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Abstract

The standard procedure when evaluating integrals of a given family of Feynman integrals, corresponding 
to some Feynman graph, is to construct an algorithm which provides the possibility to write any particular 
integral as a linear combination of so-called master integrals. To do this, public (AIR, FIRE, REDUZE,
LiteRed, KIRA) and private codes based on solving integration by parts relations are used. However, the 
choice of the master integrals provided by these codes is not always optimal. We present an algorithm to 
improve a given basis of the master integrals, as well as its computer implementation; see also a competitive 
variant [1].
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

After integration by parts (IBP) reduction was invented [2] it became possible to decompose 
the problem of evaluating Feynman integrals into two parts: a reduction to so-called master in-
tegrals (MIs) and the evaluation of these MIs. In the eighties and nineties, the first part of this 
procedure was solved ‘by hand’ but then computer codes which perform an IBP reduction ap-
peared. At the moment, there are at least five public codes (AIR, FIRE, REDUZE, LiteRed,
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KIRA) [3–10], and a number of private codes.1 By definition, MIs are integrals that appear on 
the right-hand sides of solutions of IBP relations, so that they form a basis in the linear space of 
integrals of a given family associated with an h-loop graph,

Gi1,...,iL =
∫

. . .

∫ L∏
l=1

1

(m2
l − p2

l )
il

ddk1 . . .ddkh . (1)

Here d = 4 − 2ε is the dimensional regularization parameter, k1, . . . , kh are loop momenta, and 
momenta of the lines pl are expressed in terms of linear combinations of the loop momenta ki

and external momenta qj . Integrals of a given family are, in particular, functions of indices il
(powers of the propagators) which can be considered as integer variables.

The title of the paper might look strange because a set of the MIs is produced automatically 
after a code to solve IBP relations is applied, so that there is no choice at this point. However, 
experience tells us that, especially in sufficiently complicated situations, the basis provided by 
such a code, can be bad because the denominators of the coefficients of MIs in IBP-reductions of 
input integrals can be quite cumbersome. Of course, coefficients in the decomposition of a given 
input integral over MIs are always rational functions of everything, i.e. of d and kinematical 
invariants, because solving IBP relations reduces to solving sparse linear systems of equations 
with the help of a variant of the Gaussian elimination. With big denominators, the reduction to 
the MIs can be rather complicated and, in some cases, even unfeasible, i.e. requiring too much 
time or/and operative memory.

It looks natural to expect that the denominators in IBP-reductions are connected with singular-
ities of Feynman integrals whose position follows from an analysis of convergence properties of 
Feynman integrals represented as parametric integrals over Feynman parameters. This analysis 
can be performed, in some situations, with classical sector decompositions by Hepp and Speer 
used to prove theorems on renormalization [14,15], or, in more general situations, with modern 
recursive sector decompositions [16–18]. From this analysis, it follows that the singular factors 
are either functions of kinematical invariants and masses (independent of d) described by Landau 
equations, or linear functions of d (independent of other variables).

Such standard singular factors in denominators of IBP-reductions are unavoidable but we 
could try to eliminate all more complicated factors using a transition to an appropriate basis of 
the MIs in which denominators on the right-hand side of IBP reduction relations will be good, i.e. 
decomposed as products of polynomials of kinematical invariants and masses, independent of d , 
and linear terms of the form ad +b with rational numbers a and b. Let us also call a denominator 
bad if it is not good. We will also call a basis good if the denominators in IBP reductions into 
that basis are good.

In fact, the possibility of finding a good basis follows from2 Theorem 0.6 of Ref. [19] by 
Sabbah about the solution of a system of difference equations of several variables. The main 
ingredients of the corresponding formalism are shift operators with respect to these variables 
and operators of multiplication by these variables. Similarly, the shift operators for the indices 
of Feynman integrals and the corresponding multiplication operators are standard ingredients of 

1 Let us observe that, for concrete families of Feynman integrals, specially constructed IBP-reduction programs can 
be much more powerful than the above mentioned general programs. Here remarkable examples are two public codes
Mincer [11,12] and Forcer [13] successfully applied for the reduction of three- and four-loop massless propagator 
diagrams, respectively.

