
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Incentivized Privacy-Preserving
Participatory Sensing

Masterarbeit

KIT – Karlsruher Institut für Technologie
ITI – Institut für Theoretische Informatik

Forschungsruppe Kryptographie und Sicherheit

Timm Lauser

18. Dezember 2019

Verantwortlicher Betreuer: Prof. Dr. Jörn Müller-Quade
Betreuender Mitarbeiter: Valerie Fetzer





iii

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst habe und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche
kenntlich gemacht habe und die Satzung des Karlsruher Instituts für Technologie zur Sicherung guter
wissenschaftlicher Praxis in der gültigen Fassung beachtet habe.

Karlsruhe, den 18. Dezember 2019

(Timm Lauser)





Abstract

Participatory sensing systems utilize privately owned mobile devices and their embedded sensors to
gather data. This is used in research projects in several fields such as environmental monitoring, public
transport monitoring, and public safety. Due to the vast amount of information that can be inferred
from sensor readings, such applications pose a serious risk to the privacy of the participants.
The Privacy-enhanced Participatory Sensing Infrastructure with Collusion Resistance (PEPSICo)

model provides formal privacy and security guarantees for both, the participants contributing the data
and the queriers that request and analyze it, but does not provide a way to reward participants for
submitted data. However, as the participants incur costs through the sensing process, many systems
will not be able to attract numerous participants without offering compensations. In this work, we
extend PEPSICo with a mechanism to incentivize participants with rewards, without compromising the
privacy of the participants. Therefore, we adapt Extended Black-box Accumulation (BBA+), a secure
and private point accumulation scheme. Our proposed model provides strong security and privacy
guarantees without requiring strong trust assumptions. Especially, transactions of honest users remain
unlinkable even against malicious system operators colluding with the registration authority, queriers
and other users. In opposite to PEPSICo, we do not have to trust the registration authority to behave
honestly in this regard.





Zusammenfassung

Participatory Sensing Systeme machen sich die Vielzahl der Sensoren in heutigen Mobilgeräten zur
Datenerhebung zunutze. Sie finden Anwendungen in Forschungsprojekten auf vielen verschiedenen
Gebieten, z. B. in der Umweltüberwachung, der Beobachtung des öffentlichen Nahverkehrs und im
Bereich der öffentlichen Sicherheit. Die Vielzahl der Informationen, welche von den erhobenen Daten
abgeleitet werden kann führt jedoch dazu, dass solche Anwendungen die Privatsphäre ihrer Teilnehmer
gefährden.

Das Privacy-enhanced Participatory Sensing Infrastructure with Collusion Resistance (PEPSICo) Model
garantiert starke Datenschutz- und Sicherheitseigenschaften sowohl für die Teilnehmer welche die
Daten liefern als auch für Datenverarbeiter. Allerdings bietet PEPSICo keine Möglichkeit, Teilnehmer
für die beigesteuerten Daten zu entlohnen. Dies könnte viele Systeme davon abhalten, eine ausreichende
Menge an Teilnehmern zu gewinnen, da diesen durch die Datenerhebung und -übermittlung auch Kosten
entstehen. Diese Arbeit erweitert PEPSICo mit einem Anreizsystem, welches es erlaubt, Teilnehmer für
die beigesteuerten Daten zu belohnen, ohne deren Privatsphäre zu gefährden. Dazu verwenden wir eine
modifizierte Version von Extended Black-box Accumulation (BBA+), einem sicheren und Privatsphäre
schützenden System zum Sammeln von Punkten, welche dann für Belohnungen eingetauscht werden
können. Das vorgeschlagene Model bietet starke Sicherheitsgarantien und schützt die Privatsphäre
der Teilnehmer, ohne dass auf das ehrliche Verhalten von Systemkomponenten vertraut werden muss.
Insbesondere können Transaktionen selbst dann nicht als vom gleichen Benutzer ausgehend identi-
fiziert werden, wenn böswillige Servicebetreiber mit der Registrierunsgstelle, Datenverarbeitern und
weiteren Teilnehmern kollaborieren. Im Gegensatz zu PEPSICo gilt dies selbst dann, wenn sich die
Registrierunsgstelle nicht an das Protokoll hält.
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1

1 Introduction

The ubiquity of mobile devices such as smartphones provides lots of possibilities for data collection and
analysis but also poses major challenges regarding user privacy. A participatory system uses a collection
of such mobile nodes as its source of sensor data. These devices are controlled by their respective owners
instead of a central observer, which is why the participation of a large group of people is required to
utilize such a network.

However, collected information often includes Personally Identifying Information (PII). For example,
if it contains location information and individual data reports are linkable, the system operator could
misuse this information to create movement profiles of participating devices which, in the case of
smartphones, often directly correlate to the movement of their owners. This poses a threat to the
owner’s privacy. While a lot of research has already been done in this field, many proposed solutions
have strong trust assumptions and do not provide formal security and privacy proofs (cf. [Shi+11;
Chr+13; GGP16; Con+19]).
An exception is Privacy-enhanced Participatory Sensing Infrastructure with Collusion Resistance

(PEPSICo) [GMP14], which is a formal model addressing this issue by defining an architecture and
protocols for a participatory sensing system. It effectively protects the user’s privacy by preventing the
linkage of data reports as originating from the same user. Moreover, it hides the submitted data and
its context, the query identity, from the system operator and protects the privacy of the queriers that
request and utilize this data by hiding the query identities of the reports they collect. However, it lacks
a mechanism to amplify participation and attract more users. This is usually done with an incentive
system, which allows compensating users for their efforts and computing time required to generate
data reports by giving them incentive points that can be accumulated over many reports and at some
point in time exchanged for goods or money.

A general model to implement such an incentive mechanism in a privacy-preserving way is Extended
Black-box Accumulation (BBA+) [Har+17], which allows secure accumulation of incentive points without
enabling the system operator to link transactions to individual users.
This work extends PEPSICo using BBA+ as a mechanism to provide incentives while preserving

strong guarantees for the privacy of the participants. More precisely, we propose Incentivized Privacy-
Preserving Participatory Sensing (I3PS), a general-purpose participatory sensing systemwith an incentive
mechanism that provides the following features:

• Unlinkability of honest users during report submission, incentive collection, and incentive redemp-
tion, even if all other system entities collude. This property is not limited to honest-but-curious
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system entities.
• Data reports are confidential towards the system operators and unauthorized queriers, especially,
if they do not collude with a user registered for the same query, the query identity is hidden as
well protecting the privacy of the queriers.

• Incentive rewards are bound to a user identity, thus, incentives cannot be shared between users.
• The number of reports an individual user is allowed to submit for a specific data query can be
limited.

• The querier can verify that incentive rewards have been delivered correctly by the system.

The structure of this work is as follows: In Chapter 2, we discuss participatory sensing systems and
their challenges in general before introducing cryptographic preliminaries in Chapter 3. Afterwards,
we recapitulate PEPSICo (Chapter 4) and BBA+ (Chapter 5), as they are fundamental to our work. In
Chapter 6, we introduce an interim model that combines these two models into a participatory sensing
system with an incentive mechanism. However, this model has still some issues, wherefore, in Chapter 7
we introduce a second model addressing these issues.
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2 Participatory sensing

To improve a given participatory system, it is important to understand the requirements of such systems.
In this chapter, we first examine the meaning of the term participatory sensing and how it differs from
similar and related terms. We then motivate the importance of participatory sensing by giving use case
examples and discuss the main challenges for participatory sensing systems. Last, we give an overview
of the existing research on privacy-preserving participatory sensing.

2.1 Definition

The term participatory sensing was introduced by Burke et al. [Bur+06] to describe a paradigm that
focuses on the participation of users from the public sphere. Because of their ubiquity and high
capabilities, mobile phones can be used to form interactive networks of sensors to collect data location-
and time-aware. As the sensor devices are under the control of their respective owners instead of a
central observer, the owner’s participation is required. Moreover, the network itself is usually not owned
by the operator of the participatory system and, therefore, potentially distrusted (cf. [HCG15]).
Goldman et al. [Gol+09] state three general approaches to participatory sensing:

Collective design and investigation
The participatory system is collaboratively defined and used by a group of individuals. The
community of individuals owns the entire process, being investigators and subjects at the same
time.

Public contribution
While the participants are actively involved in the collection of data, the definition of the research
question and the use of the results is usually done by another individual or organization without
their involvement. Recruiting interested individuals for the data gathering process allows acquiring
data at a larger scale than it would be possible by conventional methods.

Personal use and reflection
Within this approach, individuals record data about themselves for personal discovery, eg. to
reveal hidden habits and patterns in their lives.

Within this work, we focus on the public contribution approach, which is the approach PEPSICo
uses. Moreover, the other approaches are less critical regarding privacy as the data reported by the
participants is not under the exclusive control of a third party. We only focus on the parts that are
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important to user privacy, not on the complete participatory sensing process, mainly the transfer of the
sensing data and the involved parties. However, the complete sensing process is described by Goldman
et al. [Gol+09] as well.

There are three elementary roles in participatory sensing systems focusing on public contribution (cf.
[HCG15]): The participants/users, that provide the data, the queriers, that request and utilize the data,
and the system operator, providing the infrastructure and mediating between the participants and the
queriers.

2.2 Similar and related terms

Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are widely used in industrial and environmental monitoring
and are well researched. According to He, Chan, and Guizani [HCG15], the main differences to
participatory sensing are that the sensor nodes, as well as the network, are under central control
and ownership. They only sense the surrounding environment but typically not human behavior
and, therefore, the main security concerns are the interception or modification of data in transit,
alongside the disruption of routing packages and the malicious retasking of sensing nodes.

Mobile Crowd Sensing
Guo et al. [Guo+14] define Mobile Crowd Sensing (MCS) as “a new sensing paradigm that empow-
ers ordinary citizens to contribute data sensed or generated from their mobile devices, aggregates
and fuses the data in the cloud for crowd intelligence extraction and people-centric service deliv-
ery”. In addition to participatory sensing, it reuses the user-contributed data from mobile internet
services, such as mobile social networks. Therefore, it involves implicit and explicit participation.
However, the term is also used as a synonym for participatory sensing (cf. [HCG15]).

Social sensing
The term social sensing was introduced by Wang, Abdelzaher, and Kaplan [WAK15]. Similar to
MCS, it describes the combination of three data collection types:

Participatory sensing, where the user is actively involved in the data gathering process

Opportunistic sensing, where the user is only passively involved (eg. by pre-authorizing the
gathering process)

Social data scavenging, where the user is unaware of the gathering process (eg. scanning social
networks)

The main challenge is perceived to be the reliability of data and reported data is viewed as an
unverified claim.
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2.3 Motivation and examples

Utilizing participatory sensing can have several advantages over traditional WSNs [HCG15]. It does not
require setting up a cost-intensive sensing infrastructure as it usually makes use of the large variety of
sensors already included in mobile phones or wearable devices. Moreover, these devices also tend to
have more computing resources available than traditional sensor nodes, which allows for more complex
sensing applications. It is even possible to actively involve the participants in the sensing process.
Participatory sensing systems are able to operate in environments that WSNs are not (which also applies
the other way round) and are well-fit to collect space- and time-dependent data.

In 2012, Tilak [Til13] surveyed the real-world deployments of participatory sensing. At this time, they
were primarily limited to small-scale research prototypes in the areas of health and fitness monitoring,
environmental monitoring, transport and civil infrastructure monitoring, and urban sensing. However,
these prototypes already wielded promising results and demonstrated the huge potential of participatory
sensing applications. A recent survey from 2019 by Capponi et al. [Cap+19] shows that participatory
sensing has indeed become quite successful and further areas of applications, such as emergency
prevention, public safety, indoor localization, and waste management, have developed. They also
provide a timeline of developments in participatory sensing and indicate its success factors.
In the following, we give a few examples of participatory sensing applications in some of the areas

mentioned above.
Examples for environmental monitoring applications include GasMobile [Has+12], a low-cost system

to monitor air pollution levels, and NoiseMap [Sch+11], which uses Global Positioning System (GPS)
and microphone data to generate real-time noise maps.

In the area of public transport, Haig, Hayati, and Tomasic [HHT18] propose the usage of participatory
sensing to detect crowded buses. They argue that the traditionally used Automated Passenger Counting
(APC) systems are not always reliable and that transit information providers typically do not have access
to this information in real-time. Their system uses the accelerators available in modern smartphones to
predict the state of the riders (such as sitting, walking or running) with machine learning algorithms.
In addition, Zhou, Zheng, and Li [ZZL12] predicts the arrival time of buses using sensing resources
that impose a low power-consumption on participants’ mobile phones, such as cell tower signals and
movement statuses instead of GPS.

As an application in the field of public safety, iSafe [Bal+12] uses participatory sensing to predict the
safety of users based on the crime statistics of their current location and the safety profiles of co-located
users.

2.4 Main challenges

There are three main challenges in participatory sensing systems: User privacy, participant attraction,
and data trustworthiness. User privacy strongly conflicts with data trustworthiness, as a high degree of
user anonymity makes it very difficult to identify and eliminate users reporting false data (cf. [HCG15]).
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User privacy
In participatory sensing systems, a lot of PII can be exposed to the system operator and the
queriers. Apart from the actual sensor data, the data reports usually contain important contextual
information such as location and time of the sensing. Moreover, multiple records can be linked
together to profile users and derive further information. Additionally, there is the network and
communication data, eg. the Internet Protocol (IP) address of the user and the frequency of
reporting. This may also include the client and operating system used to communicate with the
service. Lastly, observing which sensing tasks a user takes part in can reveal some information in
itself.

For the actual sensor data, a privacy respecting system has to be transparent on exactly which
data is collected and its possible relevance for privacy. This is especially important for systems
where the user is not actively involved in the actual data gathering process, but where data is
collected passively without requiring user interaction. Privacy with respect to the actual sensor
data cannot be addressed by an abstract system, as it may highly depend on the specific sensing
task. Moreover, some responsibility remains with the user, eg. to make sure transmitted photos
do not contain something the user does not want to share.

However, the system can prevent profiling to some extend, eg. by providing report unlinkability
(as PEPSICo does), ensuring records cannot be linked preventing tracking and identification of
users based on their activity over time. Within this work, we focus on this aspect of privacy.
However, we assume that linking transactions is not possible based on the network data alone.

Therefore, the network should not give away identifying data, eg. it should remove IP address and
additional information that could be used to identify individual devices or to derive their location.
If the network does not provide this property, anonymity services such as the Tor project [Tor19]
could be used.

Participant attraction
The strength of participatory systems is that they allow for much larger and more diverse partici-
pation than traditional systems, where the data is gathered by a small research team. However,
this requires that people are willing to participate. Some participatory systems assume altruistic
motivation (cf. [HCG15]) and that might work for some research problems, especially if there is a
large public awareness and the system minimizes the privacy risks of the participants. However,
more participants might be attracted by adding an extrinsic motivation factor, which is usually
done via an incentive mechanism. Such a mechanism rewards users for their participation, eg.
by offering monetary compensation or other benefits. In general, participatory systems should,
therefore, support such a mechanism.

Data trustworthiness
Because of the openness of participatory sensing systems, they are usually exposed to erroneous
or even malicious data. For example, participants might unintentionally gather sensing data in the
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wrong environment (eg. indoors instead of outdoors). Moreover, participants might maliciously
report bad data. How to detect bad data is a difficult problem that highly depends on the sensing
task. Including an incentive mechanism might even worsen the data trustworthiness as the
submission of forged data reports can now result in a personal benefit for participants.

A general approach to increase the trustworthiness of the gathered data are reputation systems.
Users get assigned reputation scores based on the quality of their contributions, as far as it can be
determined. Those scores are then used as an indicator for the trustworthiness of future reports.

2.5 Related work

A lot of research has already been done in the area of privacy-preserving participatory sensing. However,
most of this work requires strong trust assumptions, such as requiring multiple trusted parties or only
considering honest-but-curious system operators, and does not provide formal security evaluations. An
exception is PEPSICo [GMP14], which we extend in this work. The PEPSICo model is given in Chapter 4.

2.5.1 Surveys

There are not many surveys that provide an overview of all the approaches to address the privacy issue
in participatory sensing systems. Christin [Chr15] surveyed privacy-preserving mechanisms based on a
high-level threat model. They provide an extensive list of the mechanisms available in 2015 and classify
them according to their threat models and used protection techniques. Moreover, they point out that
pseudonymity is insufficient to protect the privacy of the participants and point out several studies that
show how the identity of users could still be derived in such a case (eg. [Kru07; De +13]). There is also a
predecessor survey from 2011 [Chr+11a].
In a more recent survey, Wang et al. [Wan+19] define a more detailed threat model for participa-

tory sensing applications and evaluate numerous participatory sensing systems based on the privacy
requirements they fulfill and the privacy goals they address.

2.5.2 Partial approaches

To protect the user’s location information, spatial cloaking techniques are used by several systems. This
mainly includes 𝑘-anonymity techniques, which requires that the user’s location is indistinguishable
from the location of at least 𝑘 − 1 other users (cf. [SS98]). An example is PiRi [KS11], a peer-to-peer
system where participants distribute tasks among each other to achieve 𝑘-anonymity during location-
based sensing task assignment. TAPAS [KS12] further extends this solution to improve the quality of
the submitted data. Nevertheless, in these solutions, privacy depends on the trustworthiness of other
users. A centralized approach is given by Vu, Zheng, and Gao [VZG12] and Gao et al. [Gao+12], where
a trusted party is used to cloak location information among the information of other users.
A different approach for location-based task assignment is given by [TGS14], where the network

provider, which already knows the users’ location, acts as a broker between them and the application
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server. They use geocasting (cf. [NI97]) to deliver task requests to the users.
LOCATE [BK13] proposes a distributed model in the collective design and investigation setting, that is,

users and queriers are identical. They focus on the privacy of location trajectories, which they preserve
in opposite to many other systems, and narrow their approach to the Android operating system. Each
user has a local database storing his sensed data but can also issue queries on data stored across the
system. Their approach is to distribute the data trajectories among multiple user databases so that
adversaries cannot decide which user a trajectory belongs to.

More general approaches to protect user information are based on data perturbation or aggregation.
For example, Zhang et al. [Zha+12] propose the PESP algorithm, which adds dynamically varying noise
to the user’s data. Thus, they hide the actual values and even trends of individual data streams while
still allowing global statistics to be computed. Moreover, Li and Cao [LC12; LC13] uses additively
homomorphic encryption to construct a very efficient scheme where an aggregator colluding with a
fraction of the users can only obtain the aggregate of all users data but not the individual values or
intermediate results. They give protocols to compute the sum and the minimum of the submitted values,
from which further protocols such as computing the average or maximum can be derived. However,
because of their nature, such schemes require to trust the users to submit honest data.

To guarantee user anonymity, Christin et al. [Chr+11b] proposes to exchange sensor readings between
participants that physically meet. In [Chr+14], they further improve their approach by assigning trust
levels to participants, wherefore a minimum level requirement for data exchanges can be specified by
the users.

Jin et al. [Jin+16] focuses on the privacy and economics of the incentive mechanism. They feature an
auction-based model where the user’s bid on a bundle of tasks by specifying their price for providing the
data. Based on these bids, the platform selects a set of winners, and, after they send their data reports,
they are given their payment. The scheme provides differential privacy for the bidding profiles of users.

”WorthOneMinute” (WOM) [Klo+19] tries to decouple the incentivemechanism from the participatory
sensing system by proposing an open and anonymous rewarding platform. However, they only consider
anonymity against honest-but-curious system operators and do not formally evaluate the security of
their system.

In opposite to the approaches listed above, PEPPeR [DKS12] does not protect the privacy of the users
but the privacy of queriers. Queriers anonymously purchase tokens from the service provider that
allow them to directly contact users and forward their queries to them. Moreover, the scheme provides
double-spending detection, which requires users to contact a witness server before accepting a token.

2.5.3 General purpose frameworks

An early approach of a participatory sensing system protecting the participant’s privacy is AnonySense
[Shi+11]. It considers collusion attacks by other participants and queriers and some of the system
components. Moreover, it considers the integrity of messages against malicious network access points.
It uses Tor [Tor19] as an anonymizing network, together with the MIX network Mixmaster [Cot+08]
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and an anonymization service that mixes sensitive reports with the reports from other mobile nodes
and can additionally apply blurring techniques to further mask sensitive information. Moreover, group
signatures are used to authenticate messages from registered mobile nodes. However, these mobile nodes
are trusted not to submit invalid reports and only an informal security evaluation based on predefined
attack scenarios is given.
IncogniSense [Chr+13] makes use of pseudonyms, which, however, are changed periodically to

protect the privacy of the participants. It mainly focuses on its reputation mechanism and they use blind
signatures to circumvent the need for a trusted third party, as it is used by Huang, Kanhere, and Hu
[HKH12]. They use cloaking techniques to prevent the linkage of pseudonyms based on the evolution of
their reputation scores. However, these techniques may incur a loss of reputation for users. Moreover,
the time intervals in which the pseudonyms are changed have to be selected carefully as within one
interval, all transactions are linkable. They only consider user privacy against honest-but-curious
system operators in their security model and analyze the privacy properties of their system based on a
predefined set of attacks instead of providing formal proofs.

SPPEAR [GGP14; GGP16] also uses frequently changed pseudonyms, however, they are changed after
a specific number of contributions instead of a fixed time interval. They provide an incentive mechanism
and accountability for malicious users. For the security of their system, they consider honest-but-curious
system entities and malicious users. However, a collusion of some of their system operators can result
in the full de-anonymization of users.

Lord of the Sense [MK14] is a model for the collective design and investigation approach. Therefore,
it does not include an incentive mechanism but it includes a reputation mechanism. Users can vote
for published reports which will affect the reputation of the user that submitted the report. Therefore,
users have to contact a central server to update their reputation scores. The system is based on group
signatures and provides anonymity against other users and accountability, that is, anonymity can be
abolished if at least 𝑘 users from the same group cooperate. However, the system components are trusted
not to deviate from the protocol and the central server, where reports are submitted and reputation
scores are updated, can link reports and, therefore, to profile users. Furthermore, only an informal
security evaluation is given.
Privacy-Aware Incentivization (PAI) [Con+19] is a decentralized privacy-preserving participatory

sensing system, featuring anonymous and unlinkable data reporting and incentive rewarding as well as an
adaptive mechanism to compute incentive rewards. It adapts Identity Privacy Preserving Incentivization
(IPPI) [CDB18], a decentralized and unlinkable incentive mechanism to achieve these goals. One of
its advantages is that there is no direct communication between participants and queriers (which
they call service providers in their model) and no central system operators, which prevent the tracing
of participants via IP addresses. The threat model considers honest-but-curious queriers that use
interference attacks to gain private information of participants. For submitted reports, the reported data
is encrypted with the queriers public key and a one-time public encryption key of the user is attached.
This ensures that only the querier can access the reported data. The incentive mechanism is controlled
by the so-called OrderBook, which receives signed validity tokens from the querier, containing a unique
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incentive identifier (ID) and the one-time public key of a user. It then publishes reward tokens which
will be encrypted with the one-time key so that only the user that submitted the corresponding report
can decrypt and spend those tokens. The anonymity of the users is ensured by this use of one-time keys
in the incentive process. However, only informal security proofs are provided for the system.
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3 Cryptographic preliminaries

In this chapter, we introduce the notation, security assumptions and cryptographic building blocks we
use in this work.

3.1 Notation

Parties are denoted by calligraphic fonts (eg. A, U) and sets are denoted in fracture font (eg. ℭ, ℑ).
Special sets are denoted in black board font (eg. ℕ, ℤ). Algorithms and Protocols are denoted in teletype
font (eg. Setup, ReportData). Oracles are usually denoted in standard font (eg. HonUser, CorruptRA).

To denote interactive protocols, the participating parties are noted in angular brackets with their cor-
responding inputs (eg. Protocol ⟨P(𝑖𝑛𝑝𝑢𝑡P),V(𝑖𝑛𝑝𝑢𝑡V)⟩ denotes the interactive protocol Protocol
between P with input 𝑖𝑛𝑝𝑢𝑡P andV with input 𝑖𝑛𝑝𝑢𝑡V ). The parties are always denoted within the
same order. If one of them is replaced, eg. by an adversary, the adversary acts in place of the party
that is at the same position in the algorithm specification (eg. in Protocol ⟨A(𝑖𝑛𝑝𝑢𝑡A),V(𝑖𝑛𝑝𝑢𝑡V)⟩
A takes the role of P in the original protocol).
AHonUser means that the party A is given access to the HonUser oracle. The notation ADec(sk, ·)

specifies thatA is given access to an oracle that executes the Dec algorithm using sk, which is unknown
to A, as its first input parameter and a value supplied by A as its second input parameter.

General

𝑛, 1𝑛 Security parameter (standard and unary notation)
negl (𝑛 ) An arbitrary function that is negligible in 𝑛
ℕ Set of natural numbers
ℤ Set of integers
𝐺1,𝐺2,𝐺𝑇 Cyclic groups, usually of prime order 𝑝

Parties

A Adversary
U User
P Prover
V Verifier
I Issuer or Incentive System Provider (ISP)

AC Accumulator (in BBA+)
RA Registration Authority
SP Service provider
C Challenger
Q Querier
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3.2 Pseudorandom functions

A Pseudo Random Function (PRF) is an efficient distribution of functions where a key is used to select a
specific function. As long as the key is randomly chosen, the selected function must be indistinguishable
from a randomly chosen function from the set of all functions of the same form (cf. [KL07]).

Definition 3.1 (Pseudorandom function) Let 𝐹 : {0,1}∗ × {0,1}∗ → {0,1}∗ be an efficient, length-
preserving, keyed function. We sad 𝐹 is a pseudorandom function if for all PPT adversariesA, there exists
a negligible function negl such that���Pr [1← A𝐹𝑘 ( ·) (1𝑛)

]
− Pr

[
1← A 𝑓𝑛 ( ·) (1𝑛)

] ��� ≤ negl (𝑛 )

where 𝑘 ← {0,1}𝑛 is chosen uniformly at random and 𝑓𝑛 is chosen uniformly at random from the set of
functions mapping n-bit strings to n-bit strings.

3.3 Hash functions

The idea of a cryptographic hash function is to generate a unique, short fingerprint of arbitrarily large
data. A hash function maps an input of arbitrary size to a bit string of a fixed size. By design, multiple
possible inputs result in the same hash value. However, as these fingerprints should be unique, such
collisions are required to be hard to find. This implies that hash functions are one-way functions (cf.
[KL07]).

Definition 3.2 (Hash function) A family of cryptographic hash functions is defined by a pair of algo-
rithms (HGen, 𝐻 ) with the following properties:

hk
$←− HGen(1𝑛)
This probabilistic polynomial-time algorithm generates a hash key hk which identifies a specific
function from the family.

