∆px,∆py) = (tnx, tny) ,

with t = −
Gxnx + Gyny

Gxxn2
x + 2Gxynxny + Gyyn2

y

.
(3.11)
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3.2.2 Circle Detection

Detecting circles in images is a standard task in computer vision. There are
many applications for circle detection in industry e.g. sorting tasks in assembly
lines and automatic hole measuring for quality control.

The most popular method for circle detection in images is the Hough Trans-
form. The Hough Transform is a general method for feature extraction
[Hou62, DH71]. It is only practical for features described by few parame-
ters since efficiency of the Hough Transform does not scale well with the
complexity of the features. A circle can be parameterized by its center point
(xc, yc) and its radius R. A point (x, y) on the circle fulfills the circle equation

(x − xc)
2
+ (y − yc)

2
= R2

. (3.12)

The standard implementation of the Circle Hough Transform consists of mul-
tiple steps [YPIK90]:
First, edge points have to be extracted e.g. by the Canny Edge Detector (see
subsubsection 3.2.1). Each edge point might be a point on a circle. Addition-
ally, the normal direction of the edge points are estimated (e.g. by the Hessian
as explained for the Steger method in subsubsection 3.2.1). The direction
information is used in a later stage to increase efficiency.
As a next step, each edge point is transformed to the circle parameter space.
What does that mean? A circle is represented by its three parameters. We
define the circle parameter space as a 3D space with the dimensions xc, yc and
R. So, each 3D point (xi, yi, Ri) in the circle parameter space represents a circle
with center point (xi, yi) and radius Ri . A single edge point does not uniquely
represent a circle but limits candidates to circles that intersect the edge point.
For a moment, let’s assume that the radius of the circles we are searching
for is fixed. Then a single edge point transforms to a circle in the parameter
space (see Equation 3.12). If the radius is not fixed, it transforms to a circular
cone whose axis is perpendicular to its base (right circular cone) [DH71] (see
Figure 3.2 bottom left).
The Hough Transform uses a discretized parameter space. Each edge point
votes for the cells in the discretized parameter space which intersect the pa-
rameter cone. A so-called Hough Accumulator is used to accumulate all votes
in the parameter space. At this point, the normal direction of the edge points
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Figure 3.2: 2D image space (top) and 3D circle parameter space (bottom). The edge point pe

with normal direction n is transformed from the image space into the circle parameter
space. If no direction information is used, the edge point pe is represented as a right
circular cone with its symmetry axis being parallel to the R axis (bottom left). If
the edge direction is additionally taken into account, the transformation leads to the
reduced cone (bottom right). In both cases, the gray surfaces only serve for better
visualization and are not part of the transformation.

can be used to reduce the cones (see Figure 3.2), and therefore, reduces the
number of votes significantly. Cells with high vote counts represent prominent
circles in the image.
The final step of the Circle Hough Transform is to find the locations of high
vote counts. A central question is, how high is a high vote count? It depends
on the expected number of pixels which should lie on a valid circle. Usually,
the threshold for accepting a circle is set low to allow for detecting partly oc-
cluded circles and to compensate for missed edge points. To prevent detecting
circles which are close to local maxima in parameter space, non-maximum
suppression is used (as described in subsubsection 3.2.1 for edge detection).
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Depending on the preset ranges and resolution of the Hough Accumulator,
the standard Circle Hough Transform can be very expensive in memory and
computation. Therefore, many variations have been developed which are more
efficient than the original method. One of these variations is the Adaptive
Hough Transform ([IK87]) which uses an intelligent accumulator that adapts
its range and resolution to the underlying data. By only considering the rele-
vant part of the parameter space, the adaptive accumulator takes less memory
and the maximum search can be performed significantly faster.

Since the Hough Transform uses a discretized parameter space, the circle
parameters are determined only with limited precision. In many tasks, we
want to further optimize the circle parameters for improved precision.

3.2.3 ArUco Marker System

The ArUco marker system is a special type of fiducial marker system that orig-
inally was developed to estimate camera poses in an environment. To estimate
a camera pose, correspondences of points in the environment and their projec-
tion in the camera image are needed. This can also be done without markers
but a dedicated marker system offers an easy way to increase speed, robustness
and precision of the estimate. For that reason, many different fiducial marker
systems have been presented in literature (Figure 3.3).

The most popular class of markers is the square-based marker system. Markers
of this class are composed by a black square on a white background and an
identification code inside the square. The black square makes efficient pre-
filtering possible which is essential for fast detection of the markers. The code
makes each marker unique and usually offers redundancy to compensate for
wrong detections.

The ArUco marker system [GJMSMCMJ14] is a square-based marker sys-
tem with a binary identification code (Figure 3.4). The marker system is
special in its configuration of the binary identification code. Usually, a marker
systems comes with a fixed dictionary which contains all available markers.
This is problematic because if more markers are needed than the dictionary
contains, markers have to be used more than once, and so, uniqueness of
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Figure 3.3: Different fiducial markers: 1) InterSense [NF02], 2) ReacTIVision [JGAK07], 3)
VisualCode [RG04], 4) ARToolKit [Kat], 5) SCR [ZGN01] and 6) ARTag [Fia09].

Figure 3.4: Four different ArUco markers with code bit size 4x4.

markers is not given anymore. Further, if less markers are needed than the
dictionary contains, the inter-marker distance which is essential for detecting
and compensating for wrong detections is suboptimal. The dictionary of the
ArUco marker system can be generated for an individual number of markers.
This maximizes the inter-marker distance which results in a minimal inter-
marker confusion rate.

The authors of [GJMSMCMJ14] propose the following process to gener-
ate an individual ArUco dictionary:
The dictionary is generated by using a stochastic algorithm since checking the
complete search space is unfeasible even for codes with a low number of bits.
This might result in suboptimal results. The generation process is iterative.
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We start with an empty dictionary D. A code is randomly generated and only
added to the dictionary if the distance to all the codes in the dictionary is
higher than a threshold τ. The distance between two markers M1 and M2 is
defined as the minimum of hamming distances of M1 and the by k · 90◦ rotated
version of M2, where k ∈ [0, 1, 2, 3]. Further, the proposed marker is only
added to the dictionary if its distance to its rotated versions is also higher than
the threshold τ. This is important to robustly estimate the orientation of the
marker. The threshold τ is set to the maximal possible inter-marker distance
in the beginning and is then slowly decreased to guarantee that the dictionary
achieves the aimed size.

In the following, the detection and identification process, as proposed in
the original publication [GJMSMCMJ14], is summarized:
A gray-scale image serves as input. As a first processing step, edges are
detected e.g. by using the Canny Edge Detector. Next, contours are extracted
based on the edge points by using the method presented in [SA85]. The re-
sulting contours are approximated by polygons with the algorithm introduced
in [DP73]. Only polygons which are approximated by four vertexes are con-
sidered in the further process.
At this point, good marker candidates are efficiently generated without consid-
ering the inside of the polygons. To further filter out outliers and extract the
code of the markers, the perspective projection of the polygon is calculated by
finding the homography matrix [HZ03]. The resulting square is divided into
a grid of size (n+2)×(n+2), where n × n is the code bit size (see Figure 3.4).
Next, a threshold for binarization is found with the method described in [Ots79]
which is optimal for the bimodal pixel value distribution of a marker. If the
average pixel value in a cell is lower than this threshold, the cell value is set to
zero. Else, the cell value is set to one. A marker candidate is rejected if not all
of its outer cells are zero. The inner cell values define the binary identification
code. If the detected code or one of its rotated versions is in the dictionary D,
a valid marker was found. If this is not the case, we try to correct for detection
errors. All codes in the dictionary have a distance of at least τ̂ to each other,
where τ̂ is the threshold of accepting a new marker in the dictionary at the end
of the stochastic algorithm. So, a practical way to correct for detection errors
is to associate the incorrect code with the closest code in the dictionary if the
distance is equal to or smaller than �(τ̂−1)/2�. This correction method results
in high reliability for a great variety of scenarios.
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3.3 Statistical Tools

The principle of causality states that every real event has a cause. From
causality can be inferred that there must be a logical relationship between
two events, the cause and the effect. Cause precedes the effect. Assuming
causality always holds, everything would be deterministic. In practice, the
lack of information and the complexity of the logical relationship between
cause and effect motivate the concept of uncertainty [Rub07].

3.3.1 Probability Theory

Probability theory is a mathematical tool to model and work with uncertainties.
The following explanations are based on [Was13] and [Bis06].

Probability

We consider an experiment which can have different outcomes. The set of
possible outcomes is defined as the sample space Ω. Sample outcomes or
realizations are points ω in Ω. Events are subsets of Ω.
For example, we perform an experiment with a coin which has two sides, heads
(H) and tails (T). The coin is tossed twice. So, four different sample outcomes
ω1 = TT, ω2 = TH, ω3 = HT and ω4 = HH are possible. The sample space
is defined by Ω = {ω1,ω2,ω3,ω4}. The event AT that the first toss is tails can
be written as AT = {ω1,ω2}.

The probability distribution P assigns a real number P(A) to an event A.
P satisfies three axioms:

1. P(A) ≥ 0 for all A ⊂ Ω.

2. P(Ω) = 1.

3. For disjoint events A1, A2, ... the following holds:
P

��∞
i=1 Ai

�
=

�∞
i=1 P(Ai) .

For the previously mentioned coin experiment, the probability distribution P
assigns for every sample outcome ωi the same probability P(A = ωi) = 0.25,
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assuming a fair coin. For the event AT = {ω1,ω2} that the first toss is tails, we
calculate P(AT ) = P(A = ω1 ∪ A = ω2) = P(A = ω1) + P(A = ω2) = 0.5.

An important concept of probability theory is independence of two events
A and B. Event A is independent of event B if one event’s occurrence does not
influence the probability that the other event will occur. Formally, indepen-
dence is defined as follows:
Two events A and B are independent if and only if P(AB) = P(A)P(B).
For example, when tossing a coin twice, the outcome of each toss is in-
dependent of the other. Let’s define the event A as tails for the first toss
and event B as tails for the second toss. Because of independence, we find
P(AB) = P(A)P(B) = 0.5 · 0.5 = 0.25.

In the case that two events A and B are not independent, the occurrence
of one event affects the probability of the other event to occur. The conditional

probability is an important concept to model this dependency:
The conditional probability of A given B is defined as P(A|B) = P(AB)

P(B)
, if

P(B) > 0.
Again, let’s use the coin experiment as an example. We define A as the
event that both tosses are tails A = {ω1} and B as the event that the
first toss is tails B = {ω1,ω2}. The conditional probability P(A|B) of
both tosses are tails given that the first toss is tails can be computed as
P(A|B) =

P(AB)
P(B)

=
P({ω1 })
P({ω1,ω2 })

=
0.25
0.5 = 0.5.

For fixed B, P(A|B) satisfies the previously introduced three axioms, and there-
fore, is a probability distribution as well. Previously introduced independence
of two events A and B can also be defined by means of the conditional proba-
bility:
If and only if P(A|B) = P(A) holds, A and B are independent.
Note that, in general, P(A|B) = P(B|A) does not hold. The relationship be-
tween the two conditional probabilities is defined by the Bayes’ Theorem:
P(A|B) =

P(B |A)P(A)
P(B)

.
P(A) is called the prior probability, P(A|B) the posterior probability and P(B|A)
the likelihood. The denominator P(B) can be interpreted as a normalization
constant which assures that the posterior is a valid probability.
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Random Variable

Working directly with sample spaces and events is impractical for many prob-
lems. Random variables serve as a mathematical tool to model and work with
uncertainty in a convenient and powerful way:
The mapping X:Ω→ R that assigns a real number X(ω) to each sample out-
come ω is called random variable.
For example, we can define the random variable X to be the number of tails
when tossing a coin twice. The mapping would be

X(ω) =




0, if ω = HH

1, if ω = HT or ω = TH

2, if ω = TT

. (3.13)

The function FX :R→ [0, 1] defined by FX (x) = P(X ≤ x) is called cumulative

distribution function (CDF). A CDF has the following three properties:

1. FX is non-decreasing: x1 < x2 ⇒ FX (x1) ≤ FX (x2).

2. FX is a right-continuous function:
FX (x) = limy→x FX (y), for all x with y > x.

3. FX is normalized: limx→−∞ FX (x) = 0 and limx→∞ FX (x) = 1.

Figure 3.5 shows the CDF of the random variable X (Equation 3.13) for our
coin experiment.

We differentiate between two kinds of random variables:
A discrete random variable X maps to countably many values X:Ω →
{x1, x2, ..., xn}. fX (x) = P(X = x) is called probability function or proba-

bility mass function.
A continuous random variable X maps to infinitely many values. A so called
probability density function (PDF) fX must exist with the following properties:

1. fX (x) ≥ 0, for all x.

2.
∫ ∞
−∞ fX (x)dx = 1.
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Figure 3.5: CDF of the random variable X which is defined as the number of tails occurring in a
coin experiment when tossing twice [Was13].

3. P(a < X < b) =
∫ b

a
fX (x)dx, for all a ≤ b.

An example for a discrete random variable is given by Equation 3.13 for the
coin experiment. An important example for a continuous random variable is
the so-called normal or Gaussian distribution which is defined by the PDF

fX (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

, (3.14)

with the parameters µ and σ2 being the mean and variance, respectively (see
subsection 3.3.2). Figure 3.6 visualizes three different PDFs for normal distri-
butions with different parameter sets.

As for events and their probability, we can define useful relations between
random variables:
Two random variables X and Y are independent if
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B), for every set A and B.
If two random variables X and Y are not independent, their relationship can be
described by fX |Y (x |y) =

fX,Y (x,y)

fY (y)
, if fY (y) > 0, where f represents the prob-

ability mass function in case of discrete random variables and the probability
density function in case of continuous random variables.
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Figure 3.6: PDFs of three normal distributions with different parameters:
µorange = 0, σ2

orange = 0.2, µblue = 0, σ2
blue = 1, µgreen = 2, σ2

green = 0.5.

3.3.2 Mean and Variance

The mean and the variance are characteristic values of a distribution. The
mean E[X] and the variance V(X) of a random variable X with probability
density function f (x) are defined as follows:

E[X] =

�
R

x f (x)dx (3.15)

V(X) = E[(X − E[X])2] =

�
R

(x − E[X])2 f (x)dx . (3.16)

The covariance Cov(X,Y ) of two random variables X and Y is another char-
acteristic value that can be used to measure how strong the linear relation
between two random variables is. With the means µX and µY , the covariance
Cov(X,Y ) is defined as

Cov(X,Y ) = E[(X − µX )(Y − µY )] . (3.17)
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For random variables X1, X2, ..., Xn we define the covariance matrix Σ as

Σ =

�����

Cov(X1, X1) . . . Cov(X1, Xn)
.
.
.

. . .
.
.
.

Cov(Xn, X1) . . . Cov(Xn, Xn)

�����
. (3.18)

In practice, the mean, variance and covariance are often helpful to roughly
describe a distribution. Usually, when we are given data, we do not know the
underlying distribution. So, we cannot use Equation 3.15 - 3.17 to calculate
the characteristic values. We can use the following estimates by drawing n

samples from the population:
Given n samples {x1, x2, ..., xn} from the random variable X , the sample mean

X and the sample variance S2 are defined as

X =
1
n

n�
i=1

xi (3.19)

S2
=

1
n − 1

n�
i=1

(xi − X)2. (3.20)

The sample covariance Q for random variables X and Y is defined as

Q =
1

n − 1

n�
i=1

(xi − X)(yi − Y ), (3.21)

where xi and yi are the outcomes of the random variables X and Y for the i-th
sample of the underlying population.

3.3.3 Principal Component Analysis

Principal Component Analysis (PCA) is a method for analyzing data and
finding underlying patterns. PCA is an important technique used in many
applications such as data compression, dimension reduction and feature ex-
traction.
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The main idea of PCA is as following:
Let’s assume we have observations of different random variables at hand. PCA
finds a linear transformation to represent the data by a set of new uncorrelated
random variables. We call these uncorrelated random variables principal

components. The characteristic about the linear transformation is that the
variance of each principal component is maximized in an iterative manner:
The first principal component has the largest possible variance. The second
principal component maximizes the variance as well but under the condition
that it is orthogonal to the first principal component. This process is iteratively
performed for all principal components.

Mathematically, PCA can be formulated as following [Jol02,Bis06]:
Let X1, ..., Xn be n random variables. By drawing m times from the n random
variables, we collect observation data which is summarized in X where the i-th
row represents the i-th drawing and the j-th column denotes the j-th random
variable Xj . We assume that the sample mean for each column is zero. Oth-
erwise, we shift the date to make it zero-mean. A linear transformation maps
each row vector xi to the new system consisting of p principal components:

x̃i,k = uk
T · xi, i = 1, ...,m and k = 1, ..., p , (3.22)

where uk
T is a n dimensional unit row vector (�uk � = 1) and x̃i,k is the k-th

coordinate in the new system of the transformed i-th row vector xi . The first
principal component shall have maximized variance. Let Q be the sample
covariance matrix calculated based on the observations of the random variable
X1, ..., Xn. The variance of the first principal component can be calculated by
u1

TQu1. So, u1 can be found by solving the maximization problem

u1 = arg max
�u1 �=1

u1
TQu1 . (3.23)

By using a Lagrange multiplier, it can be shown that u1 is the eigenvector of Q
with the highest eigenvalue [Bis06]. Further, one can show that the following
principal component can be calculated by determining the eigenvector with the
second highest eigenvalue and so on for all principal components.
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3.3.4 Error Propagation

Error propagation deals with the question of how random errors of some input
signals propagate through a system and how they affect the outputs. The
following details are based on the works [Arr98] and [Tel01].

Let g(·) be a function that models a system taking the random variable X

as input and transforming it to the random variable Y = g(X) that we call the
output. We assume to know the system represented by g(·) and the distribu-
tion of the input X . Error propagation aims at finding the distribution of the
output Y . Theoretically, this distribution can be calculated (see [Was13]). In
practice, even for simple inputs and systems, the calculations quickly become
very complex. Therefore, an approximation of the output distribution for any
input and non-linear function g(·) is needed.

In the previous subsection 3.3.2, we introduced the mean and variance of
a random variable as characteristic values. For the case of a normal distributed
random variable, the mean and variance fully define the distribution (see Equa-
tion 3.14). Let’s assume a linear system g(x) = a + bx with parameters a ∈ R
and b ∈ R\{0}. For a normal distributed input X , the output Y = g(X) can be
shown to be normal distributed as well with mean µY = a + bµX and variance
σ2
Y
= b2σ2

X
[JW02]. In the case that g(x) is a non-linear function, the output

will not be normal distributed. When considering g(x) only in a small region
around the mean µX , we can approximate g(x) by linearization [BHWM06]:

g(x) ≈ g(µX ) +
dg(x)

dx

����
x=µX

(x − µX ) . (3.24)

So, the output Y can be approximated in a small range by a normal distribution
with mean µY and variance σ2

Y
:

µY = g(µX ) (3.25)

σ2
Y =

�
dg(x)

dx

��
x=µX

�2

σ2
X . (3.26)

Even if X is not normal distributed, we can propagate the mean and the vari-
ance of X through g(·).
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The remaining question is: when is this method valid? To answer this
question, we consider two aspects:
First, we assumed to know the mean µX of X . Usually, this is not true. Some-
times, we have data to calculate the sample mean as an estimate for µX (see
Equation 3.19). Another scenario would be to only have a single measurement
and the variance of the underlying distribution of X . Then, we can only use
this single measurement and hope that it is close to the mean.
Second, we linearized the function g(·). The linearization should be valid
within at least one standard deviation σX around the mean.
In practice, usually, the variance σ2

X
is small so that both, the estimate of µX

and the linearzation of g(·), are valid. Therefore, propagating the mean and the
variance of X through g(·) is often a useful method to describe the distribution
of the output.

Up to this point, we only considered a single input X and a single out-
put Y which is a limitation for many real problems. Let X1, X2, ..., Xm be
m random variables which serve as inputs for the system represented by
g : Rm → Rn with n outputs Y1,Y2, ...,Yn. Then, the mean vector of the outputs
µY = (µY1, µY2, ..., µYn )

T can be calculated by

µY = g(µX ) , (3.27)

with µX = (µX1, µX2, ..., µXm
)T being the mean vector of the inputs.

The linearization of g(·) around the mean µX can be written as

g(x) = g(µX ) + [∇g(x)]T
����
x=µX

(x − µX ) (3.28)

= g(µX ) +
�
∂g(x)
∂x1

∂g(x)
∂x2

...
∂g(x)
∂xm

� ����
x=µX

(x − µX ) (3.29)

= g(µX ) + J(x − µX ) , (3.30)

where J is the Jacobian matrix derived at µX . Then, the covariance matrix
ΣY of the outputs is calculated by

ΣY = JΣX J
T
, (3.31)
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with the input covariance matrix ΣX .

A frequently used simplification of Equation 3.31 is based on the assump-
tion that both, the input and output variables, are uncorrelated. The covariance
matrix for uncorrelated variables is a diagonal matrix

Σ =

��������

σ2
1 0 . . . 0

0 σ2
2

. . .
.
.
.

.

.

.
. . .

. . . 0

0 . . . 0 σ2
m

��������
, (3.32)

with the variances σ2
1 ,σ

2
2 , . . . ,σ

2
m of the variables. The diagonal elements of

Equation 3.31 can be written as

σ2
Yi
=

m�
j=1

�
∂gi(x)

∂xj

�2

σ2
Xj

, for i = 1, 2, ..., n. (3.33)

3.4 3D Geometry

In the following, we present fundamentals of 3D geometry that are used for
our calibration methods.

3.4.1 Distance Measures

Distance measures are an essential concept in 3D geometry. Having a measure
of how far apart two geometric objects are, allows to make an assessment of the
geometric constellation. This is important e.g. if the geometric constellation
shall fulfill certain criteria. In the following, we focus on Euclidean distances
between three geometric elements: points, lines and rays.
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3.4 3D Geometry

Figure 3.7: Visualization of different distance measures.