2 We are grateful to Erik Panzer who turned our attention to this theorem after the archive version of this paper appeared.
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IBP relations.3 We apply this theorem to a family of Feynman integrals and the corresponding 
IBP relations are difference equations. As the variables we have the indices (which we consider 
integer) and dimension, {i1, . . . , iL, d}. The evolution of Feynman integrals under the action of 
the shift operators is described by multiplication by matrices (representing the shift operators) 
composed of rational functions of our variables. We can apply this theorem because the basis 
of MIs is finite dimensional [21]. Now, the theorem states that there is always a basis such that 
the matrices representing the shift operators have denominators which are products of linear 
functions of indices and dimension. We can obtain a given integral of the given family by the 
action of a finite number of shift operators on the elements of the basis of the master integrals, so 
that this integral can be obtained from the basis of the master integrals by the action of a matrix 
composed of rational functions. Therefore, according to the Sabbah’s theorem, there should be a 
basis of the master integrals such that there are no bad denominators in results of IBP reductions.

Guided by the existence of a good basis provided by the Sabbah’s theorem, we are now going 
to explain how one can practically improve a given basis of the MIs if it is not good.4 In the 
next section, we describe an algorithm to improve a given basis of MIs. In Section 3, we discuss 
possible origins of bad denominators. In Section 4, we present a code based on our algorithm and, 
in Section 5, we discuss some other ways of improving a given basis of MIs. In the Appendix, 
we present an example which demonstrates how our code works.

2. The algorithm

Suppose we have a basis fi(x, d), i = 1, ..., N , of MIs obtained with some IBP reduction 
code, For simplicity of presentation, we describe the case of two scales, where x is their ratio, 
for example, x = q2/m2. Let us check whether it is a good or bad basis and if it is bad let us 
try to improve it. Let us run an IBP reduction code on a set of sample integrals taken from all 
the sectors with non-zero numbers of the MIs. In our calculations, we prefer to choose integrals 
with indices 0,1 and 2: we include in the sample list corner integrals of these sectors, i.e. without 
indices equal to two, then integrals with one index equal to two, then integrals with two indices 
index equal to two. (In complicated situations, sample integrals with three indices equal to two or 
even higher might be also needed.) We prefer sample integrals without negative indices because, 
according to our experience, the choice of MIs with negative indices has more chances to lead to 
an appearance of bad denominators. Moreover, symmetries of Feynman integrals are more visible 
for integrals without negative indices. However, the following algorithm and its implementation 
work for any set of sample integrals.

Anyway, we start with an IBP reduction of a set of the sample integrals and know their reduc-
tion which can be written in the form of a list of substitutions:

f (x, d) →
N∑

i=1

ci(x, d)fi(x, d) , (2)

where the coefficients ci are rational functions of x and d .
Let us call by the level the number of positive indices of an integral. Let us analyze reductions 

of the sample integrals starting from sectors of the minimal level. Suppose that we are at the 

3 A description of Feynman integrals in terms of a vector space of rational functions can be found, e.g., in Ref. [20].
4 In our experience, we already improved bases of MIs in many calculations without developing a code for this and we 

believe that other people also did this. Here is one more example from the literature [22].
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lowest level where bad denominators appear. We now determine which sectors are responsible 
for the generation of these bad denominators by analyzing at which of the MIs of the given level 
the bad denominators appear. We now consider these sectors one by one.

For a given sector σ , let gj , j = 1, 2, ..., be the set of the corresponding sample integrals. 
Their reduction has the form

gj =
|σ |∑
i=1

cj,ifi + . . . , (3)

where fi, i = 1, 2, ..., |σ | are MIs of the given sector and dots stand for the contribution of lower 
sectors. For a given gj , analyze numerators of those coefficients cj,i which involve the current 
bad denominator. Let us consider a numerator bad or good using the same definition as formu-
lated above for the denominators.

(a) A simple situation. Suppose that for some i, the numerator is good. Then replace the MI fi

by the new MI gj . After using an explicit relation between fi and gj which is found by solving a 
linear equation, find the mapping which expresses fi in terms of gi and the other MIs. Check that 
after this change, the current bad denominator disappears. When fi is written down in terms of 
gi and other MIs, the bad denominator goes to the numerator and cancels bad denominators also 
in other places, while the numerator in cj,i goes to the denominator but it is harmless because 
it is good. After a transition to the current new MIs, the code checks that the bad denominators 
under consideration disappear in the IBP reduction of all the sample integrals of the given sector.