ℎ ← 𝐻hk(𝑚)
The keyed hash function is a function 𝐻hk : {0,1}∗ → {0,1}𝑙 (𝑛) for a polynomial 𝑙 that can be
computed in deterministic polynomial-time.

Definition 3.3 (Collision resistant hash function) A family of hash functions 𝛱 = (HGen, 𝐻 ) is
called collision resistant if for all PPT adversaries A and the experiment ExpCR

𝛱,A defined in Figure 3.1,
there exist a negligible function negl such that

Pr
[
ExpCR𝛱,A (𝑛) = 1

]
≤ negl (𝑛 )
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ExpCR
𝛱,A (𝑛)

hk
$←− HGen(1𝑛)

(𝑚,𝑚′) ← A(hk)

return𝑚 ≠𝑚′ and 𝐻hk (𝑚)
?
= 𝐻hk (𝑚′)

ExpPR
𝛱,A (𝑛)

hk
$←− HGen(1𝑛)

𝑚
$←− {0,1}∗; ℎ ← 𝐻hk (𝑚)

(𝑚′) ← A(hk, ℎ)

return 𝐻hk (𝑚′)
?
= ℎ

Figure 3.1: Collision resistance and preimage resistance experiments for hash functions

Definition 3.4 (Preimage resistant hash function) A family of hash functions 𝛱 = (HGen, 𝐻 ) is
called preimage resistant if for all PPT adversaries A and the experiment ExpPR

𝛱,A defined in Figure 3.1,
there exists a negligible function negl such that

Pr
[
ExpPR𝛱,A (𝑛) = 1

]
≤ negl (𝑛 )

Any family of hash functions that is collision resistant is preimage resistant, that is

Pr
[
ExpCR𝛱,A (𝑛) = 1

]
≤ negl (𝑛 ) =⇒ Pr

[
ExpPR𝛱,A (𝑛) = 1

]
≤ negl (𝑛 )

3.4 Message authentication codes

As the name implies, Message Authentication Codes (MACs) are used to authenticate messages, that is
to prevent an adversary from modifying a message sent by one party to another, or even injecting a new
message in the communication, without the parties detecting the interference. They are the symmetric
counterpart to digital signature schemes (Section 3.10). Thus, both parties are required to have a shared
secret to authenticate legitimate messages. When sending a message, the sender uses this secret to
compute a MAC tag on the message which can be validated using the same secret by the recipient. No
adversary should be able to forge such a tag for any message not send by the legitimate parties before.
We use the definition from [KL07].

Definition 3.5 (MACs) A MAC is a tuple of PPT algorithms (Gen, Mac, Verify) defined as follows:

k← Gen(1𝑛)
The key generation algorithm outputs a uniformly distributed key 𝑘 ∈ {0,1}𝑛

𝑡 ← Mac(k,𝑚)
The MAC tag generation algorithm generates a MAC tag for a message𝑚 ∈ {0,1}∗ under the key 𝑘

{0,1} ← Verify(k,𝑚, 𝑡)
TheMAC tag verification algorithm checks whether a tag 𝑡 is indeed a valid MAC tag for the message
𝑚 under the key k
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A MAC is correct if honestly generated tags always verify, ie. if for all 𝑛, k ∈ {0,1}𝑛 and𝑚 ∈ {0,1}∗ it
holds that

Pr
[
Verify(k,𝑚, Mac(k,𝑚)) ?

= 1
]
= 1

ExpMAC-forge
𝛱,A (𝑛)

kGen(1𝑛)
(𝑚, 𝑡) ← AMac(k, ·) (1𝑛)

The experiment outputs 1 iff Verify(k,𝑚, 𝑡) ?
= 1 and A

did not query Mac(k, ·) for𝑚 during the experiment

Figure 3.2: Security experiment for MACs. Hereby, Mac(k, ·) is an oracle that returns Mac(k,𝑚∗) for any
𝑚∗ chosen by A.

Definition 3.6 (Security of MACs) Let ExpMAC-forge
𝛱,A be defined as in Figure 3.2. A message authenti-

cation code PI = (Gen, Mac, Verify) is called existentially unforgable under adaptive chosen-message
attacks (EUF-CMA secure) if for all PPT adversaries A, there exists a negligible function negl such that

Pr
[
ExpMAC-forge

𝛱,A (𝑛) ?
= 1

]
≤ negl (𝑛 )

3.5 Bilinear groups

Bilinear groups form the basis of pairing-based cryptography. We use the definition from [Har+19]
([Bel+09] for 𝑞-DDHI).

Definition 3.7 (Prime-order bilinear group generator) A prime-order bilinear group generator is a
PPT algorithm SetupGrp which behaves as follows:

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
Based on the security parameter 𝑛, the group generator algorithm outputs the description of three
cyclic groups 𝐺1, 𝐺2, 𝐺𝑇 of prime order 𝑝 , where log𝑝 = 𝛩 (𝑛). Furthermore, 𝑔1 and 𝑔2 are the
generators for 𝐺1 and 𝐺2, respectively.

𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇

The pairing 𝑒 generated by SetupGrp efficiently maps a tuple (𝑎, 𝑏) ∈ 𝐺1 ×𝐺2 to an element of the
target group 𝐺𝑇 and has the following properties:

Bilinearity
For all 𝑎 ∈ 𝐺1, 𝑏 ∈ 𝐺2, 𝑥,𝑦 ∈ ℤ𝑝 , it holds that 𝑒 (𝑎𝑥 , 𝑏𝑦) = 𝑒 (𝑎,𝑏)𝑥𝑦.

Non-Degeneracy
𝑒 (𝑔1, 𝑔2) generates 𝐺𝑇 .
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Definition 3.8 (DDH and SXDH assumption) The DDH assumption holds with respect to SetupGrp
over 𝐺𝑖 if for all PPT adversaries A, there exist a negligible function negl such that��������������

Pr


𝑏

?
= 𝑏 ′

��������������

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
𝑥,𝑦,𝑧 ← ℤ𝑝

ℎ0 := 𝑔
𝑥𝑦

𝑖
; ℎ1 := 𝑔𝑧𝑖

𝑏 ← {0,1}
𝑏 ′← A(1𝑛, 𝑔𝑝, 𝑔𝑥𝑖 , 𝑔

𝑦

𝑖
, ℎ𝑏)


− 1
2

��������������
≤ negl (𝑛 )

The SXDH assumption holds with respect to SetupGrp is the DDH assumption holds for both source
groups, ie. for both 𝑖 = 1 and 𝑖 = 2.

Definition 3.9 (CDH assumption) The CDH assumption holds with respect to SetupGrp over𝐺𝑖 if for
all PPT adversaries A, there exists a negligible function negl such that

Pr

𝑔
𝑧
𝑖

?
= 𝑔

𝑥𝑦

𝑖

��������
𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
𝑥,𝑦 ← ℤ𝑝

𝑧 ← A(1𝑛, 𝑔𝑝, 𝑔𝑥𝑖 , 𝑔
𝑦

𝑖
)

 ≤ negl (𝑛 )

Obviously, the CDH assumption is implied by the DDH assumption.

Definition 3.10 (Co-CDH) The Co-CDH assumption holds with respect to SetupGrp if for all PPT ad-
versaries A, there exists a negligible function negl such that

Pr

𝑎
?
= 𝑔𝑥2

��������
𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
𝑥 ← ℤ𝑝

𝑎 ← A(1𝑛, 𝑔𝑝, 𝑔𝑥1 )

 ≤ negl (𝑛 )

The Co-CDH assumption is implied by the SXDH assumption.

Definition 3.11 (𝒒-DDHI) The 𝑞-DDHI assumption holds with respect to SetupGrp over 𝐺𝑖 if for all
PPT adversaries A, there exists a negligible function negl such that��������������

Pr


𝑏

?
= 𝑏 ′

��������������

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
𝛼, 𝑟 ← ℤ∗𝑝

ℎ0 := 𝑔
1
𝛼

𝑖
; ℎ1 := 𝑔𝑟𝑖

𝑏 ← {0,1}
𝑏 ′← A(1𝑛, 𝑔𝑝, 𝑔𝛼𝑖 , 𝑔𝛼

2

𝑖 , 𝑔
𝛼3

𝑖 , . . . , 𝑔
𝛼𝑞

𝑖 , 𝑐𝑏)


− 1
2

��������������
≤ negl (𝑛 )
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3.6 Verifiable random functions

Verifiable Random Functions (VRFs) are a special kind of PRF (cf. Section 3.2) where, in addition, the
party executing the function can compute a non-interactieve, publicly verifiable proof that the function
was executed correctly (cf. [Bel+09]).

Definition 3.12 (VRF) A VRF is a tuple of algorithms PI = (SetupGrp, SetupVRF, Gen, Prove, Verify)
as follows

𝑔𝑝 ← SetupGrp(1𝑛)
The group generation algorithm generates the public group parameters 𝑔𝑝 that define the message
space of the scheme.

CRS← SetupVRF(𝑔𝑝)
This algorithm generates the Common Reference String (CRS) CRS of the scheme.

(pk, sk) ← Gen(CRS)
The key generation algorithm generates the public key pk and the corresponding private key sk. For
convenience, we assume that CRS is part of pk.

(𝑦) ← Eval(CRS, sk, 𝑥)
This algorithm only evaluates the underlying PRF without computing a proof. It computes the pseu-
dorandom image 𝑦 of the preimage 𝑥 .

(𝑦, 𝜋) ← Prove(CRS, sk, 𝑥)
This algorithm computes the image 𝑦 of 𝑥 using the PRF and moreover, computes a proof 𝜋 that
allows to verify 𝑦.

{0,1} ← Verify(pk, 𝑥,𝑦, 𝜋)
This algorithm returns 1 if 𝜋 is a valid proof for𝑦 being the image of 𝑥 under the PRF and the private
key sk corresponding to pk.

Additionally, a VRF satisfies the following properties:

Correctness
Honestly computed proofs and images always verify, ie. for all 𝑛 ∈ ℕ and all 𝑥 in the domain of the
VRF it holds that

Pr


1← Verify(pk, 𝑦, 𝜋)

�����������
𝑔𝑝 ← SetupGrp(1𝑛)
CRS← SetupVRF(𝑔𝑝)
(pk, sk) ← Gen(CRS)
(𝑦, 𝜋) ← Prove(sk, 𝑥)


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ExpVRF-ps
𝛱,A (𝑛)

𝑔𝑝 ← SetupGrp(1𝑛)
CRS← SetupVRF(𝑔𝑝)
(pk, sk) ← Gen(CRS)

(𝑥, 𝑠𝑡𝑎𝑡𝑒0) ← AProve(sk, ·)
0 (CRS, pk)

(𝑦0, 𝜋0) ← Prove(sk, 𝑥)
𝑦1 ← 𝐷 (CRS)

𝑏 ′← AProve(sk, ·)
1 (𝑦𝑏, 𝑠𝑡𝑎𝑡𝑒0)

The experiment returns 1, iff 𝑏 ?
= 𝑏 ′ and A = (A0,A1) did not query Prove(sk, ·) for

𝑥 during the experiment and 𝐷 (CRS) is the domain of the VRF defined by CRS

Figure 3.3: Preudorandomness experiment for VRFs. Hereby, Prove(sk, ·) is an oracle that computes the
output of Prove under sk an input provided by the adversary

Pseudorandomness
The VRF is pseudorandom, if for all 𝑛 ∈ ℕ and for all PPT adversariesA = (A0,A1), it holds that���Pr [ExpVRF-ps

𝛱,A (𝑛)
?
= 1

] ��� ≤ negl (𝑛 )

Uniqueness
For all 𝑛 ∈ ℕ, 𝑔𝑝 ← SetupGrp(1𝑛) and CRS← SetupVRF(𝑔𝑝), there do not exist (pk, 𝑥,𝑦0, 𝑦1, 𝜋0,
𝜋1) such that

𝑦0 ≠ 𝑦1 ∧ Verify(pk, 𝑥,𝑦0, 𝜋0)
?
= Verify(pk, 𝑥,𝑦1, 𝜋1)

?
= 1

3.7 Commitments

A commitment scheme allows committing to a message which remains secret until the commitment is
opened (ie. the commitment is hiding). Moreover, the commitment can only be opened to the message it
has been created for (ie. the commitment is binding). We use the definition from Hartung et al. [Har+17].

Definition 3.13 (𝑭𝒈𝒑-binding Commitment) A non-interactive commitment scheme is a tuple of PPT
algorithms (SetupGrp, Gen, Com, Open). Let 𝐹𝑔𝑝 : 𝔐 → ℑ be a bijective function mapping the message
space𝔐 to the implicit message spaceℑ. In an 𝐹𝑔𝑝-binding commitment scheme, one commits to a message
𝑚 ∈ 𝔐 but opens a commitment to 𝐹𝑔𝑝 (𝑚) ∈ ℑ.

𝑔𝑝 ← SetupGrp(1𝑛)
The group setup algorithm generates the public group parameters 𝑔𝑝 that define the message space
of the scheme.

CRS← Gen(𝑔𝑝)
This algorithm generates the public CRS CRS.
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(𝑐𝑜𝑚,𝑑) ← Com(CRS,𝑚)
The commitment algorithm takes the CRS CRS and the message𝑚 as input and outputs the com-
mitment 𝑐 and a decommitment value 𝑑 .

{0,1} ← Open(CRS, 𝑐𝑜𝑚,𝑑,𝑀)
The opening algorithm returns 1 if the commitment 𝑐𝑜𝑚 can indeed be opened to 𝑀 ∈ ℑ using the
decommitment value 𝑑 and 0 otherwise.

The commitment scheme is called correct, if Open always verifies honestly generated commitments, ie.

Pr

Open(CRS, 𝑐𝑜𝑚,𝑑, 𝐹𝑔𝑝 (𝑚))
?
= 1

��������
𝑔𝑝 ← SetupGrp(1𝑛)
CRS← Gen(𝑔𝑝)
(𝑐𝑜𝑚,𝑑) ← Com(CRS,𝑚)

 = 1

The commitment scheme is called hiding if an adversary cannot distinguish between commitments to two
message of his choice with more than negligible advantage, ie. for all PPT adversaries A = (A0,A1)������������

Pr


𝑏 = 𝑏 ′

������������
𝑔𝑝 ← SetupGrp(1𝑛)
CRS← Gen(𝑔𝑝)

(𝑚0,𝑚1, 𝑠𝑡𝑎𝑡𝑒0) ← A0(CRS), 𝑏
$←− {0,1}

𝑐𝑜𝑚 ← Com(CRS,𝑚𝑏);𝑏 ′← A1(CRS,𝑐𝑜𝑚, 𝑠𝑡𝑎𝑡𝑒0)


− 1
2

������������
≤ negl (𝑛 )

The commitment scheme is called 𝐹𝑔𝑝-binding an adversary has at most a negligible probability of finding
a commitment that can be opened to two different implicit messages, ie.

Pr


Open(CRS, 𝑐𝑜𝑚,𝑑,𝑀) ?

= 1

∧ Open(CRS, 𝑐𝑜𝑚,𝑑 ′, 𝑀 ′) ?
= 1

∧𝑀 ≠ 𝑀 ′

���������
𝑔𝑝 ← SetupGrp(1𝑛)
CRS← Gen(𝑔𝑝)
(𝑀,𝑀 ′, 𝑑, 𝑑 ′) ← A(CRS)


≤ negl (𝑛 )

The commitment scheme is called additively homomorphic if given a commitment to𝑚0 and a com-
mitment to𝑚1, a commitment to their sum𝑚0 +𝑚1 can be efficiently computed without knowing𝑚0 and
𝑚1. More precisely, there exist two PPT algorithms CAdd and DAdd, such that

Pr


Open(CRS, 𝑐𝑜𝑚,𝑑,𝑚0 +𝑚1)

?
= 1

��������������

𝑔𝑝 ← SetupGrp(1𝑛)
CRS← Gen(𝑔𝑝)
(𝑐𝑜𝑚0, 𝑑0) ← Com(CRS,𝑚0)
(𝑐𝑜𝑚1, 𝑑1) ← Com(CRS,𝑚1)
𝑐𝑜𝑚 ← CAdd(𝑐𝑜𝑚0, 𝑐𝑜𝑚1);𝑑 ← DAdd(𝑑0, 𝑑1)


?
= 1

The commitment scheme is called equivocable if there is a trapdoor for the CRS that allows to open it
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to any given implicit message, ie. there exist PPT algorithms SimGen, SimCom and Equiv such that for all
PPT adversaries the following holds:

1. A CRS generated by Gen is statistically indistinguishable from a CRS generated by SimGen, together
with a simulation trapdoor tdcom, ie.�����������

Pr

[
1← A(CRS)

����� 𝑔𝑝 ← SetupGrp(1𝑛)
CRS← Gen(𝑔𝑝)

]
− Pr

[
1← A(CRS′)

����� 𝑔𝑝 ← SetupGrp(1𝑛)
(CRS′, tdcom) ← SimGen(𝑔𝑝)

]
�����������
?
= 0

2. With trapdoor tdcom a commitment can be generated that can latter be opened to anymessage within
the message space, ie.��������������������������

Pr


1← A(CRS′, tdcom,𝑚, 𝑐𝑜𝑚,𝑑)

�����������
𝑔𝑝 ← SetupGrp(1𝑛)
(CRS′, tdcom) ← SimGen(𝑔𝑝)
𝑚 ←𝔐

(𝑐𝑜𝑚,𝑑) ← Com(CRS′,𝑚)


− Pr


1← A(CRS′, tdcom,𝑚, 𝑐𝑜𝑚′, 𝑑 ′)

��������������

𝑔𝑝 ← SetupGrp(1𝑛)
(CRS′, tdcom) ← SimGen(𝑔𝑝)
(𝑐𝑜𝑚′, 𝑟 ) ← SimCom(𝑔𝑝)
𝑚 ←𝔐

𝑑 ′← Equiv(CRS′, tdcom,𝑚, 𝑟 )



��������������������������

≤ negl (𝑛 )

3.8 Public key encryption

Encryption is used to hide the information contained within a message from everyone but the intended
recipients. In opposite to symmetric or private key encryption, in an asymmetric or Public Key Encryption
(PKE) scheme, there are separate keys for encryption and decryption. A message is first encrypted with
the public key of the recipient, which as the name suggests, can publicly available and does not allow
the decryption of messages. However, messages can be decrypted using the corresponding private key
that should only be available to the recipient. We use the definition from BBA+ [Har+17].

Definition 3.14 (PKE) A PKE scheme is a tuple of PPT algorithms (SetupGrp, Gen, Enc, Dec) defined as
follows:

𝑔𝑝 ← SetupGrp(1𝑛)
The group setup algorithm generates the public group parameters 𝑔𝑝 .



20 3 Cryptographic preliminaries

(pk, sk) ← Gen(𝑔𝑝)
This key generation algorithm outputs the public encryption key pk and the corresponding private
decryption key sk.

𝑐 ← Enc(pk,𝑚)
The encryption algorithm takes as input a public key pk and a message𝑚 and outputs the ciphertext
𝑐 .

𝑚 or ⊥ ← Dec(sk, 𝑐)
The deterministic decryption algorithm takes as input a private key sk and a ciphertext 𝑐 and outputs
the message𝑚 hidden in 𝑐 if 𝑐 is a valid encryption of𝑚 under the public key pk corresponding to
sk. Otherwise, the algorithm outputs ⊥, indicating failure.

A PKE scheme is correct if for all 𝑛 ∈ ℕ, 𝑔𝑝 ← SetupGrp(1𝑛), (pk, sk) ← Gen(𝑔𝑝) and message𝑚
from the message space of the scheme, it holds that

Dec(sk, Enc(pk,𝑚)) ?
=𝑚

ExpIND-CCA
𝛱,A (𝑛)

𝑔𝑝 ← SetupGrp(1𝑛)
(pk, sk) ← Gen(𝑔𝑝)

(𝑚0,𝑚1, 𝑠𝑡𝑎𝑡𝑒0) ← ADec(sk, ·) (pk), where |𝑚0 |
?
= |𝑚1 |

𝑏 ← {0,1}
𝑐 ← Enc(pk,𝑚𝑏, 𝑠𝑡𝑎𝑡𝑒0)
𝑏 ′← ADec(sk, ·) (𝑐)

The experiment returns 1 iff 𝑏 ?
= 𝑏 ′ and A = (A0,A1)

did not query Dec(sk, ·) for 𝑐

.Figure 3.4: IND-CCA experiment for PKE schemes. Dec(sk, ·), is an oracle that returns Dec(sk, 𝑐∗) for
an 𝑐∗ chosen by A

Definition 3.15 (Security of PKE) Let 𝛱 be a PKE scheme and A = (A0,A1) a PPT adversary. We
define the IND-CCA experiment in Figure 3.4. 𝛱 is called IND-CCA secure and therefore provides indis-
tinguishability under chosen-ciphertext attacks, if for all PPT A

Pr
[
ExpIND-CCA𝛱,A (𝑛)

]
≤ negl (𝑛 )

A weaker notion of for the security of a PKE scheme is indistinguishability under chosen-plaintext attacks
(IND-CPA). It is defined equivalent to IND-CCA, but in the IND-CPA experiment A has no access to the
Dec oracle.
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3.9 Identity-based encryption

The idea of Identity-based Encryption (IBE) was first introduced by Shamir [Sha84]. An IBE scheme is
similar to a PKE scheme, except that an arbitrary string, such as a user’s identity, can be used as the
public key. However, if every member of the system could be able to compute the secret key for a given
string, the scheme would not provide any security. Therefore, a Trusted Third Party (TTP) is required
in the scheme. The TTP has additional information (the so-called master secret key) which allows the
efficient computation of user secret keys. The TTP is responsible for authenticating the users before
they are given their user secret key.

Alice Bob

Eve

TTP
secure channel

skAlice
secure channel

skBob

Enc(mpk, Bob,𝑚)

Figure 3.5: Sending an encrypted message in an IBE scheme

Figure 3.5 shows how such a system would work with two users, Alice and Bob. First, the secret keys
are distributed by the TTP via a secure channel. Using Bob’s identity, Alice can now send him encrypted
messages that hide all information about the message (except its length) from potential eavesdroppers.
We use the same definition as in PEPSICo [GMP14], which is based upon [Abd+05] and [BF01].

Definition 3.16 (IBE) An IBE scheme is a tuple of algorithms (Setup, Extract, Enc, Dec):

(mpk,msk) $←− Setup(1𝑛)
The setup algorithm generates the master key pair. The master public key mpk together with the
identity of the recipient is required for the encryption. The master secret key msk allows to extract
the secret decryption key for a specific identity.

sk𝑖𝑑
$←− Extract(mpk,msk, 𝑖𝑑)
This algorithm extracts the secret decryption key sk𝑖𝑑 for the identity 𝑖𝑑 ∈ {0,1}∗.

𝑐
$←− Enc(mpk, 𝑖𝑑,𝑚)

The encryption algorithm encrypts a message 𝑚 from the message space 𝔐 under an identity 𝑖𝑑 ,
resulting in a ciphertext 𝑐 in the cipher-space ℭ.

𝑚 ← Dec(mpk, sk𝑖𝑑 , 𝑐)
The decryption algorithm decrypts the ciphertext 𝑐 ∈ ℭ with the help of the corresponding secret key
sk𝑖𝑑 , resulting in a message𝑚 ∈ 𝔐.
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An IBE scheme is called correct, if for all 𝑖𝑑 ∈ {0,1}∗ and for all𝑚 ∈ 𝔐

Dec(mpk, Extract(mpk,msk, 𝑖𝑑), Enc(mpk, 𝑖𝑑,𝑚)) =𝑚

Definition 3.17 (Security of IBE) Let 𝛱 be an IBE scheme and A = (A0,A1) a PPT adversary. The
ANO-IND-ID-CCA experiment is defined in Figure 3.6.

ExpANO-IND-ID-CCA
𝛱,A (𝑛)

(mpk,msk) $←− Setup(1𝑛)

((𝑖𝑑0,𝑚0), (𝑖𝑑1,𝑚1), 𝑠𝑡𝑎𝑡𝑒0) ← AExtract(mpk,msk, ·),Dec(sk𝑖𝑑 , ·)
0 (mpk)

𝑏
$←− {0,1}

𝑐 ← Enc(mpk, 𝑖𝑑𝑏,𝑚𝑏)

𝑏 ′← AExtract(mpk,msk, ·),Dec(sk𝑖𝑑 , ·)
1 (mpk, 𝑐, 𝑠𝑡𝑎𝑡𝑒0)

The experiment returns 1 iff 𝑏 ?
= 𝑏 ′ andA did not query Extract(mpk,msk, ·) on 𝑖𝑑0

or 𝑖𝑑1 nor Dec(sk𝑖𝑑 , ·) on sk𝑖𝑑0 or sk𝑖𝑑1 and the challenge 𝑐 .

Figure 3.6: ANO-IND-ID-CCA experiment for IBE. Hereby, Extract(mpk,msk, ·) is an oracle that re-
turns Extract(mpk,msk, 𝑖𝑑∗) for any 𝑖𝑑∗ chosen by A. Dec(sk𝑖𝑑 , ·) is an oracle that returns
Dec(sk𝑖𝑑∗, 𝑐∗) for any 𝑖𝑑∗, 𝑐∗ chosen by the adversary.

The IBE scheme 𝛱 is called ANO-IND-ID-CCA secure and therefore provides anonymity and indis-
tinguishability under chosen-ciphertext attacks, if all adversaries can win the experiment with at most
negligible advantage, ie. for all PPT adversaries A

AdvANO-IND-ID-CCA𝛱,A (𝑛) :=
����Pr [ExpANO-IND-ID-CCA𝛱,A (𝑛) = 1

]
− 1
2

���� ≤ negl (𝑛 ) .

For 𝑖𝑑0 = 𝑖𝑑1, the experiment models only indistinguishability (IND-ID-CCA security) and for𝑚0 =𝑚1

only anonymity (ANO-ID-CCA security). If A is not granted access to the Dec oracle, the experiment
models the respective chosen-plaintext security variants instead (ANO-IND-ID-CPA, IND-ID-CPA and
ANO-ID-CPA security).

3.10 Digital signatures

Digital signatures were designed as an analogy to handwritten signatures. They are used to authenticate
messages and validate their integrity. Similar to asymmetric encryption, there is a public and private
key pair. The private signing key can be used to generate a signature for a message. Given the message
and the signature, the public verification key can be used to validate that the signature is valid for the
message and therefore has been generated by the owner of the private key.
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Definition 3.18 (Signatures) A signature scheme is a tuple of PPT algorithms (SetupGrp,Gen,Sign,
Verify) satisfying the following

𝑔𝑝 ← SetupGrp(1𝑛)
The group setup algorithm generates the public group parameters 𝑔𝑝 .