Point-to-Point

The distance d(p1, p2) between two points p1, p2 ∈ R3 can be calculated by
the Euclidean norm of the connecting vector −−−→p1 p2 = p2 − p1:

d(p1, p2) = � p2 − p1� . (3.34)

Point-to-Line

Let p ∈ R3 be a point and l(s) = pl + su be a line with support point pl ∈ R3,
direction vector u ∈ R3 and control parameter s ∈ R. Further, let p� be the
closest point on the line l to p (see Figure 3.7 top left). We can determine p� by
finding the parameter s� for which p� = pl + s�u holds. The parameter s� can
be calculated by projecting the vector −−→pl p onto the normed direction vector
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u/�u�. Mathematically, projection can be expressed by an inner product. The
length of the projection has to be equal to the distance between pl and p�:

d(pl, p
�) = s��u� = u

�u� · (p − pl ) (3.35)

⇒ s� =
u · (p − pl )

�u�2
. (3.36)

With known s� we can calculate the closest point on the line by

p� = l(s�) = pl + s�u = pl +
u · (p − pl )

�u�2
u . (3.37)

The point-to-line distance d(p, l) can be calculated as the point-to-point dis-
tance between p and p�:

d(p, l) = d(p, p�) (3.38)

=

�����p −
�
pl +

u · (p − pl )

�u�2
u

� ����� . (3.39)

A more compact formula is:

d(p, l) =
�u × (pl − p)�

�u� . (3.40)

Line-to-Line

Let l1(s) = p1 + su and l2(t) = p2 + tv be two lines with support points
p1, p2 ∈ R3, direction vectors u, v ∈ R3 and control parameters s, t ∈ R (see
Figure 3.7 top right). To find the distance d(l1, l2) between the two lines,
we first determine the direction of the distance vector. The direction of the
distance vector is defined by orthogonality to both line directions u and v.
Mathematically, we find a vector that is orthogonal to u and v by using the
cross product u × v. The projection of any vector connecting the two lines
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(e.g. p2 − p1) on this orthogonal vector has a length that equals the distance
of the two lines:

d(l1, l2) =
�(p2 − p1) · (u × v)�

�u × v� . (3.41)

Point-to-Ray

Let r(s) = pr + su be a ray with origin pr ∈ R3, direction u ∈ R3 and control
parameter s ∈ R+. Two cases have to be considered for calculating the distance
d(r, p) of the ray r to a point p ∈ R3 (see Figure 3.7 bottom left).
In the first case, the closest point on the ray is its origin pr . So, the distance
d(p1, r) is equal to the point-to-point distance d(p1, pr ).
In the second case, the closest point on the ray is not the origin. We can calculate
the distance d(p2, r) as the point-to-line distance d(p2, l) with l(t) = pr + tu

where t ∈ R.
Mathematically, we can use the concept of Equation 3.36 to find out which case
applies: For the point-to-line distance, we calculated the control parameter s�

which defines the closest point on a line. For a line, the control parameter
can be in R. For a ray, the control parameter is constraint to R+. So, if
Equation 3.36 results in a negative control parameter for the ray, we have to
switch to point-to-point distance.
We can summarize this in one formula for the distance of a point p to a ray r :

d(p, r) =

�
� pr − p� if u · (p − pr ) < 0
�u×(pr−p)�

�u � else
. (3.42)

Ray-to-Ray

Let r i(s) = pi + sui with i = 1, ..., 5 be five rays as depicted in Figure 3.7 at
the bottom right. There are four different cases which have to be considered
when calculating the distance between two rays.
In the first case (r1 and r2), both closest points on the rays are not their
origins. Therefore, the distance between r1 and r2 equals the distance of the
corresponding lines l1 and l2.
In the second case (r1 and r3), the closest point of r1 is its origin and the
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closest point of r3 is not its origin. So, the distance between r1 and r3 can be
calculated as the distance between the point p1 and the line corresponding to
r3.
The third case (r1 and r4) is similar to the second case but this time the origin
of r4 and the corresponding line of r1 is used.
In the fourth and last case (r1 and r5), the closest points are the origins of
the rays. So, the distance between the two rays r1 and r5 is the point-to-point
distance between their origins p1 and p5.
Let’s say, we want to calculate the distance d(ra, rb) between any two rays
ra(sa) = pa + saua and rb(sb) = pb + sbub . To check which of the four
cases applies, we define s�a = ua · (pb − pa) and s�

b
= ub · (pa − pb) (we are

only interested in the sign of Equation 3.36). Using s�a and s�
b

we can calculate
the distance between ra and rb as following:

d(ra, rb) =




d(pa, pb) = � pb − pa� if s�a ≤ 0, s�
b
≤ 0

d(la, pb) =
�ua×(pa−pb )�

�ua � if s�a > 0, s�
b
≤ 0

d(pa, lb) =
�ub×(pb−pa )�

�ub � if s�a ≤ 0, s�
b
> 0

d(la, lb) =
�(pb−pa )·(ua×ub )�

�ua×ub � if s�a > 0, s�
b
> 0

. (3.43)

3.4.2 Splines

Splines are a common tool for modeling curves and surfaces. They are used in
many fields for e.g. interpolation, approximation and visualization.
A famous application is the design of complex shapes in computer graphics. In
this context, splines turn out to be particularly easy to construct for humans and
enable fast creation of complex designs. This is due to splines being piecewise
polynomial curves. Compared to a single polynomial, a spline often needs
a significantly lower polynomial degree for each segment to model complex
shapes. This is beneficial for efficient processing and increases numerical
stability [PT97]. Further, the piecewise definition of splines makes them well-
suited for interactive shape design because selective tuning of parameters can
introduce local changes and does not affect the complete curve as in case of a
single polynomial.

Mathematically, splines are curves that are piecewise defined by polynomial
functions and are differentiable to a preset order. A spline s(u) of degree n (or
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order n + 1) is defined as following [PBP13]:
Let a0, ..., am be m + 1 knots with ai ≤ ai+1 and ai < ai+n+1. We call a knot
r-fold if it coincides with r knots (ai+1 is r-fold if ai < ai+1 = ... = ai+r <

ai+r+1). In each interval [ai, ai+1], s(u) is defined by a polynomial of degree
less or equal to n. Further, at each r-fold knot the spline s(u) is n − r times
differentiable.

A practical representation of a spline s(u) is given by using so-called ba-

sis spline functions (B-splines) Nn
i

:

s(u) =
�
i

ciN
n
i (u) , (3.44)

where ci is called a control point.
A B-spline can be defined by the recurrence formula (often referred to as de
Boor or Cox-de Boor algorithm [Cox72,DB72,DB78]) starting with

N0
i (u) =

�
1 if u ∈ [ai, ai+1)

0 else
(3.45)

and succeeding with

Nn
i (u) = α

n−1
i Nn−1

i (u) + (1 − αn−1
i+1 )N

n−1
i+1 (u) , (3.46)

where

αn−1
i =

u − ai

ai+n − ai
. (3.47)

For knots ai with ai = ai+r the following convention is used:

Nr−1
i =

Nr−1
i

ai+r − ai
=

0
0
= 0 . (3.48)

Figure 3.8 shows examples for the construction of B-splines. With the recur-
rence formula, one can show that a B-spline Nn

i
(u) is piecewise polynomial of

degree n, is positive in (ai, ai+n+1) and vanishes outside [ai, ai+n+1].
B-splines show many more useful properties. In the following, a selection of
important properties is given [PBP13]:
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Figure 3.8: Visualization of different B-splines:
a) B-spline of degree 0.
b) B-spline of degree 1.
c) B-splines N1

0 and N1
1 of degree 1 and line functions α1

0 and (1−α1
1 ) that are used to

construct the B-spline N2
0 of degree 2 by using the recursive formula of Equation 3.45-

3.48.
d) Same as c) but with 2-fold knot a0 = a1.
e) Uniform B-spline which can be efficiently constructed by convolution and shifting
(see Equation 3.51 - 3.53).
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• With the knot sequence a0, ..., am+n+1, the according B-splines Nn
0 , ..., N

n
m

of degree n form a basis for all splines of degree n within the interval
[an, am+1).

• B-splines form a partition of unity,

m�
i=0

Nn
i (u) = 1, for u ∈ [an, am+1) . (3.49)

• Nn
0 and Nn

m are not influenced by the end knots a0 and am+n+1 over the
interval [an, am+1].

• The end points and the end tangents of a spline on the interval [an, am+1]

with degree n are the same as its control polygon, if the end knots are
duplicate n-times

a0 = a1 = ... = an and am+1 = ... = am+n = am+n+1 .

• Any n-th degree spline segment s j on the interval [aj, aj+1) lies in the
convex hull of its n + 1 control points c j−n, ..., c j .

• The derivative of a B-spline of degree n can be calculated by using
B-splines of degree n − 1:

d

du
Nn
i (u) =

n

ai+n − ai
Nn−1
i (u) − n

ai+n+1 − ai+1
Nn−1
i+1 (u). (3.50)

If the knots are equally spaced (uniform knot sequence) then the corresponding
B-splines are called uniform. For a knot vector (0, 1, ..., n + 1) the n-th degree
B-spline Nn can be calculated by the recursion formula

N0(u) =

�
1 if u ∈ [0, 1)

0 else
, (3.51)

N j(u) = N j−1 ∗ N0
, (3.52)
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where the operator ∗ denotes convolution. Uniform B-splines of the same
degree can be calculated very efficiently by shifting [DB78,PBP13]:

Nn
i (u) = Nn(u − i) . (3.53)

3.4.3 Poses

The concept of poses in the Euclidean 3D space is essential for many fields,
such as robotics and 3D vision. A pose holds information about the position
and orientation relative to a reference frame. So, a pose can be used to e.g.
describe the relative position and orientation of a drone to a landing spot or of
two limbs of a robot arm to each other.

Mathematically, we define a pose as a transformation of the special Euclidean

group SE(3) [Bla10]:
We define a transformation on R3 as a function f : R3 → R3.
First, let’s look at a transformation represented by a 3 × 3 matrix R such that
a point x1 ∈ R3 is transformed to x2 ∈ R3 by x2 = Rx1 . The general linear

group GL(3,R) is formed by the set of all invertible 3×3 matrices. A subgroup
of GL(3,R) is the orthogonal group O(3) ⊂ GL(3,R) which is formed by the
set of all orthogonal matrices with determinant ±1. Transformations with
these matrices are isometries. An isometry is a transformation that preserves
the distance of any point pair. The set of orthogonal matrices with determinant
+1 forms the special orthogonal group SO(3). A matrix R ∈ SO(3) represents
a rotation.
To combine rotation and translation, we increase the dimensions of our trans-
formation matrix by one. We define the 4 × 4 matrix T as

T =

�������

tx

R ty

tz

0 0 0 1

�������
, (3.54)
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with R ∈ SO(3) and tx, ty, tz ∈ R. We transform a point x1 ∈ R3 to a point
x2 ∈ R3 by using homogeneous coordinates for the points (extend with 1 in
additional dimension): �

x2

1

�
= T

�
x1

1

�
. (3.55)

The set of all possible transformation matrices T forms the special Euclidean

space SE(3). Transformations in SE(3) have six degrees of freedom (DoF),
three for tx, ty, tz and three for R (columns are orthonormal). SE(3) trans-
formations can be interpreted as defining a position t = [tx, ty, tz]

T and an
orientation R relative to a reference coordinate system in R3. We define poses
as transformations in SE(3).

Notation

As stated before, poses are always defined relative to a reference coordinate
system Fref. A pose defines another coordinate system FA. Often, multiple
coordinate systems are in use and we need to clarify for each pose which is
the reference coordinate system and what is the denotation of the coordinate
system defined by each pose. We use the notation T Fref,FA to define the pose
of the coordinate system FA in the reference coordinate system Fref. E.g.
let’s assume we have two sensors, a LiDAR and a camera. We define two
different coordinate systems Flid and Fcam. Then, the pose of the camera in the
LiDAR coordinate system is denoted as T Flid,Fcam and the pose of the LiDAR
in the camera frame is given by T Fcam,Flid . The notation is motivated by the
convenient ordering of the subscripts when transforming a point pFA

defined
in coordinate system FA to another coordinate system FB:�

pFB

1

�
= T FB,FA

�
pFA

1

�
. (3.56)

The subscripts are ordered to read a chain of transformations ...T FD,FCT FC,FBT FB,FA

from right to left.
Often, transformations are visualized symbolically by arrows. We use the
convention as in Figure 3.9 to define the direction of the arrows.
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Figure 3.9: Convention to visualize symbolically the transformation TFB,FA
.

We summarize the conventions as follows:

T FB,FA




transforms a point from FA to FB.

is the pose that defines FA in/relative to FB.

is visualized symbolically as an arrow from FA to FB.

(3.57)

Parameterization

Besides the representation as a 4 × 4 matrix (Equation 3.54), there are other
common parameterizations of poses. In the following, we discuss four popular
representations which are used for many applications.

The first parameterization is the one we already introduced in Equation 3.54.
Translation and rotation are combined in one 4 × 4 matrix T .
A great advantage of this parameterization is that applying the transforma-
tion is simple. A transformation defined by T , can simply be performed
by matrix multiplication with the extended homogeneous point [pT1]T (see
Equation 3.55). Further, combining multiple transformations T 1,T 2, ...,T n is
also given by straightforward matrix multiplication T = T n...T 2T 1 (order is
important).
The downside of using a 4×4 matrix is that it is not compact with its 16 entries
for only six degrees of freedom. Additionally, human readability is not given
because of the rotation represented as a 3 × 3 matrix.

Another parameterization uses Euler angles to represent rotations. Euler
angles use three values which define three consecutive rotations about three
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axes. There are different conventions for the axes. We use the convention yaw
ϕ, pitch θ, roll ψ which is commonly used in robotics. With this convention,
a rotation is split in, first, a rotation about the z-axis (yaw), second, a rotation
about the modified y-axis (pitch) and, third, a rotation about the modified
x-axis (roll).
An advantage of this parameterization is its compactness. Three parameters is
the minimum number possible to represent three degrees of freedom. Further,
Euler angles are easy to interpret and visualize for humans.
The most important downside of Euler angles is the so-called gimbal lock. If
two of the three rotation axes are aligned, the rotation is locked in a degenerate
two dimensional space. With the yaw, pitch, roll convention, gimbal lock
occurs for pitch θ = ±90◦. In this configuration, roll and yaw are the same.
As a result, there is no unique combination of Euler angles to express a 3D
rotation in gimbal lock configuration.

The third parameterization we discuss uses the angle-axis representation for
the rotational part of the transformation. Euler’s rotation theorem states, that
every rotation or combination of rotations can be expressed by a single rotation
around one fixed axis. So, the angle-axis representation defines an axis n and
an angle of rotation θ about this axis. A compact representation is to combine
the angle and the axis to a 3D vector:

θ = θn , (3.58)

where n is normalized. So, the rotation angle is encoded in the norm �θ�.
As with Euler angles, the parameterization of the angle-axis representation
uses the minimal number of parameters to represent the three degrees of free-
dom. Another advantage is that the representation is well interpretable for
humans.
The angle-axis representation is not suited for directly applying rotations.
There is a formula, called Rodrigues’ rotation formula, which allows for ro-
tating a vector directly but it is not as efficient as working e.g. with rotation
matrices. Also, combining multiple rotations in angle-axis representation is
not trivial.

As the last parameterization, we discuss representing rotations with unit
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quaternions. A quaternion q can be written as a complex number with
three imaginary parts i, j, k [Vin11]:

q = s + xi + y j + zk ,with s, x, y, z ∈ R . (3.59)

The relation between the imaginary parts is given by

ii = j j = kk = i j k = −1 ,

i j = k, j k = i, ki = j ,

ji = −k, k j = −i, ik = − j .

(3.60)

A more compact and practical representation is to write the imaginary part as
a vector so that a quaternion can be written as a pair of a scalar s and a vector
v = [x, y, z]:

q = [s, v] . (3.61)

With standard multiplication of complex numbers and the rules given by Equa-
tion 3.60, we can derive a short expression for the product

qaqb = [sa, a][sb, b] (3.62)

= [sasb − a · b, sab + sba + a × b] . (3.63)

A quaternion q is a unit quaternion if the norm |q | equals to one: |q | =�
s2
+ x2

+ y2
+ z2

= 1. The inverse of a unit quaternion is equal to its
conjugate: q−1

= q = s − xi − y j − zk = [s,−v] .
Unit quaternions can be used to represent rotations. A unit quaternion q which
is constructed as

q = cos

�
θ

2

�
+ sin

�
θ

2

�
nxi + sin

�
θ

2

�
ny j + sin

�
θ

2

�
nzk (3.64)

=

�
cos

�
θ

2

�
, sin

�
θ

2

�
n

�
(3.65)

can be interpreted as a rotation of θ about the axis n = [nx, ny, nz]. Let a vector
v ∈ R3 be encoded in the imaginary part of the quaternion p = [0, v]. Then,
the imaginary part of the quaternion p� = qpq−1

= [0, w] holds the vector w
that is v rotated by q. The combination of two consecutive rotations q1 and q2
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can simply be calculated by q = q2q1.
Quaternions show many advantages over other parameterizations for rotations:
One reason why they are used in many applications is that they have no
singularities or discontinuities. They are more compact than matrices and allow
for very efficient computation of rotations. Additionally, they are superior in
numerical stability compared to matrices.
The downside of expressing rotations with unit quaternions is that they are not
convenient to interpret for humans.

Interpolation

Interpolation of poses is important for many applications in robotics. E.g. the
end effector of a robotic arm shall be moved from a pose T 0 to a pose T 1. For
creating the path between the start and end pose, interpolation is needed.

Interpolation of a pose is usually split up into interpolation of position and
interpolation of orientation. In the simplest case, we are given two poses
P1 = T F0,F1 at time t1 and P2 = T F0,F2 at time t2. Both poses have the same
reference frame F0. We can split up the poses in their orientations R1, R2 and
positions t1, t2, respectively.

First, we discuss interpolation of position. In the simplest case, besides
the positions t1, t2 at times t1, t2, no additional information is given. There-
fore, we can only guess how the object moves between the positions t1 and
t2. We assume a constant velocity vector as an intuitive motion model. This
results in linear interpolation for the position t t at time t ∈ [t1, t2]:

t t = t1 +
t − t1

t2 − t1
(t2 − t1) . (3.66)

Linear interpolation of positions is a common method because the assumption
of a constant velocity vector is often reasonable and it is efficient to calculate.
The downside of linear interpolation is that when dealing with more than just
two positions, interpolation leads to a jerky trajectory. Often, we assume that
objects move smoothly. Splines (see subsection 3.4.2) can be used to represent
a smooth movement in 3D space. To interpolate between two positions based
on a spline, the spline has to be fit to all positions in the relevant timespan.
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This can be done with least-squares optimization (see subsection 3.5.2). Then,
the control parameter of the time for interpolation has to be determined and
the spline has to be evaluated at this value. We can also represent linear
interpolation by a simple spline constructed by B-splines of degree one, knot
vector [0, 0, 1, 1] and control points t1, t2.

Interpolation of orientation is not as straightforward as for position. A simple
attempt would be to linearly interpolate rotation matrices. This does not work
because the resulting matrix is in many cases not even in SO(3) anymore, and
therefore, does not represent an orientation. Another attempt would be to work
with Euler angles. Linear interpolation of the three angles leads to unintuitive
interpolation with changing rotation rate [DKL98].
Interpolation of orientations is mostly performed in the quaternion space. To
understand why, we need to discuss quaternions once more:
Unit quaternions can be represented as 4D vectors with norm one. So, we
can think of a unit quaternion as a point on the surface of a 4D unit sphere.
Every point on this unit sphere corresponds to an orientation. One can show
that moving a distance x on the surface of the unit sphere corresponds to a
rotation of 2x, e.g. an arc of 90 ◦ on the sphere corresponds to a rotation of
180 ◦. An intuitive interpolation between two orientations is to take the short-
est path possible without any detour. This corresponds to moving on a great
circle. A great circle is the intersection of the sphere with a hyperplane that
intersects the center of the sphere. Additionally, we want to have a constant
rate of rotation which corresponds to a constant velocity on the sphere. So, to
summarize, intuitive interpolation for orientations corresponds to moving with
constant velocity on a great circle from one 4D unit quaternion vector to the
other. This kind of interpolation is called spherical linear interpolation and is
often abbreviated by Slerp. Slerp is not specific to interpolating rotations in
quaternion space. It is a general concept which can be applied to unit vectors
in any dimension. The algorithm for Slerp is independent of the dimension.
In the following, we derive Slerp in 2D:
Let’s assume we want to interpolate between two unit vectors v1 and v2. The
angle θ0 between the vectors can be calculated by θ0 = arccos(v1 · v2). The
angle between the interpolated vector vt and v1 is θ = tθ0, with the interpo-
lation parameter t ∈ [0, 1]. Figure 3.10 a) visualizes the vectors on the unit
circle. The goal is to find an expression of vt in terms of t, v1 and v2. Let’s
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Figure 3.10: Sketch to derive Slerp in 2D. The unit sphere in 2D is the unit circle. a) Unit circle
with interpolated vector vt between vectors v1 and v2. b) Same as a) but v2 is
replaced by v3 that is orthogonal on v1.

first consider the special case that v2 is replaced by v3 which is orthogonal to
v1 (see Figure 3.10 b). For this special case, simple trigonometry leads to

vt = cos(θt )v1 + sin(θt )v3 (3.67)

= cos(tθ0)v1 + sin(tθ0)v3 . (3.68)

If we assume that v1 and v2 are not parallel, we can generate a vector v̂3 which
is orthogonal on v1 and the corresponding normed vector v3:

v̂3 = v2 − (v1 · v2)v1 (3.69)

v3 =
v̂3

� v̂3�
. (3.70)
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We can combine these results in a simple algorithm which calculates Slerp for
any dimension (see Algorithm 1). This algorithm can be compressed in one
formula [Bus03]:

Slerp(v1, v2, t) =
sin[(1 − t) arccos(v1 · v2)]

sin[arccos(v1 · v2)]
v1 +

sin[t arccos(v1 · v2)]

sin[arccos(v1 · v2)]
v2

(3.71)

=

sin[(1 − t)θ0]

sin[θ0]
v1 +

sin[tθ0]
sin[θ0]

v2 . (3.72)

Algorithm 1 : Spherical linear interpolation (Slerp)

1 Slerp (v1, v2, t);
Input : Start and end vectors v1 and v2 and interpolation

parameter t.
Output : Interpolated vector vt .

2 θ0 = arccos(v1 · v2);
3 θt = tθ0;
4 v3 = v2 − (v1 · v2)v1;
5 v3 = normalize(v3);
6 vt = cos(θt )v1 + sin(θt )v3;
7 return vt

For interpolating orientations based on quaternions, we have to perform an
additional check before using Slerp. Because a quaternion q represents the
same orientation as −q we have to check if the signs in the interpolation pair
q1, q2 are correct. If q1 and q2 have a distance of more than 180 ◦ on the
unit 3-sphere (remember that this would be an interpolation path of more than
360 ◦), we need to switch the sign of one of the quaternions.

Slerp is by far the most commonly used method to interpolate orientations.
For small rotations between orientations, a very fast approximation of Slerp
is the so-called normalized linear interpolation (NLerp). It is standard linear
interpolation of two quaternion vectors but with following normalization to
end up with a unit quaternion again. NLerp can be derived from Algorithmus 1
or Equation 3.72 with small angle approximations.
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3.5 Model Fitting

Model fitting is the task of finding a model which fits given data. Having a
model which describes the data well is a powerful tool that enables efficient
data processing and often leads to a better understanding of the data. That
makes model fitting an essential task in a great variety of fields e.g. image
processing, finance and marketing. In the following, we present two common
concepts which can be used to fit a model to data.