(b) A more complicated situation. Suppose now that for all i, the corresponding numerators 
are bad. Choose i such that the length (defined as the number of terms in the expanded ex-
pression) of the numerator is minimal and make the corresponding replacement. Therefore, the 
resulting bad denominators become better, but they are not yet good. Repeat this procedure until 
all denominators are good.

Now perform this procedure also for other sectors of the given level, then proceed to higher 
levels eventually reaching the top sector. As a result we obtain a list of desirable MIs. Within 
FIRE, this list is encoded via the option preferred in subsequent reductions.

To speed up the analysis of the bad denominators, one can fix either d or other variables. In 
particular, in situations with many kinematic invariants, one can get rid of non-linear denomi-
nators in d fixing all the other parameters and thereby make the sample reduction much faster. 
This procedure is systematically described in an alternative version [1] of getting rid of bad 
denominators.

3. Where do the bad denominators appear from?

In order to use the code efficiently and not to expect it to do things that it is not designed to 
do, it is important to understand how the bad denominators appear. To our understanding, bad 
denominators can appear because either

1. the current choice of MIs is not the optimal choice, or,
2. the current set of MIs is not minimal so that there is a hidden relation between them.

It is important to understand which of those variants (or both) is the case to improve properly 
the current basis of MIs.

But what actually is this variant 2? If MIs are irreducible how can one have a relation between 
them? The answer lies in the implementation of reduction programs. There can be a relation 
4
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between “MIs” produced by a reduction program that the reduction program cannot reveal, and 
there are reasons for this, one of which is that it might be that not all relations between Feynman 
integrals follow from IBP relations. In fact, it is an open question whether they follow or not. 
However modern reduction programs normally try to use symmetries in addition to the IBP 
relations. For example, FIRE can use internal sector symmetries from LiteRed (depending on the 
#pos_pref option), and so we normally do not miss relations for MIs in a single sector.

Still, there is a reason why extra relations can be missed due to the way in which reduction 
programs are implemented. (The statement is valid for FIRE, but we expect it is also to be valid 
for other reduction programs.) The programs work sector by sector, so if during reduction a 
relation is reduced completely out of a sector, relating only integrals of lower sectors, reduction 
programs tend to drop relations of this sort at this point. Therefore we locate a possible source of 
relations between MIs of lower sectors that reduction programs can ignore.

This leads to the following conclusion: the variants can be distinguished one from the other. 
In case there is a relation r between MIs of level l, it means that there should be a relation (IBP 
or symmetry) of a level higher than l, that could be reduced and lead to r . It also means that the 
analysis of bad denominators at level l won’t reveal such a relation. The bad denominators of 
type 2 are revealed only when one takes a reduction relation for an integral of a level higher than 
l, and the bad coefficients are those at integrals of level l.

On the other hand, the bad denominators of type 1 appear inside a level, when considering 
coefficients of integrals of the same level on the left-hand side and right-hand side of the formula. 
Still due to the way we order Feynman integrals (trying to reduce to lower sectors), there will be 
bad denominators at lower levels as well.

It is important to note, that the code described here only aims at a good basis choice and tries 
to get rid of bad denominators of the first type. In case there are extra relations between MIs, 
one needs another way to decrease their number, and this will be discussed in Section 5, however 
even in this case the code can improve the basis.

However this consideration has another important consequence that might be useful for the 
application of the code: while searching for bad denominators of type 1, one can consider only 
coefficients expressing integrals of a given level by MIs of the same level. Everything that is 
below can be dropped for the purpose of finding a good basis.

4. The code

The above algorithm is implemented in Mathematica as a part of FIRE, starting from the 
public release 6.4.1 (with more options in 6.4.2), however all functions related to this algorithm 
are placed in a separate Mathematica file mm/ImproveMasters.m, and moreover it can be used 
not only together with FIRE, but also with other reduction programs.