(pk, sk) ← Gen(𝑔𝑝)
This key generation algorithm outputs the public verification key pk and the corresponding private
signing key sk.

𝜎 ← Sign(sk,𝑚)
The signing algorithm takes as input a private key sk and amessage𝑚 and outputs the corresponding
signature 𝜎 .

{0,1} ← Verify(pk,𝑚, 𝜎)
The deterministic verification algorithm takes as input a public key pk, am message𝑚 and a signa-
ture 𝜎 . It outputs 1 if 𝜎 is a valid signature for𝑚 for the given pk and 0 otherwise.

A signature scheme is correct if for all 𝑛 ∈ ℕ, (𝑔𝑝) ← SetupGrp(1𝑛), (pk, sk) ← Gen(𝑔𝑝) and message
𝑚 from the message space of the scheme

Verify(pk,𝑚, Sign(sk,𝑚)) ?
= 1

Definition 3.19 (Security of signature schemes) Let 𝛱 be an signature scheme and A be an PPT

adversary. Then, the EUF-CMA experiment is defined in Figure 3.7.

ExpEUF-CMA
𝛱,A (𝑛)

𝑔𝑝 ← SetupGrp(1𝑛)
(pk, sk) ← Gen(𝑔𝑝)
(𝑚,𝜎) ← ASign(sk, ·) (pk)

The experiment returns 1 iff Verify(pk, 𝜎) ?
= 1 and A

did not query Sign(sk, ·) for𝑚.

Figure 3.7: EUF-CMA experiment for digital signature schemes. Hereby, Sign(sk, ·) is an oracle that
returns Sign(sk,𝑚∗) for any𝑚∗ chosen by the adversary.

𝛱 is called existentially unforgeable under adaptive chosen-message attacks (EUF-CMA) secure, if for
all PPT adversaries A

Pr
[
ExpEUF-CMA

𝛱,A (𝑛) ?
= 1

]
≤ negl (𝑛 )
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3.11 Non-interactive zero-knowledge proof systems

A zero-knowledge proof system allows a prover to convince a verifier of the truth of a statement, without
the verifier learning anything beyond that fact. For a non-interactive proof system, the proof consists of
a single message sent from the prover to the verifier, without further interactions between those parties.
We use the definition of 𝐹𝑔𝑝-extractable Non-interactive Zero-Knowledge proof systems (NIZKs) from
[Har+19].

Definition 3.20 (𝑭𝒈𝒑-extractable NIZKs) Let 𝑅 be an efficiently verifiable relation containing triples
(𝑔𝑝, 𝑠𝑡𝑚,𝑤𝑖𝑡). We call 𝑔𝑝 the group setup, 𝑠𝑡𝑚 the statement and𝑤𝑖𝑡 the witness. Let 𝐿𝑔𝑝 be the language
containing all statements 𝑠𝑡𝑚 such that (𝑔𝑝, 𝑠𝑡𝑚,𝑤𝑖𝑡) ∈ 𝑅. Then a non-interactive zero-knowledge proof
system for 𝑅 is a tuple of PPT algorithms pok := (SetupGrp, SetupPoK, Prove, Verify).

𝑔𝑝 ← SetupGrp(1𝑛)
The group setup algorithm generates the public group parameters 𝑔𝑝 .

CRS← SetupPoK(𝑔𝑝)
This algorithm generates the CRS for the proof system. We assume the CRS contains the public group
parameters 𝑔𝑝 .

𝜋 ← Prove(CRS, 𝑠𝑡𝑚,𝑤𝑖𝑡)
The proof generation algorithm outputs a proof 𝜋 if 𝑤𝑖𝑡 is a valid witness for the fact that 𝑠𝑡𝑚 is
within the language 𝐿𝑔𝑝 , ie. (𝑔𝑝, 𝑥,𝑤) ∈ 𝑅

{0,1} ← Verify(CRS, 𝑠𝑡𝑚, 𝜋)
The verify algorithm checks if 𝜋 is a valid proof attesting that the statement 𝑠𝑡𝑚 is contained within
𝐿𝑔𝑝 .

The proof system is perfectly complete if all honestly generated proofs verify, ie. for all 𝑛 ∈ ℕ, 𝑔𝑝 ←
SetupGrp(1𝑛), CRS← SetupPoK(𝑔𝑝), (𝑔𝑝, 𝑠𝑡𝑚,𝑤𝑖𝑡) ∈ 𝑅 and 𝜋 ← Prove(CRS, 𝑠𝑡𝑚,𝑤𝑖𝑡) we have that

Verify(CRS, 𝑠𝑡𝑚, 𝜋) ?
= 1

The proof system is perfectly sound if no (possibly unbounded) adversary can forge a proof for a false
statement, ie. for all adversaries A

Pr


Verify(CRS, 𝑠𝑡𝑚, 𝜋) ?

= 1

�����������
𝑔𝑝 ← SetupGrp(1𝑛)
CRS← SetupPoK(𝑔𝑝)
(𝑥, 𝜋) ← A(CRS)
𝑥 ∉ 𝐿𝑔𝑝


?
= 0

The proof system is perfectly 𝐹𝑔𝑝-extractable if we can replace the CRS with an extraction CRS which
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allows to extract 𝐹𝑔𝑝 (𝑤𝑖𝑡) using a trapdoor tdepok. More precisely, there exists a PPT extractor (SetupEPoK,
ExtractW) such that for all (possibly unbounded) adversaries A it holds that

1. A cannot distinguish between a CRS generated by SetupPoK and one generated by SetupEPoK, ie.�����������
Pr

[
1← A(CRS)

����� 𝑔𝑝 ← SetupGrp(1𝑛)
CRS← SetupPoK(𝑔𝑝)

]
− Pr

[
1← A(CRS′)

����� 𝑔𝑝 ← SetupGrp(1𝑛)
(CRS′, tdepok) ← SetupEPoK(𝑔𝑝)

]
�����������
?
= 0

2. From each valid proof, 𝐹𝑔𝑝 (𝑤𝑖𝑡) can be extracted for a valid witness𝑤𝑖𝑡 , ie.

Pr


∃𝑤𝑖𝑡 : 𝐹𝑔𝑝 (𝑤)

?
=𝑊

∧ (𝑔𝑝, 𝑠𝑡𝑚,𝑤𝑖𝑡) ∈ 𝑅

��������������

𝑔𝑝 ← SetupGrp(1𝑛)
(CRS′, tdepok) ← SetupEPoK(𝑔𝑝)
(𝑠𝑡𝑚, 𝜋) ← A(CRS′)
1← Verify(CRS′, 𝑠𝑡𝑚, 𝜋)
𝑊 ← ExtractW(CRS′, tdepok, 𝑠𝑡𝑚, 𝜋)


?
= 1

The proof system is composable zero-knowledge if the CRS can be replaced with a simulation CRS that
allows to simulate proofs without the knowledge of a witness. More precisely, there exists a PPT simulator
(SetupSPoK, SimProof) and hint generator GenHint such that for all PPT adversaries it holds that

1. A cannot distinguish between a CRS generated by SetupPoK and one generated by SetupSPoK, ie.��������������

Pr

[
1← A(CRS)

����� 𝑔𝑝 ← SetupGrp(1𝑛)
CRS← SetupPoK(𝑔𝑝)

]

− Pr

1← A(CRS
′)

��������
𝑔𝑝 ← SetupGrp(1𝑛)
ℎ𝑖𝑛𝑡 ← GenHint(𝑔𝑝)
(CRS′, tdspok) ← SetupSPoK(𝑔𝑝, ℎ𝑖𝑛𝑡)



��������������
≤ negl (𝑛 )

2. A cannot distinguish between real and simulated proofs with more than negligible probability, ie.
for all 𝑔𝑝 ← SetupGrp(1𝑛) and (CRS′, td) ← SetupSPoK(𝑔𝑝)������ Pr

[
1← AProve(CRS′, ·, ·) (1𝑛,CRS′, tdspok)

]
− Pr

[
1← ASimProof′ (CRS′,tdspok, ·, ·) (1𝑛,CRS′, tdspok)

] ������ ≤ negl (𝑛 )

where SimProof′ is an oracle which on input (𝑠𝑡𝑚,𝑤𝑖𝑡) ∈ 𝑅 returns SimProof(CRS′, tdspok, 𝑠𝑡𝑚).
On input (𝑠𝑡𝑚,𝑤𝑖𝑡) ∉ 𝑅 SimProof′ and Prove both return ⊥.
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4 PEPSICo

The Privacy-enhanced Participatory Sensing Infrastructure (PEPSI) was introduced by De Cristofaro
and Soriente [DS11; DS13] as an model for privacy-preserving participatory sensing. Günther, Manulis,
and Peter [GMP14] addressed some of its shortcomings (mainly collusion resistance) and published a
revised version as the PEPSICo model.
In this chapter, we describe the PEPSICo model and the security properties it defines as it is funda-

mental to this work.

4.1 The PEPSICo model

The PEPSICo model consists of the following parties [GMP14]:

Mobile Nodes (MNs)
These are the actual sensor devices, eg. smartphones that are owned by the participants

Querier
These are the entities interested in receiving sensor reports

Service Provider (SP)
The SP acts as a broker between the MNs and the queriers. It stores the data reports of the MNs
and forwards them to the queriers.

Registration Authority (RA)
The RA performs the system setup and handles the registration of mobile nodes and queriers.

The architecture of the model is shown in Figure 4.1. MNs and queriers have to register to the RA before
they can use the system. After registration, a MN can send its data reports to the SP, where individual
reports can optionally be aggregated. A querier can subscribe for reports with the SP.

Based on this infrastructure, the model formulates privacy and security notions to protect the Mobile
Nodes and queriers. The basic idea is that the query identity describing the sensing task as well as the
report data are hidden from the Service Providers and individual data reports are not linkable to a MN’s
identity.

Definition 4.1 (PEPSICo) APEPSICo instantiation consists of a tuple of algorithms (Setup, RegisterMN,
RegisterQ, ReportData, SubscribeQuery, ExecuteQuery, DecodeData). Optionally, an additional
AggregateData algorithm can be defined.
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Mobile Node
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Data Report Query Subscription

RegistrationRegistration

Figure 4.1: The PEPSICo infrastructure

(pkRA, skRA)
$←− Setup(1𝑛)

The setup of the scheme is executed by the RA and outputs its public key pkRA and secret key skRA .
pkRA contains a description of the query identity space ℑ and the message space𝔐.

regMN𝑞𝑖𝑑

$←− RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
The MN registration is executed by the RA when a new MN wants to contribute data for a given
query identity 𝑞𝑖𝑑 ∈ ℑ. It outputs the mobile node registration value regMN𝑞𝑖𝑑 which the RA has to
send to the MN.

regQ𝑞𝑖𝑑

$←− RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
The querier registration algorithm is executed by the RA to register a new querier for a given query
identity 𝑞𝑖𝑑 ∈ ℑ. The querier registration value regQ𝑞𝑖𝑑 has to be sent to the querier.

𝑐
$←− ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)

The data report algorithm is executed by the MN to report some data𝑚 ∈ 𝔐 under a query identity
𝑞𝑖𝑑 ∈ ℑ. The output of the algorithm is a data report 𝑐 which the mobile node has to sent to the SP.

𝑠
$←− SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)

The query subscription algorithm is executed by the querier to generate a subscription token 𝑠 for a
given query identity 𝑞𝑖𝑑 ∈ ℑ. The subscription token has to be send to the SP.

𝑐 or ⊥ $←− ExecuteQuery(pkRA, 𝑐, 𝑠)
The query execution algorithm is executed by the SP to determine whether the hidden query identity
of a given report 𝑐 matches with the subscription token 𝑠 . In case of a match, the algorithm outputs
𝑐 to indicate that the report has to be sent to the querier subscribing for 𝑠 , else ⊥.

𝑚 or ⊥ $←− DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)
The decoding algorithm is executed by the querier to obtain the data𝑚 from a received data report
𝑐 . In case that the query identity does not match with the report, the algorithm outputs ⊥.
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𝑐 or ⊥ $←− AggregateData(pkRA, ®𝑐)
The optional data aggregation algorithm is executed by the SP to combine multiple data reports
®𝑐 = (𝑐0, . . . , 𝑐𝑘 ). If all of them have been created for the same query identity, the output is a single,
aggregated data report 𝑐 . Else the algorithm outputs ⊥ to indicate failure.

A PEPSICo instantiation is called sound if data reports match with query subscriptions and are decodable
using the querier registration value generated for the same query identity. More precisely, for all 𝑛 ∈ ℕ,
(pkRA, skRA) ← Setup(1𝑛), 𝑞𝑖𝑑 ∈ ℑ and𝑚 ∈ 𝔐

Pr


𝑐 ← ExecuteQuery(pkRA, 𝑐, 𝑠)
𝑚 ← DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)

�����������
regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝑐 ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
𝑠 ← SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)


?
= 1

For a PEPSICo instantiation that provides the AggregateData algorithm, it has to hold that for all (pkRA,
skRA) ← Setup(1𝑛), 𝑞𝑖𝑑 ∈ ℑ and ®𝑚 = (𝑚0, ...,𝑚𝑘 ) ∈ 𝔐𝑘

Pr



𝑐 ← ExecuteQuery(pkRA, 𝑐, 𝑠)

𝑚′
?
=

𝑘∑
0
(𝑚𝑘 )

�����������������

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
∀𝑖 ∈ 0, ..., 𝑘 : 𝑐𝑖 ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚𝑖)
𝑐 ← AggregateData(pkRA, (𝑐0, ..., 𝑐𝑘 ))
regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
𝑠 ← SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)
𝑚′← DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)


?
= 1

4.2 Security of PEPSICo

The adversary model of PEPSICo assumes confidential channels and allows the adversary to be a
collusion of the parties, in particular of the SP and some MNs and queriers against other MNs and
queriers.

To model the security of a PEPSICo instantiation PI, a PPT adversaryA is considered that can corrupt
other parties, in special cases even the RA. Therefore, the security games give the adversary access to
a subset of the oracles described in Figure 4.2. ℭℑMN and ℭℑQ denote the set of identities that have
been corrupted by A. ℭRA and ℭSP denote whether the RA or the SP have been corrupted. They are
initialized with 0 and set to 1 in the case of a corruption of the respective party.

There security and privacy of PEPSICo is defined by three properties, Node privacy, query privacy
and report unlinkablity, which is defined in the following sections.
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CorruptMN(𝑞𝑖𝑑)

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
ℭℑMN ← ℭℑMN ∪ 𝑞𝑖𝑑
return regMN𝑞𝑖𝑑

CorruptQ(𝑞𝑖𝑑)

regQ𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
ℭℑQ ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
return regQ𝑞𝑖𝑑

CorruptSP()

ℭSP := 1

CorruptRA()

ℭRA := 1
return skRA

SubscribeQuery(𝑞𝑖𝑑)

regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
𝑠 ← SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)
return 𝑠

ReportData(𝑞𝑖𝑑,𝑚, ®𝑠 := (𝑠1, . . . , 𝑠𝑘 ))

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝑐 ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
if ℭSP = 1 then
return 𝑐

else
for 𝑖 ∈ 1, . . . , 𝑘 do
𝑐𝑖 ← ExecuteQuery(pkRA, 𝑐, 𝑠𝑖 )

endfor
return ®𝑐 := (𝑐1, . . . , 𝑐𝑘 )

endif

DecodeData(𝑞𝑖𝑑, 𝑐)

regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
𝑚 ← DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)
return𝑚

Figure 4.2: Oracles available to the adversary in PEPSICo
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4.2.1 Node privacy

The node privacy notion formalizes the confidentiality of the reported data and the query identity. It
requires the reported data and the query identity to be hidden from the SP as well as unauthorized
queriers and other mobile nodes. It is modeled as indistinguishability of data reports against an adaptive
adversary which could be a collusion of multiple of the parties mentioned before. It is distinguished
between node privacy under chosen-plaintext attacks and under chosen-ciphertext attacks. In the weaker
first notion, the adversary has no access to the decoding oracle. This notion is important for PEPSICo
instantiations that implement the AggregateData algorithm as such instantiations cannot achieve the
stronger notion.

Definition 4.2 (Node privacy) Let PI be a PEPSICo instantiation andA = (A0,A1) an PPT adversary,
then the game GameNP-CCAPI,A (𝑛) is defined in Figure 4.3.

GameNP-CCAPI,A (𝑛)

(pkRA, skRA) ← Setup(1𝑛)

((𝑞𝑖𝑑0,𝑚0), (𝑞𝑖𝑑1,𝑚1), ®𝑠, 𝑠𝑡𝑎𝑡𝑒0) ← ACorruptMN,CorruptQ,CorruptSP,ReportData,SubscribeQuery,DecodeData
0 (pkRA)

𝑏
$←− {0,1}

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑𝑏)
𝑐 ← ReportData(pkRA, regMN𝑞𝑖𝑑𝑏

, 𝑞𝑖𝑑𝑏,𝑚𝑏)

if ℭSP
?
= 1 then

𝑏 ′← ACorruptMN,CorruptQ,CorruptSP,ReportData,SubscribeQuery,DecodeData
1 (pkRA, 𝑐, 𝑠𝑡𝑎𝑡𝑒0)

else
for 𝑖 ∈ {0, . . . , 𝑘} do
𝑐𝑖 ← ExecuteQuery(pkRA, 𝑐, 𝑠𝑖 )

endfor

𝑏 ′← ACorruptMN,CorruptQ,CorruptSP,ReportData,SubscribeQuery,DecodeData
1 (pkRA, ®𝑐 = (𝑐0, . . . , 𝑐𝑘 ), 𝑠𝑡𝑎𝑡𝑒0)

endif

return 𝑏 ?
= 𝑏 ′ and {𝑞𝑖𝑑0, 𝑞𝑖𝑑1} ∩ (ℭℑMN ∪ ℭℑQ)

?
= ∅

Figure 4.3: NP-CCA game for PEPSICo

The adversary A has the following additional restrictions:

• A must not query SubscribeQuery with 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1
• If ℭSP

?
= 1, then A is not allowed to query ReportData with 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1

• A1 is not allowed to query DecodeData for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 together with 𝑐 (if ℭSP
?
= 1) or any element

of ®𝑐 (if ℭSP ≠ 1)

PI is called NP-CCA secure if no adversary can win this game with more than negligible probability, ie.
for all PPT A

AdvNP-CCAPI,A (𝑛) :=
����Pr [GameNP-CCAPI,A(𝑛) = 1

]
− 1
2

���� ≤ negl (𝑛 )
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Let the game GameNP-CPAPI,A (𝑛) be identical to GameNP-CCAPI,A (𝑛) except that A is not given access to the
DecodeData oracle and AdvNP-CPAPI,A (𝑛) be analogously defined as above. PI is called NP-CPA secure if
AdvNP-CPAPI,A (𝑛) ≤ negl (𝑛 ) for all PPT adversaries A.

4.2.2 Query privacy

The query privacy property protects the privacy of the queriers by hiding the query identity of a
subscription from the SP, MNs, and other queriers. The property is modeled as indistinguishability of
subscription tokens for two query identities.

Definition 4.3 (Query privacy) Let PI be a PEPSICo instantiation and A = (A0),A1) an PPT adver-
sary, then the game GameQPPI,A (𝑛) is defined in Figure 4.4. In the game, A must not query ReportData or
SubscribeQuery with 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1.

GameQPPI,A (𝑛)

(pkRA, skRA) ← Setup(1𝑛)

(𝑞𝑖𝑑0, 𝑞𝑖𝑑1, 𝑠𝑡𝑎𝑡𝑒0) ← ACorruptMN,CorruptQ,ReportData,SubscribeQuery,DecodeData
0 (pkRA)

𝑏
$←− {0,1}

regQ𝑞𝑖𝑑𝑏
← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑𝑏)

𝑠 ← SubscribeQuery(pkRA, regQ𝑞𝑖𝑑𝑏
, 𝑞𝑖𝑑𝑏)

𝑏 ′← ACorruptMN,CorruptQ,ReportData,SubscribeQuery,DecodeData
1 (pkRA, 𝑠, 𝑠𝑡𝑎𝑡𝑒0)

return 𝑏 ?
= 𝑏 ′ and {𝑞𝑖𝑑0, 𝑞𝑖𝑑1} ∩ (ℭℑQ ∪ ℭℑMN)

?
= ∅

Figure 4.4: Query privacy game for PEPSICo

PI provides query privacy if all PPT adversaries win the game with at most negligible probability, ie for
all PPT A

AdvQPPI,A (𝑛) :=
����Pr [GameQPPI,A(𝑛) = 1

]
− 1
2

���� ≤ negl (𝑛 )

4.2.3 Report unlinkablility

To protect the privacy of users, PEPSICo demands that no other party should be able to link two data
reports as being generated by the same user. They explicitly include the RA in their definition. For
example, this prevents to trace the location of mobile nodes (if included in the sensing data) to generate
profiles that might be used to identify the owner.
As MNs do not have identifiers in the model, the security definition models report unlinkability as

indistinguishably of the mobile node registration value used to generate a report. The query identity
and message are freely chosen by the adversary. Obviously, this property demands that more than one
MN has to be registered for the query identity. Note that this property only holds with respect to an
honest-but-curious RA as, even if the RA is corrupted, the mobile node registration values are generated
by the experiment.
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Definition 4.4 (Report unlinkability) Let PI be a PEPSICo instantiation and A = (A0,A1) an PPT

adversary, then the game GameRUPI,A (𝑛) is defined in Figure 4.5.

GameRUPI,A (𝑛)

(pkRA, skRA)
$←− Setup(1𝑛)

(𝑞𝑖𝑑,𝑚, 𝑠𝑡𝑎𝑡𝑒0) ← ACorruptMN,CorruptQ,CorruptRA,ReportData,SubscribeQuery,DecodeData
0 (pkRA)

regMN0
𝑞𝑖𝑑
← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)

regMN1
𝑞𝑖𝑑
← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)

𝑏
$←− {0,1}

𝑐
$←− ReportData(pkRA, regMN𝑏

𝑞𝑖𝑑
, 𝑞𝑖𝑑,𝑚)

𝑏 ′← ACorruptMN,CorruptQ,CorruptRA,ReportData,SubscribeQuery,DecodeData
1 (pkRA, regMN0

𝑞𝑖𝑑
, regMN1

𝑞𝑖𝑑
, 𝑐, 𝑠𝑡𝑎𝑡𝑒0)

return 𝑏 ?
= 𝑏 ′

Figure 4.5: Report unlinkability game for PEPSICo

A PEPSICo instanciation PI provides report unlinkability if there exist a negligible function negl such
that

AdvRUPI,A (𝑛) :=
����Pr [GameRUPI,A (𝑛) = 1

]
− 1
2

���� ≤ negl (𝑛 )

4.3 Discussion

While PEPSICo guarantees strong privacy and security properties even against collusion attacks, it still
has some limitations. PEPSICo provides report unlinkability only with respect to malicious RA. However,
this is a weak trust assumption compared with other participatory sensing models. Moreover, in the
report unlinkability experiment, the mobile node registration values are generated after the adversary
outputs the query identity and message pair, and, therefore, unknown to the adversary when computing
those. Thus, PEPSICo does not offer forward privacy. Once the mobile node registration value of a user
has been exposed, report unlinkability does not hold for subsequent transactions, even if the adversary
has no further access to private information of the mobile node.
In addition, node privacy and query privacy do not hold against a collusion of the SP and a mobile

node registered for the query identity in question. It depends on the openness of user registration,
whether it might be difficult for an adversary controlling the SP to just register for each query identity
to circumvent these properties. Moreover, side-channel attacks might be possible. As one of the design
goals is to make it easy to register as a querier, it is likely that there will be queriers registering few
query identities, if not only a single one. If the RA publishes the responsible queriers together with the
query identity and task this could allow the SP to derive the query identity of data reports. Moreover,
the querier might publish their results, from which the query identity could be derived. Depending on
the system and business model, the SP could know which querier uses which subscription token as
the connection could be identifying, eg. for billing purposes. Therefore, node privacy and query privacy
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could be circumvented. However, in the instantiations they provide, the reported data will remain
confidential even if the query identity of a report gets exposed.
Furthermore, the Network Operator (NO), which was considered in PEPSI, has been dropped from

the system model because of its attack capabilities were strictly weaker than the SP. However, it should
be mentioned that in PEPSI, report unlinkability does not hold with respect to the NO. This property is
inherited by PEPSICo. Therefore, it is necessary to use an anonymizing network if the network operator
is not trusted.
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5 BBA+

BBA+ [Har+17] is a secure point collection and redemption system with a strong focus on user privacy.
It allows users to anonymously collect and redeem points while preventing cheating. It is an extension of
Black-box Accumulation (BBA) [JR16] but has stronger security properties and supports some additional
features. Because of its privacy properties, BBA+ is highly suitable to be used as an incentive mechanism
in participatory sensing.

In this chapter, we describe the system model of BBA+ and provide its formal system definition and
security properties.

5.1 The BBA+ model

The BBA+ model consists of the following parties:

Trusted Third Party (TTP)
The TTP is only required once in the setup phase of the scheme to generate the CRS that describes
the algebraic framework and contains system-wide public keys.

Accumulator
The accumulator interacts with users to add points to their balance.

Verifier
The verifier interacts with the users to enable them to verify that they possess the claimed balance
and to redeem points.

Issuer
The issuer interacts with the users so that they can obtain their initial balance tokens. Thereby, it
verifies that a user is in possession of their secret key and that their public key is indeed unique.

User
The participants of the system that may collect and redeem points.

The accumulator, verifier, and issuer are called operators. They are required to trust each other as they
share the same secret key.
Figure 5.1 outlines the working of the model. To participate, a user generates a public and private

key pair invokes the issue protocol with the issuer to obtain an initial balance token with balance 0.
To add points to the token’s balance, the user runs the accumulation protocol with the accumulator
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TTP

User Issuer

Accumulator

Verifier

Database

Operators
(shared secret key)

CRS CRS

Issue user’s balance token

Add balance to user’s token

Check or redeem balance

double-spending tag

double-spending tag

Figure 5.1: Entities in the BBA+ model

and obtains an updated token with the modified balance. Hereby, the added value might be positive or
negative. The accumulator outputs a double-spending tag which allows identifying users that cheat by
using old tokens. Those double-spending tags are stored within a global database, where regular checks
are applied. The verification protocol allows interacting with the verifier, either to prove that the user’s
token has a certain balance or to redeem points from this balance. This protocol is very similar to the
accumulation protocol. The user obtains an updated token and the verifier a double-spending tag.

The interesting part is that the users are anonymous during the accumulation and verification protocol
and that transactions are unlikable.