3.5.1 Random Sample Consensus

Random Sample Consensus (RANSAC) is a sampling-based method to find
a model that fits given data. RANSAC is best known for its capability to
fit models to data with a high number of outliers. The following details on
RANSAC are based on the original publication [FB81]:

Let P be the set of m given data points for which a model M should be
fitted. To instantiate the model M , a minimum of n data points is needed. We
assume that m ≥ n.
RANSAC iteratively samples a subset Si of P with n points. Based on this
subset Si , a model Mi is instantiated. A subset S∗

i
is determined by isolating

points in P which support the model Mi within some tolerances. We call S∗
i

the consensus set of Si . A preset threshold τ is used to reject or accept the
model Mi as a valid solution. If the number of points in the consensus set
S∗
i

is equal to or higher than τ, the model is accepted and the algorithm is
terminated. If the number of points in S∗

i
is lower than τ, the model is dis-

missed and a new subset Si+1 is randomly sampled. The process continues till
a valid model is found or the maximum number of allowed iterations is reached.

Several parameters have to be set to use the RANSAC algorithm:
To determine a consensus set S∗

i
, we need to set the error tolerance which

defines whether a point is an inlier or an outlier with respect to the model Mi .
Usually, this parameter has to represent the requirements of the application,
and therefore, no fixed rule to set this parameter can be given. Also τ depends
on the application and is often determined experimentally. As a rule of thumb,
a good threshold to start with is τ = ωm, where ω is the inlier ratio of P.
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Usually, ω is not known precisely but can be roughly estimated.
The last parameter to set is the number of iterations k. Let p be the desired
minimum probability of finding a valid model. A valid model is picked if all
n samples to instantiate the model are inliers. Let’s assume that all n samples
are selected independently from P (valid assumption for a large dataset P).
Then, ωn is the probability that all n points are inliers. The probability that
at least one of the n points is an outlier can be calculated by 1 − ωn. So, in a
single try, an invalid model is selected with probability 1−ωn. Consequently,
no valid model is found in k trials with probability (1−ωn)k . This probability
is limited by the desired maximum probability of not finding a valid model
which is 1 − p:

(1 − ωn)k ≤ 1 − p . (3.73)

Based on this relation, we deduce the minimum number of trials:

k =
log(1 − p)

log(1 − ωn)
. (3.74)

The RANSAC algorithm determines a model Mi only based on n data points.
The rest of the data is only used to validate the model. Therefore, the authors
of [FB81] suggest to perform additional optimization of the model based on
all inlier points (see subsection 3.5.2).
MSAC (M-Estimator Sample Consensus) [TZ00], which is a generalization of
RANSAC, introduces a more sophisticated way to determine how well a model
fits the data. Instead of only using an error threshold which is used to classify
a point into inlier or outlier, MSAC uses an error function which allows to
encode more accurately how well the model fits the data. Usually, this results
in finding a model which fits the data better than with the original RANSAC
algorithm.

3.5.2 Least-Squares Optimization

Least-squares optimization is a very common method for model fitting. It is
popular because of its ability to conveniently solve a wide range of practical
problems in an efficient way.
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Let’s assume we have a model parameterized by the vector x = [x1, ..., xn]
T .

We define some smooth functions r1(x), ..., rm(x) that measure how well the
model fits some data. We call these functions residuals and combine all
residuals in a residual vector r(x) = [r1(x), ..., rm(x)]

T . The main idea of
least-squares optimization is to find the parameter vector x∗ that minimizes
the sum of squared residuals

x∗ = arg min
x

1
2

m�
i=1

r2
i (x) (3.75)

= arg min
x

1
2
�r(x)�2

2 . (3.76)

In the following, we assume that m ≥ n.

There are multiple reasons for minimizing the squared Euclidean norm and
not e.g. the absolute value of the residuals. When using the squared Euclidean
norm of the residuals, the structure of the minimization problem allows for
useful approximations which increase efficiency significantly. Another reason
is that there are many instances in which minimizing the squared Euclidean
norm makes good statistical sense. One important example is the case when
the residuals are assumed to be independent from each other and distributed
with the identical normal distribution. Then the least-squares solution is a
maximum likelihood estimate.

Linear Least-Squares

Let J ∈ Rm×n be a matrix and y ∈ Rm a vector. A least-squares problem with
a residual vector r(x) = Jx − y is called linear least-squares problem:

x∗ = arg min
x

1
2
�Jx − y�2

2 . (3.77)
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One can show that Equation 3.77 is a convex optimization problem, and there-
fore, any point x∗ with

∇
�
1
2
�Jx∗ − y�2

2

�
= 0 (3.78)

is a solution of Equation 3.77 (x∗ is a global minimizer) [NW06]. Simple
algebra leads to

JT Jx∗ = JT y , (3.79)

which is a system of linear equations. These equations are called normal

equations for the problem in Equation 3.77 because Jx∗ − y is normal to the
range of J (more obvious in the form JT (Jx∗ − y) = 0).
The normal equations are usually solved by Cholesky factorization, QR fac-
torization or singular value decomposition (SVD). Each of the methods has
its advantages and disadvantages [NW06]: Cholesky factorization is useful if
m � n and J is sparse but cannot be used straightforward if J is rank-deficient
or ill conditioned. QR factorization is more robust numerically. SVD is the
most robust and reliable approach but also the most computationally expensive.
For very large problems, it might be more efficient to use an iterative method.

Nonlinear Least-Squares

Nonlinear least-squares problems are nonlinear in the residual vector r(x). To
solve nonlinear least-squares problems, iterative solving methods are used.

One of them is the Gauss-Newton method: The main idea of this method
is to approximate the residual vector r(x) linearly at the current solution xk
which is

r(x) ≈ r(xk) + J(xk)(x − xk) , (3.80)
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with the Jacobian matrix

J(x) =

�
∂ri

∂xj

�
i=1,...,m
j=1,...,n

=

�������

∇r1(x)
T

∇r2(x)
T

.

.

.

∇rm(x)
T

�������
. (3.81)

So, at each iteration, we solve a linear least-squares problem for the correction

pk = arg min
p

1
2
�r(xk) + J(xk)p�2

2 (3.82)

with the methods explained before. We update our solution by xk+1 = xk + pk .
The Gauss-Newton method converges very quickly for mildly nonlinear resid-
uals (one step for the linear case). The downside of this method is that if we
start far from the solution or the residual is highly nonlinear then the method
might not even converge locally [Bjö96].

The damped Gauss-Newton method alleviates the problems of the Gauss-
Newton method. The update step is modified by introducing a step length
αk :

xk+1 = xk + αk pk . (3.83)

The search direction pk is still calculated based on Equation 3.82. The damped
Gauss-Newton method is said to be a line search method. At each interation,
the objective function is reduced along a line with direction pk . There are
multiple ways to find an appropriate step size αk . A simple but common way
is to start at αk = 1 and halving as long as

�r(xk)�2
2 − �r(xk + αk pk)�2

2 ≥ 1
2
αk �J(xk)pk �2

2 (3.84)

does not hold anymore [Bjö96]. This inequality is an intuitive measure of how
well the linearization approximates the non-linear residual vector for the step
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size of αk along the step direction pk . Another common method to chose the
step size αk is to solve the one dimensional optimization problem

αk = arg min
α

1
2
�r(xk + αpk)�2

2 . (3.85)

The standard and the damped version of the Gauss-Newton method can en-
counter problems when the Jacobian matrix at one iteration does not have full
column rank, or nearly so [EG04,NW06]. The Levenberg-Marquardt method

solves this problem and is therefore more stable than Gauss-Newton methods.
It can be iteratively formulated as the solution of the constraint problem

pk = arg min
p

1
2
�r(xk) + J(xk)p�2

2 , subject to � p� ≤ ∆k , (3.86)

where ∆k > 0. The Levenberg-Marquardt method is called a trust region

method and ∆k is the trust region radius. The interpretation is that the lin-
earization r(x) ≈ r(xk) + J(xk)(x − xk) is trusted only for �x − xk � ≤ ∆k .
The constrained problem of Equation 3.86 can be reformulated as the regular-
ized problem

pk = arg min
p

1
2
�r(xk) + J(xk)p�2

2 + µk � p�
2
2 , (3.87)

with µk ≥ 0. We can write this as a standard linear least-squares problem

pk = arg min
p

1
2

�����
�
J(xk)√
µk I

�
p +

�
r(xk)

0

� �����
2

2

(3.88)

that is easy to solve with the methods mentioned before.
For practical cases, the spherical trust region in Equation 3.86 is modified to
an ellipsoidal trust region to account for the characteristics (e.g. curvature and
range) for each dimension in x. Different scales can lead to numerical problems
and slow convergence with a spherical trust region [NW06]. Mathematically,
the subproblem at each iteration can be formulated as

pk = arg min
p

1
2
�r(xk) + J(xk)p�2

2 , subject to �Dk p� ≤ ∆k , (3.89)
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where the diagonal matrix Dk has positive diagonal entries. This can be solved
as a linear least-squares problem

pk = arg min
p

1
2

�����
�
J(xk)√
µkDk

�
p +

�
r(xk)

0

� �����
2

2

. (3.90)

One question is still remaining: How do we set Dk and ∆k?
The diagonal matrix Dk can be set to incorporate the information about the
different gradients for the dimensions of p. If the gradient in one dimension
is small, we want to allow for larger steps in this dimension to prevent slow
convergence. This is accomplished by a low weighting for this dimension
through the according diagonal element in Dk . A common way is to set the
diagonal elements of D2 to the same as the ones in JT

k
Jk .

The trust region radius is iteratively corrected. The initial radius ∆0 is set
high. The radius is reduced if the discrepancy between the linearization and
the nonlinear function is too high. The measure

ρk =
�r(xk)�2

2 − �r(xk + pk)�2
2

�r(xk)�2
2 − �r(xk) + J(xk)pk �2

2

(3.91)

is used to assess the calculated update proposal pk . An iteration is said to
be successful if ρk > β with a fixed β ∈ (0, 1) [Bjö96]. Then, we update
xk+1 = xk + pk . The trust region is increased for a successful iteration e.g. by
two. If the iteration is not successful, we set xk+1 = xk and reduce the trust
region e.g. by half.

Robustification

In many real scenarios, the data at hand is not free of outliers. Least-squares
fits are sensitive to outliers. The severity of the outliers and the outliers-to-
inliers ratio decide how much the estimation quality suffers. There are different
approaches to detect and handle outliers:

For data with a high ratio of outliers to inliers, sampling based methods
are suitable. RANSAC (see subsection 3.5.1) can be used to isolate inliers,
and then, least-squares optimization can be used on the inlier subset.
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Figure 3.11: Comparison of trivial loss (orange), Huber loss (blue) and Cauchy loss (green).

Least-squares problems are very sensitive to outliers because squaring high
residuals results in very high costs. As a consequence, a few outliers can
dominate the problem and lead to bad results. If there are only few outliers
in the data, a simple but effective method for robustification is to weight the
squared residuals by so-called loss functions ρ. Loss functions are scalar
functions ρ: R → R that downweight high residuals to reduce their influence
on the solution. Especially after some solving iterations, these high residuals
usually correspond to outliers in the data. The modified least-squares problem
can be formulated as

x∗ = arg min
x

1
2

m�
i=1

ρi

�
r2
i (x)

�
. (3.92)

For the special case ρtrivial(s) = s (trivial loss), this is a standard least-squares
problem. Multiple types of loss functions are commonly used. In Figure 3.11,
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the Huber loss and the Cauchy loss are compared to the trivial loss. Mathe-
matically, these loss functions are defined as

ρHuber(s) =

�
s if s ≤ 1

2
√

s − 1 else
(3.93)

ρCauchy(s) = log(1 + s) . (3.94)

They are designed to resemble the trivial loss for s < 1 and to be well below
the trivial loss for s � 1. Often, residuals are differently scaled, e.g. a residual
of 0.1 might be considered high or a residual of 10 might be considered low.
Therefore, normalization of the residuals is recommended. In this way, high
residuals (s � 1) are downweighted while low residuals (s < 1) are not.
When using a loss function, the optimization is not a least-squares problem
anymore. One popular method to solve the problem is iteratively reweighted

least-squares (IRLS). The problem is reformulated as a least-squares problem
with weights for the original residuals. The weights are recalculated for each
iteration.
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For all our calibration methods presented in this work, we make use of a
calibration target. As discussed in chapter 2, calibration methods that use a
known calibration target have several advantages over targetless methods:
A target provides invariance to the scene such that for all environments similar
calibration results can be expected. Because the target is well known, outlier
rejection is simple and reliable which is essential for high quality results. Most
importantly, an ideal target is designed to generate very accurate correspon-
dences between the sensors.
Targetless methods are highly dependent on the scene, and therefore, are not as
reliable as calibrating with a known target. Further, usually strong initialization
is needed and often only a subset of all setup parameters can be estimated.

In chapter 2, we introduced and discussed many calibration targets that were
proposed in the last decades. Based on their advantages and disadvantages, we
define criteria that our calibration target should fulfill:
First, we aim for fully automatic calibration. Many methods need user input
for segmenting the target from the scene, marking features or solving an asso-
ciation problem. Involving the user makes the method inconvenient and the
results are not independent of the user anymore. So, no user input should be
required. Therefore, the calibration target should be unique in the environ-
ment so that it can be easily segmented. Especially planes are omnipresent
so that it is not trivial to automatically segment a planar calibration target in
3D point cloud data. Known dimensions of the board ease the problem but
still consistency checks must be applied since a single undetected outlier can
significantly reduce the quality of the calibration. In camera data, uniqueness
can be created by using patterns or tags (see subsection 3.2.3). For radars, a
target can be designed to have a very high RCS that usually does not occur in
a scene, and therefore, makes the target unique.
After the target is segmented, features that can be accurately located in data
of all sensors have to be detected. For 3D point cloud data, the measurements
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should sample the features accurately without limitation of the sensor’s res-
olution. E.g. measurements that fall on a planar board sample a plane or
measurements that fall on a spherical target sample a sphere. In both cases, if
the measurements are not noisy, the plane or sphere can be perfectly estimated,
no matter where the measurements hit. In contrast to these examples, 3D cor-
ners or edge features that are estimated based on range discontinuities cannot
be estimated perfectly because of the limited resolution of the sensor. Many
approaches presented in literature use corners and edges for 3D point cloud
data (see chapter 2), and therefore, systematically limit their feature detection
accuracy which is essential for high quality calibration results. So, for 3D
point cloud data, surface features that can, theoretically, be estimated perfectly
should be used.
For cameras, high contrast edges, or even better, corners should be used. Prints
with patterns are very convenient to create, provide high accuracy and guar-
antee high contrast (if lighting is reasonable). If the edges or corners result
from an object occluding another, the foreground and background should be
controlled to ensure that the contrast is high. E.g. a white board in front of
a white wall will not work, whereas a black board in front of a white wall
provides high contrast and can therefore be detected with high accuracy.
Printing patterns on a board is the most convenient approach to create features
for cameras on the target but different colors have different reflectivity which
causes range errors in LiDAR data [PYW+14]. The severity of this problem
depends on the LiDAR model but only very few do not suffer from it. So,
features for LiDAR data are ideally derived from surfaces with homogeneous
reflectivity.
In general, it is beneficial if many features are connected. E.g. the pose of
a checkerboard can be more accurately determined in camera if it has many
corners on it or the normal of a board can be more accurately estimated in
3D point cloud data if more measurements fall on the board. Therefore, we
usually want the target to be large. In contrast to this, we want the target to be
portable and lightweight. Often, it is inconvenient or even impossible to move
the sensor setup, so that the target has to be moved around the sensors and not
the other way round. So, a compromise has to be made between a large target,
that is observed by many measurements but is heavy and not very portable,
and a small target, that is observed by less measurements but is lightweight
and can be moved around easily.
After segmenting the target and detecting features on it, many methods have to
solve an association problem because the target has multiple identical features
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on it. Again, we do not want to resolve the association problem by the user.
A simple way to prevent this problem is to only use a single feature. Another
approach is to use additional information (e.g. additional markers or shapes)
or to make the features unique.

We propose to use a spherical calibration target. In its simplest version, it
is a white Styrofoam sphere with an attached stick to hold it. The sphere is
an off-the-shelf product which can be purchased in many hardware stores. It
has a diameter of 50 cm with a roundness that deviates less than a millime-
ter. Because it is hollow, the sphere is lightweight with less than 300 g which
makes it convenient to move around. A sphere shows very handy mathematical
properties. It is modeled by only its center point and its radius. No orientation
has to be estimated. We will later see that 3D residuals can be defined easily
for all sensors and can be efficiently calculated.
A sphere of this size is usually unique in a scene. It is easy to segment in 3D
point cloud data. With a diameter of 50 cm, it is large enough to be detectable
in decent ranges even with low resolution LiDARs. The white sphere has a
homogeneous surface so that no problems due to varying reflectivity occur.
High detection accuracies can be reached in 3D point cloud data because the
estimation accuracy is not limited by the resolution of the sensor.
In image data, the sphere can be localized based on the edge contour between
sphere and background. So, the accuracy of the edge detection is critical
for the calibration quality. For high accuracy edge detections, the contrast
between sphere and background must be high. Therefore, the simples version
of our sphere target can only be used for camera calibration if the background
is significantly darker than the sphere. For best results, we use an additional
background which is attached to the target. The background is created from
a special light absorbing fabric. The downside of using a background is that
it adds weight to the target and the target cannot be detected from any angle
anymore. In case of bad lighting, we can increase contrast by turning on a
light that is mounted inside of the sphere. The Styrofoam with a wall thickness
of 2 cm lets light pass through. To make the sphere segmentation faster and
more robust in camera images, ArUco markers and lines are attached to the
background (see Figure 4.1).

A Styrofoam sphere cannot be detected by automotive radars. Therefore,
we make use of a corner reflector which is placed in the inside of the sphere
(see Figure 4.2). The corner reflector is build from metal sheets that reflect the
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Figure 4.1: Calibration target with background. A light absorbing fabric in combination with LED
lighting in the inside of the sphere provides high contrast between the background and
the sphere.

radar signal. The metal sheets are attached orthogonally to each other. Due to
this geometry, the signals are reflected back in the direction from which they
come.
The RCS of a corner reflector is very large for its size. Its maximum can be
calculated by

σ =
4πa4

3λ2
, (4.1)

where a is the length of the side edges of the three isosceles triangles (see
Figure 4.3) and λ is the wavelength of the signal. This formula is valid for
signals that hit the three metal sheets with equal incident angles. The RCS
decreases the more it differs from this angle because an increasing part of the
signal is not reflected back to the source (see Figure 4.4). To segment the
corner reflector from all other reflecting objects in the scene, we want its RCS
to be higher than the RCS of any other object. From Equation 4.1, we see that
the RCS is proportional to the fourth power of the edge length of the triangular
sheets. Hence, we want to maximize the size of the triangles.
Ideally, the corner reflector is detected as an effective point at the center of the
sphere. In the following, we answer the question where the effective detection
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Figure 4.2: One half of the Styrofoam sphere with the metal corner reflector attached to it. Addi-
tionally, a heater and LEDs are placed inside the sphere.

Figure 4.3: Sketch of a 3D corner reflector.
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Figure 4.4: Reflection patterns of a 2D corner reflector for two different incident angles. In a), the
incident angle is 45 ◦ at both sides. All the incoming rays are reflected at both sides
and return in the direction they come from. In b), the incident angle for each side is
different. Not all rays are reflected at both sides, and therefore, not all rays return to
the source.

point of a corner reflector is and if it depends on the incident angle of the
signal. As a simplification, we derive the effective detection point for the 2D
case since it is better for visualization. The derivative can directly be transfered
to the 3D case. Further, we use the concept of ray geometry from optics.
Let’s assume a ray hits the corner reflector with an angle of α (see Figure 4.5).
The ray is reflected on both sides of the corner reflector and returns parallel
to the initial ray. In reality, a radar signal is not as focused as a single ray but
hits the corner reflector over its full width. On average, the radar detects the
corner reflector in the direction of the ray that passes through the corner of
the reflector (see the orange ray in Figure 4.5). Based on the time of flight, a
radar measures the distance to a surface. The remaining question is: at which
effective range is the corner reflector detected?
The range measurement can be calculated by the length of the path which the
ray travels. We show that the range measurement of the blue ray in Figure 4.5
is the same as for the ray that hits the reflector in the corner. Up to the dashed
line, the traveled distance is the same. The distances for the rest of the rays can
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Figure 4.5: 2D corner reflector and different rays. The orange ray hits exactly the corner of the
reflector.

be calculated as b+ c + d for the blue ray and 2(e + f ) for the orange ray. The
difference between these two distances is zero:

∆ = [b + c + d] − [2(e + f )] (4.2)

= [e + e + d] − [2(e + f )] (4.3)

= d − 2 f (4.4)

= 0 (4.5)

For Equation 4.3, we use that b = e and c = e because b and c are in isosceles
triangles with e. Finally, we use the rules for similar triangles to find d = 2 f .
The interpretation of this result is that the corner reflector is detected effectively
at the range of the corner point. So, the effective point measurement of the
corner reflector is its corner point. Therefore, we place the corner of the
reflector at the center of the sphere.
The maximal size of the corner reflector can be easily determined by noticing
that the short edges of the triangles must be the inner radius Rinner of the sphere.
In our case, that is a = Rinner = 23 cm. The resulting RCS is about 13 times the
RCS of an average human. Usually, only few static object have an RCS equal
or higher than this corner reflector. These static objects can be automatically
filtered out (see section 5.3)
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Finally, we also mount a heater in the inside of the sphere to control its
temperature. This shall be used for calibration of a thermal camera e.g. for
applications that fuse thermal and texture information, such as in [3]. Because
the sphere is not connected to the background, the thermal difference between
background and sphere is large. The sphere diameter expands by 0.6 mm for a
temperature increase of 15 ◦C, which should be taken into account.

80



5 Target Detectors

In this chapter, we introduce methods for detecting the calibration target in
camera, LiDAR and radar data.

At this point, we want to clarify the use of the terms measurement, obser-

vation and detection. The terms observation and detection both address the
observed/detected center position of the spherical calibration target. The term
measurement is used in the sense of a single data point from a sensor. For Li-
DAR, measurements are 3D points. For camera, measurements are 2D points
in image coordinates. For radar, measurements are 2D points in the radar scan
plane. Observations can be calculated from measurements. E.g. multiple 3D
points (measurements) from a LiDAR that sample the sphere can be used to
derive the center point of the sphere (observation).

5.1 Camera Sphere Detector

For detecting a projected sphere in an image, we differentiate between multiple
cases:
In the most general case, the detector is applied to raw images which are not
corrected for distortions. Theoretically, the sphere can have any shape in the
image. In a simpler case, the distortions are corrected and a pinhole model
is used for the camera. Then, the projection of a sphere, essentially, is the
intersection between the image plane and the viewing cone from the optical
center to the sphere (see Figure 5.1 a). It can be shown that the intersection is
an ellipse. In the simplest case, the distortions are corrected and a spherical
camera model is used. The intersection between the spherical projection screen
and the cone to the spherical target is a circle (see Figure 5.1 b). As explained
in subsection 3.2.2, a circle can be described by less parameters than an ellipse
and is therefore easier to detect in an image.
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5 Target Detectors

Figure 5.1: Viewing cones from optical center O to the spherical calibration target (blue). In a),
the sphere is projected on a plane. In b), the sphere is projected on a sphere. The
projections are drawn in orange.