Let us explain the format used by the algorithm. First, there is a Feynman integral, which is 
defined by a problem number pn (a positive integer) and a set of indices. Like in other parts of 
FIRE, we use the following form for a Feynman integral:

G[pn, {i1, i2, . . . , in}] (4)

Then let us define a ‘relation’, i.e. a representation of one integral as a linear combination of 
other integrals. Of course this could be simply a Mathematica rule with a linear combination on 
the right-hand side, but for optimization reasons we prefer to store a relation in a structured for-
mat, where the right-hand side of the rule (Mathematica Rule) comes as a list of pairs containing 
an integral and a coefficient each:
5
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G[pn, {i1, i2, . . . , in}] →
{{G[pn, {j1,1, . . . , j1,n}], c1}, . . . , {G[pn, {jm,1, . . . , jm,n}], cm}} (5)

The problem number should be always the same, the integrals on the right-hand side 
should not be repeated. This format is much more convenient for algorithmic reasons be-
cause one does not need to separate coefficients from the right-hand sides all the time. It 
is also not difficult to convert between the traditional format with a sum and the struc-
tured format. We provide a function RelationSum2List that converts a rule with a sum to 
a rule with a list. The inverse conversion is even less complex and can be obtained with 
Rule[##[[1]], P lus@@T imes@@@##[[2]]]&, but we also for convenience we provide the 
RelationList2Sum function.

The input for the main algorithm is a Mathematica list of relations. This format can be ob-
tained in FIRE with the

T ables2Rules[f ilename, Identity,False] (6)

command. Here Identity stands for no function application to coefficients, this will be done by 
the algorithm later anyway. The last parameter False stands for JoinT erms = False meaning 
that we are not going to convert the expressions from the list format to the sum format.

The main function provided by the algorithm is

ImproveMasters[relations, level] (7)

or, starting from version 6.4.2,

ImproveMasters[relations, level, length] (8)

Here level stands for the level of integrals (number of positive indices) in which the code will 
work, and length is the minimal length of a polynomial independent of d starting from which it 
is considered bad. For example, length = 10 can be a reasonable choice.

The intermediate output of the code is self-explanatory; it prints the bad denominator factors 
found, the sectors in which they are found, lists of MIs involved and the replacements of MIs it 
makes in order to get rid of bad denominators. The output is a pair containing a new set of rela-
tions and the good basis of MIs. The list of MIs in the output contains only MIs in sectors where 
a change was required. This set can be used as the set of preferred MIs in FIRE in subsequent 
IBP reductions or in a similar way in other reduction programs.

To find bad factors FIRE uses Together to simplify the fractions, then uses the Denominator
function to get the denominators and then calls the provided FindBadFactorsInCoeff icient

function that first uses FactorList and then analyzes the factors. The condition for the factor 
to be “bad” is a set either depending both on d and other variables or containing a non-linear 
dependence on d .

As explained in the previous section, the search for a good basis can be performed purely 
inside a given level, dropping everything that is below. Therefore if one is not immediately inter-
ested in new relations but is searching for the list of preferred integrals only, it is safe to restrict 
the search to a given level, and that can improve performance of the code greatly. To do that 
one can use the function LevelPart[relations, level] that keeps only the current level part. For 
example, one can call

ImproveMasters[LevelPart[relations, level], level][[2]] (9)
6
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to get the list of preferred integrals for the current level. Note that the LevelPart function not 
only picks the relations for integrals of a given level (which could be done, for example, with 
Select[relations, (IntegralLevel[First[##]] == level)&]) but also leaves only integrals of 
the desired level on the right-hand side.

The code comes with a number of auxiliary functions. The

BadRelationParts[expr_, level_ : 0, onlyCurrent_ : False] (10)

function picks out only parts of the original rules where coefficients contain a bad factor in the 
denominator. If level is non-zero, then it considers only integrals of the specified level on the 
left-hand sides, and if also onlyCurrent is set to T rue, then it also filters the right-hand sides to 
have only integrals of the same level. This might be useful since only coefficients at the current 
level are related to the search of a good basis. In case the function ImproveBasis succeeds, the 
result of BadRelationParts[expr, level, T rue] on the first part of its return value be an empty 
set.

If one is only interested in displaying bad factors, ignoring the integrals with which they 
appear, one can use the

FindBadFactorsInRules[expr_, level_ : 0, onlyCurrent_ : False] (11)

function with the same parameters. Similarly, if the function ImproveBasis succeeds, the result 
of FindBadFactorsInRules[expr, level, T rue] on the first part of its return value should be 
an empty set.