Definition 5.1 (BBA+) An BBA+ scheme consists of a tuple of algorithm and interactive protocols (Setup,
IGen, UGen, Issue, Accum, Verify, UVer, IdentDS, VerifyGuilt).

(CRS, td) $←− Setup(1𝑛)
The setup algorithm has to be executed by a TTP. It returns the public common reference string CRS
and a trapdoor td. The trapdoor is only required to define the security notions and has to be kept
secret.

(pkI, skI)
$←− IGen(CRS)

With this algorithm, the issuer generates his public and secret key, which has to be shared with the
accumulator and verifier as well. For convenience, it is assumed that 𝐶𝑅𝑆 is part of pkI .

(pkU, skU)
$←− UGen(CRS)

With this algorithm, a user generates his personal public/private key pair.
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((𝜏, 𝑏U), 𝑏I)
$←− Issue

〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
The interactive token issuing protocol is executed between a userU and the issuer I and results in
the user outputing a balance token 𝜏 with a balance of 0. The bits 𝑏U and 𝑏I indicate whether the
user and the issuer accept the protocol run.

((𝜏∗, 𝑏U), (dstag, hid, 𝑏AC))
$←− Accum

〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),AC(pkI, skI, 𝑣)

〉
The interactive accumulation protocol is executed between a userU and the accumulator AC. 𝜏 is
the user’s balance token with balance 𝑤 and 𝑣 the value that should be added to the balance. 𝜏∗ is
a new token with balance𝑤 + 𝑣 . The issuer outputs a double-spending tag dstag = (𝑠,𝑧) with token
version number 𝑠 and data 𝑧 and a hidden user ID hid, which is for definitorial purpose only. The
bits 𝑏U and 𝑏AC indicate whether the parties accept the protocol run.

((𝜏∗, 𝑏U), (dstag, hid, 𝑏V))
$←− Verify

〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),V(pkI, skI,𝑤, 𝑣)

〉
The interactive verification and redeeming protocol is analogous to the accumulation protocol, with
the accumulator exchanged with the verifier, which gets the current token balance 𝑤 as additional
input.

𝑏 ← UVer(pkI, pkU, skU, 𝜏,𝑤)
With this algorithm, a user can check whether 𝜏 is indeed a valid token with the balance 𝑤 that is
owned by him.

(pkU, 𝛱 ) or ⊥ ← IdentDS(pkI, dstag1, dstag2)
The double-spender detection algorithm checks whether two double-spending tags were generated by
reusing the same token. If this has been the case, it outputs the public key 𝑝𝑘U of the according user
together with a proof of guilt 𝛱 , else it returns ⊥.

𝑏 ← VerifyGuilt(pkI, pkU, 𝛱 )
This algorithm can be used to check if a user is guilty of double-spending. It outputs 1 is 𝛱 proofs
that the user with the public key pkU is guilty of double-spending.

A BBA+ scheme is called correct if the following properties hold for all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛),
issuer key-pairs (pkI, skI) ← IGen(CRS), user key-pairs (pkU, skU) ← UGen(CRS) and partiesU, I,
AC andV honestly following the protocols:

Correctness of issuing
For all outputs of the issue protocol ((𝜏, 𝑏U), 𝑏I)

$←− Issue
〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
,

it holds that
𝑏U

?
= 𝑏I

?
= 1 ∧ UVer(pkI, pkU, skU, 𝜏, 0)

?
= 1

Correctness of accumulation
For all tokens 𝜏 , balances 𝑤 ∈ ℤ𝑝 with UVer(pkI, pkU, skU, 𝜏,𝑤)

?
= 1 and all values 𝑣 ∈ ℤ𝑝 , we
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have that

((𝜏∗, 1), (dstag, hid, 1)) ← Accum
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),AC(pkI, skI, 𝑣)

〉
∧ UVer(pkI, pkU, skU, 𝜏∗,𝑤 + 𝑣)

?
= 1

Correctness of token verification
For all tokens 𝜏 , balances 𝑤 ∈ ℤ𝑝 with UVer(pkI, pkU, skU, 𝜏,𝑤)

?
= 1 and values 𝑣 ∈ ℤ𝑝 , we have

that

((𝜏∗, 1), (dstag, hid, 1)) $←− Verify
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),V(pkI, skI,𝑤, 𝑣)

〉
∧ UVer(pkI, pkU, skU, 𝜏∗,𝑤 + 𝑣)

?
= 1

5.2 Security of BBA+

BBA+ categorizes its security properties into two categories: System security which protects the system
from cheating users and user security and privacy, which protects the user from a cheating or tracking
system. In the following, the security properties within these categories are described.

5.2.1 System security

From the system operator’s point of view, we want to have three properties enforced. Balance tokens
should be owner-binding, meaning that they can only be used by their legitimate owner, balance-binding,
meaning that there is no way to claim a false balance, and we want to prevent users from using old tokens.
BBA+ achieves this by ensuring that users presenting old tokens can be identified later (double-spending
detection). If all protocol messages are additionally encrypted with an IND-CCA secure encryption
scheme, BBA+ is additionally secure against eavesdropping, which is not considered in the following
security definitions.
For the definitions, we define the oracles MalIssue, MalAcc and MalVer as in Figure 5.2. Moreover,
VAccum

𝑛,CRS denotes the set of the accumulators views of the Accum protocol runs for a fixed security pa-
rameter 𝑛 and CRS CRS, consisting of all its inputs, outputs and messages send and received, i.e.,
(pkI, skI, 𝑣,msgs, dstag, hid, 𝑏AC), where𝑚𝑠𝑔𝑠 ∈ {0,1}∗ is the bit string of all sent messages. Analo-
gously,VVerify

𝑛,CRS defines the set of views of the verifier on the Verify protocol runs.

Trapdoor-linkability

To be able to define the required security properties, we need to be able to link each transaction with a
user and token. However, we demand these transactions to be anonymous and unlinkable. This conflict
is resolved by introducing a trapdoor that allows abolishing privacy. This trapdoor has to be kept secret
by the TTP.
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MalIssue(pkU)

if 𝔐 ∩ pkU
?
= ∅ then

𝔐 ←𝔐 ∪ pkU
Issue

〈
A(pkI, pkU, skU),I(pkI, skI, pkU)

〉
endif

MalAcc(𝑣)

Accum
〈
A(pkI, pkU, skU, 𝜏,𝑤, 𝑣),AC(pkI, skI, 𝑣)

〉
MalVer(𝑤, 𝑣)

Verify
〈
A(pkI, pkU, skU, 𝜏U,𝑤U, 𝑣),V(pkI, skI,𝑤, 𝑣)

〉
Figure 5.2: Oracle definitions for the BBA+ system security properties. The outputs of the interactive

protocols have been omitted in the figure.

Definition 5.2 (Trapdoor-linkability) A BBA+ scheme BBA+ is called trapdoor-linkable if it satisfies
the following tow conditions:

Completeness
For all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛) and view = (pkI, skI, 𝑣,msgs, dstag, hid, 1) ∈ VAccum

𝑛,CRS ∪
VVerify

𝑛,CRS there exist inputs (pkU, skU, 𝜏,𝑤) and random choices for an honest userU and an honest
accumulator AC such that if they run the respective protocol this leads to a view view′ containing
the same hidden user ID hid as in view.

Extractability
For all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛) and view = (pkI, skI, 𝑣,msgs, dstag, hid, 1) ∈ VAccum

𝑛,CRS ∪
VVerify

𝑛,CRS resulting from a protocol run with an honest user on input pkU , there exist a PPT algorithm
ExtractUID such that

pkU ← ExtractUID(td, hid)

Owner-binding

This property ensures that a token can only be issued to its legitimate owner and cannot be used by
anyone but its legitimate owner.

Definition 5.3 (Owner-binding) A trapdoor-linkable BBA+ schemeBBA+ is called owner-binding if no
PPT adversary can win ExpOB-issueBBA+,A (𝑛) or Exp

OB-acc-ver
BBA+,A (𝑛) as defined in Figure 5.3 with more than negligible

probability. More precisely, for all PPT adversaries A

Pr
[
ExpOB-issueBBA+,A (𝑛)

?
= 1

]
≤ negl (𝑛 ) and Pr

[
ExpOB-acc-verBBA+,A(𝑛) ?

= 1
]
≤ negl (𝑛 )

Balance-binding

Only the exact amount of points that have legitimately been collected up to this point can be claimed
for a token unless an old version of the token is present (this case is addressed by the double-spending
detection property).



40 5 BBA+

ExpOB-issueBBA+,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkI, skI) ← IGen(CRS)
(pkU, skU) ← UGen(CRS)
𝑏 ← AMalIssue,MalAcc,MalVer (pkI, pkU)
The experiment returns 1 iff A did a successful call to MalIssue on input of the given public key pkU

ExpOB-acc-verBBA+,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalAcc,MalVer (pkI)
The experiment returns 1 iff A did a successful call to MalAcc or MalVer such that ExtractUID
applied to hid being part of the view of this call outputs a public key pkU for which there has been
no seccessful execution of MalIssue up to this call.

Figure 5.3: Owner-binding experiments for the Issue, Accum and Verify protocols of BBA+

Definition 5.4 (Balance-binding) A trapdoor-linkable BBA+ scheme 𝐵𝐵𝐴𝑃 is called balance-binding
if for all PPT adversaries A and the experiment ExpBBBBA+,A (1

𝑛) as defined in Figure 5.4

Pr
[
ExpBBBBA+,A (1

𝑛) ?
= 1

]
≤ negl (𝑛 )

Double-spending detection

The BBA+ system cannot prevent users from using old tokens, which could potentially have a higher
balance than the current token. However, this property ensures that the use of old tokens can be detected
and the cheating user can be identified.

Definition 5.5 (Double-spending detection) A trapdoor-linkable BBA+ schemeBBA+ ensures double-
spending detection if for all PPT adversaries A and the experiment ExpDSDBBA+,A as defined in Figure 5.5

Pr
[
ExpDSDBBA+,A (1

𝑛) ?
= 1

]
≤ negl (𝑛 )

5.2.2 User security and privacy

There are two properties within this category. From the user’s point of view, we need to ensure that the
system operator does not learn more than necessary and especially cannot track the user’s transactions
(privacy). The second property prevents the misuse of the double-spending detection mechanism by the
system operator, demanding that users cannot be proven guilty of double-spending unless they are.



5.2 Security of BBA+ 41

ExpBBBBA+,A (1
𝑛)

(CRS, td) ← Setup(𝑛)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalAcc,MalVer (pkI)

The experiment returns 1 iff A did successful call MalVer resulting in a view view =

(pkI, skI,𝑤, 𝑣,msgs, dstag, hid, 1) ∈ VVerify
𝑛,CRS and extracted user public key pkU ←

ExtractUID(td, hid) such that the following conditions are satisfied:
• all successful MalIssue/MalAcc calls produced unique token version numbers
• the claimed balance 𝑤 ∈ ℤ𝑝 does not equal the sum of previously collected accumulation
values 𝑣 for pkU , i.e.,

𝑤 ≠
∑

𝑣∈𝔙pkU

𝑣,

where𝔙pkU is the list of all accumulation values 𝑣 ∈ ℤ𝑝 that appeared in previous successful
calls to MalAcc or MalVer for which pkU could be extracted using ExtractUID.

Figure 5.4: Balance-binding experiment for BBA+

ExpDSDBBA+,A

(CRS, td) ← Setup𝑛

(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalAcc,MalVer (pkI)

The experiment returns 1 iff A did two successful MalAcc/MalVer calls resulting in two views
view0 and view1 including two double-spending tags dstag0 = (𝑠, 𝑧0) and dstag1 = (𝑠, 𝑧1) and
extracted user public keys pk(0)U and pk(1)U (using ExtractUID) such that at least one of the following
conditions is satisfied:

• pk(0)U ≠ pk(1)U or
• IdentDS(pkI, dstag0, dstag1) ≠ (pk

(0)
U , 𝛱 ) or

• IdentDS(pkI, dstag0, dstag1)
?
= (pk(0)U , 𝛱 ) but VerifyGuilt(pkI, pk

(0)
U , 𝛱 )

?
= 0

Figure 5.5: Double-spending detection experiment for BBA+
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Privacy

This property protects the user from tracking through the system operator (a potential collusion of I,
AC andV). The operator may not be able to link Accum and Verify transactions of honest users, even
for transactions preceding and succeeding (except for the very next) a corruption of the user (forward
and backward privacy).
This is property is defined using the real/ideal paradigm. The adversary plays the role of the issuer,

accumulator, and verifier and is allowed to interact with a couple of oracles that allow him to create
and corrupt users as well as to interact with honest users. There is the restriction that whenever an
interaction does not terminate successfully, the according user refuses to participate in any future
interactions. In addition, concurrent oracle calls for the same user (same pkU) are not allowed.

In the real world, the oracles behave according to the protocol, whereas in the ideal world, the honest
users are substituted with a simulator that in most cases has no access to any user-related data. However,
the simulator has to be able to provide a secret key, a plausible token and the correct balance for a user
in case of his corruption. Therefore, the simulation must keep track of all balances. In case the adversary
wants to interact with a user that has previously been corrupted, the simulator executes the real protocol
with the information previously returned to the adversary instead of simulating its execution.

Definition 5.6 (Privacy) A BBA+ scheme BBA+ is called privacy-preserving, if there exist PPT algo-
rithms SimSetup and SimCorrupt and interactive PPT oracles SimHonIssue, SimHonAcc and SimHonVer
as described in Figure 5.6, respectively, such that for all PPT adversaries A = (A0,A1) and for the exper-
iments defined in Figure 5.7���Pr [ExpPRIV-realBBA+,A (𝑛)

?
= 1

]
− Pr

[
ExpPRIV-idealBBA+,A (𝑛)

?
= 1

] ��� ≤ negl (𝑛 )

False accusation protection

No system operator should be able to forge a proof that a user has allegedly committed double-spending.

Definition 5.7 (False accusation protection) A trapdoor-linkable BBA+ scheme BBA+ ensures false-
accusation protection, if for all PPT adversary A = (A0,A1) and the experiment ExpFACPBBA+,A as defined
in Figure 5.8 and the oracles defined in Figure 5.6

Pr
[
ExpFACPBBA+,A (𝑛)

?
= 1

]
≤ negl (𝑛 )
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HonUser()

(pkU, skU) ← UGen(CRS)
return pkU

RealHonIssue(pkU)

if ℑ ∩ {pkU}
?
= ∅ then

ℑ← ℑ ∪ {pkU}
Issue

〈
U(pkI, pkU, skU),A(pkI, skI, pkU)

〉
endif

RealHonAcc(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then

Accum

〈
U(pkI , pkU , skU , 𝜏U ,𝑤U , 𝑣),
A(pkI , skI , 𝑣)

〉
endif

RealHonVer(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then

Verify

〈
U(pkI , pkU , skU , 𝜏U ,𝑤U , 𝑣),
A(pkI , skI ,𝑤U , 𝑣)

〉
endif

RealCorrupt(pkU)

return (skU,𝑤U, 𝜏U)

HonUser()

(pkU, skU) ← UGen(CRS)
return pkU

SimHonIssue(pkU)

if ℑ ∩ {pkU}
?
= ∅ then

ℑ← ℑ ∪ {pkU}
Issue

〈
Sim(pkI, pkU),A(pkI, skI, pkU)

〉
endif

SimHonAcc(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then
Accum

〈
Sim(𝑣),A(pkI, skI, 𝑣)

〉
endif

SimHonVer(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then
Verify

〈
Sim(𝑤U, 𝑣),A(pkI, skI,𝑤U, 𝑣)

〉
endif

SimCorrupt(pkU)

return (skU,𝑤U, 𝜏U) ← Sim(pkU, skU,𝑤U, 𝑠)

Figure 5.6: Oracles for the BBA+ user privacy experiments. For simplicity, the return values of the
interactive protocols have been omitted. If a protocol run for a user identity is not accepted
𝑏U = 0 then the user will reject to further participate, ie. A cannot make any more oracle
calls for this user identity.
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ExpPRIV-realBBA+,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkI, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (CRS)

𝑏 ← AHonUser,RealHonIssue,RealHonAcc,RealHonVer,RealCorrupt
1 (pkI, 𝑠𝑡𝑎𝑡𝑒0)

return 𝑏

ExpPRIV-idealBBA+,A (𝑛)

(CRS, td𝑠𝑖𝑚) ← SimSetup(1𝑛)
(pkI, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (CRS)
𝑏 ← AHonUser,SimHonIssue,SimHonAcc,SimHonVer,SimCorrupt

1 (pkI, 𝑠𝑡𝑎𝑡𝑒0)
return 𝑏

Figure 5.7: Real and ideal world user privacy experiments for BBA+

ExpFACPBBA+,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkI, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (CRS)
(pkU, skU) ← UGen(CRS)
𝛱 ← ARealHonIssue,RealHonAcc,RealHonVer

1 (pkI, pkU, 𝑠𝑡𝑎𝑡𝑒0)

return VerifyGuilt(pkI, pkU, 𝛱 )
?
= 1

Figure 5.8: False accusation protection experiment for BBA+
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6 Interim Model

In the following, we present an interim model that extends PEPSICo by using BBA+ as an incentive
mechanism. First, we discuss the design choices and provide an informal overview of the model before
the formal definition of the algorithms and protocols is given and the security requirements are looked at.
Thereafter, we give an implementation of our model and prove that it satisfies the specified requirements.
Last, we identify several shortcomings in this model, leading to the advanced model presented in
Chapter 7.

6.1 Discussion on design choices

The idea behind the interim model is to combine PEPSICo and BBA+ as straight forward as possible
to create a participatory sensing model with an incentive mechanism. This allows using these models
mainly as a black box and to reuse most of their security properties. We use this model as an interim
step towards our final model, allowing to reflect on its strengths and weaknesses.
The main decisions for the interim model are the design of the incentive mechanism and which

entities are required within the model. We discuss those choices within the following sections.

6.1.1 Incentive mechanism

The first important design choice is how the incentive mechanism shall look like. In this regard, our
scheme features a central incentive mechanism instead of handling incentives on a per querier basis.
We argue that it is considerably less effort to register as a querier if you do not have to provide own
infrastructure to reward the users. Moreover, it is also more convenient from the user’s perspective if
incentives gathered from multiple queriers are accumulated into a single account. Therefore, incentives
should be handled by the system and not by individual queriers. The problem is that the system has no
way to determine the value of the provided information as we want the report type (query identity)
as well as the data to be only known to queriers that have registered for the specific query identity.
Therefore, they are the only parties that can determine the quality and value of the reported data and
thus can decide on the number of incentives that should be rewarded for providing that data. This is
also the reason why we will not include report aggregation, as one bad data report could render the
aggregate useless.

The querier, therefore, has to report the value of the data, corresponding to the number of incentives
the mobile node should receive, to the system where it can be collected by the mobile node. However,
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this requires linkability between the report and the mobile node. Moreover, if it should be possible
to sort out bad data directly at the SP, the querier could additionally report the quality of the data (or
the incentives could be distributed based on the quality), which would make the complete transaction
traceable through the system. Despite this, it has to remain impossible to link multiple transactions as
originating from the same user.

An alternative possibility would be to reward each report with a fixed number of incentives. A scheme
for this could be obtained by using BBA+ between the SP and the MNs, without changing the PEPSICo
scheme. Sending a report could be combined with the accumulation protocol to obtain the incentives.
However, this approach has a major drawback. So far, we haven’t considered users presenting wrong
information. However, using this alternative, a user could just repeatedly report random data to collect
arbitrary many incentives as the SP cannot even check the plausibility of the data. To address this
problem, feedback from the queriers is required in any case. This is why restricting the model to fixed
incentive rewards would not result in a considerable reduction in complexity in the long run. However,
we are not completely addressing the problem of malicious data reports within the interim model.

6.1.2 Entities in the interim model

In this section, we discuss which entities are used within the interim model. As our model combines
PEPSICo with BBA+, we start with the entities of the individual schemes and discuss which should be
combined and which should be kept separated.

First, the MNs from PEPSICo and the users from BBA+ have to be combined as they both represent
the sensor device (and its owner). Moreover, we want to reward users with the incentives, therefore
they require an incentive account, corresponding to a user in BBA+.

Second, we keep the queriers as separate entities. As discussed in the previous section, our model
implements a central incentive system independent of the querier. However, the querier is responsible
to determine the quality of the received data and the number of incentives that the users should obtain.

To simplify the model, we can combine the issuer, accumulator and verifier from the BBA+ scheme,
as they have to fully trust each other anyhow. We call the combined entity ISP (denoted with I) and
keep it as a separate entity from the SP to remain more flexible. However, as they are both part of the
untrusted infrastructure, they could be combined in the actual implementation.

Last, we cannot combine the TTP with the RA. Even though the RA is partially trusted, eg. not to
violate the node privacy of PEPSICo, report unlinkability should hold against the RA. As the different
parts of a transaction have to be linkable (at least by a collusion of SP, querier and ISP) to allow the
number of incentives being determined based on the reported data, the trapdoor of the BBA+ scheme
would allow the TTP to link transactions to users.

While the users and queriers are offline entities and therefore only require a network connection
whenever they want to send or receive data or register for a new query, the SP, and ISP, as well as the
RA, are online entities that have to be constantly available.
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6.2 Overview of the model

This section outlines the architecture and working of the interim model that has been derived from the
previously discussed design choices.

The interimmodel consists of two phases, a setup phase that has to be performed once in the beginning
and an operation phase. In the setup phase, the public parameters describing the scheme are established
together with the secrets of the RA and ISP. Within the operation phase, mobile nodes and queriers can
register for query identities as well as send and collect data reports and incentives.

TTP
(Setup)

RA

User ISP SP Querier

Register MN Register querier

Issue token

Figure 6.1: Setup and registration in the interim model

SP

User Querier

ISP

Report Data

Execute Query

Subscribe Query

Collect Incentives

Redeem Incentives Verify Delivery

Post Incentives

Figure 6.2: Operations of the interim model

The model is outlined within Figure 6.1 and Figure 6.2 with just one user and querier. The first figure
shows the setup phase as well as the registration process for a querier and a user.

First, the TTP is required for the setup of a common reference string for the incentive scheme. Then,
the RA and the ISP can generate their key pairs and publish their public keys. New users can generate a
key pair at any time and have a balance token issued by the ISP.
The RA should also publish a list of available query identities together with a description of the

gathered data. A querier could either register for an existing query identity, where special condition-
s/authentication may apply, or for a new query identity where he could define what data should be
gathered. Moreover, users could look at the list with the queries and register with the RA for those they
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are able and willing to provide data for.
After registration, queriers can subscribe to receive reports for query identities at the SP and users

can generate data reports and send them to the service provider.
To match incentives to users, a bulletin mechanism is used. When creating a data report, the user

also creates a bulletin nonce and secret and sends the nonce to the SP together with the report. The SP
relays it to the querier and after evaluating the reported data, he can determine the appropriate number
of incentives and send this information to the ISP. The ISP posts the nonce and the incentive value on a
virtual bulletin board, allowing anyone with knowledge of the respective secret to claim the incentives,
which is then be accumulated to the users’ balance token. At any time, a user can redeem all or some of
his accumulated incentives at the ISP.

6.3 Formal definition

Definition 6.1 (Interim I3PS) An interim I3PS scheme consists of the following algorithms:

(CRS, td) $←− Setup(1𝑛)
The Setup algorithm for the incentive scheme is executed by the TTP once before the scheme can be
used. The common reference string CRS is made public while the trapdoor 𝑡𝑑 remains a secret only
used to define the security of the scheme.

(pkRA, skRA)
$←− SetupRA(1𝑛)

With this algorithm, the RA creates its public and private key pair. The private key allows the RA to
generate registration tokens for users and queriers.

(pkI, skI) ← IGen(CRS)
This algorithm is executed by the ISP once to generate its public and private key pair. For convenience,
it is assumed that CRS is part of pkI .

(pkU, skU) ← UGen(CRS)
Every user is required to generate a public and private key pair for the incentives scheme. The public
key acts as an identifier for the user.

((𝜏, 𝑏U), 𝑏I) ← Issue
〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
The next step for a user would be to request a balance token. This is done by engaging in the issue
protocol with the ISP. During this protocol, the identity of the user is exposed.

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
This algorithm is executed by the RA to generate a registration value for a query identity which
enables a user to submit data reports. As in PEPSICo, this algorithm is completely independent of the
registering user’s identity.
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(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
With this algorithm, a user can, given his report data𝑚 and a registration value regMN𝑞𝑖𝑑 generate
a data report for a query identity 𝑞𝑖𝑑 . In addition to the data report 𝑐 , the algorithm outputs a
bulletin nonce 𝑝 and an corresponding secret 𝑟 . The secret allows the user to claim any incentives
posted for the corresponding bulletin nonce.

((𝜏 ′, 𝑏U,𝑤 ′), (dstag, hid, 𝑏I)) ← Collect
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑟 ),I(pkI, skI, 𝑝, 𝑣)

〉
With this algorithm, a user with a balance token 𝜏 with balance𝑤 and a bulletin secret 𝑟 can request
any incentives posted for the corresponding nonce. After the protocol, the user has an updated token
𝜏 ′ with the balance𝑤 ′ that should be equal to𝑤 +𝑣 , whereby 𝑣 is the sum of the incentives currently
posted for the bulletin nonce 𝑝 . Furthermore, the ISP obtains a double spending tag dstag which can
be used to detect cheating users. The hidden user id hid is only required for definitional purpose.

((𝜏 ′, 𝑏U,𝑤 ′), (dstag, hid, 𝑏I)) ← Redeem
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
This algorithm allows a user to redeem a specific number of incentives from his tokens balance.
This algorithm exposes the balance of the token to the ISP to allow verifying that it is sufficient for
retrieving the specified number of incentives. After the protocol, the user has an updated token 𝜏 ′

with the balance 𝑤 ′ that should be equal to 𝑤 + 𝑣 (where 𝑣 < 0). Again, the ISP obtains a double
spending tag dstag to identify cheating users and hid is for the definition only.

𝑏 ← UVer(pkI, pkU, skU, 𝜏,𝑤)
This algorithm allows a user to verify that his balance token 𝜏 is indeed a valid balance token with
the balance𝑤 .

regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
With this algorithm, the RA computes a querier’s registration value for a given query identity 𝑞𝑖𝑑 .

𝑠 ← SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)
The query subscription algorithm allows an querier to compute a subscription token 𝑠 for a query
identity 𝑞𝑖𝑑 if he is in the possession of valid registration value for 𝑞𝑖𝑑 .

(𝑐, 𝑝) or ⊥ ← ExecuteQuery(pkRA, 𝑐, 𝑝, 𝑠)
This algorithm allows the SP to determine whether a report 𝑐 matches a subscription toke 𝑠 . In case
of success, the report 𝑐 and the bulletin nonce 𝑝 have to be sent to the corresponding querier.