Spherical Camera Model

We first discuss the implemented sphere detector for the case that a spherical
camera model is used, hence, the projection is a circle:
In most calibration frameworks, a dataset is recorded first and then the detection
algorithm is run on this dataset. This approach suffers from two drawbacks.
First, a full assessment of the lighting and camera settings is only possible
when the detection algorithm is run. When detecting the target after record-
ing the dataset, a correction of the settings also means that the recording has
to be repeated. Second, at recording time, we do not know the number and
distribution of detections. So, we do not know if enough data is recorded.
The solution is to have a detector that can be run in real time while recording.
This allows to check if the calibration target can be detected with the current
settings and enables monitoring the distribution and number of detections. To
detect the target in real time, the detection algorithm must be very efficient.
To reach high efficiency, we use the assumption that the camera is static and
the sphere is moving. In the beginning of the calibration process, we detect
edges in the static scene over multiple images (e.g. 10 frames). Edges that
consistently occur are stored. We refer to them as static edges.
For each new image, we run our edge detector and remove the static edges.
The resulting edges are only on moving objects. If only the sphere and the
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person who carries the sphere are moving then the amount of edges is very
small. Therefore, subtracting the static edges is an early filtering stage that is
essential for high efficiency and reliability.
The few remaining edges are passed to circle Hough Transform (see subsec-
tion 3.2.2). The resulting circles are initial candidates and must be filtered and
refined in the following process. Two strong filter criteria are used to reduce
the candidate count. The first criterion assesses completeness of the circle
support. If edge detections are all around the circle, we say that the circle has
complete support. A strong candidate must have edge detections at more than
50 % of the expected circle pixels. The second filtering criterion is used to
prevent that a circle is fitted on a random accumulation of edge pixels. The
edge detections in the neighborhood around the circle are counted and com-
pared to the edge detections on the circle. If there is a relative high amount of
edge pixels in the neighborhood, the circle candidate is rejected. After filtering
out static edges and using the two filtering criteria, the number of candidates
should be reduced to one if only one sphere is moving.
Hough circle detection is not very accurate (see subsection 3.2.2). Hence, we
refine the circle parameters (2D center point and radius) by using least-squares
optimization. For each inlier edge point, we add a cost term which is the dif-
ference between the estimated radius and the distance between the edge point
and the estimated center point.

Pinhole Model

A spherical camera model is not very common for standard lenses and ap-
plications. Most commonly, a pinhole model is used. As mentioned before,
in the case of a pinhole model, the projection of a sphere is an ellipse. An
ellipse can also be estimated based on the Hough Transform but is significantly
more expensive than for circle detection because of two additional parameters.
A simple but effective way to avoid the problem of ellipse estimation is to
find a mapping which transforms the pinhole image to the equivalent spherical
image. The sphere projection is a circle again and the efficient algorithm dis-
cussed before can be used. Creating the mapping is straightforward. Usually,
a bilinear interpolation is used for interpolating pixel values.
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Raw Images

If no intrinsic camera model is given, and therefore, no mapping from the input
image to a spherical model can be generated, an approach that is independent
of the exact shape of the projection has to be used. A reasonable assumption is
that the projection of the sphere is a blob. To segment the blob, we use ArUco
markers (see subsection 3.2.3) and lines that are attached to the background
of the calibration target (see Figure 4.1). These markings can be efficiently
detected and enable to segment the area around the blob reliably. Even if
not all markings are detected because of occlusion or because they are not in
the view anymore, an appropriate region of interest can be estimated and the
sphere projection can be segmented.
We use edge detection with sub-pixel precision as explained in subsection 3.2.1.
To filter out edges that are not on the contour of the projected sphere, we use
multiple filter criteria. First, every edge point must lie inside the line marker
polygon. Then, the center of mass of all the remaining edge points is calculated.
The edge must be white to black from the center of mass to the outside of the
blob. Finally, we assess the entirety of the edge points by determining the
angle coverage of the edges relative to the center of mass. If the coverage is
too low, the image is skipped.
Not only the edge position but also the connection between neighboring edge
points provides information. Therefore, we want to additionally provide the
tangent direction in each edge point. Theoretically, a circle fit would be a good
model to approximate the local contour of the edge but, in practice, it turns out
that it is unreliable. A significantly more robust approach is to fit a line through
a small neighborhood around each edge point. This can be done analytically
by a 2D PCA (see subsection 3.3.3).

5.2 LiDAR Sphere Detector

Common LiDARs provide point cloud data which is organized in a 2D array.
Each row represents an elevation angle and each column corresponds to an
azimuthal angle. A row is called a scan line. In contrast to unorganized point
clouds, the neighborhood search for an organized point cloud is trivial, and
therefore, very efficient. This is used in the following detection process.
As for the camera detector, we assume that the sensor setup is not moving.
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We accumulate several LiDAR scans which represent the static scene. This
accumulated point cloud is stored. When new point cloud data is received, we
check for each point whether it is close to a static point or not. Points that are
closer than a minimum distance (e.g. 10 cm) to the static scene are filtered out.
For each scan line, we search for line segments with a length equal or smaller
than the sphere diameter. Then, we check if line segments between neighboring
scan lines overlap in their azimuthal range. Clusters over multiple scan lines are
generated from these overlapping line segments. A cluster is a candidate if all
its line segments are roughly centered at one azimuthal angle. We fit a sphere
to the points in a cluster to make a decision whether the cluster represents a
sphere well or not. The radius and position of the sphere are estimated by
least-squares optimization. Since we know the real radius of our spherical
target, comparing the estimated and the real radius is a strong and reliable
filtering criterion. A last check is based on the ratio of outliers to inliers.
In case of a 2D LiDAR, we essentially use the same process but fit a circle to
the data instead of a sphere. The radius of the circle must be equal or less than
the radius of the sphere.

5.3 Radar Detector

Radar data provides less detailed geometry information about the environment
compared to e.g. 3D point cloud data from LiDAR which makes it hard to
segment the radar target by its shape. We use the comparably high RCS of our
calibration target to filter out most irrelevant measurements. Additionally, we
again assume that the target is moving, and therefore, we record the static scene
and ignore data that is close to it. If another moving object with high RCS
enters the scene, we reject all candidates. In the worst case, the calibration
target is out of view and another object with high RCS is in the view of the radar.
Then, the other object with high RCS is erroneously interpreted as the target.
In a later stage of the calibration framework, such false positive detections can
be filtered out by robustification techniques (see subsection 3.5.2 ).
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This chapter is linked to our publication [6].

6.1 Scope

The Euclidean calibration framework is able to estimate the sensor poses of
a setup consisting of multiple cameras and range sensors. The number of
sensors is not limited and the type of the range sensors is not relevant as
long as the calibration target can be detected. Our spherical calibration target
(see chapter 4) is used. The target is detected by the detectors introduced in
chapter 5. We assume to have intrinsically precalibrated cameras so that our
shape-based camera detector can be used.

6.2 Problem Formulation

The main idea of the calibration framework is to optimize the sensor poses so
that the sum of squared Euclidean distances between detections of different
sensors is minimized. This is visualized for a camera and a LiDAR in Fig-
ure 6.1. Mathematically, this can be formulated as following:
Let S = {S1, ..., Sn} be a sensor setup consisting of n sensors. The poses
of the sensors are defined by the transformations T = {T 1, ...,T n}, where
T i ∈ SE(3). For brevity, we omit the reference coordinate system in the sub-
script and simply write T i for T ref,i (see subsection 3.4.3). Further, we denote
all sphere center detections of a sensor Si as X i , where the detections are de-
fined in the according sensor coordinate system. We summarize the detections
of all sensors inX = {X1, ..., Xn}. FromX , we generate m time-synchronized
pairs of observations P = {P1, ..., Pm} by interpolation. We formulate our cal-
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Figure 6.1: A camera and a LiDAR are calibrated. The gray circles symbolize the true position
of the sphere at three times. The blue lines and crosses symbolize the 3D LiDAR
detections and the orange lines represent the ray detections of the sphere center from
camera. In a) the distances between the detections from the camera and LiDAR are
visualized with black arrows. The distances are high because the sensor setup is
uncalibrated. b) shows the sensor constellation after a successful calibration of the
sensor setup. The distances between the detections are minimized.

ibration problem as the search for the transformations T which minimize the
sum of squared distances of all sphere center observation pairs P :

arg min
T

m�
i=1

dist(Pi,T )2 . (6.1)

The distance function dist(Pi,T ) takes two arguments, first, the observation
pair of which the distance shall be calculated, and second, the sensor poses
to transform the observations to a common coordinate system. The types of
observations decide on the distance measure that is calculated. We differen-
tiate between ray and point observations. So, point-to-point, point-to-ray and
ray-to-ray distance measures are possible. Explicit formulas for the measures
are given in subsection 3.4.1.
From an image, the 3D direction to the center of the sphere can be derived
with the 2D center point detection and the intrinsic camera model. The re-
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Figure 6.2: Two cameras are calibrated without range information. The optimization cost is
calculated by the sum of ray-to-ray distances. a) shows the correct solution and b)
shows a trivial solution for which the camera centers C1 and C2 coincide. Because all
rays origin in the same point, the ray-to-ray distances are zero for the trivial solution.
The blue camera can be rotated around its center to generate an infinite number of
additional trivial solutions.

sulting detection is of 3D ray type. If, additionally, the radius of the sphere is
given, the full 3D center position can be determined. Since the accuracy of the
range estimation decreases quickly with the distance of the sphere, we usually
only use the direction information. There is one special case in which the
imprecise range information from camera must be taken into account. When
calibrating only cameras without range information, the ray-to-ray distances
are minimized for a trivial solution in which all cameras are placed at the same
point (Figure 6.2). To prevent this trivial solution, at least one camera has to
use range information.
LiDARs and radars provide reliable range information. Therefore, their obser-
vations are of point type.

6.3 Interpolation

As previously explained, we use time-synchronized observation pairs. Cam-
eras can be triggered so that the images are recorded at the same time. Hence,
the target detections from the cameras have the same timestamps. For other
sensors, this is not always possible. E.g. we use rotating LiDARs that scan the
environment continuously. Therefore, the timestamp of the LiDAR detection
depends on the position of the target. So, we have to deal with asynchronous
target detections.
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t

 

Figure 6.3: Visualization of the interpolation process for the observations X = {X1, X2, X3 }

of the senor setup S = {S1, S2, S3 }. The resulting observation pairs P =

{P1, P2, P3, P4, P5 } always consist at least of one real observation. The two red
arrows exemplarily indicate the interpolation for time t2 [6].

To generate time-synchronized observation pairs from asynchronous observa-
tions, we need to use a motion model for the target. To interpolate between ray
observations, we assume that the target moves on a circular orbit around the
sensors with constant velocity. Quaternion Slerp (see subsection 3.4.3) is used
for this ray interpolation. For interpolation between two point observations,
we assume motion on the connecting line with constant velocity. Interpolation
takes place at a time t if there is an observation at t of sensor Si and another
sensor Sj provides an observation before and one after t which are close in
time (e.g. 100 ms). The resulting observation pair links sensor Si and Sj . The
interpolation process is visualized in Figure 6.3

6.4 Solving the Optimization Problem

To solve the calibration problem, we use two stages. First, we find a suboptimal
solution by calibrating pairs of two sensors. Then, we use this solution to
initialize the calibration problem with all sensors. The main reason for this
multi stage process is robustness. For a high number of outliers, solving the
calibration problem with all sensors directly, often leads to unreliable results.
For the first stage, we split the calibration problem in multiple subproblems.
Each problem shall be robustly solvable. The resulting poses are then combined
to a full transformation graph of the sensor setup which serves as an initial
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Figure 6.4: Connectivity graph of a sensor setup consisting of two cameras C1 and C2 and two
range sensors R1 and R2. The number of observation pairs connecting two sensors
are denoted on the corresponding edges. The maximum spanning tree which is based
on the robustness measure is given by the thick orange edges.

solution for the full calibration problem.
We define a robustness measure between two sensors. Based on this measure
we find a maximum spanning tree for the sensor setup. The robustness measure
takes the observation types of the two sensors and the number of observation
pairs that connect the two sensors into account. Point-to-point distances are
the most robust, then point-to-ray distances and the least robust are ray-to-ray
distances. So, a pair of two range sensors is considered to be more robust to
calibrate than a camera and a range sensor which is again considered to be more
robust to calibrate than a pair of two cameras. If the observation types of the
sensor pairs are the same, the numbers of observations are used to prioritize.
Figure 6.4 shows the connectivity graph and the maximum spanning tree of a
sensor setup consisting of two cameras and two range sensors. The numbers
on the connecting lines represent the count of observation pairs that link two
sensors.
The robustness score does not include information about the ratio of outliers
to inliers. This is because finding outliers and inliers is computationally
expensive. A common way is to use a sampling based approach as explained in
subsection 3.5.2, which involves solving the calibration optimization problem
several times. Usually, our simple robustness measure is meaningful and
leads to a good selection of subproblems, even without the information about
outliers.
After the subproblems have been identified, the pairwise calibrations are solved
by a robust sampling based method. As previously explained, the combined

91



6 Euclidean Calibration Framework

pose graph is used to initialize the complete calibration problem which is then
also solved with a robust method.

6.5 Assessment of Results

After the calibration is completed, we want to know how reliable the result
is. Dividing the calibration problem in multiple subproblems allows for a
simple but, in practice, very effective consistency check from which we can
derive a strong statement about reliability. First, we make use of the outlier to
inlier ratios. We know that our sampling based solver method can deal with
around 30 % of outliers. For less outliers, the solution can be trusted with high
probability. So, if all subproblems have less outliers, we reason that the initial
solution should be already close to the final solution. If the final solution is
close to the initial solution and the outlier ratio is less than 30 %, the solution
is reliable. If high pose differences between the initialization and the final
solution are detected or the outlier ratio is very high, the solution is unreliable.
In this case, the calibration is solved again. If the result is reproduced, the
problematic sensor pair is identified and the according data and detections
can be further analyzed to find the cause of the problem. If the result is not
reproducible then we had simply bad luck with the sampling based solving
method. This should happen rarely and can be easily detected by running the
calibration calculations several times, which takes only a few seconds.
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Framework

This chapter is linked to our publication [1].

7.1 Motivation

To motivate our probabilistic calibration framework, we want to discuss the
core problem of calibrating different types of sensors simultaneously.
Sensors differ vastly in their measurement principles which leads to different
types of measurements and different noise characteristics. In our case, this
results in different types of target detections with different detection accura-
cies. The detection accuracy can even differ for the same sensor, e.g. for a
radar the direction accuracy is low for close objects and high for far objects.
If significantly different detection characteristics are ignored, the solution can
become unreliable and inaccurate.
The goal of our probabilistic calibration framework is to formulate the calibra-
tion problem in a probabilistic manner. Thereby, we want to take the detection
characteristics of each sensor into account. This is the main difference to the
Euclidean calibration framework (chapter 6).

7.2 Problem Formulation

Mathematically, we formulate the calibration problem as follows:
Let S = {S1, ..., Sn} be a sensor setup with n sensors. The pose of a sensor
Si in a reference frame Fref is denoted by T ref,i ∈ SE(3). Without loss of
generality, we set the reference frame to the sensor frame of S1. For brevity,
we drop the reference frame in the subscript and simply write T i . All poses of
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S are summarized in T = {T 1, ...,T n}. At m points in time ttt = {t1, ..., tm}, at
least two observations of the calibration target from different sensors are given.
At time ti , the position of the target in reference frame Fref is denoted by Z i

and Z = {Z1, ..., Zm} summarizes all target positions at all times ttt. The target
position at time ti defined in sensor coordinate system Fj is denoted by zi j and
can be calculated from Z i and T j . A target observation at time ti of sensor
Sj in sensor frame Fj is written as xi j and X i = {xi1, ..., xin} comprises all
observations of the target position at ti . The target observations at all points in
time and of all sensors are summarized in X = {X1, ..., Xm}. We formulate
the calibration problem as a maximization problem over the joint probability
density function of the unknown sensor poses T and target positions Z given
all target observations X :

arg max
T ,Z

f (T ,Z |X ) . (7.1)

In the following, we introduce a simple but effective and practical observation
model that can be used for a great variety of sensors and that leads to a simple
solution of Equation 7.1:
To motivate our observation model, we want to discuss the measuring principles
of common sensors. LiDARs, radars and many cameras can be modeled
by using a single viewpoint from which the measurements originate. So,
measurements of the same sensor are modeled by rays that have the same
origin. In ray direction, cameras provide color or brightness information.
LiDARs and radars provide information about the distance to the reflective
surface in ray direction. The noise of a measurement can, in most cases, be well
approximated by angular noise for the ray direction and noise in the additional
information like brightness or range. The observation noise can be inferred by
the noise of the individual measurements and the detector algorithm. Usually,
the observation noise is also split in angular and range noise, if the range can be
inferred. The angular noise can sometimes further be split up into azimuthal
and elevation noise due to inhomogeneous angular resolution e.g. for LiDARs
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with only few scan lines. To model azimuthal, elevation and range noise, we
express observations in spherical coordinates:

xi j =




(rxi j
, θxi j
, ϕxi j

) if 3D point observation

(θxi j
, ϕxi j

) if 3D ray observation

(rxi j
, ϕxi j

) if 2D point observation

ϕxi j
if 2D ray observation

, (7.2)

with range r , elevation θ and azimuthal angle ϕ.
Mathematically, the observation model is given by the density function
f (xi j |T j, Z i) of the observation xi j given the sensor poseT j and the target po-
sition Z i in the reference coordinate system. We use f (xi j |T j, Z i) = f (xi j |zi j)

as a more compact notation, where the target position zi j at time ti is given in
the sensor coordinate system Fj of sensor Sj .
A reasonable assumption is that angles and range are independent so that we
can split up the observation model:

f (xi j |zi j) = f (rxi j
|rzi j ) f (θxi j

|θzi j ) f (ϕxi j
|ϕzi j ) . (7.3)

This will later simplify the calibration problem significantly. Note, that the
subscript of a component is used to indicate the variable the component be-
longs to. E.g. rxi j

is the range component of the observation xi j and rzi j is
the range component of the target position zi j .
At this point, we want to model each component by a distribution that describes
the observation characteristic adequately:
For the range component rxi j

of an observation, we use a one sided trun-
cated Gaussian distribution that is created by cutting the Gaussian distribution
N(rxi j

|rzi j ,σ
2
ri j
) at rxi j

= 0. This accounts for the fact that the range compo-
nent is non-negative. If the expected observation range E(rxi j

) is significantly
larger than the standard deviation σri j , the distribution can be approximated
with N(rxi j

|rzi j ,σ
2
ri j
) for rxi j

≥ 0 [JKB16]. For the angular components,
we use wrapped Gaussian distributions (see [Fis95]) that are derived from
N(θxi j

|θzi j ,σ
2
θi j

) and N(ϕxi j
|ϕzi j ,σ

2
ϕi j

). Again, if the standard deviations are
small, the distributions can be approximated by the corresponding normal dis-
tributions. The validity of the sensor model is shown on real data for different
sensors in subsection 10.1.2.
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To solve the calibration problem, we us the observation model f (xi j |zi j)

to derive a simple problem formulation for Equation 7.1 that can be solved
with standard methods.
First, we use Bayes’ rule (see subsubsection 3.3.1):

arg max
T ,Z

f (T ,Z |X ) = arg max
T ,Z

f (X |T ,Z) f (T ,Z)

f (X )
. (7.4)

Because we have no prior knowledge, neither on the sensor poses T nor
on the target positions Z , we assume f (T ,Z) to be independent of T and
Z . Furthermore, f (X ) is independent of T and Z . So, these factors can
be neglected in the maximization problem. The calibration problem can be
reformulated as a maximum likelihood estimation:

arg max
T ,Z

f (T ,Z |X ) = arg max
T ,Z

f (X |T ,Z) . (7.5)

Next, we assume that observations at different times ti and of different sensors
Sj are independent:

arg max
T ,Z

f (X |T ,Z) = arg max
T ,Z

�
i

f (X i |T , Z i) (7.6)

= arg max
T ,Z

�
i

�
j

f (xi j |T j, Z i) (7.7)

= arg max
T ,Z

�
i

�
j

f (xi j |zi j) . (7.8)

In Equation 7.8, we recognize the observation model and further expand to

(7.8) = arg max
T ,Z

�
i

�
j

f (rxi j
|rzi j ) f (θxi j

|θzi j ) f (ϕxi j
|ϕzi j ) (7.9)

= arg max
T ,Z

�
i

�
j

1
√

2πσri j
exp

�
−
(rxi j

− rzi j )
2

2σ2
ri j

�

1
√

2πσθi j
exp

�
−
(θxi j

− θzi j )2

2σ2
θi j

�
(7.10)
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1
√

2πσϕi j

exp

�
−
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− ϕzi j )2

2σ2
ϕi j

�
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�
i

�
j

�
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+
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�2
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�2

. (7.11)

We use the strictly increasing logarithm to derive Equation 7.11. This formula-
tion is a least-squares problem that can be efficiently solved with the techniques
described in subsection 3.5.2. The residual vector consists of the differences in
components of the observations xi j and the according target positions zi j that
are normed with the standard deviation for each component at the according
time. In Equation 7.9 we assume 3D point observations defined by two angles
and the range. If other observation types are used (see Equation 7.2), the
according non-existent components are left out in the least-squares problem
(Equation 7.11). Note that at least one sensor should provide range information
so that scale can be inferred.

7.3 Determining the Observation Noise

At this point, we derived a simple least-squares problem from our probabilistic
formulation in Equation 7.1 by using our universal observation model. For
solving the least-squares problem, we need to know the observation standard
deviations for each component at the according times. As previously explained,
the observation noise results from the measurement noise which is propagated
through the detection algorithm. Calculating the observation noise based
on the detection algorithm and the measurement noise is usually difficult. A
more practical alternative is to experimentally determine the observation noise.
Therefor, the position of the target relative to the sensor must be known. This
usually involves a very elaborate procedure and expensive hardware. A more
practical approach is to use simulation. Compared to the effort needed for real
experiments, it is often easier to create a suitable simulation.
The simplest approach to derive the observation noise is intelligent guessing.
Based on the measurement noise of the sensors, it is easy to estimate the
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components with highest and lowest noise. Of course, this only allows for
a rough estimate of the observation noise but the question is, how accurate
does the estimate have to be to reach good results? Actually this is the most
important question for the practical use of this calibration method.
In our evaluation (see chapter 10), we analyze the influence of using information
about observation noise in the calibration problem and show the sensitivity of
the calibration quality with regard to errors in the noise estimates. Further,
we give an example of how to experimentally derive observation noise on real
data and in simulation. Finally, we compare our probabilistic approach to the
Euclidean calibration framework that ignores noise characteristics.
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The main idea of this chapter is linked to our publication [5]. The definition of
the residuals in section 8.4 is fundamentally different and is an advancement
of [5].