The purpose of the code is in searching for a good basis, and this is related only to coefficients 
of a given level. As explained above there can be extra relations between MIs that usually lead 
to bad coefficients of MIs of a lower level than the integral on the left-hand side. Since the code 
ImproveBasis cannot help with getting rid of them, alternative methods should be used that are 
discussed briefly below. However if one has such an extra relation, it can also be applied with 
the structured rules format. This is done with the SubstituteRuleIntoRules[rules_, rule_]
function.

In case there are no more bad denominators remaining, both functions BadRelationParts

[expr] and FindBadFactorsInRules[expr] return empty sets.

5. Discussion and conclusion

We have explained how to get rid of bad denominators by improving a given basis of the MIs. 
Suppose now that some bad denominators survive after using our code. As mentioned above, 
another source (in addition to the choice of an improper basis of the MIs) of bad denominators 
can be hidden relations between a current set of the MIs. When presenting the release of FIRE4
[23] we suggested a way to find some of such relations. It is based on symmetries of Feynman 
integrals of a given family. One finds relations between sample integrals (we prefer to consider 
integrals with indices equal to 0, 1 and 2, with the number of indices = 2 equal to one, two, 
three and, in some complicated cases, even higher, however the code can work with any sample 
choice). Within FIRE, this can be done with the help of the command FindRules but there are 
also other ways to find such symmetry relations. Then one performs an IBP reduction of these 
sample integrals and checks whether symmetry relations simply yield identities or produce new 
relations between current MIs. However, there exist hidden relations which cannot be revealed 
by this procedure. A first example of such nontrivial relations and their description is presented 
in Ref. [24].
7
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In fact, one can check whether the number of the MIs in a given sector is minimal using the 
code Mint [25] based on algebraic geometry. If the code gives a number which is less than the 
number of current MIs in the given sector then it is quite reasonable to look for a hidden relation. 
However, additional relations obtained with the help of symmetries usually provide relations in 
partially overlapping sectors while Mint provides information about a fixed sector.

We also know examples where running an IBP reduction with KIRA and FIRE and equating 
the corresponding results provides a missing relation.

Getting rid of bad denominators is important not only because it improves reduction perfor-
mance with respect to runtimes and memory usage. In particular, when applying approaches 
based on modular arithmetic (Finred [26], KIRA [1] and FIRE [5]), it is necessary, first, to 
reveal the form of possible denominators. Moreover, within the method of differential equations, 
it is important to get rid of denominators which are spurious and can be eliminated by a basis 
change.

Let us emphasize that our algorithm can be applied not only with FIRE but also with other 
reduction programs. On the other hand, one more tool for improving a given basis of MIs is 
described in a ‘parallel’ paper [1] by an author of KIRA.

Let us point out that bad denominators appear only at a sufficient level of complexity, so 
that one does not need our code in simple cases. However, in complicated cases, the code can 
essentially improve the situation with the IBP reduction. Our approach is pragmatical: we do 
not prove that, under some conditions, it should work. We accept that, in some complicated 
situations, the code can meet difficulties so that it will be necessary to develop it further or just 
to include more sample integrals into the game, in addition to the described default choice, i.e. 
various sample integrals with the indices 0,1 and up to two indices equal to 2. However, we 
have already applied our heuristic code in several projects and believe that the readers will also 
successfully apply it in practice.
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Appendix A. An example

Let us see how bad denominators can be eliminated by our code for the family of integrals 
associated with the three-loop vertex graph shown in Fig. 1.
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Fig. 1. A three-loop vertex graph. Solid lines are with the mass m, wavy lines are massless.

In accordance with Eq. (1), the squares of momenta pl in the propagators are{
−(q1 + k1)

2 + m2,−(q1 + k1 + k2)
2 + m2,−(q1 + k1 + k2 + k3)

2 + m2,

−(q2 + k1 + k2 + k3)
2 + m2,−(q2 + k2 + k3)

2 + m2,−(q2 + k3)
2 + m2,

−k2
1,−k2

2,−k2
3,−(k1 − k2)

2,−(k1 − k3)
2,−(k2 − k3)

2
}

,

where ki are loop momenta and qi are external momenta with q2
1 = m2, q2

2 = m2, (q1 −q2)
2 = s. 