𝑚 or ⊥ ← DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)
The decoding algorithm is used by queriers to obtain the data𝑚 from a report 𝑐 for a query identity
𝑞𝑖𝑑 for which he has a registration value regQ .

(pkU, 𝛱 ) or ⊥ ← IdentDS(pkI, dstag0, dstag1)
Given two double spending tags dstag0 and dstag1, this algorithm outputs the public key of a user
if the double spending tags originate from this user using the same balance token twice to collect or
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redeem incentives. Moreover, it outputs a proof 𝛱 that allows verifying that the owner of pkU is
indeed guilty of double spending.

𝑏 ← VerifyGuilt(pkI, pkU, 𝛱 )
This algorithm allows verifying a proof 𝛱 to see if the user identified by pkU is guilty of double
spending.

An interim I3PS scheme is called correct if the following properties hold for all 𝑛 ∈ ℕ, (CRS, td) ←
Setup(1𝑛), (pkRA, skRA) ← SetupRA(1𝑛), ISP key-pairs (pkI, skI) ← IGen(CRS), user key-pairs
(pkU, skU) ← UGenCRS and partiesU and I honestly following the protocols

Correctness of issuing
For all outputs of the issue protocol ((𝜏, 𝑏U), 𝑏I)

$←− Issue
〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
,

it holds that
𝑏U

?
= 𝑏I

?
= 1 ∧ UVer(pkI, pkU, skU, 𝜏, 0)

?
= 1

Correctness of data reporting
For all sensing data𝑚 ∈ 𝔐, query identities 𝑞𝑖𝑑 ∈ ℑ, mobile node registration values regMN𝑞𝑖𝑑 ←
RegisterMN(pkRA, skRA, 𝑞𝑖𝑑), querier registration values regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑),
subscription tokens 𝑠 ← SubscribeQuery(pkRA, skRA, 𝑞𝑖𝑑) and (𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA,
regMN𝑞𝑖𝑑 ,𝑞𝑖𝑑,𝑚), we have that

ExecuteQuery(pkRA, 𝑐, 𝑝, 𝑠)
?
= (𝑐, 𝑝)

∧ DecodeData(pkRA, regQ𝑞𝑖𝑑 , 𝑐)
?
=𝑚

Correctness of collection
For all tokens 𝜏 , balances𝑤 ∈ ℤ𝑝 with UVer(pkI, pkU, skU, 𝜏,𝑤)

?
= 1, values 𝑣 ∈ ℤ𝑝 , sensing data

𝑚 ∈ 𝔐, query identities 𝑞𝑖𝑑 ∈ ℑ, mobile node registration values regMN𝑞𝑖𝑑 ← RegisterMN(pkRA,
skRA, 𝑞𝑖𝑑) and (𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚), we have that

((𝜏∗, 1,𝑤 ′), (dstag, hid, 1)) ← Collect
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑟 ),I(pkI, skI, 𝑝, 𝑣)

〉
∧ UVer(pkI, pkU, skU, 𝜏∗,𝑤 ′)

?
= 1

∧𝑤 ′ ?
= 𝑤 + 𝑣

Correctness of redemption
For all tokens 𝜏 , balances 𝑤 ∈ ℤ𝑝 with UVer(pkI, pkU, skU, 𝜏,𝑤)

?
= 1 and values 𝑣 ∈ ℤ𝑝 , we have

that

((𝜏∗, 1), (dstag, hid, 1)) $←− Redeem
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
∧ UVer(pkI, pkU, skU, 𝜏∗,𝑤 + 𝑣)

?
= 1
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6.4 Security

In this section, we first discuss informally what security properties are needed for the extended model
and which of them can be directly carried over from PEPSICo and BBA+. Second, we provide formal
definitions for the new or adapted properties.

6.4.1 Requirements

Our model has three fundamental security goals. First, we want to protect the privacy of users and
prevent tracking based on the transmitted data reports. Second, the confidentiality of the transmitted
data itself should be guaranteed and third, the incentive system should be secure and prevent cheating.

Unlinkability of transactions
To prevent the profiling of users, no other party (nor a collusion of other parties) should be able
to link two transactions as being originated by the same user. For this definition, a transaction
consists of the submission of a data report, the transmission to the queriers as well as the posting
and collection of the incentives. Please note that this property is independent of the report data.
For example, including a unique user identifier in every report payload would trivially enable
report linking.

Both, PEPSICo and BBA+ include a similar privacy notion. However, a transaction in our extended
scheme is more complex and it would be theoretically possible for the extended scheme to allow
transaction linking, even if using instantiations of PEPSICo and BBA+ that do not. A trivial
example would be to use the same bulletin nonce 𝑝 for all data reports of the same user. We,
therefore, have to provide a modified privacy definition for the extended scheme. We call the
corresponding property transaction unlinkability.

This property implies that balance tokens are owner-hiding and balance-hiding. If the adversary
could determine the owner of a balance token, he would trivially be able to link transactions.
Furthermore, if the current balance could be determined from a token (during the accumulate
protocol) a collusion of adversaries and the ISP could keep track of the possible token balances
and use it as a side-channel to track users.

Confidentiallity of report data and query identifier
The service provider works as a mediator between the users and the queriers, mainly for efficiency
purposes and to allow queriers to remain offline parties. Therefore, even though all the reports are
routed through him, he should not be able to obtain information about their content, including
the query identity which encodes the type of the report.

We require that the reported data and the query identity are only visible to authorized queriers.
This property corresponds to the node privacy and query privacy properties of PEPSICo.

System security of the incentive mechanism
A secure incentive mechanism has to prevent cheating by the user as well as the system operator.
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As this property is independent of the participatory sensing model it is used with, we can reuse
the security notions from BBA+. We, therefore, require that balance tokens are owner-binding and
balance-binding and that they guarantee freshness. The last property is split into two. Double-
spending detection allows the ISP to determine whether the same token was used twice within a
transaction and false accusation protection protects the user by requiring that a user can only be
proved guilty of double-spending if he indeed committed this deed.

Security of the bulletin mechanism
The bulletin mechanism has to ensure that rewards posted on the bulletin board can only be
claimed by the user that submitted the corresponding report, that is, knowledge of the bulletin
secret is required to claim a reward from the bulletin board. To ensure this, we define the false
claim protection property.

In summary, we require that the security notions of the underlying models hold and require that even
the additional inter-dependencies in the extended model do not affect the users’ privacy. In the following,
we therefore only define transaction unlinkability and false claim protection.

6.4.2 Transaction unlinkability

To define transaction unlinkability, we modify the privacy property of BBA+, which follows the real/ideal
world paradigm. The adversary plays the role of the SP and ISP. He has access to oracles that allow the
creation and interaction with honest users as well as to corrupt users and queriers. In the real world, the
oracles behave as the real users would. However, in the ideal world, the interaction is simulated without
using user-related data (except for the issue process, which is identifying). The goal of the adversary
is to decide whether he is in the real or the ideal world. If both worlds are indistinguishable for the
adversary, he cannot learn any information in the real world that the simulator did not use in the ideal
world as such information could be used to distinguish both worlds.

Definition 6.2 (Transaction unlinkability) The real and ideal world experiments are defined in Fig-
ure 6.5 and the required oracles in Figure 6.3. An instantiation PI of our model is called transaction unlink-
able if the real and the ideal world experiments are computational indistinguishable. More specific, for all
PPT A = (A0,A1) ���Pr [ExpTU-realPI,A (𝑛) ?

= 1
]
− Pr

[
ExpTU-idealPI,A (𝑛) ?

= 1
] ��� ≤ negl (𝑛 )

6.4.3 False claim protection

It should not be possible for an adversary (that does not collude with the ISP) to claim incentives that
have been posted for a report where the adversary does not know the bulletin secret. More precise, no
adversary can generate a valid bulletin secret from a bulletin nonce.

Within the definition of this property, the adversary takes the role of a user as the property protects
the system and mainly other users from cheating users.
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HonUser()

(pkU, skU) ← UGen(CRS)
return pkU

RealHonIssue(pkU)

if ℑ ∩ {pkU}
?
= ∅ then

ℑ← ℑ ∪ {pkU}
Issue

〈
U(pkI, pkU, skU),A(pkI, skI, pkU)

〉
endif

RealHonReportData(pkU, 𝑞𝑖𝑑,𝑚)

if regMN𝑞𝑖𝑑,U ≠ ⊥ then

regMN𝑞𝑖𝑑,U ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝔔U ← 𝔔U ∪ {𝑞𝑖𝑑, regMN𝑞𝑖𝑑,U}

endif
(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑,U, 𝑞𝑖𝑑,𝑚)
𝔐U ←𝔐U ∪ {(𝑞𝑖𝑑,𝑚, 𝑟 )}
ℜ(𝑝) := 𝑟
return (𝑐, 𝑝)

RealHonCollect(𝑝𝑘U, 𝑝, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ and ℜ(𝑝) ≠ ⊥ then
𝑟 = ℜ(𝑝)

Collect

〈
U(pkI , pkU , skU , 𝜏U ,𝑤U , 𝑟 ),
A(pkI , skI ,𝑝, 𝑣)

〉
endif

RealHonRedeem(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then

Verify

〈
U(pkI , pkU , skU , 𝜏U ,𝑤U , 𝑣),
A(pkI , skI ,𝑤U , 𝑣)

〉
endif

RealCorrupt(pkU)

return (skU,𝑤U, 𝜏U,𝔔U,𝔐U)

RegisterQ(𝑞𝑖𝑑)

return regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)

CorruptRA

return skRA

SimHonIssue(pkU)

if ℑ ∩ {pkU}
?
= ∅ then

ℑ← ℑ ∪ {pkU}
Issue

〈
Sim(pkI, pkU),A(pkI, skI, pkU)

〉
endif

SimHonReportData(pkU, 𝑞𝑖𝑑,𝑚)

𝔔 ′U ← 𝔔 ′U ∪ {𝑞𝑖𝑑}
regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
𝔐U ←𝔐U ∪ {(𝑞𝑖𝑑,𝑚, 𝑟 )}
ℜ(𝑝) := 𝑟
return (𝑐, 𝑝)

SimHonCollect(pkU, 𝑝, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ and ℜ(𝑝) ≠ ⊥ then
𝑟 := ℜ(𝑞𝑖𝑑,𝑚, 𝑝)
Collect

〈
Sim(𝑟 ),A(pkI, skI, 𝑝, 𝑣)

〉
endif

SimHonRedeem(pkU, 𝑣)

if ℑ ∩ {pkU} ≠ ∅ then
Verify

〈
Sim(𝑤U, 𝑣),A(pkI, skI,𝑤U, 𝑣)

〉
endif

SimCorrupt(pkU)

(skU,𝑤U, 𝜏U,𝔔U) ← Sim(pkU, skU,𝑤U,𝔔 ′U, 𝑠𝑡𝑎𝑡𝑒Sim)
return (skU,𝑤U, 𝜏U,𝔔U,𝔐U)

Figure 6.3: Oracles for the transaction unlinkability experiments. For simplicity, the return values of the
interactive protocol calls have been omitted. The Sim algorithm used by SimCorrupt is given
in Figure 6.4. If a protocol run for a user identity is not accepted (𝑏U = 0) then the user will
reject to further participate, ie. A cannot make any more oracle calls to this user identity.
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Sim(pkU, skU,𝑤U,𝔔 ′U, 𝑠𝑡𝑎𝑡𝑒Sim)

(skU,𝑤U, 𝜏U) ← SimBBA+ (pkU, skU,𝑤U, 𝑠𝑡𝑎𝑡𝑒Sim)
for 𝑞𝑖𝑑 ∈ 𝔔 ′U do
regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝔔U ← 𝔔U ∪ {𝑞𝑖𝑑, regMN𝑞𝑖𝑑 }

endfor
return (skU,𝑤U, 𝜏U,𝔔U)

Figure 6.4: Simulation algorithm for the SimCorrupt oracle

ExpTU-realPI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA) ← SetupRA(1𝑛)
(pkI, 𝑠0) ← A0 (CRS)

𝑏 ← AHonUser,RegisterQ,CorruptRA,RealHonIssue,RealHonReportData,RealHonCollect,RealHonRedeem,RealCorrupt
1 (pkI, pkRA, 𝑠0)

return 𝑏

ExpTU-idealPI,A (𝑛)

(CRS, td𝑠𝑖𝑚) ← SimSetup(1𝑛)
(pkRA, skRA) ← SetupRA(1𝑛)
(pkI, 𝑠0) ← A0 (CRS)

𝑏 ← AHonUser,RegisterQ,CorruptRA,SimHonIssue,SimHonReportData,SimHonCollect,SimHonRedeem,SimCorrupt
1 (pkI, pkRA, 𝑠0)

return 𝑏

Figure 6.5: Real and ideal world experiments transaction unlinkability

GameFCPPI,A

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA) ← SetupRA(1𝑛)
(pkI, skI) ← IGen(CRS)
(pkU, skU, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (pkI)
((𝜏, 𝑏U, 𝑠𝑡𝑎𝑡𝑒1), 𝑏I) ← Issue

〈
A1 (pkI, pkU, skU),I(pkI, skI, pkU)

〉
regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
𝑟 ′← A2 (𝑠𝑡𝑎𝑡𝑒1, 𝑐, 𝑝)
((𝜏 ′, 𝑏U,𝑤 ′), (dstag, ℎ𝑖𝑑, 𝑏I)) ← Collect

〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑟 ′),I(pkI, skI, pkU, 𝑝, 𝑣)

〉
return 𝑏U ≠ 0 or 𝑏I ≠ 0

Figure 6.6: False claim protection game for the interim model
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Definition 6.3 (False claim protection) An instantiation PI of our model has false claim protection, if
for all PPT adversariesA = (A0,A1,A2), for all (𝑞𝑖𝑑,𝑚) and the game GameFCPPI,A as defined in Figure 6.6

Pr
[
GameFCPPI,A (𝑛) = 1

]
≤ negl (𝑛 )

6.5 Instantiation

In this section, we give a generic instantiation of the interim model, based on arbitrary instantiations of
PEPSICo and BBA+. Subsequently, we prove that the security properties defined in Section 6.4 hold for
the implementation.

6.5.1 Generic instantiation from PEPSICo and BBA+

We instantiate the interim model based on PEPSICo and BBA+. A collision-resistant hash function is
used to implement the bulletin mechanism that allows the collection of incentives for a data report.

Definition 6.4 (Instantiation of interim I3PS) Let 𝐻 : {0,1}∗ → {0,1}𝑛 be a collision resistant hash
function. We assume that the key hk is fixed by the implementation of the hash function and, there-
fore, write 𝐻 instead of 𝐻hk. Alternatively, hk could be generated as part of Setup and included in
the CRS. Let further BBA+ = (SetupBBA+, IGenBBA+, UGenBBA+, IssueBBA+, AccumBBA+, VerifyBBA+,
UVerBBA+, IdentDSBBA+, VerifyGuiltBBA+) be an BBA+ instantiation and PI = (SetupPI, RegisterMNPI,
RegisterQPI, ReportDataPI, SubscribeQueryPI, ExecuteQueryPI, DecodeDataPI) be an PEPSICo instan-
tiation.

Then the generic instantiation GI of the interim model is given as follows: ReportData, Collect and
ExecuteQuery are defined in Figure 6.7 and the remaining algorithms and protocols are equivalent to their
counterparts in PEPSICo and BBA+ as shown below.

Setup = SetupBBA+ UVer = UVerBBA+

SetupRA = SetupPI RegisterQ = RegisterQPI

IGen = IGenBBA+ SubscribeQuery = SubscribeQueryPI

UGen = UGenBBA+ DecodeData = DecodeDataPI

Issue = IssueBBA+ IdentDS = IdentDSBBA+

RegisterMN = RegisterMNPI VerifyGuilt = VerifyGuiltBBA+

Redeem = VerifyBBA+

6.5.2 Security of the instantiation

In this section, we prove that the given implementation satisfies the specified security properties. As with
the definitions, we only provide the proves for the adapted security properties defined in Sections 6.4.2
and 6.4.3. The other properties follow directly from the security of the underlying PEPSICo and BBA+
instantiations.
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ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)

𝑟
$←− {0,1}𝑛

𝑝 ← 𝐻 (𝑟 )
𝑐 ← ReportDataPI (pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
return (𝑐, 𝑝, 𝑟 )

ExecuteQuery(pkRA, 𝑐, , 𝑝, 𝑠)

if ExecuteQueryPI (pkRA, 𝑐, 𝑠) ≠ ⊥ then
return (𝑐, 𝑝)

else
return ⊥

Collect
〈
U(pkI, pkU, skU, 𝜏,𝑤, 𝑟 ),I(pkI, skI, 𝑝, 𝑣)

〉
U (pkI, pkU, skU, 𝜏,𝑤, 𝑟 ) I (pkI, skI, 𝑝, 𝑣)

𝑟

if 𝐻 (𝑟 ) ?
= 𝑝 then

return (⊥,⊥, 0)
endif

𝑣

AccumBBA+

pkI, pkU, skU, 𝜏,𝑤, 𝑣 pkI, skI, 𝑣

𝜏 ′, 𝑏U,𝑤
′ dstag, ℎ𝑖𝑑, 𝑏I

return (𝜏 ′, 𝑏U,𝑤 ′) return (dstag, hid, 𝑏I)

Figure 6.7: Implementations of ReportData, Collect and ExecuteQuery
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Multiple report unlinkability

Before we can prove that our instantiation satisfies report unlinkability, we define multiple report un-
linkability as a helper property. This property follows directly from the report unlinkability property of
PEPSICo and therefore holds for our instantiation as proven below.

Definition 6.5 (Multiple report unlinkability) An instantiation of the interim model 𝐼 has multiple
report unlinkability if an adversary cannot decide whether a list of data reports have been generated from
a fixed registration value or from a fresh registration value for each data report. More precise, for the
experiments defined in Figure 6.8 we require that for all PPT adversaries A = (A0,A1)

AdvmRU
𝐼 ,A (𝑛) =

���Pr [ExpmRU-real
𝐼 ,A (𝑛) ?

= 1
]
− Pr

[
ExpmRU-ideal

𝐼 ,A (𝑛) ?
= 1

] ��� ≤ negl (𝑛 )

where q is the number of plaintexts the adversary requests data reports for.

ExpmRU-real
𝐼 ,A (𝑛)

(pkRA, skRA) ← SetupRA(1𝑛)
(𝑞𝑖𝑑, {𝑚𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (pkRA)
regMN← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
for 𝑖 := 0 to (𝑞 − 1) do
𝑐𝑖 ← ReportData(pkRA, regMN, 𝑞𝑖𝑑)

endfor
𝑏 ← A1 ({𝑐𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0)

ExpmRU-ideal
𝐼 ,A (𝑛)

(pkRA, skRA) ← SetupRA(1𝑛)
(𝑞𝑖𝑑, {𝑚𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (pkRA)
for 𝑖 := 0 to (𝑞 − 1) do
regMN𝑖 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝑐𝑖 ← ReportData(pkRA, regMN𝑖 , 𝑞𝑖𝑑)

endfor
𝑏 ← A1 ({𝑐𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0)

Figure 6.8: Multiple report unlinkability experiments in the real and ideal world

Lemma 6.6 (Multiple report unlinkability) The generic implementation of the interim model as de-
fined in Section 6.5.1 has multiple report unlinkability. For all PPT adversaries A

AdvmRU
GI,A (𝑛) ≤ negl (𝑛 )

Proof We start from ExpmRU-real
GI,A and modify the experiment step by step, replacing the registration

value used to generate the data report with a new registration value (see Figure 6.9). Therefore, in the
𝑞th step we reach ExpmRU-ideal

GI,A . We show that Step 𝑖 is indistinguishable from Step 𝑖 + 1 for the adversary
by reducing a successful distinguisher between those two steps to a successful adversary on the report
unlinkability property of PEPSICo.
Now, let us assume A can efficiently distinguish between Step j and Step j+1. We construct an

adversary A ′ on report unlinkability as shown in Figure 6.10. A ′ is successful whenever A is. As the
underlying PEPSICo scheme has report unlinkability, we have a contradiction and, therefore, no efficient
A can distinguish between two subsequent steps.
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ExpmRU
Step j,A (𝑛)

(pkRA, skRA) ← SetupRA(1𝑛)
(𝑞𝑖𝑑, {𝑚𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0) ← A0 (pkRA)
regMN← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
for 𝑖 := 0 to ( 𝑗 − 1) do
regMN𝑖 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
𝑐𝑖 ← ReportData(pkRA, regMN𝑖 , 𝑞𝑖𝑑)

endfor
for 𝑖 := 𝑗 to (𝑞 − 1) do
𝑐𝑖 ← ReportData(pkRA, regMN, 𝑞𝑖𝑑)

endfor
𝑏 ← A1 ({𝑐𝑖 }0≤𝑖<𝑞, 𝑠𝑡𝑎𝑡𝑒0)

Figure 6.9: Step-wise transition between the mRU experiments of the real and ideal world

C A
′

A

pkRA pkRA

(𝑚 𝑗 , 𝑞𝑖𝑑) (𝑞𝑖𝑑, {𝑚𝑖 }0≤𝑖<𝑞)

regMN0, regMN1, 𝑐
for 𝑖 := 0 to ( 𝑗 − 1) do�regMN𝑖 ← RegisterMN(pkRA , skRA , 𝑞𝑖𝑑)

𝑐𝑖 ← ReportData(pkRA ,�regMN𝑖 , 𝑞𝑖𝑑)
endfor

𝑐 𝑗 := 𝑐
for 𝑖 := 𝑗 + 1 to (𝑞 − 1) do
𝑐𝑖 ← ReportData(pkRA , regMN0, 𝑞𝑖𝑑)

endfor
{𝑐𝑖 }0≤𝑖<𝑞

𝑏 𝑏

Figure 6.10: Reduction of an mRU adversary to an RU adversary
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An adversary distinguishing between ExpmRU-ideal
GI,A and ExpmRU-real

GI,A has at most 𝑞 times the advantage
of an adversary distinguishing between two consecutive steps. For a generic instantiation GI of the
interim model and PI being the underlying PEPSICo instantiation and for all PPT adversaries A

AdvmRU
GI,A (𝑛) ≤ 𝑞 · Adv

RU
PI,A (𝑛)

As 𝑞 is polynomial and AdvRUPI,A (𝑛) is negligible, this advantage remains negligible.

Transaction unlinkability

Theorem 6.7 (Transaction unlinkability) The generic instantiation GI as defined in Section 6.5.1 has
transaction unlinkability.

Proof The definition of transaction unlinkability is a modified version of the privacy proof of BBA+.
We show that the modifications made to the real and ideal world experiments cannot be distinguished
and, therefore, if the two experiments can be distinguished, the underlying BBA+ instantiation did not
satisfy the user privacy notion. We show this by modifying the real and ideal world experiments of the
original proof to match our definition of transaction unlinkability and proof that these modifications
preserve the indistinguishability of the experiments.

We start from the BBA+ experiments ExpPRIV-realBBA+,A and ExpPRIV-idealBBA+,A . If BBA+ is privacy-preserving, those
two experiments are indistinguishable.
First, we apply the changes that are the same in both worlds. We modify the two experiments to an

interim version by generating the RA key pair as part of the setup and giving the adversary access to
the RegisterQ and CorruptRA oracles from the transaction unlinkability experiment (Figure 6.3). This
results in the experiments shown in Figure 6.11. We now assume there is an efficient adversary A that
can distinguish between ExprealStep1,A and ExpidealStep1,A . We reduce this adversary to a successful adversary
A ′ against the original BBA+ experiments. More precisely, we show that for all negligible functions
negl

∃ PPT A :
���Pr [ExprealStep1,A (𝑛)

?
= 1

]
− Pr

[
ExpidealStep1,A (𝑛)

?
= 1

] ��� > negl (𝑛 )

=⇒ ∃ PPT A :
���Pr [ExpPRIV-realBBA+,A′ (𝑛)

?
= 1

]
− Pr

[
ExpPRIV-idealBBA+,A′ (𝑛)

?
= 1

] ��� > negl (𝑛 )

As the existence of such an adversary contradicts with the transaction unlinkability property of BBA+,
we have shown that our assumption was wrong and, therefore, the experiments are indistinguishable.

The reduction is given in Figure 6.12. During the setup phase, where there is no oracle access, A ′

generates the RA key pair and sends the RA’s public key to the adversary. After the setup phase has
been completed,A ′ has to simulate the RegisterQ and CorruptRA oracles forA. AsA ′ learns the RA’s
secret key, this can be done directly by executing the corresponding oracle code. All other oracles
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ExprealStep1,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA) ← SetupRA(1𝑛)
(pkI, 𝑠0) ← A0 (CRS)

𝑏 ← AHonUser,RegisterQ,CorruptRA,RealHonIssue,RealHonAcc,RealHonVer,RealCorrupt
1 (pkI, pkRA, 𝑠0)

return 𝑏

ExpidealStep1,A (𝑛)

(CRS, td𝑠𝑖𝑚) ← SimSetup(1𝑛)
(pkRA, skRA) ← SetupRA(1𝑛)
(pkI, 𝑠0) ← A0 (CRS)
𝑏 ← AHonUser,RegisterQ,CorruptRA,SimHonIssue,SimHonAcc,SimHonVer,SimCorrupt

1 (pkI, pkRA, 𝑠0)
return 𝑏

Figure 6.11: Interim experiments for the transaction unlinkability proof

available to A are already available to A ′ and therefore queries to these oracles just need to be relayed.
Therefore, A ′ simulates the changes perfectly and has the same advantage as A.

Second, we modify our interim experiments to equal our definition of transaction unlinkability. While
the setup phase remains the same, we modify the oracles that are accessible by A afterward. A gains
additional access to an oracle encapsulating the report data algorithm (RealHonReportData in the
real world, SimHonReportData in the ideal world). Moreover, the oracles for the Accum and Verify

protocols from BBA+ are replaced with oracles encapsulating the Collect and Redeem protocols of
the interim model. More specific, in the real world we replace RealHonAcc with RealHonCollect and
rename RealHonVer to RealHonRedeem. In the ideal world, we replace SimHonAcc with SimHonCollect
and rename SimHonVer to SimHonRedeem. Additionally, the user corruption oracles RealCorrupt and
SimCorrupt have to be modified.

Again, we assume the existence of an efficient adversary A successfully distinguishing between
our two experiments, ExpTU-realPI,A and ExpTU-realPI,A . We now show by reduction that this would imply the
existence of a successful adversary on either the interim experiments or themultiple report unlinkability
of the interim model (cf. Lemma 6.6). More precisely, we show that for all negligible functions negl

∃ PPT A :
���Pr [ExpTU-realPI,A (𝑛) ?