8.1 Motivation

The probabilistic calibration framework introduced in the previous chapter can
outperform the Euclidean calibration framework significantly by using infor-
mation about the target observation noise (see section 10.3). The universal
observation model is very simple but effective and can be used for a great
variety of sensors. But, because it is so unspecific for a sensor, it is often in-
convenient to model all characteristics in detail. E.g. the angle accuracy of an
observation from a camera depends on the position of the sphere’s projection
in the image. Theoretically, this can be modeled by expressing the angle noise
as a function of the projection’s position. However, deriving this function
is hard. Therefore, the universal observation model is only practical if the
observation characteristics are considered constant for a sensor. But even then,
the estimation of the observation noise is not trivial. As explained before, an
accurate estimate involves elaborate experiments on simulated or real data.
Estimating the target observation noise is in practice significantly harder than
finding the noise of the raw measurements because this information is usually
given in the datasheet of a sensor. So, ideally, the user only has to provide
the measurement noise information and does not have to estimate the target
observation noise. Therefore, we want the raw measurements as input to the
calibration problem instead of sphere center observations. Besides the benefit
that no observation noise has to be estimated, working on raw measurements
also allows for increased calibration quality because more information is used
compared to when working with sphere center observations.
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One limitation of the base and probabilistic calibration framework is that
cameras have to be intrinsically calibrated before extrinsic parameters can
be estimated. So, another method has to be used to calibrate each camera
intrinsically which is an elaborate preparation procedure. It would be more
convenient if camera intrinsics are estimated while extrinsics are calibrated.
This way, only a single dataset with a single calibration target would be needed.
Additionally, calibrating intrinsic and extrinsic parameters in a joint calibration
problem can, theoretically, lead to improved estimates of intrinsic parameters
by complementary information from different sensors. E.g. the distance of the
target cannot be accurately estimated in far distance from camera image data.
The range information of a LiDAR can help estimating the target distance more
accurately, and therefore, can improve camera intrinsics.

We summarize the goals for the joint calibration framework as follows: Intrin-
sic and extrinsic parameters are calibrated in a joint calibration problem. No
other method is needed to calibrate the intrinsics of the cameras beforehand.
Raw measurements are used instead of sphere center observations. As a result,
the user has to provide information about the measurement noise instead of the
observation noise which is more convenient.

8.2 Input Data

Because raw measurements instead of sphere detections shall be used, the
sphere detectors used in the Euclidean and probabilistic calibration framework
are replaced by segmentation stages that only isolate relevant measurements
but do not fit a sphere to the data. For LiDAR, points that hit the surface of
the sphere are segmented. The filter criteria described in section 5.3 are used.
Radar data is used as before because the radar reflector is positioned in the
center of the sphere so that the radar measurements are the same as the sphere
center observations. The segmentation stage for camera images extracts the
edge contours of the sphere projections which serve as input data. Details
about the segmentation stage on camera images are given in section 5.1.
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8.3 Problem Formulation

Let’s define the joint calibration problem mathematically:
Given is a sensor setup S = {S1, ..., Sl}. In addition to its poseT i , we describe
a sensor Si by a set of intrinsic parameters I i and summarize all parameters
of Si in θ i = {T i, I i}. The parameters of the sensor setup S are given by
θ = {θ1, ..., θl}. A sensor Si at time tj provides ni, j measurements on the target
that are summarized in X i, j = {xi, j,1, ..., xi, j,ni, j }. We denote measurements
of all sensors at time tj as X j = {X1, j, ..., X l, j} and further summarize all
measurements from all sensors at all times t1, ..., tm as X = {X1, ..., Xm}. The
target position at time tj is denoted as Z j and all target positions at all times
are given by Z = {Z1, ..., Zm}.
As in chapter 7, we define the calibration problem in a probabilistic manner:

arg max
θ,Z

f (θ,Z |X ) , (8.1)

where f (θ,Z |X ) is the joint probability density function of the sensor param-
eters θ and the target positions Z given the measurements X .
To solve Equation 8.1, we need to find an explicit expression for f (θ,Z |X ).
We assume to have a measurement model f (xi, j,k |θi, Z j) for each measure-
ment xi, j,k . We use Bayes’ rule to reformulate the calibration problem as a
maximum likelihood estimator as described in chapter 7

arg max
θ,Z

f (θ,Z |X ) = arg max
θ,Z

f (X |θ,Z) , (8.2)

which is based on the assumption that no prior knowledge on the parameters
θ and the target positions Z is given. To incorporate the measurement model
for each single measurement, we assume independence of the measurements
that leads to

arg max
θ,Z

f (X |θ,Z) = arg max
θ,Z

l�
i=1

m�
j=1

ni, j�
k=1

f (xi, j,k |θi, Z j) . (8.3)

For universal consideration, we introduce residuals ri, j,k(xi, j,k, θ i, Z j) that
are used to define the measurement model f (xi, j,k |θi, Z j). We will show in
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section 8.4 that the residuals can be assumed to be zero-mean Gaussian which
leads to the measurement model

f (xi, j,k |θi, Z j) = N
�
ri, j,k

��0,σ2
ri, j,k

�
(8.4)

and results in a simple least-squares minimization problem

arg max
θ,Z

f (X |θ,Z) = arg min
θ,Z

l�
i=1

m�
j=1

ni, j�
k=1

�
ri, j,k

σri, j,k

�2

. (8.5)

This problem formulation differs from the one introduced in chapter 7 in two
points. First, for one point in time tj , multiple measurements instead of one
observation are used. Second, the residual is not limited to differences in
spherical coordinates. The residuals can be more specific to the sensor, and
thereby, can be more suitable to model the characteristics. This becomes
obvious when noting that measurements X i, j = {xi, j,1, ..., xi, j,ni, j } of the
same sensor Si at the same time tj can be modeled to have different standard
deviations σi, j,1, ...,σi, j,ni, j . The method in chapter 7 cannot model noise
characteristics at this low level.

8.4 Residual Definitions

In this section, we introduce the residuals for radars, LiDARs and cameras.

8.4.1 Residual for Radar

In the case of radar, the segmented measurements are identical to the sphere
center observations which we used in the probabilistic calibration framework.
In the datasheet of radars, the measurement accuracy of the azimuthal angle
and of the range measurement are given. The measurement noise in angular
component and range is assumed to be zero-mean Gaussian. Therefore, we
define an angular and range residual which represent the difference between
the estimated target position zi, j and the measurement xi, j in the radar scan
plane.
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8.4 Residual Definitions

8.4.2 Residual for LiDAR

Let’s consider a 3D point measurement from LiDAR that we denote by xl .
Usually, LiDARs provide high accuracy in direction but show significant noise
in their range measurement. We model the range �xl � by a Gaussian distribu-
tion with a standard deviation σrange that can be taken from the datasheet of the
sensor. Besides the random range error, there is also a systematic range error
that depends on the type of surface and its relative pose to the sensor. The data
is preprocessed in the sensor to reduce systematic range errors but the quality
varies by a large extend depending on the LiDAR [LDLP19]. Modern LiDARs
show low sensitivity in range accuracy to the distance of the reflective surface
and to the reflectivity of the surface, whereas the incident angle can influence
the range accuracy significantly. For many LiDARs, at incident angles larger
than 70 ◦, the systematic range error is around one standard deviation of the
random range error. Since we know the shape of our calibration target and
estimate its position, we can also derive the incident angle for each measure-
ment. We propose two different approaches to prevent significant range errors
due to high incident angles. A simple approach is to filter out measurements
with high incident angles in a preprocessing step. This can be achieved by
fitting a sphere to the point cloud. Actually, this is already done as a filtering
step to segment measurements that hit the sphere. Hence, filtering out mea-
surements with high incident angles comes for free. Another approach is to
model the systematic range error as a function of the incident angle γin, which
is measured relative to the surface normal. E.g. a polynomial function

b(γin) = p0γ
2
in + p1γ

4
in (8.6)

can be used to model the systematic range error b(γin). The unknown param-
eters p0 and p1 can be incorporated as intrinsic parameters of the LiDAR and
are estimated in the calibration process. The corrected measurement can then
be calculated by

xl,cor(γin) = (�xl � − b(γin))
xl

�xl �
. (8.7)

We define the residual for LiDAR based on the range measurement. With the
assumed target positions Z we can calculate the expected intersection point
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Figure 8.1: Visualization of the LiDAR residual.
a) Residual for a LiDAR point measurement xl in the case that an intersection point s
exists.
b) For the case that no intersection point between sphere and LiDAR measurement
ray exists, the residual is split into two parts: first, the range difference between
the measured point xl and the point s90 ◦

, and second, the distance between the
measurement ray and s90 ◦

.

s of the sphere and the ray. The difference between the range measurement
and the range of the intersection point s defines the residual (see Figure 8.1).
However, we have to consider a special case that can happen especially in early
iterations of the calibration. If there is no intersection between the measured
ray and the estimated sphere, the residual has to be defined differently. Each
measurement that is considered in the calibration problem is segmented in the
preprocessing stage and is therefore assumed to be on the sphere. The fact that
there is no intersection is caused by large errors in the sensor poses and/or the
target positions. Hence, we want to introduce high costs for the special case
that measurements do not intersect with the estimated sphere. To formulate
a smooth cost transition between the special case of no intersection and the
normal case of intersection, we use the intersection point s90 ◦

with an incident
angle of 90 ◦. The costs consist of two parts, first, the range difference between
the measurement and s90 ◦

, and second, the distance δd of the measurement
ray and s90 ◦

which penalizes the ray missing the sphere (see Figure 8.1). We
summarize the definition of the LiDAR residual as following:

r l =

�
�xl � − � s� if ∃s

|�xl � − � s90 ◦ � | + δd else
. (8.8)
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Note the continuous transition between the two cases which is important for
solving the optimization problem. If systematic range errors are corrected then
we replace xl by xl,cor.
The calibration problem in Equation 8.1 assumes residuals to be zero-mean
Gaussian. Let’s analyze the distribution of the LiDAR residual: First, we
notice that for given parameters θ and given target positions Z the intersection
point s is fixed. So, if an intersection point exists, the residual r l is distributed
like the range measurement �xl � which is modeled as zero-mean Gaussian
with standard deviation σrange. If no intersection point exists, the residual r l is
also distributed like the range measurement �xl � because � s90 ◦ � and δd are
not influenced by a random error.

8.4.3 Residual for Camera

Finally, we introduce residuals for camera measurements. The segmentation
stage provides edge positions on the contour of the projected sphere with sub-
pixel precision. There are two possible ways to define residuals, either in 2D
image space or in 3D space. The suitability and practicability depends on how
the camera model is defined. As explained in subsection 3.1.1, we differentiate
between forward and backward models. A forward model explicitly defines
how a 3D point is projected onto the image. In this case, it is more suitable to
define the residual in the image space since the estimated target sphere can be
easily projected onto the image. In subsection 3.1.1, we introduce a backward
camera model that can be used for a great variety of different cameras. This
backward model defines an explicit mapping from a 2D image point to a 3D
ray in the camera coordinate system. The other way round, from 3D direction
to 2D image point, is not easy to calculate with this model. Hence, suitable
residuals are defined in 3D space.

For each 2D edge point xc , we calculate the corresponding viewing ray
Pb(x

c). Additionally, we estimate the tangent in xc by fitting a line through
a small neighborhood xc

n1, ..., x
c
nu of u edge points. A circle fit would seem to

be more appropriate but, in practice, it turns out to be less reliable than a line
fit. We use PCA (see subsection 3.3.3) to calculate the angle ϕ(xc

n1, ..., x
c
nu) of

the tangent (see Figure 8.2). This is very efficient since 2D eigenvectors can be
calculated analytically. The angle ϕ(xc

n1, ..., x
c
nu) also includes the information

on which side of the tangent the sphere lies. To transform the edge direction
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Figure 8.2: Visualization to explain the camera residual. a) The information of the 2D edge point
xc with according tangent direction is transformed to 3D space in the form of the 3D
viewing ray Pb (x

c ) and the according tangent plane. b) The residual rc is defined by
using the viewing ray Pb (x

c ) (orange point symbolizes that the ray is directed into
the plane of drawing) and the tangent point Pt that is the closest point on the sphere
surface to the tangent plane (appears as the blue line in this 2D cut).

into 3D space, we locally define a 3D tangent plane (see Figure 8.2). The ray
Pb(x

c) is on the plane and its projection to the image has the same 2D tangent
in xc . The normal direction can be calculated by

nxc = Pb(x
c) × ∇ �

Pb(x
c) , (8.9)

where ∇ � denotes the derivative in direction parallel to the 2D tangent in xc .
We calculate the closest point Pt to the tangent plane that lies on the estimated
sphere surface. The residual rc is defined by the point-to-ray distance d(·, ·)

(see subsection 3.4.1) between the point Pt and the viewing ray Pb(x
c):

rc = d(Pt,Pb(x
c)) . (8.10)

But why do we introduce Pt to define the residual? An initial idea could be
to simply define the residual as the distance between viewing ray and sphere
surface. This definition has a major problem. There is a trivial solution for
which all estimated target spheres are positioned very close to the camera
so that the origin of the viewing rays are very close to the sphere surfaces.
To prevent this, we use the additional information about the direction of the
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tangent. If the orientation of the tangent plane is consistent with the center
point of the estimated sphere, our residual represents the minimum distance
between viewing ray and sphere.

To use the residual, we need to analyze its distribution. First, we notice
that the residual depends on the camera model Pb . Hence, the distribution of
the residual also depends on the camera model. In practice, the noise is small
so that the residual can be locally approximated well by a linear function. This
allows us to use the concept of error propagation discussed in subsection 3.3.4.
With the common assumption that edge detections are zero-mean Gaussian
orthogonal to the edge direction, we can propagate the Gaussian through the
calculation of the residual and derive a locally valid Gaussian approximation
for the residual distribution: We denote the standard deviation of the edge
detection by σpix. From this, we calculate the variance σ2

ϕ of the tangent angle
ϕ(xc

n1, ..., x
c
nu). We use the error propagation formula of Equation 3.31 to infer

σ2
ϕ =∇⊥ϕT (xcn1, ..., x

c
nu)

��������

σ2
pix 0 . . . 0

0 σ2
pix

. . .
.
.
.

.

.

.
. . .

. . . 0

0 . . . 0 σ2
pix

��������
∇⊥ϕ(xcn1, ..., x

c
nu) (8.11)

=�∇⊥ϕ(xcn1, ..., x
c
nu)�2σ2

pix , (8.12)

where ∇⊥ is the derivative in direction orthogonal to the tangent in each
neighborhood point xn1, ..., xnu . Since we have an analytical expression for
the tangent angle ϕ(xc

n1, ..., x
c
nu), the varianceσ2

ϕ is also calculated analytically
(details are given in section A.2). The residual rc(xc, ϕ) depends on the edge
point xc and tangent direction ϕ and is influenced by the tangent angle noise
and the noise of the edge point orthogonal to the tangent. With the concept
of error propagation, we conclude that the variance of the residual rc can be
calculated by

σ2
rc = �∇ϕrc(xc, ϕ)�2σ2

ϕ + �∇⊥
xc rc(xc, ϕ)�2σ2

pix (8.13)

=

�
�∇ϕrc(xc, ϕ)�2�∇⊥ϕ(xcn1, ..., x

c
nu)�2

+

�∇⊥
xc rc(xc, ϕ)�2�σ2

pix .
(8.14)
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We used the assumption that xc and ϕ are uncorrelated (see Equation 3.33).

Besides the assumption of Gaussian distributed residuals, we also use the
assumption that residuals are independent. This assumption is introduced to
derive a very simple formulation of the calibration problem. The assumption
is fulfilled for radar and also LiDAR but the camera residual seems to be prob-
lematic because we use the neighborhood around an edge point to calculate
the tangent direction. If an edge point is used in multiple neighborhoods,
the according residuals are not independent anymore. To prevent this, we do
not use edge points twice. So, the edge contour is sampled in a way that
neighborhoods do not overlap.

8.5 Solving the Optimization Problem

At this point, we know how to calculate the residuals and the according stan-
dard deviations and could, theoretically, solve the optimization problem in
Equation 8.5. Solving this problem with an initialization procedure that solves
several subproblems has many advantages:
First, the subproblems have less local minima than the complete optimization
problem. By initializing the complete problem with the solutions of the sub-
problems, the risk of getting stuck in a local minimum is reduced. Second,
computing an iteration of the iterative solving method (see subsection 3.5.2)
is expensive for this comparably large calibration problem. An efficient ini-
tialization routine that provides a fast but rough estimate for the parameters
can reduce the number of iterations significantly, and therefore, speeds up the
calibration procedure. Third, as mentioned in chapter 6, comparing the results
of subproblems to the final solution of the complete problem provides a tool
to detect failed calibrations and further identify the reason for an inaccurate
calibration.

We use the following procedure to solve the calibration problem:
In the first stage, we pick a single camera. We formulate the calibration
problem (Equation 8.5) for this single camera to get an initial estimate of its
intrinsic parameters.
In the next step, the calibration problem is extended by sphere center observa-
tions of all 3D range sensors. The center observations are time-synchronized
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to the camera images by the interpolation method explained in chapter 6. The
optimization problem is initialized with the previously calculated intrinsics of
the camera. The result provides improved intrinsics of the single camera and
the poses of all 3D range sensors relative to the camera. This step is motivated
by the fact that 3D range sensors are calibrated very robustly and efficiently
with the sphere center observations. These observations provide strong and
reliable constraints on the target positions. The accurately estimated target
positions improve the estimation of the camera intrinsics. These steps are
repeated for every camera.
The next stage incorporates all sensors at once. This way, the cameras can
profit from each other. Again, sphere center observations are used for the range
sensors. This stage refines the initial solution in all intrinsic and extrinsic pa-
rameters. The computation is very quick because of the good initialization.
Finally, we drop the center observations for the range sensors and calibrate with
measurements only. No time-synchronization is used anymore but a spline
is used to continuously model the target position (see subsection 3.4.2). The
spline is initialized by a least-squares optimization problem which minimizes
the distance of the spline to the previously estimated target positions. At this
point, we solve the calibration problem for all intrinsic parameters, the sensor
poses and the target trajectory. This represents our most refined solution and
is then compared to the results of the subproblems for a consistency check
(comparable to chapter 6).

In the beginning of this chapter, we argue that using the single measure-
ments in the calibration problem can improve calibration accuracy compared
to when using target observations. The downside is that the problem is signifi-
cantly more expensive to calculate because, typically, the number of residuals
is larger by a factor of 102 − 103 . Additionally, the standard deviations for
camera residuals are recalculated for each iteration of the optimization prob-
lem due to the changing intrinsics. To reduce the computational demand, we
can fix the standard deviations for multiple iterations. In practice, this speeds
up the optimization significantly, whereas the calibration accuracy does not
noticeably decrease.
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In the previous chapters, we introduced methods for calibrating a setup consist-
ing of multiple sensors. The sensor poses are estimated relative to a reference
coordinate system which could be one of the sensor coordinate systems or
defined in any point on the platform on which the sensor setup is mounted.
E.g. for cars, it is important to know how the sensors are positioned relative
to the rear axle in order to fuse sensor data with wheel encoder and steering
angle readings. Another scenario would be to fuse data from cameras and Li-
DARs with GNSS data for localization. The previously discussed calibration
methods do not include the calibration of GNSS receivers. The position of the
receiver antenna relative to the other sensors must be estimated differently. In
the following, we use the term external keypoint calibration for the process of
calibrating the main sensor setup relative to keypoints on the sensor platform
such as the rear axle or GNSS antennas. The following details are linked to
our publication [4].

To include external keypoints into the calibration framework, we use additional
sensors that can observe the keypoints and reconstruct their 3D positions. A
useful sensor for this task is an RGB-D sensor which provides visual and range
information to easily localize salient keypoints in 3D. Alternatively, a stereo
camera pair can be used. The 3D keypoint position can be reconstructed based
on triangulation. Cameras usually offer more control than an RGB-D sensor
which might have inaccurately known parameters e.g. the distance between
pattern projector and camera. Therefore, cameras are preferred for applications
with a high demand for accuracy.
The external sensors are calibrated to the main sensor setup with one of the
methods discussed in previous chapters. Then, the keypoints can be detected
in the data of the external sensors and the 3D positions can be reconstructed
relative to the other sensors.

For autonomous driving, the method can be used for linking the sensor setup to
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the rear axle which is usually the reference for the vehicle and collision model
of the car. The rear axle reference is defined by a coordinate system which
has its origin centered between the two rear wheel centers, its y-axis aligns
with the connecting line of the two wheel centers and its z-axis is orthogonal
to the ground surface and points up. In the following, we introduce the full
procedure of rear axle calibration with two external cameras. The procedure
can be split up in seven steps:

1. Place the external cameras at one side of the car so that at least one wheel
can be observed by both cameras. The camera poses are given unique
identification numbers.

2. Record a dataset with the calibration target. The target must be observ-
able for the external cameras and the main sensor setup.

3. Mark the center wheel position in one image for each of the external
cameras (see Figure 9.1).

4. The steps 1 - 3 are repeated with different camera positions in order to
observe all four wheel centers.

5. With the collected data in step 2, we calibrate the main sensor setup and
the external cameras for each of their pose.

6. With the estimated poses of the external cameras and the wheel centers
marked in the according images, the 3D positions of the wheel centers
are reconstructed by triangulation.

7. The rear axle coordinate system relative to the main sensor setup is
inferred from the four wheel center positions. The origin of the rear
axle coordinate system and the y-axis are determined by the two wheels
at the rear. The x-axis and z-axis are inferred by estimating the ground
plane from the four wheels.

112



Figure 9.1: Two gray-scale cameras are positioned in front of the left wheel at the rear of our
experimental vehicle. a) shows the complete setup. b) and c) show the camera images
of the two cameras with marked wheel center points.
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In this chapter, we evaluate our previously introduced calibration approaches.
First, the sphere detectors are analyzed (section 10.1). Then, the three different
calibration frameworks are evaluated and compared to each other (section 10.2
- 10.4). Finally, we evaluate the external keypoint estimation method based
on the application of rear axle calibration (see section 10.5). This chapter is
linked to our publications [1, 4–6].

10.1 Sphere Detection

Our sphere detectors are used to generate sphere center observations for cam-
eras and LiDARs. In the following, we evaluate the accuracy of the detectors,
identify error sources and analyze the error distributions.