The first nine indices can be positive while the last three indices are always non-positive and 
stand only for numerators.

As a list of sample integrals we choose the list described in Section 2 without negative in-
dices and the number of indices equal to 2 up to two. Looking for hidden relations between 
primary MIs, according to the procedure mentioned in the beginning of Section 5 and based on 
symmetries, we find the following relations between MIs in partially overlapping sectors:

G0,1,0,0,1,2,1,0,0,0,0,0 → d − 2

8m2 G0,0,0,1,0,1,1,1,0,0,0,0 − 2d − 5

4m2 G0,1,0,0,1,1,1,0,0,0,0,0 .

Tables obtained with FIRE for sample integrals can be downloaded from http://theory.sinp .
msu .ru /~smirnov /imi. There is also the set of the MIs which we obtain after improving a primary 
basis. Running the code described in Section 4 at levels 3 and 4 shows no bad denominators. At 
level 5, there are several bad denominators. To get rid of the bad denominator

448m4 − 240dm4 + 32d2m4 − 580m2s + 320dm2s

−44d2m2s + 268s2 − 150ds2 + 21d2s2

we have to make a change in the sector with the following MIs:

{G0,1,0,1,1,0,0,1,1,0,0,0,G0,1,0,1,1,0,0,1,2,0,0,0,G0,1,0,1,1,0,0,2,1,0,0,0,

G0,1,0,1,1,0,0,2,2,0,0,0,G0,1,0,1,2,0,0,1,1,0,0,0,G0,1,0,1,2,0,0,1,2,0,0,0,G0,1,0,2,1,0,0,1,1,0,0,0}.
This can be achieved by choosing G0,2,0,1,2,0,0,1,1,0,0,0 instead of G0,1,0,1,1,0,0,2,2,0,0,0.

To get rid of the bad denominator 12m2 − 4dm2 − 16s + 5ds we have to make a change in 
the sector with the following MIs:

{G0,0,1,0,1,0,1,1,1,0,0,0,G0,0,1,0,1,0,1,1,2,0,0,0,G0,0,1,0,1,0,2,1,1,0,0,0,G0,0,1,0,2,0,1,1,1,0,0,0}.
9
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This can be achieved by choosing G0,0,2,0,1,0,1,1,1,0,0,0 instead of G0,0,1,0,1,0,1,1,1,0,0,0.
To get rid of the bad denominator 16m2 − 4dm2 − 10s + 3ds we have to make a change in 

the sector with

{G0,1,0,1,1,1,0,0,1,0,0,0,G0,1,0,1,1,1,0,0,2,0,0,0}.
This can be achieved by choosing G0,2,0,1,1,1,0,0,1,0,0,0 instead of G0,1,0,1,1,1,0,0,2,0,0,0.

To get rid of the bad denominator 28m2 − 8dm2 − 4s + ds we have to make a change in the 
sector with

{G0,1,1,1,1,0,0,1,0,0,0,0,G0,1,1,1,1,0,0,2,0,0,0,0,G0,1,1,1,2,0,0,1,0,0,0,0}.
This can be achieved by choosing G0,2,2,1,1,0,0,1,0,0,0,0 instead of G0,1,1,1,1,0,0,1,0,0,0,0.

To get rid of the bad denominator 4m2 + 4s − ds we have to make a change in the sector with

{G0,1,0,0,1,1,1,0,2,0,0,0,G0,1,0,0,1,1,2,0,1,0,0,0}.
This can be achieved by choosing G0,2,0,0,1,1,1,0,1,0,0,0 instead of G0,1,0,0,1,1,1,0,2,0,0,0.