= 1
]
− Pr

[
ExpTU-realPI,A (𝑛) ?

= 1
] ��� > negl (𝑛 )

=⇒ ∃ PPT A ′ :
���Pr [ExprealStep1,A′ (𝑛)

?
= 1

]
− Pr

[
ExpidealStep1,A′ (𝑛)

?
= 1

] ��� > negl (𝑛 )

∨ ∃ PPTA ′′ : AdvmRU
GI,B (𝑛) > negl (𝑛 )

Our new reduction uses the interface available to the adversary in the previous step. Basically,
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C A
′

A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase, no oracle access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRS CRS

pkI pkI

(pkRA, skRA) ← SetupRA(1𝑛) pkRA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RegisterQ oracle queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

regQ𝑞𝑖𝑑 ← RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)
′RegisterQ′, 𝑞𝑖𝑑

regQ𝑞𝑖𝑑

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CorruptRA oracle queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

′CorruptRA′

skRA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . final decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑏 𝑏

Figure 6.12: Reduction proof for the interim step: We reduce an adversary on the indistinguishability
between ExprealStep1,A and ExpidealStep1,A to and adversary on the indistinguishability between
ExpPRIV-realBBA+,A′ and Exp

PRIV-ideal
BBA+,A′ . IfA queries an oracle other than RegisterQ or CorruptRA, the

query is relayed to the corresponding oracle available to A ′.
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SetupRA will now be executed by the challenger and the reduction receives pkRA . We therefore only
need to simulate the modified or added oracle queries.
The simulation for the RealHonReportData/SimHonReportData oracles is given in Figure 6.13. For

the simulation, the RA’s secret key is required which can be obtained by calling the CorruptRA oracle.
In comparison to the previous oracle simulations, we now have the difficulty that there are different
oracles for the real and ideal world. However, our reduction A ′ does not know in which world the
game is played. We, therefore, use the behavior from the ideal world in our simulation and show
that RealHonReportData and SimHonReportData are indistinguishable. The difference between those
oracles is that the real world oracle only once requests a registration value for a fixed 𝑞𝑖𝑑 and user,
while the simulation oracle requests a new registration value each time, independent of the user. Both
oracle queries output a data report which has been generated by the underlying PEPSICo’s ReportData
algorithm. As our PPT adversary can use the oracle a polynomial number of times, this difference
corresponds to the previously defined multiple report unlinkability property and by Lemma 6.6, A can
distinguish between these two ways to generate reports with at most negligible advantage. The second
output, the bulletin nonce 𝑝 , is in both cases generated by applying the same hash function to a randomly
chosen secret 𝑟 . Therefore, 𝑝 is equally distributed in both worlds and an adversary cannot distinguish
in which world it has been created. 𝔔 ′U ,𝔐U and ℜ are used to store information that is required to
simulate the other oracles.

C A
′

A

′ReportData′, pkU, 𝑞𝑖𝑑,𝑚

if skRA
?
= ⊥ then

′CorruptRA′

skRA

endif
𝔔 ′U ← 𝔔 ′U ∪ {𝑞𝑖𝑑}
regMN𝑞𝑖𝑑 ← RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)
(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
𝔐U ←𝔐U ∪ {(𝑞𝑖𝑑,𝑚, 𝑟 )}

ℜ(𝑝) := 𝑟 𝑐, 𝑝

Figure 6.13: Simulation of RealHonReportData/SimHonReportData oracle queries

Figure 6.14 shows how the RealHonCollect/SimHonCollect oracle queries are simulated based on the
RealHonAcc/RealHonVer oracles available to the reduction. In addition, A ′ has to keep track of the
list ℑ of user public keys for which a token has been issued. This is done by remembering all pkUs for
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which A calls RealHonIssue/SimHonIssue. The simulation retrieves the bulletin secret 𝑟 corresponding
to the 𝑝 specified by the adversary. Here, the applied modifications are the same in the real and ideal
world. Moreover, ℜ is identically defined in both worlds. Therefore, our simulation is perfect.

C A
′

A

′collect′, pkU, 𝑝
if pkU ∉ ℑ or ℜ(𝑝) ?

= ⊥ then

return ⊥
endif

𝑟 := ℜ(𝑝)
𝑟

′accum′, pkU, 𝑣 𝑣

Relay all further messages (use RealHonAcc/SimHonAcc as black box)

Figure 6.14: Simulation of RealHonCollect/SimHonCollect oracle queries

The simulation for the modified RealCorrupt/SimCorrupt oracles is given in Figure 6.15. Again, we
use the behavior from the ideal world within the simulation and show that it is indistinguishable from
the real world, at least for the modified parts. As𝔐U is identically defined in both worlds, the difference
lies within𝔔U . As regMN𝑞𝑖𝑑 is independent of the user’s identity,𝔔U is identically distributed in both
worlds. However, in the ideal world, the data reports that have been generated by SimHonReportData
beforehand have been generated using different registration values, while in the real world, the exposed
registration value has been used to generate all the data reports for the corresponding 𝑞𝑖𝑑 . However,
this difference does not allow an adversary to distinguish both worlds because the report unlinkability
property of the underlying PEPSICo scheme (Section 4.2.3) guarantees that it is not possible to distinguish
which registration value has been used to create a report (cf. Lemma 6.6).

C A
′

A

′corrupt′, pkU
if pkU ∉ ℑ or ℜ(𝑝) ?

= ⊥ then

return ⊥
endif

′corrupt′, pkU

skU,𝑤U, 𝜏U
𝔔U := ∅
for 𝑞𝑖𝑑 ∈ 𝔔′U do

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA , skRA , 𝑞𝑖𝑑)
𝔔U ← 𝔔U ∪ {𝑞𝑖𝑑, regMN𝑞𝑖𝑑 }

endfor
skU,𝑤U, 𝜏U,𝔔U

Figure 6.15: Simulation of RealCorrupt/SimCorrupt oracle queries
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Finally, the reduction has to relay the decision of the adversary A, whether he is living in the real
or the ideal world, to the challenger. Now, as long as A ′ cannot break the multiple report unlinkability
property of PI, our reduction can distinguish between ExprealStep1,A and ExpidealStep1,A , and therefore between
ExpPRIV-realBBA+,A and ExpPRIV-idealBBA+,A , with the same advantage as A, As, by assumption, this advantage is
non-negligible, this contradicts with the privacy property of BBA+.

False claim protection

To show false claim protection for the instantiation defined in Section 6.5.1, we can show that a successful
attacker would violate the preimage resistance of the underlying hash function 𝐻 .

Theorem 6.8 (False claim protection) The generic instantiationGI as defined in Section 6.5.1 has false
claim protection.

C A𝑯 AGI

hk, ℎ
(CRS, td) ← Setup(1𝑛)
(pkRA , skRA ) ← SetupRA(1𝑛)
(pkI , skI ) ← IGen(CRS)

pkI

pkU, skU

Issue

pkI, skI, pkU pkI, pkU, skU

𝑏I 𝜏, 𝑏U

regMN𝑞𝑖𝑑 ← RegisterMN(pkRA , skRA , 𝑞𝑖𝑑)
(𝑐, 𝑝, 𝑟 ) ← ReportData(pkRA , regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)

𝑐, ℎ

𝑟 ′ 𝑟 ′

Figure 6.16: Reduction of a successful adversary on the false claim protection of the generic implementa-
tion to an adversary on the preimage resistance of the used hash function

Proof We construct an adversary AAGI
𝐻

on the hash function 𝐻 as follows: A𝐻 simulates the false
claim protection game forAGI and replaces the bulletin nonce 𝑝 with the challenge ℎ from the preimage
resistance game (Figure 6.16). As r was chosen independently at random, this is indistinguishable for
AGI from the real game. Now, if AGI manages to win in the false claim protection game, it has to hold
that 𝐻 (𝑟 ′) = ℎ where 𝑟 ′ is the bulletin secret AGI outputs. Therefore, A𝐻 wins the preimage resistence
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game with the same probability as AGI, which has to be negligible for a preimage resistant 𝐻 . More
formally, for all adversaries A𝐻 ,AGI

Pr
[
GamePR𝐻,A𝐻

(𝑛) = 1
]
≤ negl (𝑛 ) =⇒ Pr

[
GameFCPGI,AGI

(𝑛) = 1
]
≤ negl (𝑛 )

6.6 Discussion

In this chapter, we defined a participatory sensing model as a straight-forward combination of PEPSICo
and BBA+. Our model extends the infrastructure of PEPSICo by the possibility to reward users with
incentives to make contributing more attractive. Moreover, it preserves strong privacy properties to
protect users from being tracked by the platform and queriers.
However, looking at the afore-defined model, we identified the following shortcomings:

Double reporting
One essential problem of the model is the missing protection from double reporting. There is
nothing to prevent a user from transmitting the same data report twice. While it might be possible
for queriers to detect such behavior for very specific query types, this is not the general case.
There is no way for a querier to decide whether a tuple of reports with identical data originated
from the same user or two different users. On one hand, this is a wanted privacy feature but on
the other hand, it allows a user to send a report multiple times to earn more incentives. This
problem did not exist within the original PEPSICo scheme as users had no motivation for such
behavior. The only motivation users had at all for participating was to support the querier with
his research.

Handling of bad data reports
There is an additional problem with bad data reports. The general technique to prevent bad data
reports is a reputation mechanism, which is out of our scope for now. However, in our model, all
data reports are saved by the SP and have to be checked for matches with every new subscription
token. A feedback mechanism would allow queriers that have determined a report to have bad
data quality to report this to the SP which could delete those reports if multiple queriers agree or
if the query identity is exclusively used by this querier.

A supporting factor for this issue is that the message space of a data report does not depend on
the query identifier. It is therefore not possible to restrict the message space of a data report to
possible sensing results.

Timeliness of rewards
In our model, after a user submits a report, an unspecified amount of time might pass before a
querier comes online to collect the reports for the query identity in question. Even more, time
may pass until the querier analyzed the data quality and instructed the ISP to reward the user
with incentives. This behavior might be an inhibitor as people in today’s world are used to get
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instant feedback on their actions. For the queriers, on the other hand, it might be more convenient
to collect and analyze the cumulated data reports once a month, resulting in long waiting times
for users.

Incentive sharing
BBA+ prevents users from uncontrolled points transfer. Even though the main reason for this is
to support use cases where negative points can be collected, all transactions in the model should
be handled by the ISP. However, as the bulletin mechanism that is used to distribute incentive
rewards does not depend on a long term secret, sharing the bulletin secret would be comparable
to transferring a specific number of incentives between users. Furthermore, this issue is critical
towards the double reporting problem. As long as incentive sharing is possible, a malicious user
could bypass any report limit by creating a new user identity, registering it for the query identity,
submitting the report and claiming the corresponding incentives for his original user identity.
This assumes that there are no restrictions for the registration of a new user in place. However,
without the possibility of incentive sharing, this approach would lead to many balance tokens
with a low balance, which would potentially be of limited value.

Verifiable delivery
In the interim model, there is no measure to ensure that users receive honest and fair incentive
rewards for their data reports. However, such a property is difficult to enforce. As we discussed in
Section 6.1.1, only the queriers can determine the quality of a data report and therefore decide
on the appropriate number of incentives as compensation. However, this makes it impossible to
prevent the querier from cheating. We argue that it is within the querier’s interest to distribute
fair rewards as their single purpose is to attract users in providing more data. A possible counter-
measure outside the model could be to provide the infrastructure for a public rating of queriers by
the users.

However, it remains for the querier to trust the ISP to correctly deliver posted incentives. To
weaken this trust assumption, an additional mechanism could be introduced that allows queriers
to verify the correct delivery of incentives.
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7 Advanced model

While the interim model achieves the goal of combining PEPSICo and BBA+ to a participatory model
with an incentive mechanism, it falls short in addressing the issues that arise with the combination (cf.
Section 6.6). We, therefore, specify an advanced model addressing the identified issues as feasible.
We first discuss how we address the identified issues. We then provide an overview of our model

(Section 7.2), followed by a formal definition (Section 7.3). In Section 7.4, we define the security properties
for our model, before we give an instantiation in Section 7.5 and proof that it indeed meets the specified
security properties in Section 7.6. Subsequently, in Section 7.7, we argue that our instantiation is
sufficiently efficient to be used within real-world applications. Lastly, in Section 7.8 we provide a
discussion of our model.

7.1 Improvements over the interim model

7.1.1 Prevention of incentive sharing

The first issue that should be addressed is the problem of incentive sharing as it correlates with the
double-reporting issue. However, if we restrain from using BBA+ as a black box, we can replace the
bulletin nonce with a commitment to the secret key of the user. We then modify the accumulation
protocol to include the verification that the commitment is indeed a commitment to the same secret key
that has been used to create the balance token. Therefore, the user identity under which the incentives
posted for a report can be collected is fixed at the time of report submission. Because of the hiding
properties of the commitment and the zero-knowledge property of the involved proof, transactions
remain unlinkable.

7.1.2 Prevention of double-reporting

The complete prevention of double-reporting is nearly impossible to achieve, especially if we do not
want to limit our system to a specific use case. With rising data complexity, it gets more and more
unlikely that two honest reports contain identical data and this could be used as an indicator, but for
queries that have only a small set of valid sensing data, such as yes/no-queries, this is not possible.
Ultimately, it remains the responsibility of the querier to decide whether the reported data is trusted or
not and what number of incentives it is worth. However, we want to keep the required effort at the
querier’s site, and with it the hurdle of becoming a querier, low, if possible.
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One approach to restrain the extent of the double-reporting problem is to limit the number of reports
a single user can generate for a fixed query identity. More precisely, we enable the specification of an
upper limit of data reports allowed to be submitted for a specific query identity by the same user. Note
that because of the correlation with the incentive sharing problem, we have to make sure that reports
are counted under the same user identity as contained within the bulletin commitment.
There are multiple options to design such a mechanism. One of the core difficulties is, that the SP

should not know the query identity of a data report and queries should remain unlinkable even if the
RA colludes with the other parties. Multiple tradeoffs between security, flexibility, and efficiency are
possible. In the following, we discuss two possible approaches.

One-time token mechanism

The idea behind this mechanism is, given a query identity and a per-user contribution limit for this
identity, to provide a registering user with an equal number of one-time tokens. Each time a report is
submitted, a one-time token has to be attached. Furthermore, SP checks the validity and freshness of
the token. The required protocols together with a possible instantiation are given in Appendix A.

The disadvantage of this approach is that it is only feasible for small report limits per query identity.
We argue that this is likely to be the case for most use cases where the number of reports per user should
be limited. However, we require an additional mechanism to support query identities without a report
limit.
The RA could maintain a whitelist of query identities that do not specify a limit. Limiting the space

of query identities to ℤ𝑝 , which we require for the zero-knowledge proofs anyway, would allow using a
cryptographic accumulator for membership testing on this whitelist. When submitting a report, the
user would have either to supply a valid one-time-token or a zero-knowledge proof attesting that the
query identity the report has been generated for is indeed a member of the whitelist.

Report counter with BBA+

A second possibility is to use a modified version of BBA+. Upon registering for a query identity, the
RA issues a BBA+ token for this query identity to the user, incorporating the maximum number of
data reports he is allowed to send. This number is used as a counter. It is decreased by one upon the
submission of a report for this 𝑞𝑖𝑑 . Reports can only be submitted as long as the counter is larger than 0.
This construction avoids expensive range proofs as a check for inequality is sufficient. Note that each
token needs to be uniquely linked to a specific query identity.

This approach is muchmore flexible as the one-time tokenmechanism. Increasing the report maximum
comes at no additional costs. Moreover, we do not require separate handling of query identities without
a support limit. In such a case, we can set the counter to its maximum, which will be large enough
assuming that users only submit a polynomial number of reports. Therefore, we use this approach
within our model.
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7.1.3 Improved handling of bad data reports

We include a feedback mechanism, allowing queriers to report bad data reports to the service provider.
The service provider should have a policy whether they are deleted directly or only if a certain number
of queriers reports them as bad. We do not include a reputation mechanism in our model but recommend
it as future work.

7.1.4 Timeliness of rewards

We do not address this issue within our model. Not enforcing immediate responses of the queriers
is an essential design decision of PEPSICo that we maintain within our model. However, it could be
beneficial for queriers to be transparent about the time intervals in which they collect and evaluate the
data reports.

7.1.5 Verifiable delivery

Apart from the double-reporting problem, the other larger issue our model has to solve is how to provide
verifiable delivery. The service provider should be able to prove to the querier that the required amount
of incentives has indeed been delivered to the right user.
This property is correlated with the node privacy property of PEPSICo, that is, it is inherently

unsolvable if the adversary can collude with a querier registered for the query identity in question. If
the adversary can obtain the report data𝑚, he can generate a new report for𝑚 by a compromised user
and replace the original report. Therefore, this property is of limited value if there are no controls in
place to restrict querier registrations. However, it works fine for query identities which are restricted to
a set of queriers trusting each other not to collude with the SP.
To achieve verifiable delivery, upon submitting a report, the user includes a newly generated MAC

key in the plaintext for the PEPSICo report. Therefore, only authorized queriers can obtain this key.
When collecting incentives, a MAC tag is computed under this key, attesting that the incentives have
been delivered correctly. Because of the security of the MAC, the SP cannot forge a valid tag. Note that a
new key has to be used with each submitted report to maintain transaction unlinkability. We use a MAC
instead of a signature scheme, as signature schemes usually have expensive key generation algorithms.
Moreover, even using a signature scheme, we could not just send the public key in the clear. It would
have to be bound to the content of the PEPSICo report in some way, else the SP could just replace it
with a different key.

7.1.6 Transaction unlinkability against a malicious registration authority

The report unlinkability property of PEPSICo only holds towards an honest-but-curious RA, as the
mobile node registration values are computed by the experiment. In the generic instantiation of PEPSICo
from IBE, these values are computed independently of the user’s identity using a PRF. We replace the
PRF with a VRF. Together with the mobile node registration value, the RA provides a proof to the user
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that the value has been computed correctly. This enables the user to detect if the RA deviates from an
honest behavior with respect to the computation of the mobile node registration value, thus, we can
provide transaction unlinkability against a malicious RA. Note that, in addition, we also get forward
privacy for PEPSICo reports. As all users registered for a query identity use the same mobile node
registration value, the adversary cannot link data reports to specific users based on previous knowledge
of their mobile node registration value.

7.2 Overview of the model

Incorporating the improvements discussed above, we construct a new participatory model based on
PEPSICo and BBA+. Our new model has the same parties than the interim model, namely:

Trusted Third Party (TTP)
The TTP is required for the trusted setup of the CRS, describing the algebraic framework for the
incentive and report limitation mechanisms (BBA+).

Registration Authority (RA)
The registration authority is a semi-trusted party (trusted not to collude with the service provider
to circumvent the confidentiality of report data and query identities, but not trusted regarding
transaction unlinkability). It manages query identities, allowing users and queriers to register for
a specific query identity to submit and collect reports for this query identity, respectively.

Service Provider (SP)
The SP acts as a mediator between the users and the queriers, allowing them to be modeled as
offline entities. They store all the reports submitted by the users, validating the reporting limits,
and make them available to be collected by registered queriers. Therefore, the SP has to be an
online entity, always available to interact with users or queriers.

Incentive System Provider (ISP)
The ISPmanages the incentivemechanism, allowing the users to collect incentive rewards provided
to them by queriers and to redeem their collected incentives. Therefore, the ISP has to be an
online entity.

User
Users are the participants that provide the data for the sensing queries. Therefore, they register for
one or more query identity and submit reports for this query identity to the SP. Users are offline
entities, meaning that they do not have to be constantly connected to the network. Therefore,
they can only take part in communication if they are the initiator.

Querier
Queriers are the entities interested in receiving sensor reports. Therefore they register for one
or more query identities and regularly collect the corresponding reports from the SP. They are
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responsible for determining the quality of submitted data reports and reward users with incentive
points for those data reports. Similar to users, queriers are offline entities.

Initially, the TTP has to generate and publish the CRS of the system and the RA and ISP have to
generate their public and secret key pairs. Moreover, The registration authority has to generate a second
key pair for the limitation mechanism shared with the service provider.

RA

User Querier

ISP

SP

(1) RegisterQ

(2) Issue

(3) RegisterUser

(4) SubmitReport (5) CollectReports

(6) PostIncentives
(7) CollectIncentives
(8) RedeemIncentives

(9) VerifyDelivery

(10) ReportQuality

Figure 7.1: Overview of I3PS

Figure 7.1 outlines the system’s architecture and the interactions between the parties. During the
operation of the system, queriers can register themselves to receive reports for specific query identities
with the RA (1). The query identity defines the collected data. To participate in the system, a user has to
create his private and public key pair and needs to be issued an incentive token by the ISP (2). This token
represents the users’ incentive account, allowing them to accumulate and redeem incentive rewards. To
submit reports of a specific type, the user has to register for the corresponding query identity once (3),
obtaining a token representing the number of reports he is allowed to submit for this query identity.
Reports can then be submitted to the SP (4), where they can be collected by queriers registered for
the same query identity (5). Apart from using the reported data for their research, queriers can post
incentive rewards for the users that submitted a report to the bulletin board maintained by the ISP
(6). There, they can be collected by the corresponding users (7). They are accumulated in the users’
incentive accounts represented by their incentive tokens. Furthermore, the ISP allows users to redeem
incentive points they accumulated previously (8) to obtain rewards outside the system. The ISP can
proof to the querier that the posted incentive rewards have been transferred to the corresponding user
(9). Lastly, when posting incentives, the querier also indicates the quality of the data report. This allows
the ISP to regularly give reports to the SP (10), allowing the deletion of bad data reports.

7.3 Formal definition

Definition 7.1 (I3PS) An I3PS scheme consists of the following algorithms and protocols:
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Setup algorithms

(CRS, td) $←− Setup(1𝑛)
The Setup algorithm for the incentive scheme is executed by the TTP once before the scheme can be
used. The common reference string CRS is made public while the trapdoor 𝑡𝑑 remains a secret only
used to define the security of the scheme.

(pkRA, skRA, pkSP, skSP)
$←− SetupRA(CRS)

With this algorithm, the RA creates its public and private key pair (pkRA, skRA). The private key
allows the RA to generate registration tokens for users and queriers. Additionally, it generates the key
pair for the report limitation mechanism (pkSP, skSP) which it shares with the SP. For convenience,
it is assumed that pkSP contains CRS.

(pkI, skI) ← IGen(CRS)
This algorithm is executed by the ISP once to generate its public and private key pair. For convenience,
it is assumed that pk𝐼𝑆𝑃 contains CRS.

(pkU, skU) ← UGen(CRS)
Every user is required to generate a public and private key. The public key pkU acts as an identifier
for the user.

User protocols

((𝜏I, 𝑏U), 𝑏I) ← Issue
〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
The next step for a user would be to request a balance token. This is done by engaging in the issue
protocol with the ISP. During this protocol, the identity of the user is exposed.

((𝜏SP, 𝑏U), 𝑏RA) ← RegisterUser

〈
U(pkSP, pkU, skU, 𝑞𝑖𝑑),
RA(pkRA, skRA, pkSP, skSP, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
When registering for a query identity 𝑞𝑖𝑑 , the RA has to check the identity of the user and that the
user is not already registered. Therefore, the protocol is identifying. I addition to the registration value
regMN𝑞𝑖𝑑 , the user obtains a report counter token 𝜏SP , incorporating regMN𝑞𝑖𝑑 , and 𝑐𝑡𝑟 =𝑚𝑎𝑥𝑞𝑖𝑑 ,
the maximum number of reports the user is allowed to submit.(

(𝜏V, 𝜏∗SP, 𝑏U),
(𝑐, 𝑐𝑜𝑚V, dstag, hid, 𝑏SP)

)
← SubmitReport

〈
U(pkRA, pkSP, pkU, skU, 𝑞𝑖𝑑, 𝜏SP,𝑚),
SP(pkSP, skSP)

〉
This protocol is used to submit a report to the SP. The counter token 𝜏SP allows validating if the
user is still within the limit of allowed reports for this 𝑞𝑖𝑑 . Apart from the report 𝑐 , the SP outputs
the public bulletin commitment 𝑐𝑜𝑚V . dstag and hid are required for double-spending detection.
The user outputs the bulletin token 𝜏V , which is required to claim the incentives and contains the
bulletin commitment 𝑐𝑜𝑚V and the message authentication key kmac, and a new counter token 𝜏∗SP
with the counter value from 𝜏SP reduced by one. 𝑏U and 𝑏SP are used to indicate protocol failures.
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((𝜏∗I, 𝑏U,𝑤
∗), (𝑡mac, dstag, hid, 𝑏I)) ← Collect

〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝜏V,𝑚),
I(pkI, skI, 𝑐𝑜𝑚V, 𝑟V, 𝑣)

〉
With this algorithm, a user with a balance token 𝜏 with balance𝑤 and a bulletin secret 𝜏V can claim
any incentives posted for the corresponding nonce. After the protocol, the user has an updated token
𝜏∗ with the balance𝑤∗ that should be equal to𝑤 + 𝑣 , whereby 𝑣 is the incentive value that has been
posted. Furthermore, the ISP obtains a MAC tag 𝑡mac which allows to proof the correct delivery of
the incentives to the querier that posted them and a double-spending tag dstag which can be used to
detect cheating users. The hidden user id hid is only required for definitional purpose.

((𝜏 ′I, 𝑏U,𝑤
′), (dstag, hid, 𝑏I)) ← Redeem

〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
This algorithm allows a user to redeem a specific number of incentives from his token’s balance.
This algorithm exposes the balance of the token to the ISP to allow verifying that it is sufficient for
retrieving the specified number of incentives. After the protocol, the user has an updated token 𝜏 ′I
with the balance 𝑤 ′ that should be equal to 𝑤 − 𝑣 . Again, the ISP obtains a double-spending tag
dstag to identify cheating users and hid is for the definition only.

Querier protocols

((regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ), 𝑏RA) ← RegisterQ
〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
This protocol allows a querier to register for a specific query identity 𝑞𝑖𝑑 . The querier obtains the
querier registration value regQ𝑞𝑖𝑑 and subscription token 𝑠𝑡𝑞𝑖𝑑 , which is required to collect reports
from the SP.

(𝔐, 𝑏SP) ← CollectReports
〈
Q(CRS, pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ),SP(pkRA,ℭ)

〉
This protocol is used by the querier to collect all the reports for a subscribed query identity 𝑞𝑖𝑑
from the SP. Hereby, ℭ is a set of reports together with their public bulletin information of the form
(𝑐, 𝑐𝑜𝑚V). The querier outputs a set 𝔐 containing the decoded data reports together with their
bulletin commitment, ie. tuples of the form (𝑚,𝑐𝑜𝑚V, kmac).