10.1.1 Accuracy and Error Sources

We want to quantify the accuracy of the sphere detectors under different condi-
tions and identify error sources that noticeably decrease the detection quality.
For this to analyze, we need full control over the environment in which the
calibration takes place. Therefore, we create our own simulation environment
to produce raw images and point cloud data under controlled conditions. Dif-
ferent scenes which are derived from real data are used to make the simulation
realistic (see Figure 10.1 for an example scene). In these scenes, we simulate
the spherical calibration target. For cameras, the 3D sphere is rendered with
different lighting, simulated defocus and pixel noise. Range noise is simulated
to generate realistic measurements for LiDARs. We generate multiple datasets
from simulation. The sphere moves on a trajectory around the sensor setup in
a distance of 2 − 8 m. To compare the accuracy of the detectors, we calculate
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Figure 10.1: Simulation environment for evaluation. Real sensor data is used to build up a realistic
scene. The top image is an example for a rendered camera image and the bottom
image shows a 3D point cloud for the same scene at the same time [6].

point-to-point distances between estimated and true sphere centers.

First, we evaluate the camera sphere detector. We simulate a camera with
a resolution of 2000 × 974 and a focal length of 1222 px. The ideal conditions
for a camera are homogeneous lighting, no defocus and no pixel noise. Addi-
tionally, the background has a high contrast to the sphere and has no texture.
We use a white sphere in an all-black environment. Even for these ideal
conditions, the Euclidean distances of the detections to the ground truth center
positions are not always zero (see Figure 10.2). This is due to discretization
errors which depend on the exact position and size of the projection in the
image. Next, we add a realistic background and lighting. The contrast changes
around the projected sphere contour which leads to a median error that is
almost twice as high as for ideal conditions. Then, we additionally simulate
defocus and pixel noise. We use a Gaussian filter that is applied to the image to
emulate defocus. By comparing to real data, we found that a standard deviation
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Figure 10.2: Box plots of the detection errors for a camera [a)-d)] and a LiDAR [e)-f)]. In a), the
conditions are ideal for camera. The lighting is homogeneous, no blur or pixel noise
is added and the background has no texture and a high contrast to the sphere. In b),
the sphere is rendered on a realistic background and lighting is not homogeneous. For
c), defocus and pixel noise is added. In d), the focal length of the camera is disturbed
by 0.3 %. The result shown in e) is generated for point clouds without range noise.
The results for realistic range noise is depicted in f). [6]

of σdefocus = 0.5 px is appropriate. For the pixel noise, we use a zero-mean
Gaussian distribution with a standard deviation of σI = 4 which is emulating
our 8 bit grayscale cameras for good lighting. The effect of defocus and pixel
noise on the detection error is insignificant. Finally, we simulate an error in
the camera intrinsics. The focal length is the worst observable parameter when
calibrating a single camera. For good intrinsic calibration, we can assume an
error of 0.3 %. The detection accuracy significantly decreases due to this error
in focal length. It is by far the most severe error source for the camera sphere
detector.

Next, we evaluate the sphere detector for LiDARs. For a LiDAR without
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range noise, the detections are perfect (see Figure 10.2). The sphere can be
perfectly reconstructed independent of the resolution of the LiDAR. This is
the great advantage of sampling a sphere compared to estimating edges of a
calibration target based on depth jumps. We simulate zero-mean Gaussian
noise on the range component with a standard deviation that emulates the
measurement noise of modern LiDARs. The detection error varies a lot. This
can be explained by the low number of measurements that hit the sphere. We
simulate a 3D LiDAR with only 16 scan lines and on average 4 of them hit the
sphere. For a LiDAR with higher resolution, the detection error variance is
smaller.

This experiment shows how detection errors of a common camera and a
common LiDAR compare. A camera that is intrinsically well calibrated can
detect the sphere very accurately. A common range sensor usually cannot
achieve this level of accuracy. The results show that the detections for cameras
are not sensitive to defocus and pixel noise. Further, the texture in the back-
ground of the scene has no major influence on the detection accuracy as long
as edges still can be detected. Lighting has an influence but is not significant
for common scenarios. In our experiments, the most severe error source for
camera detections is an inaccurate estimate for the focal length.

10.1.2 Detection Distributions

In the probabilistic calibration framework, we use the assumption that the
target center observations are zero-mean Gaussian in the range and angle com-
ponents. Even if the measurements are zero-mean Gaussian, the observations
can be distributed differently due to the detection algorithms. Therefore, we
need to check the distributions of the output of our target detectors.

We perform experiments on real data. The biggest challenge when work-
ing with real data is to generate ground truth results for comparison. We
assume that the distributions of the observations are independent of the sensor
resolution up to a scaling factor as long as a minimal amount of measure-
ments lie on the sphere. E.g. for a 4 MP camera and a 1 MP camera, the
distributions of the observations are the same up to a scaling factor for the
variance. The underlying error sources are the same. This allows us to record
data in full resolution to generate ground truth detections which can be used
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Figure 10.3: Real camera image of the spherical calibration target in full resolution (left) and
downsampled to 20 % in each dimension (right). No internal lighting of the sphere
is used.

to evaluate detections which are generated on significantly downsampled data.
We downsample images to 20 % in each dimension so that the pixel number
decreases to 4 % (see Figure 10.3). Point cloud data from a LiDAR with 16
scan lines is randomly downsampled to also 4 % of the measurement points.
The calibration target is detected on the full resolution and the downsampled
data. The differences ∆r,∆θ and ∆ϕ between pairs of high resolution and
low resolution detections are calculated for the range r , elevation angle θ and
azimuthal angle ϕ. A dataset of 800 samples is used to generate the histograms
in Figure 10.4 and 10.5.

First, let’s discuss the results for our LiDAR presented in Figure 10.4. In
all components, the histogram can be roughly approximated by a Gaussian
distribution. The best Gaussian fits are plotted in orange. They are well
centered around zero. The standard deviation of the detections is significantly
smaller in the range component than the standard deviation of the range mea-
surement noise of 15 mm. Even for the low number of measurements in the
downsampled case, the effect of averaging out the range noise is noticeable.
Next, let’s discuss the results for the camera detections in Figure 10.5. We no-
tice that the Gaussian fit in the range error does not model the error distribution
well. This makes sense because the range error depends on the distance of the
sphere to the camera. Therefore, it makes sense to drop the range information
and only use the ray direction for the probabilistic calibration framework which
assumes the observations to be Gaussian in all used components. Note that
the error due to wrong focal length estimation cannot be analyzed with this
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Figure 10.4: Histograms for detection errors in range and angle components for a LiDAR. Addi-
tionally, best Gaussian fits are plotted in orange [1].

experiment. The detections on full resolution and low resolution data suffer
equally from this problem. The angular components roughly fit the Gaussian
assumption. In the elevation angle θ, we notice a small mean shift, whereas
in the azimuthal angle ϕ the mean is centered well. The mean shift in θ is in
positive angle direction. The reason for this shift is the dark shadow at the
bottom side of the sphere and its bright top side. The dataset is recorded in an
indoor scenario where lights are only attached at the ceiling of the room and
no light comes in from the windows. Further, no internal lighting of the sphere
is used. The images depicted in Figure 10.3 show the lighting conditions in
the dataset. The low contrast edge at the bottom in combination with the low
resolution results in edge detections which are too close to the sphere center.
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Figure 10.5: Histograms for detection errors in range and angle components for a camera. Addi-
tionally, best Gaussian fits are plotted in orange [1].

In azimuthal direction the lighting is symmetric and therefore the mean is
centered well.

This experiment shows that the detections are roughly distributed as zero-mean
Gaussian in angular components for both camera and LiDAR and, additionally,
in range component for LiDAR. The distributions are not perfectly Gaussian
and can have minor mean shifts but we will see in section 10.3 that incorpo-
rating these uncertainties despite their inaccuracies still improves calibration
quality.
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10.2 Euclidean Calibration Framework

In this section, the Euclidean calibration framework is evaluated. We start with
a sensitivity analysis in simulation to answer the question which error source
affects the calibration results the most. Then, real data is used to analyze
repeatability and accuracy of the calibration results.

10.2.1 Influence of Different Error Sources

For this experiment, we use our simulation environment again. We can gen-
erate observations in different ways. One possibility is to simulate raw sensor
data that is passed to the according detectors which provide the observations
for the calibration problem. This is done in subsection 10.1.1 to analyze how
the detector propagates errors from raw data to observations. In this chapter,
we directly simulate the observations. This decouples the calibration opti-
mization problem from the detectors. It allows to analyze the sensitivity of
the optimization problem to different errors of the observations. We generate
observations directly to analyze three error sources:

First, zero-mean Gaussian noise is added to the observation positions in random
directions. We simulate error distances with standard deviation σ1 = 5 mm
and σ2 = 10 mm. These values represent upper bounds for realistic detections
of a camera and a LiDAR. The values are estimated based on the results of the
detector experiments in Figure 10.2.

Second, we analyze the effect of interpolating between observations. Not
all sensors provide observations at the same time. Especially rotating sensors
cannot provide observations with controlled timestamps. Therefore, we need to
interpolate observations to get time synchronized observation pairs for which
costs can be defined. To provide realistic results, we simulate a target that
moves on a spline with velocity v = 0.4 m/s. The observation rate is 10 Hz.
All simulated observations have different timestamps so that interpolation is
needed to generate time synchronized observation pairs.

Third, we analyze the effect of erroneous timestamps. In a professional setup,
a time management system is used to synchronize the clocks in the sensors and
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provides controlled trigger signals to the sensors. In this case, the timestamps
have no relevant errors. For cheap or provisional sensor setups, there is no
such time management system. Additionally, there are sensors which do not
provide the necessary control to manage timestamps. In these cases, sensor
data is stamped when it is received by the main processing computer. Then,
the error of the timestamps are the sum of the processing time in the sensor
and the time to send it to the main computer. To simulate this error, we disturb
the perfect timestamps by Gaussian noise. From real data we derive average
delay times for cameras of up to 30 ms which varies several milliseconds.
Therefore, we use a mean of 30 ms and a standard deviation of 10 ms for the
Gaussian distribution on the timestamps of the simulated camera. The data of
our LiDAR is sent in small packages so that the processing time and time to
send it to the main computer is significantly smaller. In this simulation, we
assume the timestamps of the LiDAR observations to be exact.

The results of all three experiments are shown in Figure 10.6. For each
experiment, multiple calibration runs for different datasets and different initial
poses are performed. The pose errors to the known ground truth poses are split
up into translation and rotation errors. The results show multiple interesting
points:
First, we get a rough range of the expectable calibration errors. In the exper-
iment a), the simulated noise is higher than what we would expect from real
data. Therefore, we can expect pose errors for camera and LiDAR calibration
of less than 5 mm in translation and less than 0.1 ◦ in rotation. We will validate
these results on real data in subsection 10.2.2.
Second, we notice from the experiment b) that the errors due to interpolating
observations is negligible. Of course, this result depend heavily on the data
frequency and the movement of the target. With a data frequency of 10 Hz, the
target can be moved with a speed that is convenient for the user while errors
are very small. For a data frequency of 1 Hz, the errors can quickly get high if
the target is moved on a jerky trajectory.
From the experiment c), we learn that accurate timestamps are essential. A
mean time error of 30 ms causes major calibration errors. Again, this error
depends on the movement of the target. If multiple static positions of the target
are recorded, the result would not suffer from erroneous timestamps. But this
would mean significantly more effort to record an appropriately large dataset.
Therefore, for a convenient and high quality calibration, a time management
system should be used.
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Figure 10.6: Translation and rotation errors of calibration results in three simulated experiments.
In (a), the positions of perfect observations are disturbed by zero-mean Gaussian
noise. In (b), the error due to interpolating observations at different timestamps is
plotted. The error for erroneous timestamps is shown in (c).

10.2.2 Real Data Performance

After the analysis in simulation, we want to check the calibration quality on
real data. We fix the pose of a camera and mount a LiDAR on a translation
and rotating table to generate a known pose difference to a reference setup
(see Figure 10.7). The accuracy of the controlled movement has a tolerance
of 0.01 mm in translation and 0.005 ◦ in rotation and is therefore significantly
better than the expected calibration accuracy. For this experiment, we record
multiple datasets for three different poses of the LiDAR. The first pose is used
as a reference. The second is generated by applying a translation of 120.00 mm
to the reference pose. The third is created by rotating the reference pose of
the LiDAR by 20.0 ◦. For each pose, the calibration is performed on multiple
datasets and for different initial poses. The results are visualized in Figure 10.8.

First, we analyze the calibration of the reference setup (first row). We no-
tice a median translation difference of 1.4 mm and a median rotation difference
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Figure 10.7: Sensor setup consisting of a camera and a LiDAR. The LiDAR can be translated on
a linear rail and rotated around its center axis (see orrange arrows) [6].

of 0.07 ◦. This gives a rough estimate of the repeatability for this setup. In the
bottom left, the translation difference is plotted for the case that the LiDAR
is shifted by 120 mm. The median translation difference is 122.7 mm which
is 2.7 mm off the ideal difference. The results of the calibration runs are not
centered around 120 mm which means that systematic errors are present. We
notice the same for the results when rotating the LiDAR by 20 ◦ (bottom right).
The median is 19.91 ◦ which is 0.09 ◦ off the actual difference. There can be
many possible reasons for the systematic errors. One major and always present
systematic error is due to imperfect intrinsic sensor models. Sensor models are
usually a simplification and cannot model all effects. So, systematic errors are
expected on real data, the only question is how large they are. With a median
error of 2.7 mm in translation and 0.09 ◦ in rotation, the errors are sufficiently
small for many common applications such as localization and object detection.
E.g. in autonomous driving, the detection error of a car in a distance of
100 m is only 16 cm which is sufficient for prediction. Actually, the resulting
accuracy and repeatability of our method are significantly better than reported
in comparable experiments in literature (e.g. [RFFB08,GMCS12]).
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Figure 10.8: A sensor setup consisting of a fixed camera and a movable LiDAR is calibrated
multiple times based on different datasets and different initial poses. In the top row,
the reference setup is evaluated. In the bottom row left, the LiDAR is moved 120 mm
from its reference pose. On the right side of the bottom row, the LiDAR is rotated by
20 ◦ to its reference pose. The diagrams show the pose differences of each setup to
the reference setup [6].
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10.3 Probabilistic Calibration Framework

In this section, we evaluate the probabilistic calibration framework and want
to answer multiple questions. First, is there a noticeable benefit of using the
information of the observation noise? If so, how significant is the benefit and
what does it depend on? Further, for practical use, we need to know how
sensitive the results are to the observation noise estimates.

10.3.1 Evaluation in Simulation

We start our evaluation in simulation. We generate 1000 independent datasets
with given target positions in the range of 2−10 m from the simulated sensors.
If the target is in the field of view of a sensor, a noisy observation is created
based on the observation noise characteristic of the sensor. On each dataset,
several different calibration runs with different settings are performed. By
averaging over all 1000 independent datasets the average calibration quality can
be assessed. To quantify the quality difference of a target calibration method
and a reference calibration method, we introduce the following measure:

Q(∆target,∆ref) =

�
Qtrans(∆target,∆ref)

Qrot(∆target,∆ref)

�

=

�
∆target,trans/∆ref,trans

∆target,rot/∆ref,rot

�
,

(10.1)

where ∆target and ∆ref denote the average differences of the ground truth pose to
the pose of a target calibration and to the pose of a reference calibration, respec-
tively. The comparison measurement has two elements, one for the translation
and the other for the rotation difference. If both elements are smaller than
one, the target method outperforms the reference method. If both elements are
larger than one, the reference method outperforms the target method. In the
case that one element is larger than one and the other element is smaller than
one, no clear assessment can be made because the importance of the accuracy
in translation compared to the accuracy in rotation depends on the application.

For the first experiment, we compare the Euclidean to the probabilistic calibra-
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camlow,ray camhigh,ray camhigh,point lidarlow,point lidarhigh,point

sensor type
camera,

low resolution

camera,

high resolution

camera,

high resolution

LiDAR,

low accuracy

LiDAR,

high accuracy

observation type ray ray point point point

observation noise

(σr,σθ,σϕ)
(−, 0.05 ◦

, 0.05 ◦) (−, 0.01 ◦
, 0.01 ◦) (0.01 m, 0.01 ◦

, 0.01 ◦) (0.1 m, 0.1 ◦
, 0.1 ◦) (0.01 m, 0.1 ◦

, 0.1 ◦)

Table 10.1: Definition of simulated sensors.

camlow,ray camhigh,ray camhigh,point lidarlow,point lidarhigh,point

camhigh,point

�
0.75

0.80

� �
0.76

0.82

� �
0.42

0.54

�
/ /

lidarlow,point

�
0.78

0.85

� �
0.80

0.85

� �
0.42

0.54

� �
0.53

0.71

�
/

lidarhigh,point

�
0.75

0.81

� �
0.77

0.81

� �
0.77

0.85

� �
0.60

0.69

� �
0.52

0.68

�

Table 10.2: Calibration results for different pairs of simulated sensors. Each data cell holds the
quality measure Q(∆target, ∆ref) where we use the probabilistic approach as our target
method and the Euclidean calibration approach as the reference method. Duplicates
of sensor configurations are marked with ’/’ [1].

tion framework for different sensor setups. Table 10.1 defines the observation
noise of the simulated sensors. The observation noise significantly differs
for the sensors. We calibrate different combinations of sensor pairs with the
Euclidean calibration framework which ignores the observation noise charac-
teristics and with the probabilistic calibration framework which incorporates
the noise information. We use the Euclidean method as the reference method.
The target method is the probabilistic calibration framework with exactly
known observation noise standard deviations. The results are given in Ta-
ble 10.2.
At a first glance, we notice that all elements of Q(∆target,∆ref) are in every case
lower than one. That means that the probabilistic framework outperforms the
Euclidean framework in each case. The improvement depends on the sensor
pair. We perform the same experiment with setups of three sensors (see Ta-
ble 10.3). In the first column, we use three highly accurate LiDARs and achieve
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lidarhigh,point

lidarhigh,point

lidarhigh,point

lidarhigh,point

lidarhigh,point

lidarlow,point

camhigh,point

camhigh,ray

camhigh,ray

camhigh,point

camhigh,ray

camlow,ray�
0.50

0.69

� �
0.43

0.69

� �
0.73

0.79

� �
0.66

0.72

�

Table 10.3: Calibration results for setups of three simulated sensors. Each data cell holds the
quality measure Q(∆target, ∆ref) where we use the probabilistic approach as our target
method and the Euclidean calibration approach as the reference method [1].

already large improvements. Next, we replace one of the LiDARs with another
LiDAR which has a range noise that is ten times higher (second column). This
makes the setup less homogeneous in terms of observation noise and leads to
even more improvement. We find the same results for cameras in the third and
fourth column where we replace a high with a low resolution camera.
From this experiment, we conclude that taking the information of the obser-
vation noise into account leads to significant improvements, especially if the
observation noise of the sensors differs a lot.

The previous results are best case scenarios because the true standard de-
viations are assumed to be known. In reality, the standard deviations have to
be estimated. It is important to know how accurate the estimates have to be for
good results. Therefore, we again simulate different sensor setups but this time
with erroneous observation noise estimates. To generate the erroneous from
the true standard deviations, we scale the underlined components in Table 10.4
with γ. The results are compared to the same method with known standard
deviations (see Table 10.4 ). We discuss the experiments in detail:
The first setup (row 2) consists of two sensors that observe the target as a 3D
point. The range noise of the first sensor is very high compared to the second
sensor. The estimate for the range noise of the first sensor is changed over
multiple experiments. The estimate for the angular noise is fixed to the true
noise. For an estimate that is too high (γ > 1), the results are almost as good
as with an ideal estimate of the observation noise. The reason is that the range
noise of the first sensor is the major error source and estimating it too high
decreases its weight in the calibration problem. For an estimate that is too low
(γ < 1), the results get significantly worse. The noisy range observations are
trusted more than they should and their weighting in the calibration problem
is increased. That is why the calibration result suffers from the noisy range
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γ = 1
20 γ =

1
10 γ =

1
5 γ = 1

2 γ = 2 γ = 5 γ = 10 γ = 20

σ1 = (0.1 m, 0.05 ◦
, 0.05 ◦)

σ2 = (0.01 m, 0.05 ◦
, 0.05 ◦)

�
4.47

2.62

� �
3.54

2.11

� �
2.06

1.40

� �
1.04

1.02

� �
1.01

1.00

� �
1.01

1.00

� �
1.00

1.01

� �
1.00

1.00

�

σ1 = (0.1 m, 0.01 ◦
, 0.01 ◦)

σ2 = (0.01 m, 0.01 ◦
, 0.01 ◦)

�
2.23

1.58

� �
1.58

1.26

� �
1.10

1.04

� �
1.00

1.00

� �
1.01

1.00

� �
1.00

1.00

� �
1.00

1.00

� �
1.00

1.00

�

σ1 = (0.1 m, 0.1 ◦
, 0.1 ◦)

σ2 = (0.1 m, 0.01 ◦
, 0.01 ◦)

�
1.02

1.02

� �
1.02

1.01

� �
1.01

1.01

� �
1.00

1.00

� �
1.04

1.03

� �
2.04

1.40

� �
4.07

2.43

� �
6.10

3.71

�

σ1 = (−, 0.1 ◦
, 0.1 ◦)

σ2 = (0.1 m, 0.01 ◦
, 0.01 ◦)

�
1.04

1.02

� �
1.03

1.01

� �
1.02

1.00

� �
1.01

1.00

� �
1.00

1.00

� �
1.00

1.00

� �
1.01

0.99

� �
1.01

1.01

�

Table 10.4: Results for comparing the probabilistic method with known standard deviations (ref-
erence method) to the probabilistic method with erroneous estimates for the standard
deviations (target method). The erroneous standard deviation vector is deduced by
multiplying γ to the underlined component in the true standard deviation vector given
in the first column. Experiments with four different sensor setups are performed (row
2-5). The quality measure Q(∆target, ∆ref) is used to quantify the results. We highlight
results with a relative error of more than 10 % in at least one component [1].

observations.
The experiments for the second sensor setup (row 3) are similar but the angular
noise is smaller than for the first sensor setup. We again notice that for an
estimate that is too high (γ > 1), the results are as good as with an ideal
estimate of the observation noise. For an estimate that is too low (γ < 1), the
calibration quality also gets worse but not as quickly as for the first setup. The
reason is that the weighting of the angular components is higher for the second
setup which means that the range information is overall less important in the
calibration problem.
The sensors of the third setup (row 4) have high range noise. The first sensor
has high angular noise for which the noise estimation is varied. The angular
noise for the second sensor is significantly smaller. Underestimating the high
angular noise of the first sensor leads to significant deterioration of the cali-
bration results. The reason is that the angular information is almost ignored.
So, the calibration effectively uses only the noisy range information from the
first sensor which seems to be a significant information loss. For an estimate
that is too low (γ < 1), the calibration quality does not decrease a lot. This
proves that the angular information of the first sensor constrains the problem
more significant than the range information.
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The last setup (row 5) consists of a sensor that only observes the direction of
the target and another sensor that provides point observations. The first sensor
has a larger angular noise than the second sensor. When overestimating the an-
gular noise (γ > 1), the calibration quality almost does not differ from the ideal
case. This is due to the second sensor providing significantly more accurate
observations so that the target position is essentially estimated by the second
sensor. The pose of the first sensor is essentially estimated by minimizing the
average angle difference to the fixed target position which is less sensitive to
noise. When underestimating the angular noise (γ < 1), the angular noise of
the first sensor is weighted higher so that it is in the dimension of the angular
noise of the second sensor. This disturbs the estimate of the target position
which leads to less accurate calibration results. But the difference is not large
with the given estimates.