At level 6, there is a very bad denominator

1166901120m6 − 2228472576dm6 + 1889043552d2m6 − 934622944d3m6

+298051104d4m6 − 63674944d5m6 + 9133728d6m6 − 850048d7m6

+46656d8m6 − 1152d9m6 − 1077693120m4s + 2033788512dm4s

−1698824192d2m4s + 825710264d3m4s − 257891900d4m4s + 53810944d5m4s

−7523356d6m4s + 681848d7m4s − 36472d8m4s + 880d9m4s

+323477760m2s2 − 602689792dm2s2 + 493601656d2m2s2 − 233171456d3m2s2

+69995306d4m2s2 − 13842696d5m2s2 + 1802914d6m2s2 − 149054d7m2s2

+7094d8m2s2 − 148d9m2s2 − 31819200s3 + 58544600ds3

−46779452d2s3 + 21211150d3s3 − 5972893d4s3 + 1070399d5s3 −
119334d6s3 + 7576d7s3 − 210d8s3

which is generated by the sector with ten MIs

{G0,1,1,0,1,1,1,1,0,0,0,0,G0,1,1,0,1,1,1,2,0,0,0,0,G0,1,1,0,1,1,2,1,0,0,0,0,G0,1,1,0,1,1,2,2,0,0,0,0,

G0,1,1,0,1,2,1,1,0,0,0,0,G0,1,1,0,1,2,1,2,0,0,0,0,G0,1,1,0,1,2,2,1,0,0,0,0,G0,1,1,0,2,1,1,1,0,0,0,0,

G0,1,2,0,1,1,1,1,0,0,0,0,G0,2,1,0,1,1,1,1,0,0,0,0}.
The code does not find a replacement that immediately removes this denominator. Then the code 
looks for variants of reducing the length of this bad denominator. The best variant corresponds to 
a reduction of the length from 35 to 16 and is achieved by choosing G0,1,2,0,2,1,1,1,0,0,0,0 instead 
of G0,1,1,0,1,2,1,2,0,0,0,0.

Then the code takes care of the bad denominator

52992m4 − 47136dm4 + 16784d2m4 − 3136d3m4 + 328d4m4 − 16d5m4

−30480m2s + 24512dm2s − 7308d2m2s + 1036d3m2s − 82d4m2s

+4d5m2s + 4200s2 − 3140ds2 + 774d2s2 − 63d3s2
10
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in the previous sector where one of the MIs was replaced. This denominator is eliminated by 
choosing G0,2,1,0,1,1,2,1,0,0,0,0 instead of G0,1,1,0,1,1,2,2,0,0,0,0.

To get rid of the bad denominator 3480m4 −1860dm4 +244d2m4 −2872m2s +1528dm2s −
200d2m2s + 390s2 − 207ds2 + 27d2s2 we have to make a change in the sector with

{G0,1,0,1,1,0,1,1,1,0,0,0,G0,1,0,1,1,0,1,1,2,0,0,0,G0,1,0,1,1,0,1,2,1,0,0,0,G0,1,0,1,1,0,2,1,1,0,0,0,

G0,1,0,1,2,0,1,1,1,0,0,0,G0,1,0,2,1,0,1,1,1,0,0,0,G0,2,0,1,1,0,1,1,1,0,0,0}.
This can be achieved by choosing G0,2,0,1,2,0,1,1,1,0,0,0 instead of G0,1,0,1,1,0,1,1,2,0,0,0.

To get rid of the bad denominator 16m2 − 4dm2 − 10s + 3ds we have to make a change in 
the two sectors with

{G1,0,0,1,1,1,0,1,1,0,0,0,G1,0,0,1,1,1,0,1,2,0,0,0,G1,0,0,1,1,1,0,2,2,0,0,0,G1,0,0,1,2,1,0,1,1,0,0,0,

G1,1,0,0,1,1,1,0,1,0,0,0,G1,1,0,0,1,1,1,0,2,0,0,0,G1,1,0,0,1,1,2,0,2,0,0,0,G1,1,0,0,1,2,1,0,1,0,0,0}.
This can be achieved by choosing G2,0,0,2,1,1,0,1,1,0,0,0 instead of G1,0,0,1,1,1,0,2,2,0,0,0 and 
G2,2,0,0,1,1,1,0,1,0,0,0 instead of G1,1,0,0,1,1,2,0,2,0,0,0.

To get rid of the bad denominator 22m2 − 6dm2 − 15s + 3ds we have to make changes in the 
two sectors with

{G0,1,0,0,1,1,1,1,1,0,0,0,G0,1,0,0,1,1,1,2,1,0,0,0,G1,0,0,1,0,1,1,1,1,0,0,0,G1,0,0,1,0,1,2,1,1,0,0,0}.
This can be achieved by choosing G0,1,0,0,2,1,1,1,1,0,0,0 instead of G0,1,0,0,1,1,1,1,1,0,0,0 and 
G2,0,0,1,0,1,1,1,1,0,0,0 instead of G1,0,0,1,0,1,1,1,1,0,0,0.