(𝑟V, (𝑐𝑜𝑚V, 𝑣, 𝑟V, 𝑞)) ← PostIncentives ⟨Q(CRS, 𝑣, 𝑐𝑜𝑚V, 𝑞),I⟩
This protocol allows the querier to post 𝑣 incentive points as a reward for a submitted report on the
bulletin board. 𝑟V is a random nonce required to verify its delivery. 𝑞 is an indicator for the quality
of the data report corresponding to 𝑐𝑜𝑚V as it has been perceived by the querier.

(𝑏Q, 𝑏I) ← VerifyDelivery
〈
Q(𝑐𝑜𝑚V, kmac, 𝑟V),I(𝑐𝑜𝑚V, 𝑡mac)

〉
This protocol checks if 𝑡mac is a valid proof of delivery for the incentive points posted for the report
identified by comV with the verification key kmac. In this case, 𝑏Q = 1.

Double-spending detection and token verification algorithms

(pkU, 𝛱 ) or ⊥ ← IdentDS(pkI, dstag0, dstag1)
Given two double-spending tags dstag0 and dstag1, this algorithm outputs the public key of a user
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if the double-spending tags originate from this user using the same balance token twice to collect
or redeem incentives. Moreover, it outputs a proof 𝛱 that allows verifying that the owner of pkU
is indeed guilty of double-spending. The same algorithm can be used to check double-spending for
counter tokens if pkI is replaced with pkSP .

𝑏 ← VerifyGuilt(pkI, pkU, 𝛱 )
This algorithm allows verifying a proof 𝛱 to see if the user identified by pkU is guilty of double-
spending incentive tokens. For counter tokens, pkI has to be replaced with pkSP .

{0,1} ← UVerSP (pkSP, pkU, skU, 𝜏SP, 𝑐𝑡𝑟 )
The report counter token verification algorithm returns 1 if 𝜏SP is a valid report counter token with
the counter value 𝑐𝑡𝑟 for the query identity 𝑞𝑖𝑑 belonging to the user identified by pkU .

{0,1} ← UVerI (pkI, pkU, skU, 𝜏I,𝑤)
The balance token verification algorithm returns 1 if 𝜏I is a valid balance token with the balance𝑤
belonging to the user identified by pkU and 0 otherwise.

Correctness

An instantiation GI of I3PS is called correct, if the following properties hold for all 𝑛 ∈ ℕ, (CRS, td) ←
Setup(1𝑛), (pkRA, skRA, pkSP, skSP) ← SetupRA(1𝑛), ISP key-pairs (pkI, skI) ← IGen(CRS), user
key-pairs (pkU, skU) ← UGen(CRS) and partiesU, SP and I honestly following the protocols

Correctness of balance token issuing

For all outputs of the issue protocol ((𝜏I, 𝑏U), 𝑏I)
$←− Issue

〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
,

it holds that
𝑏U

?
= 𝑏I

?
= 1 ∧ UVerI (pkI, pkU, skU, 𝜏I, 0)

?
= 1

Correctness report counter token issuing
For all query identities 𝑞𝑖𝑑 in the query identity space, report limits𝑚𝑎𝑥𝑞𝑖𝑑 ∈ ℤ𝑝 it holds that

((𝜏SP, 1), 1) ← RegisterUser

〈
U(pkSP, pkU, skU, 𝑞𝑖𝑑),
RA(pkRA, skRA, pkSP, skSP, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
∧ UVerSP (pkSP, pkU, skU, 𝜏SP,𝑚𝑎𝑥𝑞𝑖𝑑 )

?
= 1

Correctness of data reporting
For all query identities 𝑞𝑖𝑑 and for all report counter tokens 𝜏SP for 𝑞𝑖𝑑 , where UVerSP (pkSP, pkU,
skU, 𝜏SP, 𝑐𝑡𝑟 )

?
= 1 for a counter value 𝑐𝑡𝑟 > 0, querier registration values and subscription tokens

((regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ), 𝑏RA) ← RegisterQ
〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
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and sets ℭ containing tuples (𝑐̂, 𝑐𝑜𝑚V) of reports and public bulletin commitments, it holds that(
(𝜏V, 𝜏∗SP, 1),
(𝑐, 𝑐𝑜𝑚V, dstag, hid, 1)

)
← SubmitReport

〈
U(pkRA, pkSP, pkU, skU, 𝑞𝑖𝑑, 𝜏SP,𝑚),
SP(pkSP, skSP)

〉
∧ UVerSP (pkSP, pkU, skU, 𝜏∗SP, 𝑐𝑡𝑟 − 1)

?
= 1

∧ (𝔐, 1) ← CollectReports

〈
Q(CRS, pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ),
SP(pkRA,ℭ ∪ {(𝑐, 𝑐𝑜𝑚V)})

〉
∧ (𝑚,𝑐𝑜𝑚V, kmac) ∈ 𝔐

where kmac is the same message authentication key as included in 𝜏V .

Correctness of incentive collection
For all tokens 𝜏I , balances 𝑤 ∈ ℤ𝑝 with UVerI (pkI, pkU, skU, 𝜏I,𝑤)

?
= 1, values 𝑣 ∈ ℤ𝑝 , quality

indicators𝑞 from the quality space and (𝜏V, 𝑐𝑜𝑚V) pairs generated by a SubmitReport run protocol
betweenU and SP it holds that

(𝑟V, (𝑐𝑜𝑚V, 𝑣, 𝑟V, 𝑞)) ← PostIncentives ⟨Q(CRS, 𝑣, 𝑐𝑜𝑚V, 𝑞),I)⟩

∧ ((𝜏∗I, 1,𝑤
∗), (𝑡mac, dstag, hid, 1)) ← Collect

〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝜏V,𝑚),
I(pkI, skI, 𝑐𝑜𝑚V, 𝑟V, 𝑣)

〉
∧ UVerI (pkI, pkU, skU, 𝜏∗I,𝑤

∗) ?
= 1

∧𝑤∗ ?
= 𝑤 + 𝑣

Correctness of incentieve redemption
For all tokens 𝜏I , balances 𝑤 ∈ ℤ𝑝 with UVerI (pkI, pkU, skU, 𝜏I,𝑤)

?
= 1 and values 𝑣 ∈ ℤ𝑝 , we

have that

((𝜏 ′I, 1,𝑤
′), (dstag, hid, 1)) ← Redeem

〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
∧ UVer(pkI, pkU, skU, 𝜏 ′I,𝑤 − 𝑣)

?
= 1

Correctness of delivery verification
For all (𝜏V, 𝑐𝑜𝑚V) generated by SubmitReport, all 𝑟V generated by PostIncentives protocol
runs for 𝑐𝑜𝑚V and all tags 𝑡mac generated by the corresponding Collect calls for 𝑐𝑜𝑚V and 𝜏V it
holds that

(1, 1) ← VerifyDelivery
〈
Q(𝑐𝑜𝑚V, kmac),I(𝑐𝑜𝑚V, 𝑡mac)

〉
where kmac is the same message authentication key as included in 𝜏V .
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7.4 Security

In this section, we define the security notions for our model. The notions are derived from PEPSICo, BBA+
and the previous model. We want to preserve the security properties from the underlying models and
ensure that our modifications work as intended. Therefore, the used reporting mechanism (encryption,
subscription matching and decryption of reports) should preserve the node privacy and query privacy
notions of PEPSICo while both of the used BBA+ instantiations, in the incentive and the report limitation
mechanism, should provide it’s security properties. The exception is the user privacy property, which
has to be combined with the report unlinkability property of PEPSICo as within the interim model.
To avoid having multiple similar security properties with the same name, we combine the security

properties for the incentive and report limitation mechanism. An exception is the balance-binding
property, where we have a slightly different goal for the report limitation mechanism. Instead of
ensuring that the latest token always has the legitimately collected balance, we require that it is not
possible to submit more reports than the allowed maximum. Therefore, we introduce a modified version
of this notation that we call limit-binding. With the owner-binding property, we also address the security
of the bulletin mechanism. Moreover, we specify the verifiable delivery property to ensure the soundness
of the VerifyDelivery algorithm.

When we talk about successful protocol runs within the security definitions, this means that the run
has been accepted by the SP or ISP. The view of a party during a protocol run consists of all its inputs,
outputs, messages sent and messages received.
Within the security experiments we define in this chapter, the adversary has access to specific

oracles that allow the interaction with the experiment. In Figures 7.2 and 7.3, we define some of the
oracles upfront, as they are used within multiple experiments. Within these oracles, the adversary A
impersonates the user. The oracles use the following global variables to store the state of the system
operators

ℑ Set of pkUs which already have a balance token issued
𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U

Current legitimately accumulated balance of the user identified by pk′U
ℜ Set of tuples (pkU, 𝑞𝑖𝑑) where pkU is already registered for 𝑞𝑖𝑑
𝔏(𝑞𝑖𝑑) Previously defined𝑚𝑎𝑥𝑞𝑖𝑑 , this is used to allow A to choose𝑚𝑎𝑥𝑞𝑖𝑑 but addi-

tionally enforcing that it remains consistent per query identity
ℭ Set of tuples of submitted reports (𝑐, 𝑐𝑜𝑚V) stored by SP
𝔖 Set of tuples (pk′U, 𝑐𝑜𝑚V) corresponding to reports submitted by A where

the user identity pk′U could be extracted from the interaction
𝑐𝑡𝑟

regMN𝑞𝑖𝑑

𝑝𝑘′U
Counter of the number of reports the user identified by pk′U submitted for
𝑞𝑖𝑑 , where regMN𝑞𝑖𝑑 is the corresponding mobile node registration value
contained in the report 𝑐 . These counters have to be initialized with 0

𝔓 Set of tuples (𝑐𝑜𝑚V, 𝑣, 𝑟V) that have been posted to the bulletin board
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𝔙 Set of tuples (pk′U, 𝑐𝑜𝑚V) where the user identified by pk′U has successfully
collected incentives posted for 𝑐𝑜𝑚V

𝔈 Set of all user identities pkU for which there has been a successful call to
MalRedeem

ℭℑ𝑄 Set of all query identities for which A is registered as a querier

MalIssue
This oracle allowsA to obtain a balance token by invoking the Issue protocol with the ISP played
by the experiment. The oracle verifies that the user ID pkU used by A has not been used in a
successful MalIssue call before and initiates 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pkU with 0.

MalRegisterUser
This oracle allowsA to register as a user identified by pkU for the query identity 𝑞𝑖𝑑 by invoking
the RegisterUser protocol. The report limit𝑚𝑎𝑥𝑞𝑖𝑑 for this query identity can be chosen by the
adversary but has to be consistent per query identity, which is validated by the oracle. Moreover,
the oracle checks that pkU has not been registered for 𝑞𝑖𝑑 before.

MalSubmitReport
A can use this oracle to submit reports for a query identity 𝑞𝑖𝑑 by invoking SubmitReport. As
SubmitReport is not identifying, the oracle makes use of the trapdoor td to link the transaction
to a user identity pk′U . Moreover, the oracle keeps track of the number of submitted reports for
this (pk′U, 𝑞𝑖𝑑) pair with the counter 𝑐𝑡𝑟

regMN𝑞𝑖𝑑

𝑝𝑘′U
. The oracle uses the mobile node registration

value regMN𝑞𝑖𝑑 as it can be extracted from the submitted report 𝑐 and is suited as it is also used
to match the report to querier subscriptions later.

MalCollect
Using this oracle,A can collect all the incentives that have been posted for a bulletin commitment
𝑐𝑜𝑚V . For each of the posted incentives, the oracle invokes the Collect protocol with A and if
the transaction was successful, uses the trapdoor td to extract the user ID used by A during the
interaction and updates 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U accordingly.

MalRedeem
With this oracle, A can redeem some of the balance previously accumulated on a user’s balance
token. Therefore, the oracle invokes the Redeem protocol withA for the balance𝑤 and redemption
value 𝑣 and, if the protocol run was successful, extracts the user identity pk′U that A used during
the protocol run and updates 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U accordingly.

MalRegisterQ
This oracle allows A to register as a querier for a query identity 𝑞𝑖𝑑 .

MalPostIncentives
Whenever A calls this oracle, an honest querier is created that collects all the reports previously
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submitted for 𝑞𝑖𝑑 and post incentives for them. This allows A to collect these incentives later
using MalCollect.

7.4.1 Data-hiding

This property adapts the node privacy property of PEPSICo to our model. It demands the confidentiality
of data reports against the SP, unauthorized queriers and other users, even if they all collude. It is
modeled as the indistinguishability of data reports generated using two query identity/message pairs
chosen by the adversary. The adversary is not allowed to register for the challenge query identities,
neither as user nor as querier. However, if the SP is not corrupted, The adversary can have reports for
any query identity be submitted by an honest user and collect any submitted messages for which they
can provide a valid subscription token.
For this property, we additionally define the oracles CorruptSP, SubmitReport and CollectReports

(Figure 7.4).

CorruptSP
This oracle allows A to corrupt the SP. It marks the SP to be corrupted and returns skSP .

SubmitReport
When this oracle is called byA a new user identity pkU is created and registered for𝑞𝑖𝑑 . Afterward,
the user identified by pkU submits a report containing the report data𝑚 which is stored in the
list of submitted reports. This oracle does not return any information to A.

CollectReports
When this oracle is called, a new querier is registered for the query identity 𝑞𝑖𝑑 and uses the
subscription tokens specified by the adversary to try to collect all reports that have previously
been submitted for qid. A list of the obtained information (report data𝑚, bulletin commitment
𝑐𝑜𝑚V and message authentication key kmac) is returned to A.

Definition 7.2 (Data-hiding) An instantiation GI of our model is data-hiding, if no adversary can win
the experiment ExpDHGI,A with more than negligible advantage, ie. for all PPT adversaries A, there exists a
negligible function negl such that

AdvDHGI,A (𝑛) :=
����Pr [ExpDHGI,A (𝑛) ?

= 1
]
− 1
2

���� ≤ negl (𝑛 )

7.4.2 Subscription-hiding

Our adaption of PEPSICo’s query privacy notion demands that the query identity corresponding to a
query subscription is hidden from the SP, as well as queriers and users that are not registered for the
same query identity, even if they collude with the SP.
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MalIssue(pkU)

if pkU ∉ ℑ then

((𝜏I, 𝑏U), 𝑏I) ← Issue
〈
A(pkI, pkU, skU),I(pkI, skI, pkU)

〉
if 𝑏I

?
= 1 then

ℑ← ℑ ∪ {pkU}
𝑏𝑎𝑙𝑎𝑛𝑐𝑒pkU := 0

endif
endif

MalRegisterUser(pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

if {(pkU, 𝑞𝑖𝑑)} ∉ ℜ then

if 𝑚𝑎𝑥𝑞𝑖𝑑 > 0 and (𝔏(𝑞𝑖𝑑) ?
= ⊥ or 𝔏(𝑞𝑖𝑑) ?

=𝑚𝑎𝑥𝑞𝑖𝑑 ) then
𝔏(𝑞𝑖𝑑) :=𝑚𝑎𝑥𝑞𝑖𝑑

((𝜏SP , 𝑏U), 𝑏RA) ← RegisterUser

〈
A(pkSP , pkU , skU , 𝑞𝑖𝑑),
RA(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
if 𝑏RA

?
= 1 then

ℜ := ℜ ∪ {(pkU, 𝑞𝑖𝑑)}
endif

endif
endif

MalSubmitReport(𝑞𝑖𝑑,𝑚)(
(𝜏V , 𝜏∗SP , 𝑏U ),
(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
A(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑,𝜏SP ,𝑚),
SP(pkSP , skSP )

〉
if 𝑏I

?
= 1 then

ℭ := ℭ ∪ {(𝑐, 𝑐𝑜𝑚V)}
𝑝𝑘 ′U := ExtractUID(td, hid)
𝔖 := 𝔖 ∪ {(𝑝𝑘 ′U, 𝑐𝑜𝑚V)}
(regMN𝑞𝑖𝑑 , 𝑐1) := 𝑐

𝑐𝑡𝑟
regMN𝑞𝑖𝑑

pk′U
:= 𝑐𝑡𝑟

regMN𝑞𝑖𝑑

pk′U
+ 1

endif

Figure 7.2: Oracle definitions for the security notation of I3PS, part 1
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MalCollect(𝑐𝑜𝑚V)

for (𝑐𝑜𝑚∗V , 𝑣, 𝑟V) ∈ 𝔓 where 𝑐𝑜𝑚∗V
?
= 𝑐𝑜𝑚V do

((𝜏∗I, 𝑏U,𝑤
∗), (𝑡mac, dstag, hid, 𝑏I)) ← Collect

〈
A(pkI , pkU , skU , 𝜏I ,𝑤, 𝜏V ,𝑚),
I(pkI , skI , 𝑐𝑜𝑚V , 𝑟V , 𝑣)

〉
if 𝑏I

?
= 1 then

𝑝𝑘 ′U := ExtractUID(td, hid)
𝔙 := 𝔙 ∪ {(𝑝𝑘 ′U, 𝑐𝑜𝑚V)}
𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U

:= 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U + 𝑣
endif

endfor

MalRedeem(𝑤, 𝑣)

((𝜏 ′I, 𝑏U,𝑤
′), (dstag, hid, 𝑏I)) ← Redeem

〈
A(pkI, pkU, skU, 𝜏I,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
if 𝑏I

?
= 1 then

pk′U := ExtractUID(td, hid)
𝔈 := 𝔈 ∪ {𝑝𝑘 ′U}
𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U

:= 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U − 𝑣
endif

MalRegisterQ(𝑞𝑖𝑑)

((regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ), 𝑏RA) ← RegisterQ
〈
A(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
ℭℑ𝑄 := ℭℑ𝑄 ∪ {(𝑞𝑖𝑑)}

MalPostIncentives(𝑞𝑖𝑑)

((regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ), 𝑏RA) ← RegisterQ
〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
(𝔐, 𝑏SP) ← CollectReports

〈
Q(CRS, pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ),SP(pkRA,ℭ)

〉
for (𝑚,𝑐𝑜𝑚V , kmac) ∈ 𝔐 do
𝑣 := 1
𝑞 := 1
(𝑟V , (𝑐𝑜𝑚V , 𝑣, 𝑟V , 𝑞)) ← PostIncentives ⟨Q(CRS, 𝑣, 𝑐𝑜𝑚V , 𝑞),I⟩
𝔓 := 𝔓 ∪ {(𝑐𝑜𝑚V , 𝑣, 𝑟V)}

endfor

Figure 7.3: Oracle definitions for the security notation of I3PS, part 2
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CorruptSP

𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑆𝑃 := 1
return skSP

SubmitReport(𝑞𝑖𝑑,𝑚))

(pkU, skU) ← UGen(CRS)
𝑚𝑎𝑥𝑞𝑖𝑑 := 1
𝔏(𝑞𝑖𝑑) := 1

((𝜏SP, 𝑏U), 𝑏RA) ← RegisterUser

〈
U(pkSP , pkU , skU , 𝑞𝑖𝑑),
RA(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
(
(𝜏V , 𝜏∗SP , 𝑏U ),
(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑, 𝜏SP ,𝑚),
SP(pkSP , skSP )

〉
ℭ := ℭ ∪ {(𝑐, 𝑐𝑜𝑚V)}

CollectReports(𝑞𝑖𝑑, ®𝑠𝑡)

((regQ𝑞𝑖𝑑 , 𝑠𝑡
∗
𝑞𝑖𝑑
), 𝑏RA) ← RegisterQ

〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
for 𝑠𝑡 in ®𝑠𝑡 do

(𝔐, 𝑏SP) ← CollectReports
〈
Q(CRS, pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡),SP(pkRA,ℭ)

〉
endfor
return 𝔐

Figure 7.4: CorruptSP, SubmitReport and CollectReports oracles for the data-hiding experiment
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ExpDHGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP, skSP) ← SetupRA(CRS)
(pkU, skU) ← UGen(CRS)
((𝑞𝑖𝑑0,𝑚0), (𝑞𝑖𝑑1,𝑚1), 𝑠𝑡𝑎𝑡𝑒0) ← ACorruptSP,MalRegisterUser,MalRegisterQ,SubmitReport,CollectReports

0 (pkRA, pkSP)
𝑏 ← {0,1}
𝑚𝑎𝑥𝑞𝑖𝑑𝑏 := 1

((𝜏SP , 𝑏U), 𝑏RA) ← RegisterUser

〈
U(pkSP , pkU , skU , 𝑞𝑖𝑑𝑏 ),
RA(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑𝑏 ,𝑚𝑎𝑥𝑞𝑖𝑑𝑏 )

〉
if 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑆𝑃 ?

= 1 do(
(𝜏V , 𝜏∗SP , 𝑏

′
U ),

(𝑐, 𝑐𝑜𝑚V , state1)

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑𝑏 ,𝜏SP ,𝑚𝑏 ),

AMalRegisterUser,MalRegisterQ,SubmitReport,CollectReports
1 (pkSP , skSP , 𝑠𝑡𝑎𝑡𝑒0)

〉
if 𝑏 ′U

?
= 0 then

return 0
endif

𝑏 ′← AMalRegisterUser,MalRegisterQ,SubmitReport,CollectReports
2 (𝑠𝑡𝑎𝑡𝑒1)

else(
(𝜏V , 𝜏∗SP , 𝑏

′
U ),

(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑𝑏 , 𝜏SP ,𝑚𝑏 ),
SP(pkSP , skSP )

〉
ℭ̂ := {(𝑐, 𝑐𝑜𝑚V)}

(𝑏 ′, 𝑏SP) ← CollectReports∗

〈
ACorruptSP,MalRegisterUser,MalRegisterQ,SubmitReport,CollectReports

1 (CRS, pkRA , 𝑠𝑡𝑎𝑡𝑒0),

SP(pkRA , ℭ̂)

〉
endif

The experiment returns 1 iff all of the following conditions are met:
• 𝑏 ?

= 𝑏 ′

• {𝑞𝑖𝑑0, 𝑞𝑖𝑑1} ∩ ℭℑ𝑄
?
= ∅

• �pkU : ((pkU, 𝑞𝑖𝑑0) ∈ ℜ ∨ (pkU, 𝑞𝑖𝑑1) ∈ ℜ)
• If 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑆𝑃 ?

= 1, then A did not query SubmitReport for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1.

Figure 7.5: Data-hiding experiment for I3PS. The oracles available to A are defined in the Figures 7.2
to 7.4. In the CollectReports∗ protocol, SP behaves as it would in the CollectReports
protocol. However,A has to adapt his behavior in any case to the modified input and output
on his side. For example, A could try to find regQ𝑞𝑖𝑑𝑏

and a corresponding subscription
token. Moreover, instead of outputting a message list, A outputs a guess for 𝑏.
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In our definition of the subscription-hiding experiment, the adversary only has the oracles required to
interact with the RA. In opposite to the previous experiment, the usage of the other oracles available
to the adversary in the original PEPSICo game is never allowed for the two challenge query identities.
However, the adversary can use the corruption oracles to obtain the registration values any other query
identity, allowing him to compute the corresponding algorithms on his own.

ExpSHGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)

(𝑞𝑖𝑑0, 𝑞𝑖𝑑1, 𝑠𝑡𝑎𝑡𝑒0) ← AMalRegisterUser,MalRegisterQ
0 (pkRA, pkSP , skSP)

𝑏 ← {0,1}
((regQ𝑞𝑖𝑑𝑏

, 𝑠𝑡𝑞𝑖𝑑𝑏 ), 𝑏RA) ← RegisterQ
〈
Q(pkRA, 𝑞𝑖𝑑𝑏),RA(pkRA, skRA)

〉
(𝔐, 𝑏 ′) ← CollectReports

〈
Q(CRS, pkRA, 𝑞𝑖𝑑𝑏, regQ𝑞𝑖𝑑𝑏

, 𝑠𝑡𝑞𝑖𝑑𝑏 ),A
MalRegisterUser,MalRegisterQ
1 (pkRA, ∅, 𝑠𝑡𝑎𝑡𝑒0)

〉
The experiment returns 1 iff all of the following conditions are met:

• 𝑏 ?
= 𝑏 ′

• {𝑞𝑖𝑑0, 𝑞𝑖𝑑1} ∩ ℭℑ𝑄
?
= ∅

• �pkU : ((pkU, 𝑞𝑖𝑑0) ∈ ℜ ∨ (pkU, 𝑞𝑖𝑑1) ∈ ℜ)

Figure 7.6: Subscription-hiding experiment for I3PS. The oracles available to A are defined in Figure 7.2
and Figure 7.3

Definition 7.3 (Subscription-hiding) An instantiation GI of our model is called subscription-hiding
if no adversary can win the query privacy experiment ExpSHGI,A with more than negligible advantage, ie.
for all PPT adversaries A, there exists a negligible function negl such that

AdvSHGI,A (𝑛) :=
����Pr [ExpSHGI,A (𝑛) ?

= 1
]
− 1
2

���� ≤ negl (𝑛 )

7.4.3 Trapdoor-linkability

The trapdoor-linkability property addresses the issue that the formalization of some of the security
properties we want to achieve requires to link each transaction with a user and token. This conflicts
with our demand that transactions are anonymous and unlinkable. Therefore, privacy can be abolished
given a trapdoor which should be kept secret by the TTP.

Definition 7.4 (Trapdoor-linkability) For a fixed security parameter𝑛 and CRSCRS, let𝔙SubmitReport
𝑛,CRS

be the set of all views of the SP on successful SubmitReport protocol runs with any (possibly malicious)
party and any (pkRA, skRA, pkSP, skSP) ← SetupRA. Hereby, a view is of the following form:

view := (pkSP, skSP,msgs, 𝑐, 𝑐𝑜𝑚V, dstag, hid, 𝑏SP)

wheremsgs is the bit string of all exchanged messages during the protocol run. Similar, let𝔙Collect
𝑛,CRS be the
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set of all views of the ISP on successful Collect protocol runs with any party and any pkI, skI) ← IGen.
Hereby, a view is of the form

view := (pkI, skI, 𝑐𝑜𝑚V, 𝑟V, 𝑣,msgs, 𝑡mac, dstag, hid, 𝑏I)

and 𝔙Redeem
𝑛,CRS be the set of all views of the ISP on successful Redeem protocol runs with any party and any

pkI, skI) ← IGen where view is of the form

view := (pkI, skI,𝑤, 𝑣,msgs, dstag, hid, 𝑏I)

An instantiation GI of our model is trapdoor-linkable if the following two conditions hold

Completness
For all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛) and view ∈ 𝔙SubmitReport

𝑛,CRS , containing a hidden user ID hid,
there exist inputs pkRA , pkU , skU , 𝑞𝑖𝑑 , 𝜏SP ,𝑚 and random choices for an honest userU and honest
ISP I such that a SubmitReport protocol run between U and I with these inputs leads to a view
view′ ∈ 𝔙SubmitReport

𝑛,CRS containing the same hidden user ID hid as in view.