This detailed discussion shows that the influence of the observation noise
quality is very individual to the sensor setup. But the results in Table 10.4
show that for estimation errors in the range of 0.5 ≤ γ ≤ 2 the calibration qual-
ity does not deteriorate significantly with respect to having exact observation
uncertainties. This shows that our method is practical.

10.3.2 Evaluation on Real Data

We want to reproduce the results of the simulation on real data. First, we
conduct an experiment with two cameras for a quantitative evaluation. Second,
another experiment with more sensor types is used for a qualitative evaluation.

Quantitative Evaluation

For a quantitative evaluation of the probabilistic calibration framework, we use
a sensor setup of two cameras. We first calibrate the setup with full resolution
images and the complete dataset from which 2000 observations are generated.
The result serves as ground truth. Then, the images are downsampled to 20 %
in each dimension. Based on this downsampled data, we calibrate the sensor
setup again. We use the Euclidean calibration framework and the probabilistic
calibration framework with different estimates for the observation noise. First,
we use the standard deviation vector σ̂real = (0.0065 m, 0.025 ◦

, 0.025 ◦) which
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we determine from the experiment in subsection 10.1.2 (see Figure 10.5).
Then we disturb the angular noise by γ = 5 and γ = 0.2. Finally, we use
the estimate derived from simulation σ̂sim = (0.005 m, 0.013 ◦

, 0.013 ◦). Each
calibration method is performed several times by sampling 100 subsets of the
complete data. The averaged calibration results are shown in Figure 10.9.

First, we note that the performance of the Euclidean calibration framework
is the worst. The best calibration quality is achieved by the probabilistic
framework with the observation noise estimate determined through real ex-
periments. The difference is significant in translation and in rotation. Also
the error variance (vertical lines) is smaller for the probabilistic framework
which shows that it is more reliable than the Euclidean framework. Even for
highly disturbed angular noise estimates the probabilistic method outperforms
the Euclidean method. This proves that the observation noise estimates do
not have to be precisely known for improvements. The noise estimates de-
rived from simulation seem to be also sufficient to reach good results. This
has an important practical implication: It shows that simulation of moderate
complexity can be used to estimate the observation noise sufficiently well.
Simulators can be designed to be very flexible so that different sensors can be
simulated without much effort. This replaces real experiments which are more
time consuming and costly.

Qualitative Evaluation

Taking the different observation characteristics into account is especially im-
portant when calibrating sensors of different types that vary greatly in their
observation noise. Therefore, in the following experiment, we present the
calibration results for a sensor setup consisting of a camera, two 3D LiDARs
and two radars. The camera provides accurate 3D ray observations, the 3D
LiDARs observe the target as 3D points and the radars observe 2D points in
one plane. The assumed observation variances for each sensor type are given
in Table 10.5. Note that the angular accuracy of the radars depends on the
distance of the object. Our radars provide measurements with a resolution of
10 cm in the measurement plane. This limits the angular accuracy especially
in close distances. Due to the high differences in observation noise of the
three sensor types, ignoring the observation characteristics as in the Euclidean
calibration framework leads to unreliable results that are often insufficient for
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Figure 10.9: Calibration errors for the Euclidean calibration framework and the probabilistic cal-
ibration framework with different observation noise estimates. Different noise es-
timates σ̂ are used for the proposed method. σ̂

real is derived from experiments
on real data and σ̂

sim is determined based on simulation. Error bars which extend
±1 standard deviation are shown only for the black and orange curves to preserve
clarity [1].
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camera LiDAR radar

σr / 0.02 m 0.10 m

σθ 0.02 ◦ 0.10 ◦ 0.3 ◦...1.4 ◦

σϕ 0.02 ◦ 0.10 ◦ /

Table 10.5: Observation noise variances for a setup consisting of a camera, two LiDARs and two
radars. ’/’ marks that the sensor does not observe the according component.

real applications. An application that uses radar, camera and LiDAR data is
object detection for autonomous driving. All sensor data is transformed to a
reference frame to cluster and combine the information from different sensors
in order to create plausible objects. Especially in far distance, calibration
errors can lead to failures in associating measurements that fall on the same
object.

A simple way for a qualitative calibration assessment is to project point
cloud data into the camera image. In Figure 10.10, the noisy data of the two
radars is projected to the camera image. Note that the radar measurements
are located on a scan plane that is parallel to the ground plane. The camera
is mounted roughly one meter above the radar scan plane so that the vertical
position of the radar points in the image is a measure for range. Further,
the color and the size of the points encode the range as well. To assess the
calibration between camera and radars, we look at three areas (marked with
numbers) of Figure 10.10 in more detail.
The first cluster of radar measurements is caused by the calibration target.
From the overlapping square and the circle, we infer that both radars observe
the target. The measurements overlap well and also align in horizontal position
with the sphere center in the image. The second cluster of radar measurements
is caused by a street lamp. Keeping the resolution of 10 cm in mind, the
measurements are projected consistently on the vertical pole of the lamp. The
third cluster of radar measurements hits a metal fence. Again, camera and
radar data are consistent. From Figure 10.10, we conclude that the calibration
between camera and radars was successful. Due to the coarse resolution of
the radars, one scene is usually not enough to make a precise assessment of
the calibration quality. We noticed good alignment on different scenes. The
same process can be used for checking the calibration results for the LiDARs
to the camera (see Figure 10.11). As a crosscheck, the point clouds of the
radars and the LiDARs are visualized simultaneously in 3D. The overlap of
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Figure 10.10: Grayscale camera image with projected measurements (colored circles and squares)
of two radars after calibration. The radar measurements are located in a plane that
is parallel to the ground plane. The camera is mounted roughly one meter above
the radars. Since the camera is mounted above the radar, far measurements appear
higher in the projection. Additionally, the color and size of the markers encode the
range. Squares mark measurements of one radar and circles of the other radar. Note
that the point cloud data is provided by the radars with a low resolution of 10 cm.
The numbers are used to refer to measurements with the same color.

Figure 10.11: Grayscale camera image with projected measurements of a LiDAR after calibra-
tion. The color and size of the markers encode the range. An assessment of the
camera to LiDAR calibration is possible based on the overlap of projected LiDAR
measurements and the image at characteristic objects such as trees and poles.
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Figure 10.12: Left: Orthographic top-view of the sensor coordinate systems resulting from our
calibration. The grid has a cell size of 10 cm × 10 cm. The color code for the
coordinate axes is as following: red → x-axis, green → y-axis and blue → z-axis.
Right: The calibrated sensor setup mounted on our experimental vehicle. The colors
show the sensor types: orange → camera, blue → LiDAR and green → radar.

the point clouds is again evidence for the success of the calibration. As a last
check, we can use a measuring tape to check the rough distances between the
sensors. Figure 10.12 shows the estimated sensor setup in an orthographic
view to the measuring plane of the radars (left) and the real setup (right). The
estimated coordinate systems of the sensors are positioned consistently with
the real setup.

10.4 Joint Calibration Framework

In this section, we evaluate the joint calibration framework. First, we analyze
how range measurements from LiDAR influence the estimation of intrinsic
camera parameters. This experiment is conducted on simulated data. Second,
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we calibrate different sensor combinations with our and a reference method on
real data.

10.4.1 Analysis of Camera Intrinsics

First, we want to analyze the effect of adding range measurements to the
calibration of intrinsic camera parameters. We simulate a camera and a LiDAR.
For the camera, we use the intrinsic model introduced in subsection 3.1.1 with
four radial and two tangential distortion parameters and a single viewpoint.
Random target trajectories are generated. To simulate camera measurements,
the sphere is projected onto the image by using the ground truth intrinsic
model. Actually, the inverse of the intrinsic model is needed, which cannot
be calculated analytically. Therefore, we use optimization to find the 2D edge
point for the according 3D scene point and perform a logic check to assure
a reasonable solution is found. The edge measurements are disturbed with
Gaussian noise orthogonal to the projected contour. For the measurements
of the range sensor, we sample 3D points on the surface of the sphere and
add Gaussian noise to the range. We simulate realistic measurement noise by
setting the standard deviation for edge detection on camera images toσpix = 0.2
and by using three different range standard deviations σrange,low = 0.015 m,
σrange,medium = 0.03 m and σrange,high = 0.05 m for three LiDARs.
We perform n = 1000 calibration runs with different target trajectories for four
types of experiments. For the first experiment, a single camera is calibrated.
In the other three experiments, one of the three LiDARs is calibrated with
the camera. To analyze and compare the results, we use the mean absolute
percentage error M% and the standard deviation of the absolute percentage
error SD%:

M% =
100%

n

n�
i=1

��� xi − x

x

��� , (10.2)

SD% =

���
1

n − 1

n�
i=1

�����100%
��� xi − x

x

��� − M%

�����
2

, (10.3)

where xi is the parameter value estimated in the i-th calibration run and x is the
true parameter value. The results for the experiments are shown in Table 10.6.
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camera only
camera +

low noise LiDAR

camera +

medium noise LiDAR

camera +

high noise LiDAR

f 1.21 % (0.97 %) 0.26 % (0.20 %) 0.51 % (0.37 %) 0.75 % (0.59 %)

u0 0.16 % (0.13 %) 0.13 % (0.09 %) 0.12 % (0.10 %) 0.14 % (0.11 %)

v0 0.19 % (0.14 %) 0.17 % (0.13 %) 0.16 % (0.12 %) 0.17 % (0.13 %)

Table 10.6: Comparison of intrinsic parameter errors for the calibration of a single camera and
camera-LiDAR calibration. The focal length f and the principal point (u0, v0) are
considered. In each cell, the mean absolute percentage error M% and the standard
deviation of the absolute percentage error SD% (in brackets) for the considered pa-
rameter is calculated over 1000 calibration runs with different target trajectories.

At a first glance, we notice that the mean absolute percentage error and the
standard deviation of the absolute percentage error are highest for the single
camera calibration. The difference between single camera and simultaneous
camera and LiDAR calibration is highest in the focal length. The principal point
is also improved by the additional information from LiDAR but significantly
less compared to the focal length. Further, we notice that the improvement in
the principal point is almost the same for the different LiDARs. The range noise
does not significantly influence the estimate. In contrast to that, the focal length
substantially depends on the range noise level of the LiDAR measurements.
The lower the range noise the better the estimate for the focal length. But even
for high range noise, the focal length is significantly improved compared to
calibrating the camera alone. The estimation of the target range is inaccurate
for calibration with only a single camera. The estimate of the focal length is
closely linked to the range estimate of the target. For LiDARs, the range of
the target is well observable and can be accurately estimated. Therefore, the
LiDAR information complements the intrinsic calibration of a single camera
well.

10.4.2 Real Data Performance

In this section, we evaluate the joint calibration framework on real data. Our ex-
perimental setup consists of two cameras and two LiDARs (see Figure 10.13).
One camera is mounted on a translation table which allows moving it with
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Figure 10.13: Evaluation setup consisting of two LiDARs and two cameras. camera_1 is mounted
on a translation table. The other sensors are fixed.

a tolerance better than 0.05 mm. All other sensors are fixed. Both cameras
use the same type of fisheye lens with diagonal opening angle of 190 ◦. The
distortion in the images is clearly visible (see Figure 10.14). Our cameras
provide 8 MP images. In this experiment, we use the camera setting which is
used for our experimental vehicle. The exposure of the sensors is set to auto-
matic mode which leads to suitable brightness of the images over all recorded
datasets. The top of the image is cropped so that the resulting image size is
4096 × 1760 (Figure 10.14 shows the cropped images). This is usually done
because the top region only contains irrelevant data for autonomous driving
such as sky. Because of the cropping, the principal point is far from the image
center, as we will see later.

To assess the quality of our joint calibration framework, we make use of
another state of the art calibration method as a reference. The reference
method uses checkerboards to calibrate intrinsic and extrinsic parameters of
cameras. The method was developed over ten years at our research institute
and is considered to be reliable and accurate. Best results are achieved by
using the checkerboard frustum shown in Figure 10.14.

We recorded six datasets which we denote with roman numbers I-VI. We gen-
erate three different setups by moving camera_1 twice in steps of 50.00 mm.
For each setup, we recorded a dataset with the spherical calibration target and
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Figure 10.14: Sample images which are used for calibration. In the top image, the spherical
calibration target is visible. In the bottom image, a checkerboard target can be seen.

another one with the checkerboard target. Table 10.7 provides an overview
of the datasets. Each dataset is about one to three minutes in recording time.
For our joint calibration framework, we record at a frequency of 10 Hz for
all sensors. This is needed to estimate a smooth spline trajectory based on
asynchronous measurements of cameras and LiDARs. For the checkerboard
method, all measurements are synchronous because all cameras are triggered
at the same time. We use a sensor frequency of 3 Hz so that consecutive images
are not too similar to each other. The large checkerboard target provides 605
corners so that reducing the frequency is also a mean to keep calculation time
for the calibration reasonable (< 10 min). For the spherical target, we limit the
number of edge points to 120 which is similar to the number of corners of a
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I II III IV V VI

shift 0.00 mm 0.00 mm 50.00 mm 50.00 mm 100.00 mm 100.00 mm

target sphere checker sphere checker sphere checker

Table 10.7: Overview of the six datasets I-VI used for the evaluation experiments. For each dataset,
the shift of the translation table relative to a reference point and the visible calibration
target is provided.

single checkerboard on the frustum.
In Figure 10.15, typical images of the coverage of camera measurements are
shown for a single dataset with the spherical calibration target and the checker-
board target. First, we see that most parts of the image are well covered by
measurements. Note that the sphere is also detected if it is partly outside
the view. From the point density, we can see that the targets are detected
in different distances to the camera. The lower part of the image is hard to
fully cover because of space restrictions. This is a common problem for many
setups e.g. for cameras that are mounted behind the windshield of a car. An
additional problem is that corners on checkerboards which are tilted too much
cannot reliably be detected. We will see in the following evaluation that the
coverage is good enough to estimate a camera model of sufficient quality for
many applications.

We calibrate different subsets of the sensors. First, we only calibrate a single
camera. Then, we add two LiDARs and compare the intrinsics to the cali-
bration results without the LiDARs. The third experiment uses two cameras.
Again, the intrinsics are compared to the previous results. Additionally, we
check the extrinsics by means of the known position shifts of camera_1. The
fourth and final calibration setup consists of two cameras and two LiDARs.
Intrinsic and extrinsic parameters are compared to the previous results. An
overview of all calibration experiments is given in Table 10.8.

For all calibration experiments, we use the camera model presented in subsec-
tion 3.1.1 with four parameters k1, ..., k4 for modeling the radial distortion and
two parameters p1 and p2 for the tangential distortion. We use an equiangular
projection model. Further, we assume a single viewpoint.

141



10 Evaluation

Figure 10.15: Image coverage of camera measurements for a dataset with the spherical calibration
target (top) and the checkerboard target (bottom). Each edge or corner measurement
is marked with a white dot on the black background.

single camera
single camera +

two LiDARs
two cameras

two cameras +

two LiDARs

sphere × × × ×

checkerboard × / × /

Table 10.8: Overview of evaluation experiments. Crosses mark the conducted experiments. A
slash means that the calibration method cannot calibrate all of the used sensors.
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f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 2176.61 2058.20 644.02 15.45 · 10−2 14.23 · 10−2 −14.18·10−2 19.03 · 10−2 4.43 · 10−4 −13.01·10−4

III 1933.16 2065.14 644.37 9.56 · 10−2 11.59 · 10−2 −11.40·10−2 8.83 · 10−2 5.46 · 10−4 1.94 · 10−4

V 2021.37 2065.15 641.32 12.04 · 10−2 12.36 · 10−2 −13.51·10−2 12.55 · 10−2 −1.06 · 10−4 4.20 · 10−4

Calibration with the joint calibration framework.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

II 1887.36 2061.80 645.04 9.54 · 10−2 8.22 · 10−2 −7.42 · 10−2 6.21 · 10−2 4.67 · 10−4 −3.48 · 10−4

IV 1889.98 2062.19 644.53 9.28 · 10−2 9.34 · 10−2 −8.82 · 10−2 6.86 · 10−2 3.16 · 10−4 −3.24 · 10−4

VI 1890.62 2065.15 644.29 9.97 · 10−2 7.09 · 10−2 −5.93 · 10−2 5.63 · 10−2 3.20 · 10−4 0.23 · 10−4

Calibration with the checkerboard frustum.

Table 10.9: Results for calibrating a single camera with the joint calibration framework (top) and
the reference method that uses checkerboards (bottom).

Calibration of a Single Camera

In our first experiment, we only calibrate the intrinsic parameters of a single
camera. The results of the joint calibration framework are compared to the
results of the reference method that uses checkerboards. We use all six datasets
to calibrate the same camera. The datasets I, III and V are used to calibrate
with the spherical target and the datasets II, IV, VI are used to calibrate with
the checkerboard frustum. The results are shown in Table 10.9. First, let’s
analyze the results of our calibration method:
The focal length f is estimated unreliably. The results vary in a range of
roughly 12 % which is unacceptable. The repeatability on the principal point
(u0, v0) is significantly better but is still high with a difference of 7 pxl in u0.
The large variance in the radial distortion parameters, especially in the high
order parameters k3 and k4, shows that the distortion is not estimated reliably.
On all three datasets, the average reprojection error is very large (> 1.5 pxl)
which shows that the calibration runs were not successful. Before discussing
possible reasons, let’s look at the results for the checkerboard reference method:
The focal length is reliably estimated with a repeatability of better than 0.2 %.
The variance in the principal point is less than for the calibration with a sphere.
The distortion parameters are in the same range and show significantly less
variance than with the previous method. Overall, we conclude that the refer-
ence checkerboard method is superior to our method for a single camera, but
why?
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The first reason for the bad results of our method could be that edge de-
tections at the projected sphere are less accurate than corner detections on
the checkerboard pattern. We later show that two cameras can be calibrated
accurately by our joint calibration framework. So, the accuracy of the edge
detector is not the main reason for the high errors.
A practical reason is that the calibration of a single camera is only an ini-
tialization step inside the joint calibration framework. The problem is solved
directly without any initialization routine. We always initialize the calibration
problem with vanishing distortion parameters, a principal point at the center
of the image and a focal length in a range of 10 % from the true value. If the
calibration problem is initialized with better distortion parameters and a better
focal length, the calibration with our method is significantly more reliable. So,
we see potential for improvement.
Another major difference between the spherical calibration target and the
checkerboard frustum is that, for the sphere, measurements only lie on the
edge of its projection, whereas the checkerboards generate detections well
distributed over a large area of the image. We suspect that the distortion
parameters are better constrained by the well distributed corner detections of
the checkerboard than by measurements on a single edge contour of a sphere.
This could be further investigated by creating a custom calibration board with
corners only on a single contour (e.g. on a circle).
Calibration of a single camera with checkerboards is well established and
shows high accuracy, so, there is no need to replace this standard method by
another approach. Therefore, calibrating a single camera is not the main focus
of this work. Our method is designed for multimodal calibration, which is why
we proceed with the next experiment that uses a single camera in combination
with LiDARs.

Calibration of a Single Camera and LiDARs

We calibrate the same camera as in the previous section, but this time, we add
two LiDARs. The results for the camera intrinsics are shown in Table 10.10.
We clearly see a significant improvement in repeatability of the focal length
and the radial distortion parameters compared to calibrating a single camera
with our method. We also reach a higher repeatability than the checkerboard
method for a single camera. The estimation accuracy of the principal point
is in the same range as for calibrating the single camera with our method.
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f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 1893.35 2059.33 645.02 9.53 · 10−2 7.99 · 10−2 −6.94 · 10−2 6.14 · 10−2 5.13 · 10−4 −9.47 · 10−4

III 1893.98 2062.60 642.92 9.77 · 10−2 7.89 · 10−2 −7.18 · 10−2 6.33 · 10−2 3.78 · 10−4 −3.43 · 10−4

V 1894.01 2064.03 640.58 9.79 · 10−2 8.19 · 10−2 −7.59 · 10−2 6.47 · 10−2 −1.91 · 10−4 2.03 · 10−4

Table 10.10: Results for calibrating a single camera and two LiDARs with the joint calibration
framework.

These results are consistent with the experiments on simulated data (see sub-
section 10.4.1).

The LiDAR data provides additional range information which is beneficial
for estimating the range of the calibration target. Since the range of the target
and the focal length are closely linked, the focal length becomes well observ-
able by adding the LiDAR data. Therefore, the estimate of the focal length is
significantly improved. Radial distortion and focal length are also linked. An
erroneous focal length estimation can be partly compensated by a wrong radial
distortion. This coupling is clearly noticeable when calibrating a single camera
with our method (see Table 10.9). In this experiment with a single camera and
two LiDARs, the radial distortion can be estimated with high repeatability due
to the well observable focal length.

Calibration of Two Cameras

Next, we calibrate two cameras. The resulting intrinsic parameters for our and
the reference method are given in Table 10.11.
Our joint calibration framework shows high repeatability in focal length. The
result is comparable to the previous experiment with a single camera and two
LiDARs. The focal length seems to be significantly better observable than
when calibrating a single camera. This makes sense, since the range of the
target can be better estimated by two cameras compared to a single camera due
to the different viewpoints. Additionally, the principal point shows improved
repeatability compared to calibrating a single camera with LiDARs. Actually,
the repeatability is in the range of the reference method.