To get rid of the bad denominator 28m2 − 18s + 3ds we have to make changes in the two 
sectors with

{G0,1,1,1,1,0,0,1,1,0,0,0,G0,1,1,1,1,0,0,1,2,0,0,0,G1,0,1,1,0,1,0,1,1,0,0,0,G1,0,1,1,0,1,0,1,2,0,0,0}.
This can be achieved by choosing G0,2,1,1,1,0,0,1,1,0,0,0 instead of G0,1,1,1,1,0,0,1,2,0,0,0 and 
G1,0,1,1,0,2,0,1,1,0,0,0 instead of G1,0,1,1,0,1,0,1,2,0,0,0.

To get rid of the bad denominator 8m2 − 2dm2 − 7s + 2ds we have to make a change in the 
sector with

{G0,1,0,1,0,1,1,1,1,0,0,0,G0,1,0,1,0,1,1,1,2,0,0,0}.
This can be achieved by choosing G0,2,0,1,0,1,1,1,1,0,0,0 instead of G0,1,0,1,0,1,1,1,2,0,0,0.

At level 7, there is a bad denominator 4480m6 − 4192dm6 + 1280d2m6 − 128d3m6 −
1040m4s + 1208dm4s − 456d2m4s + 56d3m4s + 120m2s2 − 152dm2s2 + 66d2m2s2 −
10d3m2s2 + 4ds3 − 4d2s3 + d3s3. We make a change in the sector with

{G0,1,1,0,1,1,1,1,1,0,0,0,G0,1,1,0,1,1,1,1,2,0,0,0}.
This can be achieved by choosing G0,1,1,0,2,1,1,1,1,0,0,0 instead of G0,1,1,0,1,1,1,1,2,0,0,0.

To get rid of the bad denominator 360m4 −152dm4 +16d2m4 +16s2 −8ds2 +d2s2 we have 
to make a change in the sector with

{G1,0,1,1,0,1,1,1,1,0,0,0,G1,0,1,1,0,1,1,1,2,0,0,0,G1,0,1,1,0,1,1,2,1,0,0,0,

G1,0,1,1,0,1,1,2,2,0,0,0,G1,0,1,1,0,2,1,1,1,0,0,0}.
This can be achieved by choosing G2,0,1,1,0,1,2,1,1,0,0,0 instead of G1,0,1,1,0,1,1,2,2,0,0,0.
11
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To get rid of the bad denominator 360m4 −152dm4 +16d2m4 +16s2 −8ds2 +d2s2 we have 
to make a change in the sector with

{G1,0,1,1,0,1,1,1,1,0,0,0,G1,0,1,1,0,1,1,1,2,0,0,0,G1,0,1,1,0,1,1,2,1,0,0,0,

G1,0,1,1,0,1,1,2,2,0,0,0,G1,0,1,1,0,2,1,1,1,0,0,0}.
This can be achieved by choosing G0,2,1,1,0,1,1,1,1,0,0,0 instead of G0,1,1,1,0,1,1,1,1,0,0,0.

At level 8, one bad denominator appears, 8m4 − 4dm4 + 24m2s − 5dm2s − 5s2 + ds2. We 
have to make changes in the two sectors with the following MIs:

{G0,1,1,1,1,1,1,1,1,0,0,0,G0,1,1,1,1,1,1,1,2,0,0,0,G0,1,1,1,1,1,1,2,1,0,0,0,G0,1,1,1,1,2,1,1,1,0,0,0,

G1,0,1,1,1,1,1,1,1,0,0,0,G1,0,1,1,1,1,1,1,2,0,0,0,G1,0,1,1,1,1,2,1,1,0,0,0,G1,0,1,1,2,1,1,1,1,0,0,0}.
This can be achieved by choosing G0,2,1,1,1,1,1,1,1,0,0,0 instead of G0,1,1,1,1,1,1,1,1,0,0,0 and 
G2,0,1,1,1,1,1,1,1,0,0,0 instead of G1,0,1,1,1,1,1,1,1,0,0,0.

Finally, our code reveals no bad denominators at level 9.
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