Next, we analyze the estimated extrinsic parameters. We use the transla-
tion table to move camera_1 twice by 50.00 mm. As shown in Table 10.7, we
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f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 1896.98 2065.22 639.59 10.07 · 10−2 6.06 · 10−2 −3.80 · 10−2 4.61 · 10−2 −2.16 · 10−4 0.42 · 10−4

III 1896.62 2066.53 640.10 9.61 · 10−2 8.06 · 10−2 −6.79 · 10−2 6.04 · 10−2 −0.47 · 10−4 3.73 · 10−4

V 1897.41 2066.54 638.53 9.84 · 10−2 8.05 · 10−2 −7.27 · 10−2 6.39 · 10−2 −4.35 · 10−4 6.12 · 10−4

Intrinsic parameters for camera_1 resulting from calibration with the joint calibration framework.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

II 1891.47 2062.20 641.22 9.59 · 10−2 8.23 · 10−2 −7.37 · 10−2 6.24 · 10−2 −0.85 · 10−4 −2.34 · 10−4

IV 1892.88 2062.15 640.44 9.47 · 10−2 8.98 · 10−2 −8.44 · 10−2 6.78 · 10−2 −2.21 · 10−4 −2.99 · 10−4

VI 1893.31 2064.35 640.59 9.98 · 10−2 7.21 · 10−2 −6.06 · 10−2 5.71 · 10−2 −1.46 · 10−4 −0.62 · 10−4

Intrinsic parameters for camera_1 resulting from calibration with the reference method.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 1894.59 2072.66 698.82 9.50 · 10−2 8.14 · 10−2 −6.92 · 10−2 6.16 · 10−2 −0.56 · 10−4 −3.89 · 10−4

III 1894.37 2074.89 698.96 8.80 · 10−2 10.88 · 10−2 −10.66·10−2 7.77 · 10−2 −0.53 · 10−4 −0.64 · 10−4

V 1895.46 2076.43 697.64 9.76 · 10−2 7.91 · 10−2 −6.79 · 10−2 6.05 · 10−2 −4.24 · 10−4 3.19 · 10−4

Intrinsic parameters for camera_2 resulting from calibration with the joint calibration framework.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

II 1889.37 2074.25 700.00 9.18 · 10−2 9.68 · 10−2 −9.43 · 10−2 7.18 · 10−2 −0.63 · 10−4 −0.93 · 10−4

IV 1891.26 2074.64 699.30 9.43 · 10−2 9.10 · 10−2 −8.68 · 10−2 6.94 · 10−2 −2.03 · 10−4 −1.49 · 10−4

VI 1891.66 2076.02 699.87 10.01 · 10−2 6.70 · 10−2 −5.09 · 10−2 5.18 · 10−2 −0.50 · 10−4 0.47 · 10−4

Intrinsic parameters for camera_2 resulting from calibration with the reference method.

Table 10.11: Intrinsic parameters resulting from calibrating two cameras with the joint calibration
framework and the checkerboard method. The top two tables show the results for
camera_1 and the bottom two tables show the results for camera_2.

recorded datasets with the spherical and checkerboard target for each position
of the shifted camera. This allows us to estimate the shifts with both methods.
We use the known shifts to assess the quality of the estimated positions of
the cameras. Table 10.12 a)-b) shows the estimated shifts and the errors for
our and the reference method. We note that both approaches can estimate the
shifts with sub-millimeter accuracy. Dataset III shows the highest error with
0.38 mm. On these datasets, the average error of estimating the shift is higher
for our method compared to the checkerboard method.

Calibration of Two Cameras and LiDARs

Finally, we calibrate two cameras and two LiDARs with our joint calibration
framework. The resulting intrinsic parameters for both cameras are given in
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est. shift [mm] error [mm]

I / /

III 49.62 0.38

V 100.04 0.04

a)

est. shift [mm] error [mm]

II / /

IV 50.08 0.08

VI 99.95 0.05

b)

est. shift [mm] error [mm]

I / /

III 49.62 0.38

V 100.02 0.02

c)

Table 10.12: Estimated shifts of camera_1 relative to the reference position in datasets I and II. In
a), the two cameras are calibrated with the joint calibration framework. b) shows the
results with the reference method. In c), two cameras and two LiDARs are calibrated
with a sphere.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 1896.45 2065.54 639.46 9.95 · 10−2 6.48 · 10−2 −4.51 · 10−2 4.98 · 10−2 −2.24 · 10−4 0.63 · 10−4

III 1896.35 2066.31 639.87 9.64 · 10−2 7.97 · 10−2 −6.70 · 10−2 5.99 · 10−2 −0.75 · 10−4 3.31 · 10−4

V 1897.12 2066.43 638.40 9.83 · 10−2 8.04 · 10−2 −7.26 · 10−2 6.38 · 10−2 −4.49 · 10−4 5.95 · 10−4

Intrinsic parameters for camera_1.

f [pxl] u0 [pxl] v0 [pxl] k1 k2 k3 k4 p1 p2

I 1894.20 2072.63 698.64 9.49 · 10−2 8.09 · 10−2 −6.90 · 10−2 6.15 · 10−2 −0.74 · 10−4 −4.01 · 10−4

III 1894.07 2074.80 698.72 8.81 · 10−2 10.83 · 10−2 −10.60·10−2 7.75 · 10−2 −0.78 · 10−4 −0.86 · 10−4

V 1895.19 2076.42 697.50 9.78 · 10−2 7.84 · 10−2 −6.71 · 10−2 6.01 · 10−2 −4.40 · 10−4 3.16 · 10−4

Intrinsic parameters for camera_2.

Table 10.13: Intrinsic parameters resulting from calibrating two cameras and two LiDARs with
the joint calibration framework.

Table 10.13. The results are comparable to the results when calibrating two
cameras. This means that the additional LiDAR data does not significantly
improve the calibration quality if two cameras are used. The range of the target
is already well estimated by the cameras.
At this point, we want to check if the estimated distortion models are suitable.
Figure 10.16 shows images that are projections of the raw images on a simple
pinhole model by means of the estimated parameters of our (top) and the ref-
erence method (bottom). If the estimated camera models are suitable, straight
lines in the scenes are projected on the images as straight lines. This is the
case for both estimated camera models. Actually, differences in the undistorted
images are hardly visible. Our and the reference method can both estimate
suitable camera models for this camera setup.

We want to analyze the results of the joint calibration framework in more
detail. A common practice is to look at the distributions of the residuals.

147



10 Evaluation

Fi
gu

re
10

.1
6:

T
he

ra
w

im
ag

es
of

Fi
gu

re
10

.1
4

ar
e

un
di

st
or

te
d

an
d

pr
oj

ec
te

d
us

in
g

a
pi

nh
ol

e
m

od
el

.
Fo

r
th

e
to

p
im

ag
e,

th
e

in
tr

in
si

cs
re

su
lti

ng
fr

om
ou

r
jo

in
t

ca
lib

ra
tio

n
fr

am
ew

or
k

ar
e

us
ed

.
T

he
bo

tto
m

im
ag

e
is

ge
ne

ra
te

d
ba

se
d

on
th

e
in

tr
in

si
cs

re
su

lti
ng

fr
om

th
e

ch
ec

ke
rb

oa
rd

m
et

ho
d.

148



10.4 Joint Calibration Framework

Figure 10.17: Absolute residual distribution of LiDAR_1.

Figure 10.17 shows the distribution of the residuals for LiDAR_1. The maxi-
mum sample peak is clearly at zero and rapidly decreases with rising residuals.
The absolute residual mean is 10.8 mm which is in the expected range. The
range accuracy given by the datasheet is ±30 mm which is consistent with the
residuals distribution. The residual distribution for LiDAR_2 is similar.
The distribution of the camera residuals is shown in Figure 10.18. The resid-
uals are split up in their normal and tangential component. The distribution
is centered well and symmetric in both components. The normal component
has an absolute mean of 0.25 mm, whereas the tangential component has a
significantly higher absolute mean of 2.49 mm. The reason for this difference
is that the estimated noise of the tangential component, caused by the noise
of the tangent angle estimation, is significantly higher than the noise of the
normal component. Since the noise distributions are considered in the joint
calibration framework, the normal component is weighted significantly higher
in the optimization problem than the tangential component. This is why the
average mean of the tangential component is higher than the average mean of
the normal component.
All residual distributions indicate a successful calibration. Small residuals
that are symmetrically distributed are only a necessary but not a sufficient
condition for a successful calibration. Therefore, we want to analyze another
quality measure that is not directly optimized for. We define a reprojection
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Figure 10.18: Residual distribution of camera_1 split up in its tangential and normal component.

error in the 2D image space for our spherical target as following:
For a viewing ray corresponding to an edge point measurement on the image,
we search the closest point on the estimated sphere. The closest point is pro-
jected on the image. We define the pixel distance between this projected point
and the edge point measurement as our reprojection error for the spherical
target. Note that this definition is significantly different from the residual defi-
nition in which the tangent direction is used additionally to the edge position.
This makes the reprojection error a suitable measure to assess the quality of
the calibration.
Figure 10.19 shows 2D and 1D histograms of the reprojection errors resulting
from calibrating with the spherical target and the checkerboard. First, we
notice that the directional distribution is not perfectly symmetrical with our
method. Possible reasons for that might be systematic errors in the edge de-
tections and in the LiDAR data. However, the distribution is centered and the
average absolute error is small with only 0.20 pxl. The checkerboard method
results in a more symmetric distribution. Its high corner detection accuracy is
evident in the small reprojection error of 0.15 pxl.

Finally, we check the extrinsic parameters by using the shifts of camera_1
(see Table 10.12). The results are similar to calibrating two cameras so that
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Figure 10.19: Visualization of the reprojection error distributions of one camera. The results at
the left are generated by calibrating two cameras and two LiDARs with the joint
calibration framework. The distributions at the right result from calibrating two
cameras with the reference method. In the top, the reprojection error distribution
in u and v directions is plotted. In the bottom row, a histogram over absolute
reprojection errors is shown.
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we infer again that, when having two cameras, additional data of our LiDARs
does not significantly improve the calibration results.

10.5 External Keypoint Calibration

In this section, we evaluate the method for estimating external keypoints on
the example of calibrating a sensor setup relative to the rear axle of our ex-
perimental vehicle. As explained in chapter 9, additional cameras, that are
placed around the car, are used to detect the center points of the wheels by
triangulation. Based on the estimated wheel center points, the pose of the rear
axle can be calculated.

First, we use simulation to analyze the calibration accuracy for different
parameters. Two cameras with a focal length of 1300 pxl are placed in a
distance r to each wheel (see Figure 10.20). The two rays that intersect in a
wheel center are rotated by an angle α to each other. We simulate these rays by
adding zero-mean Gaussian noise with σtrans = 3 mm to the origin of the rays
and adding zero-mean Gaussian noise with σrot = 0.1 ◦ to the direction of the
rays to model a calibration error of the sensor poses (values based on results
of subsection 10.2.2). Additionally, we add another zero-mean Gaussian angle
noise of σpxl = 0.04 ◦ which models the detection error of the projected wheel
center in the images. For a realistic simulation, we use the dimensions of our
experimental vehicle with a wheel base of 2.9 m and an axle width of 1.8 m.
We run multiple experiments with different intersection angles α, different
distances r and different scaling factors s∆ for the calibration error noise in
translation and rotation (σ�

trans = s∆σtrans and σ�
rot = s∆σrot). To quantify the

calibration results, the difference of the 2D rear axle pose to the ground truth
is calculated. The yaw, longitudinal and lateral errors are denoted as ∆ϕ, ∆x

and ∆y, respectively. The results are given in Figure 10.21. We use the setting
with α = 90 ◦, r = 2 m and s∆ = 1 as our reference parameter set (marked with
red).
First, we evaluate different settings for the incidental angle α. The smaller α is
set, the smaller the error in yaw and longitudinal direction gets but the higher
the error in lateral direction becomes. This can be explained by the increasing
range error and decreasing angle error of the estimated center wheel position
for decreasing α due to triangulation. The errors in longitudinal and lateral
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Figure 10.20: Two cameras are placed in front of each wheel to estimate the pose of the rear axle
relative to the main sensor setup on a car. The coordinate system of the rear axle
has its origin on the center of the rear axle. The x-axis is aligned with the forward
driving direction. The rays of the cameras that intersect the wheel center are rotated
by an angle α to each other. The cameras are placed in a distance of r to the wheel.

Figure 10.21: Errors of rear axle calibration for different camera positions defined by the distance
r to the wheel center and the intersection angle α of the rays from the cameras that
intersect in the wheel center. Additionally, the scaling factor s∆ is varied to scale
the calibration error on the camera poses by σ�

trans = s∆σtrans and σ�
rot = s∆σrot.

The reference parameter set is highlighted in red. For all other parameter sets, the
changed parameter is underlined [4].
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direction are similar for the reference parameter set with α = 90 ◦.
Next, the distance r of the cameras to the wheel center is doubled. All errors
increase significantly. So, to keep the errors small, the cameras should be
placed close to the wheels. But if the cameras are placed too close to the
wheels, the calibration target cannot be observed ideally anymore. A good
compromise is the reference setting of r = 2 m.
Finally, the scaling factor s∆ is set to 2 which doubles the noise that models the
calibration errors of the camera poses. Doubling the noise roughly doubles the
pose error of the rear axle for our experiments. So, the calibration errors of
the sensor poses have a major effect on the results. Therefore, it is important
to use cameras that can be well calibrated (high resolution sensor and a high
quality lens).
Overall, the mean position error of the rear axle is lower than 1 cm in longitudi-
nal and lateral direction and the mean yaw error is lower than 0.3 ◦. The mean
accuracy is sufficient for common tasks like e.g. multi sensor localization with
cameras, LiDARs and vehicle odometry based on wheel encoders and steering
angle measurements (see [7]).

In addition to the experiments in simulation, we use real data to qualita-
tively assess the calibration to the rear axle. The main sensor setup consists of
three LiDARs which are mounted on the roof of our experimental vehicle and
a front camera that is mounted behind the windshield. Two external cameras
are used to estimate the wheel center positions. The cameras see both wheels
on one side. They are repositioned once so that all four wheels are observed.
In Figure 10.22, the point cloud data from the LiDARs are visualized in a
3D view. The plotted coordinate systems (red, green, blue axes) represent the
estimated poses of the sensors. The CAD model is an accurate model of our
car. The rear axle of the CAD model is aligned with the estimated rear axle
from the calibration process. The camera appears to be directly behind the
windshield which is consistent with the real setup. Further, the LiDAR points
that hit the real car lie on the surface of the CAD model. Based on this, we
conclude that the rear axle is successfully estimated.
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10.5 External Keypoint Calibration

Figure 10.22: Result of calibrating the main sensor setup consisting of three LiDARs on the roof
of our experimental vehicle and one camera behind the windshield relative to the
rear axle by using two external cameras that are repositioned once. The estimated
coordinate systems of the sensors are visualized as red, green and blue axes. The
real point cloud data of the LiDARs are shown. Additionally, an accurate CAD
model of the car is aligned with the estimated rear axle.
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In this work, we developed novel methods to calibrate multimodal sensor se-
tups consisting of cameras and range sensors such as LiDARs and radars. All
methods use a Styrofoam sphere as a calibration target. A corner reflector is
mounted in the inside of the hollow sphere to integrate radars in the calibration
process.

We developed target detectors for cameras and range sensors that are eval-
uated in simulation and on real data. For the camera sphere detector, we
analyzed error sources such as intensity noise, inhomogeneous lighting and
defocus. For the LiDAR sphere detector, the effect of range noise was exam-
ined. Further, the distributions of the detections are determined in real data
experiments. We found that most components can be well approximated by
Gaussian distributions.

We introduced our Euclidean calibration framework which is the simplest of
our three multimodal calibration methods. It uses sphere center observations
to estimate the poses of the sensors. Depending on the sensor, observations
have different geometric types. Cameras generate ray observations or point
observations if the actual radius of the sphere is used. Range sensors ob-
serve the sphere center as points. To link time-asynchronous observations of
different sensors, the sphere position is interpolated linearly. The calibration
problem is formulated as a minimization problem of distances of sphere center
observations at the same point in time. Depending on the observation types,
these are ray-to-ray, ray-to-point or point-to-point distances.
We used our simulation environment to analyze the effect of different error
sources. We found that errors due to interpolation of the target positions are
negligible. The most severe errors result from inaccurate timestamps of the
sensor data if no proper time management system is installed. On real data ex-
periments with a camera and a LiDAR, we found an absolute mean translation
error of less than 3 mm and a rotation error of less than 0.1 ◦, which compares
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well to state of the art methods.

In our Euclidean calibration framework, all observations influence the cal-
ibration result the same. We introduced our probabilistic calibration frame-
work that, additionally, takes the information about observation uncertainties
into account by using a probabilistic formulation of the calibration problem.
More precisely, the joint probability density function of the sensor poses and
the target positions, given the target observations, is maximized. By using a
generic sensor model that is parameterized for each sensor individually, the
different observation characteristics are encoded. Under certain assumptions
on the observation distributions, the calibration problem can be formulated as
a weighted least-squares problem that can be efficiently solved.
On simulated and real data, we showed that the probabilistic calibration frame-
work significantly outperforms the Euclidean calibration framework. The
downside of incorporating the observation characteristics into the calibration
problem is that, for each sensor, the observation noise has to be estimated.
This can be a time consuming process. We showed for different sensor setups
that, even for rough noise estimates, the probabilistic approach outperforms the
Euclidean calibration framework. This is an essential finding for the practical
use of the method.

Both, the Euclidean and the probabilistic calibration framework estimate
the poses of the sensors. We introduced our joint calibration framework that
estimates intrinsic parameters in addition to the sensor poses. Again, the cali-
bration is formulated in a probabilistic manner. Raw measurements instead of
precalculated sphere center observations are incorporated into the problem by
using individual measurement models. Determining the noise characteristics
of the measurements is often trivial since the datasheets of the sensors provide
this information.
On simulated data, we showed that, for a setup that consists of a single camera
and a LiDAR, the estimation of the camera intrinsics significantly improves by
adding the range measurements from the LiDAR to the calibration problem.
We reproduced this result on real data. Further, we compared our method
to a state of the art reference method that uses checkerboards. The reference
method has a significantly higher repeatability than our method in the case
of calibrating a single camera. By adding LiDARs, our method outperforms
the reference method for a single camera with respect to repeatability of the
intrinsic camera parameters. For a setup of two cameras, our and the reference
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method showed comparable repeatability for the intrinsics. We further showed,
by means of known movement of one camera, that the relative positions of the
cameras to each other are estimated with sub-millimeter accuracy for our and
the reference method.

An extension of the calibration methods is to calibrate the sensors relative
to keypoints e.g. a car’s rear axle. The main idea is to temporarily extend the
main setup by sensors that observe the keypoints. We evaluated the extension
qualitatively on real data and quantitatively in simulation. We concluded that
the method is a simple and effective alternative to e.g. motion-based rear axle
calibration. Additionally, it is a very flexible approach that can further be used
e.g. for estimating the position of GNSS antennas.

There are several promising directions to extend this work:
First, a logical next step would be to incorporate full LiDAR intrinsics into
the calibration process. In our experience, the intrinsic parameters of LiDARs
have to be recalibrated over time. Sending the sensor back to the manufacturer
is costly and time consuming. We propose to calibrate LiDAR intrinsics in
a joint calibration problem with other sensors such as cameras. The intrinsic
parameters can profit significantly from additional information of other sen-
sors. The problem is well posed for a sensor setup consisting of a LiDAR
and a camera if the radius of the sphere is known. A simple alternative is
to use an already intrinsically well calibrated LiDAR to calibrate the intrinsic
parameters of another LiDAR.
Another extension would be to allow multiple spheres as calibration targets.
This will reduce the recording time to a few seconds if the targets are spread
suitably. The goal would be to equip a garage with e.g. five spheres so that
a single drive into the garage provides enough measurements to calibrate the
sensor setup, at least its extrinsic parameters.
Another idea is to extend the calibration target for even better calibration
results. Especially promising would be to combine a checkerboard with our
spherical calibration target. The corners of a checkerboard pattern can be
detected very accurately by a camera but has disadvantages for calibrating
range sensors which can be compensated by fixing our spherical target to the
board. We expect additional improvement for all parameters of all sensors.
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A Appendix

A.1 Calculation of camera ray direction with pro-

jection model

The goal is to find an explicit formula for the ray direction d in terms of the
normed undistorted image point coordinates (ud, vd). We use a projection
model A(θ) = rd that defines the relation between inclination angle θ and

normed image point radius rd =

�
u2
d
+ v

2
d
. Independent of the projection

model, we have

d =
����
sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

����
, (A.1)

with the azimuthal angle ϕ = arctan(vd/ud). We reformulate sin(ϕ) and cos(ϕ)
to

sin(ϕ) = sin

�
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�
vd

ud

��
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vd
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1 +
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vd
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cos(ϕ) = cos
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vd

ud
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1 +
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vd

ud

�2
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ud

rd
. (A.3)
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For each of the four projection models presented in Equation 3.4-3.7, we
provide the final results for the direction d of the 3D ray:

Projective:

A(θ) = tan(θ) = rd (A.4)

θ = arctan(rd) (A.5)

sin(θ) = sin[arctan(rd)] =
rd�

1 + r2
d

(A.6)

cos(θ) = cos[arctan(rd)] =
1�

1 + r2
d

(A.7)
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Stereographic:

A(θ) = 2 tan
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Equiangular:

A(θ) = θ (A.14)

θ = rd (A.15)
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Equisolid:
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A.2 Calculation of tangent angle and its variance

The goal is to calculate the tangent at an edge point based on edge points in a
small neighborhood. Further, the variance of the tangent angle shall be derived
from the measurement noise of the edge point positions.
As explained in subsection 3.3.3, PCA can be used as a tool to find the best
line fit with orthogonal distance measure. For PCA, we need to calculate
the sample covariance matrix of all n points x1, ..., xn in the neighborhood.
Actually, we can drop the scaling factor (n − 1) since it does not influence the
tangent direction. We use the following notation xi = (xi, yi)

T and define the
scaled sample covariance matrix as

A =

�
a b

c d

�
=

��
(xi − mx)(xi − mx)

�
(xi − mx)(yi − my)�
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�
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�
, (A.22)

with the mean point
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�
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The eigenvector of A with the largest eigenvalue can be proven to be

v =

�
v1

v2

�
=
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c

�
if b � 0
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1

0

�
if b = 0 and a > c
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0

1

�
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, (A.24)

with L = a+d
2 +

�
(a+d)2

4 − ad + bc. The largest eigenvector v represents the
direction of the line fit. We use the additional convention that the sphere
projection is to the right of the tangent so that the sign of the tangent direction
has to be adjusted accordingly. The tangent angle can be calculated by using
the 2-argument arcus tangent

ϕ = arctan2(v2, v1) . (A.25)

At this point, we estimated the tangent direction and need to derive the vari-
ance of the tangent angle. We assume Gaussian noise orthogonal to the tangent
direction for the points x1, ..., xn. Since the eigenvector v is a non-linear func-
tion in the points, we use a linear approximation to derive the variance of the
tangent angle by the error propagation concept explained in subsection 3.3.4.
For this, we need to calculate the Jacobian

J = ∇ϕT (x1, ..., xn) . (A.26)

First, we simplify v by only considering the case b � 0. If b = 0, we simply
rotate all the points around the average point m by e.g. 45 ◦ to have b � 0. The
variance is the same for the rotated case. We use the chain rule to find
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We have
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We further have
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We combine Equations A.27-A.37 in
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Finally, we calculate
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and the same calculations are performed to find
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From all these equations, we can calculate the Jacobian J = ∇ϕT (x1, ..., xn) =�
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. Since the noise of the edge points

is assumed to be orthogonal to the edge tangent, we need the directional
derivatives:
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with the normal n. The final variance of the tangential angle can be calculated
by
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