Analogously, for all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛) and view ∈ 𝔙Collect
𝑛,CRS , containing the hidden

user ID hid, there exists inputs pkU , skU , 𝜏I , 𝑤 , 𝜏V ,𝑚 and random choices for an honest user U
and honest ISP I such that a Collect protocol run between U and I with these inputs leads to a
view view′ ∈ 𝔙Collect

𝑛,CRS containing the same hidden user ID hid as in view.

Furthermore, for all 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛) and view ∈ 𝔙Redeem
𝑛,CRS , containing the hidden

user ID hid, there exists inputs pkU , skU , 𝜏I , 𝑤 , 𝑣 and random choices for an honest user U and
honest ISP I such that a Redeem protocol run between U and I with these inputs leads to a view
view′ ∈ 𝔙Redeem

𝑛,CRS containing the same hidden user ID hid as in view.

Extractability
There exists a PPT algorithm ExtractUID such that for any 𝑛 ∈ ℕ, (CRS, td) ← Setup(1𝑛), and
view := (pkSP, skSP,msgs, 𝑐, 𝑐𝑜𝑚V, dstag, hid, 𝑏SP) ∈ 𝔙SubmitReport

𝑛,CRS of a SubmitReport protocol
run with an honest user on input pkU , ExtractUID(td, hid) outputs pkU . The same needs to hold
for ExtractUID with respect to views from𝔙Collect

𝑛,CRS and𝔙Redeem
𝑛,CRS .

This property implies that any fixed view view cannot result from interactions with different users.

7.4.4 Owner-binding

This property requires that balance and report limitation tokens are bound to a specific owner. Moreover,
we require that incentive points can only be collected by the same user that submitted the report.

This property is described by multiple experiments representing the ways an adversary may try to
impersonate honest users. First, in the OB-issue experiment, the goal of the adversary is trick the ISP
into issuing a balance or report limitation token for an honest and uncorrupted user to the adversary,
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which does not know the user’s secret key. Next, in the OB-submit and OB-col-red experiment, the
adversary has to make the ISP accept a forged token that has not been legitimately issued by the ISP and
RA, respectively. Last, in the OB-bulletin experiment, the adversary has to successfully collect incentive
points for a different user identity as it was used to submit the report.

Definition 7.5 (Owner-binding) An instantiation GI of our model is called owner-binding if no PPT
adversary can win ExpOB-issueGI,A , ExpOB-submit

GI,A , ExpOB-col-redGI,A or ExpOB-bulletinGI,A as defined in Figure 7.7 and
Figure 7.8 with more than negligible probability. More precisely, for all PPT adversaries A

Pr
[
ExpOB-issueGI,A (𝑛) ?

= 1 ∨ ExpOB-submit
GI,A (𝑛) ?

= 1 ∨ ExpOB-col-redGI,A (𝑛) ?
= 1 ∨ ExpOB-bulletinGI,A (𝑛) ?

= 1
]
≤ negl (𝑛 )

7.4.5 Limit-binding

This property is the equivalent of the balance-binding property of BBA+ for the report limitation
mechanism. Instead of requiring that claimed balance is correct, we require that it is not possible to
submit more than𝑚𝑎𝑥𝑞𝑖𝑑 reports for 𝑞𝑖𝑑 .

Definition 7.6 (Limit-binding) Let ExpLBGI,A be defined as in Figure 7.9. An instantiationGI of ourmodel
has a limit-binding report mechanism if for all PPT adversaries A, there exists a negligible function negl

such that
Pr

[
ExpLBGI,A (𝑛)

?
= 1

]
≤ negl (𝑛 )

7.4.6 Balance-binding

This property is the balance-binding property of BBA+ for the incentive mechanism, adapted to the
interface of the advanced model. This property ensures that as long as a token is only used once the
claimed balance in the scope of the Redeem protocol always coincides with the sum of points allegedly
collected with this token.

Definition 7.7 (Balance-binding) An instantiation GI of our model is called balance-binding if for all
PPT adversaries A, there exists a negligible function negl such that

Pr
[
ExpBBGI,A (𝑛)

?
= 1

]
≤ negl (𝑛 )

7.4.7 Double-spending detection

We want to make sure that no balance or report limitation token is used more than once within a
transaction. As this is difficult to enforce, we make use of BBA+ capability to identify users that commit
such double-spending.

This property ensures that two transactions leading to the same token version number 𝑠 have always
been initiated by the same user. Moreover, this user can be identified by IdentDS, resulting in a valid
proof of guilt 𝛱 .
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ExpOB-issueGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
(pkU, skU) ← UGen(CRS)
𝑏 ← AMalIssue,MalRegisterUser,MalSubmitReport,MalPostIncentives,MalCollect,MalRedeem (CRS, pkRA, pkSP, pkI, pkU)

The experiment returns 1 iff A did a sucessful call to MalIssue or MalRegisterUser on input of the given
public key pkU , ie.

pkU ∈ ℑ ∨ (∃𝑞𝑖𝑑 : (pkU, 𝑞𝑖𝑑) ∈ ℜ)

ExpOB-submit
GI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
𝑏 ← AMalRegisterUser,MalSubmitReport (pkRA, pkSP)

The experiment returns 1 iff A did a successful call to MalSubmitReport for an extracted public key pk′U
for which there has been no successful execution of MalRegisterUser, ie. if there exists pk′U such that

(∃𝑐𝑜𝑚V : (pk′U, 𝑐𝑜𝑚V) ∈ 𝔖) ∧ (∀𝑞𝑖𝑑 : (𝑝𝑘 ′U, 𝑞𝑖𝑑) ∉ ℜ)

ExpOB-col-redGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalRegisterUser,MalSubmitReport,MalPostIncentives,MalCollect,MalRedeem (pkRA, pkSP , pkI)

The experiment returns 1 iff A did a successful call to MalCollect or MalRedeem for an extracted public
key pk′U for which there has been no successful execution of MalIssue, ie. if there exists pk′U ∉ ℑ such that

(∃𝑐𝑜𝑚V : (pk′U, 𝑐𝑜𝑚V) ∈ 𝔙) ∨ pk
′
U ∈ 𝔈

Figure 7.7: Owner-binding experiments for the Issue, SubmitReport, Collect and Redeem protocols.
The oracles available to A are defined in Figure 7.2 and Figure 7.3
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ExpOB-bulletinGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP, skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalRegisterUser,MalSubmitReport,MalPostIncentives,MalCollect (pkRA, pkSP, pkI)

The experiment returns 1 if there exists a tuple (𝑝𝑘 ′U, 𝑐𝑜𝑚V) such that

(𝑝𝑘 ′U, 𝑐𝑜𝑚V) ∈ 𝔙 ∧ (pk
′
U, 𝑐𝑜𝑚V) ∉ 𝔖

Figure 7.8: Owner-binding experiment for the bulletin mechanism. The oracles available toA are defined
in Figure 7.2 and Figure 7.3.

ExpLBGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalRegisterUser,MalSubmitReport (pkRA, pkSP)

The experiment returns 1 iff all successful MalSubmitReport calls produced unique token version
numbers and there exist a mobile node registration value regMN𝑞𝑖𝑑 and a user public key pk′U such
that

𝑐𝑡𝑟
regMN𝑞𝑖𝑑

pk′U
> 𝔏(𝑞𝑖𝑑)

provided that both variables have been defined during the run of the experiment.

Figure 7.9: Limit-binding experiment for I3PS. The oracles available to A are defined in Figure 7.2 and
Figure 7.3.

ExpBBGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
𝑏 ← AMalIssue,MalRegisterUser,MalSubmitReport,MalPostIncentives,MalCollect (pkRA, pkSP , pkI)

Given that all successful MalIssue/MalCollect and MalRedeem calls produced unique token version
numbers, the experiment returns 1 iff A did successful call MalRedeem for an extracted public
key pk′U resulting in balance𝑤∗ that does not equal the sum of the collected/redeemed values, ie.
𝑤∗ ≠ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒pk′U .

Figure 7.10: Balance-binding experiment for I3PS
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Definition 7.8 (Double-spending detection) Let ExpDSDGI,A be defined as in Figure 7.11. An instantia-
tion GI of our model ensures double-spending detection if there exists a negligible function negl (𝑛 ) such
that for all PPT adversaries A

Pr
[
ExpDSDGI,A (𝑛)

?
= 1

]
≤ negl (𝑛 )

ExpDSDGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP, skSP) ← SetupRA(CRS)
(pkI, skI) ← IGen(CRS)
(pkU, skU) ← UGen(CRS)
𝑏 ← AMalIssue,MalRegisterUser,MalSubmitReport,MalPostIncentives,MalCollect,MalRedeem (pkRA, pkSP , pkI, pkU)

The experiment returns 1 iff A did two successful MalCollect/MalRedeem or MalSubmitReport
calls resulting in two views view0 and view1 including two double-spending tags dstag0 = (𝑠, 𝑧0)
and dstag1 = (𝑠, 𝑧1) and extracted user public keys pk(0)U and pk(1)U (using ExtractUID) such that
at least one of the following conditions is satisfied:

• pk(0)U ≠ pk(1)U or
• IdentDS(pkI, dstag0, dstag1) ≠ (pk

(0)
U , 𝛱 ) or

• IdentDS(pkI, dstag0, dstag1)
?
= (pk(0)U , 𝛱 ) but VerifyGuilt(pkI, pk

(0)
U , 𝛱 )

?
= 0

Figure 7.11: Double-spending detection experiment for I3PS

7.4.8 Verifiable delivery

This property ensures the soundness of the VerifyDelivery algorithm. The ISP should not be able to
falsely convince the querier of the successful delivery of incentives. The adversary can be a collusion
of the SP and ISP together with several users and queriers. However, the queriers are not allowed to
register for the query identity of the challenge report.

Definition 7.9 (Verifiable delivery) An instantiation GI of our model has verifiable delivery, if for all
PPT adversaries A = (A0,A1,A2,A3) and for all (𝑞𝑖𝑑,𝑚) ∈ ℑ ×𝔐 and the game GameVDGI,A as defined
in Figure 7.12, there exists a negligible function negl such that

Pr
[
GameVDGI,A (𝑛, 𝑞𝑖𝑑,𝑚)

?
= 1

]
≤ negl (𝑛 )

7.4.9 Transaction unlinkability

As one of the main security goals of this model is to protect the privacy of the users, we require that
no other party should be able to link transactions originating from the same user. Our definition of
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GameVDGI,A (𝑛, 𝑞𝑖𝑑,𝑚)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP, skSP) ← SetupRA(CRS)
(pkU, skU) ← UGen(CRS)
𝑚𝑎𝑥𝑞𝑖𝑑 := 1
𝔏(𝑞𝑖𝑑) := 1

(𝜏SP , 𝑏U), 𝑏RA) ← RegisterUser

〈
U(pkSP , pkU , skU , 𝑞𝑖𝑑),
RA(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
(
(𝜏V , 𝜏∗SP , 𝑏

′
U ),

(𝑐, 𝑐𝑜𝑚V , state0)

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑, 𝜏SP ,𝑚),

AMalRegisterUser,MalRegisterQ
0 (pkSP , skSP )

〉
if 𝑏 ′U

?
= 0 then

return 0
endif
((regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ), 𝑏RA) ← RegisterQ

〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
(𝔐, state1) ← CollectReports

〈
Q(CRS, pkRA , 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ),

AMalRegisterUser,MalRegisterQ
1 (pkRA , {(𝑐, 𝑐𝑜𝑚V )}, state0)

〉
kmac := getMacKey(𝜏V)
if (𝑚,𝑐𝑜𝑚V , kmac) ∉ 𝔐 then
return 0

endif
𝑞 := 1

(𝑟V , (𝑐𝑜𝑚V , 𝑣, 𝑟V , 𝑞, state2)) ← PostIncentives
〈
Q(CRS, 𝑣, 𝑐𝑜𝑚V , 𝑞),AMalRegisterUser,MalRegisterQ

2 (state1)
〉

(𝑏Q, 𝑏A) ← VerifyDelivery
〈
Q(𝑐𝑜𝑚V , kmac, 𝑟V),A

MalRegisterUser,MalRegisterQ
3 (𝑐𝑜𝑚V , state2)

〉
return (𝑏Q and 𝑞𝑖𝑑 ∉ ℭℑ𝑄 )

Figure 7.12: Verifiable delivery game for I3PS. Hereby, the getMacKey algorithm returns the message
authentication key kmac contained in a bulletin token 𝜏V
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transaction unlinkability is a combination of the privacy notion of BBA+ and the report unlinkability
notion of PEPSICo, similar to the notion used within the interim model.

More precisely, our property demands that no collusion of the RA, the SP, and ISP, as well as users and
queriers, cannot compromise the privacy of an honest user. Moreover, it ensures forward privacy similar
to BBA+. In the privacy notion of BBA+, an adversary compromising a user can use its knowledge only
to link the first transaction directly following the corruption to this user but all subsequent transactions
are unaffected. We demand this for the Collect and Redeem protocols and, in addition, demand that, for
all the query identities the user was registered to prior to his corruption, only the next SubmitReport
call for each query identity can be linked. Therefore, even following a corruption of the user, the
adversary can only link a small fraction of the user’s transaction, limiting the potential impact.

For the definition, there are two security experiments which should be indistinguishable, the real-world
experiment ExpTU-realGI,A and the ideal world experiment ExpTU-idealGI,A (Figure 7.19). In both experiments,
the adversary A plays the role of the SP and ISP and additionally knows the secret key of the RA.
Moreover, A has access to various oracles for the interaction with honest users, which additionally can
be corrupted. In the real world experiments, the user oracles behave in the same way an honest user
would, whereas in the ideal world, the user code is replaced by a user simulatorUSim that does not have
access to the personal user information that should not be disclosed within the interaction. USim does
not have access to the user’s secret key in any case but is allowed to know the user’s public key for
identifying transactions, such as Issue and SubmitReport.

In addition to simulating the protocols, the oracles have to ensure that certain conditions are met, ie.
that users cannot register for the same query identity more than once and that they would not attempt to
submit a report for a query identity they are not registered for. Additional, note that users that rejected
a protocol run in the past (because they detected cheating by A) also reject to participate in further
interactions. To validate these conditions, the oracles make use of the following global variables to store
the corresponding information:

pkU, skU,𝑤U, . . . User specific global variables with the sub- or superscriptU are used to store
the private information of the corresponding userU. An exception is the bit
𝑏U indicating whetherU accepted a protocol run, which is only locally used.

ℑ Set of pkUs which already have a balance token issued
𝔈 Set of pkUs which have been eliminated due to not accepting a protocol run
ℜ Set of tuples (pkU, 𝑞𝑖𝑑) where pkU is already registered for 𝑞𝑖𝑑
𝔖U Set of bulletin tokens 𝜏V corresponding to reports submitted byU
𝔔U Set of (𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP ) forU
𝔔𝑞𝑖𝑑 Set of all report counter tokens 𝜏SP that have been observed by the experiment

during RegisterUser for 𝑞𝑖𝑑 , independent ofU
𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU) Stores the output of last Corrupt (used within report limit mechanism and

modified in HonSubmitReport)
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𝑐𝑜𝑟𝑟𝑢𝑝𝑡I (pkU) Same for Stores the output of last Corrupt (used within the incentive mecha-
nism and is reset after a subsequent MalCollect or MalRedeem call)

𝔖′U Set of bulletin tokens 𝜏 ′V , where the token contains a simulated commitment
and the simulation randomness instead of a real commitment and opening
value

𝔖∗U Set of bulletin tokens 𝜏V , where the token contain a real commitment and
opening value (generated after a corruption of pkU , where pkU was already
registered for the 𝑞𝑖𝑑 the report has been submitted for)

In the experiments, the following oracles are available toA. A formal Definition is given in Figures 7.13
to 7.18.

HonUser
This oracle allows A to create a new user identity for an honest user played by the challenger. A
obtains pkU .

RealHonIssue/SimHonIssue
With this oracle, A can play the Issue protocol with a user identified by pkU . The oracle checks
whether pkU already has been issued a balance token or was eliminated due to rejecting a previous
protocol run before invoking the Issue protocol. The oracle also initializes the user’s balance𝑤U
with 0. In SimHonIssue, the user simulator gets pkU as Issue is identifying, but not skU .

RealHonRegisterUser/SimHonRegisterUser
With this oracle A can have an honest user identified by pkU registering for a new query
identity 𝑞𝑖𝑑 . The oracle validates that pkU has not registered for 𝑞𝑖𝑑 before and has not been
eliminated. Moreover, A is allowed to choose the reporting limit𝑚𝑎𝑥𝑞𝑖𝑑 for 𝑞𝑖𝑑 . Note that as the
RA is played by the adversary, different report limits𝑚𝑎𝑥𝑞𝑖𝑑 may be used for the same 𝑞𝑖𝑑 . In
SimHonRegisterUser the user simulator gets pkU , as RegisterUser is identifying, but not skU .
Additionally, it has to store the counter value 𝑐𝑡𝑟U

𝑞𝑖𝑑
of the user as the actual report counter token

is not stored for this user. However, the oracle maintains a list𝔔𝑞𝑖𝑑 with all report counter tokens
issued for 𝑞𝑖𝑑 .

RealHonSubmitReport/SimHonSubmitReport
Using this oracle,A can have an honest user identified by pkU invoke the SubmitReport protocol
for a 𝑞𝑖𝑑 and𝑚 chosen by A. The oracle validates that pkU is registered for 𝑞𝑖𝑑 , has not been
eliminated and that the report limit has not been exceeded before invoking the protocol. In
RealHonSubmitReport, after a successful run, 𝜏U,𝑞𝑖𝑑

SP is updated and the bulletin token 𝜏V is
remembered for this user. However, in SimHonSubmitReport, the situation is more complicated.
Before the protocol run, the oracle has to check ifU has been corrupted before and if this is the
case, if pkU was already registered for 𝑞𝑖𝑑 when the corruption occurred and no other successful
call to SimHonSubmitReport occurred after the corruption (this is done by removing (𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP )
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from𝔔U stored in 𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU) after a successful call following a corruption). If this was not
the case, then the user simulator is used to invoke SubmitReport, which does not get pkU , skU
orU’s 𝜏SP but gets a report counter token 𝜏∗SP selected randomly from all previously observed
tokens instead. However, ifU has been corrupted and because of this, the report counter token
𝜏SP which will be used in this transaction is already known to A, the oracle runs the real user
code with the information that has been returned by Corrupt. In both cases, the oracle has to store
the bulletin tokens, however, we have to store the tokens for the simulated and non-simulated
case separately as in the simulated case, the bulletin token is independent of the user’s identity
which has to be respected for subsequent corruptions of pkU . Additionally, in both cases, the
oracle has to update the counter value 𝑐𝑡𝑟U

𝑞𝑖𝑑
for the initial verification to work.

RealHonCollect/SimHonCollect
With this oracle, A can have the honest user identified by pkU collect the incentives for a public
bulletin commitment 𝑐𝑜𝑚V . The oracle verifies that 𝑐𝑜𝑚V has indeed been created during an
interaction with pkU before and that an incentive token for pkU has already been issued and
pkU has not been eliminated. In RealHonCollect, the real user code is executed and 𝜏UI and𝑤U
are updated accordingly. In SimHonCollect, if there was at least one previous interaction with
the ISP impersonated by A before (no RealHonIssue, RealHonCollect, RealHonRedeem call), the
interaction is simulated. In this case, the user simulator only obtains 𝑐𝑜𝑚V and the message
authentication key kmac contained in 𝜏V but not pkU or skU or 𝜏V itself. In case the interaction
directly follows a corruption of the pkU , the real user code is executed with the information
returned during this corruption. In both cases, the oracle has to update the user’s balance 𝑤U
accordingly.

RealHonRedeem/SimHonRedeem
This oracle allows A to have the honest user identified by pkU redeem an amount 𝑣 from his
incentive balance𝑤U . The oracle verifies that pkU already has been issued a balance token, 𝑣 does
not exceed the corresponding balance and pkU has not been eliminated. Then, in RealHonRedeem
the user invokes the Redeem protocol and 𝜏UI and𝑤U are updated accordingly. In SimHonRedeem,
we again distinguish based on whether there was no interaction between the ISP andU after the
last Corrupt call for pkU . If there was, then the oracle uses the user simulator to invoke Redeem
which gets the user’s current balance𝑤U but not pkU or skU . If the call was directly preceded by
a corruption of pkU , then the oracle executes the real user code for Redeem with the information
that has been returned by Corrupt.

RealCorrupt/SimCorrupt
A can use this oracle to corrupt the user identified by pkU , thus obtaining all its private in-
formation. In RealCorrupt, this information is directly returned but in SimCorrupt, the balance
tokens 𝜏UI , 𝜏

U,𝑞𝑖𝑑

SP and the bulletin tokens 𝜏V for pkU have to be simulated to coincide with the
interactionsU is supposed to have previously made with A.
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HonUser()

(pkU, skU) ← UGen(CRS)
return pkU

RealHonIssue(pkU)

if pkU ∉ ℑ and pkU ∉ 𝔈 then

((𝜏UI , 𝑏U), 𝑏I) ← Issue
〈
U(pkI, pkU, skU),A(pkI, skI, pkU)

〉
if 𝑏U

?
= 1 then

ℑ← ℑ ∪ {pkU}
𝑤U := 0

else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

RealHonRegisterUser(pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

if {(pkU, 𝑞𝑖𝑑)} ∉ ℜ and pkU ∉ 𝔈 then
if 𝑚𝑎𝑥𝑞𝑖𝑑 > 0 then

((𝜏U,𝑞𝑖𝑑

SP , 𝑏U), (𝑏RA)) ← RegisterUser′

〈
U(pkSP , pkU , skU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 ),
A(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
if 𝑏U

?
= 1 then

ℜ := ℜ ∪ {(pkU, 𝑞𝑖𝑑)}
else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

RealHonSubmitReport(pkU, 𝑞𝑖𝑑,𝑚)

if (pkU, 𝑞𝑖𝑑) ∈ ℜ and pkU ∉ 𝔈 and currentCTR(𝜏U,𝑞𝑖𝑑

SP ) > 0 then(
(𝜏V , 𝜏∗SP , 𝑏U ),
(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑, 𝜏

U,𝑞𝑖𝑑

SP ,𝑚),

A(pkSP , skSP )

〉
if 𝑏U

?
= 1 then

𝜏
U,𝑞𝑖𝑑

SP := 𝜏∗SP
𝔖U := 𝔖U ∪ {𝜏V }

else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

Figure 7.13: Transaction unlinkability oracles, part 1. In RealHonRegisterUser, RegisterUser′ is equiv-
alent to RegisterUser apart fromU additionally verifying that the additional input𝑚𝑎𝑥𝑞𝑖𝑑
is consistent with the report limit send by A during the protocol
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RealHonCollect(pkU, 𝑐𝑜𝑚V)

𝜏V := select(𝔖U, 𝑐𝑜𝑚V)
if pkU ∈ ℑ and pkU ∉ 𝔈 and 𝜏V ≠ ⊥ then

((𝜏∗I, 𝑏U,𝑤
∗), (𝑡mac, dstag, hid, 𝑏I)) ← Collect

〈
U(pkI , pkU , skU , 𝜏UI ,𝑤U , 𝜏V ),
A(pkI , skI , 𝑐𝑜𝑚V , 𝑟V , 𝑣)

〉
if 𝑏U

?
= 1 then

𝜏UI := 𝜏∗I
𝑤U := 𝑤∗

else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

RealHonRedeem(pkU, 𝑣)

if pkU ∈ ℑ and pkU ∉ 𝔈 and 𝑣 ≤ 𝑤U then

((𝜏 ′I, 𝑏U,𝑤
′), (dstag, hid, 𝑏I)) ← Redeem

〈
U(pkI, pkU, skU, 𝜏UI ,𝑤U, 𝑣),A(pkI, skI,𝑤U, 𝑣)

〉
if 𝑏U

?
= 1 then

𝜏UI := 𝜏 ′I
𝑤U := 𝑤 ′

else
𝔈 := 𝔈 ∪ {pkU}

endif

RealCorrupt(pkU)

𝔔U := ∅

for (pk∗U, 𝑞𝑖𝑑) ∈ ℜ where pk∗U
?
= pkU do

𝔔U := 𝔔U ∪ {(𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP )}
endfor

return (skU,𝑤U, 𝜏UI ,𝔔U,𝔖U)

Figure 7.14: Transaction unlinkability oracles, part 2. Hereby, the select algorithm used within
RealHonCollect returns the first bulletin token 𝜏V from the set of bulletin tokens spec-
ified in the first parameter which contains the bulletin commitment 𝑐𝑜𝑚V specified in the
second parameter. If no such element exists, the algorithm returns ⊥
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SimHonIssue(pkU)

if pkU ∉ ℑ and pkU ∉ 𝔈 then

((𝜏UI , 𝑏U), 𝑏I) ← Issue
〈
USim (tdSim, pkI, pkU),A(pkI, skI, pkU)

〉
if 𝑏U

?
= 1 then

ℑ← ℑ ∪ {pkU}
𝑤U := 0
𝑐𝑜𝑟𝑟𝑢𝑝𝑡I := ⊥

else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

SimHonRegisterUser(pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

if {(pkU, 𝑞𝑖𝑑)} ∉ ℜ and pkU ∉ 𝔈 then
if 𝑚𝑎𝑥𝑞𝑖𝑑 > 0 then(
(𝜏SP , 𝑏U ),
(𝑏RA , 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡RA )

)
← RegisterUser′

〈
USim (tdSim, pkSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 ),
A(pkRA , skRA , pkSP , skSP , pkU , 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
if 𝑏U

?
= 1 then

ℜ := ℜ ∪ {(pkU, 𝑞𝑖𝑑)}
𝑐𝑡𝑟U

𝑞𝑖𝑑
:=𝑚𝑎𝑥𝑞𝑖𝑑

𝔔𝑞𝑖𝑑 := 𝔔𝑞𝑖𝑑 ∪ {𝜏SP}
else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

Figure 7.15: Transaction unlinkability oracles, part 3. In SimHonRegisterUser, RegisterUser′ is equiv-
alent to RegisterUser apart from USim additionally verifying that the additional input
𝑚𝑎𝑥𝑞𝑖𝑑 is consistent with the report limit send by A during the protocol
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SimHonSubmitReport(pkU, 𝑞𝑖𝑑,𝑚)

if (pkU, 𝑞𝑖𝑑) ∈ ℜ and pkU ∉ 𝔈 and 𝑐𝑡𝑟U
𝑞𝑖𝑑

> 0 then

if 𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU)
?
= ⊥ or ((skU,𝑤U, 𝜏UI ,𝔔U,𝔖U) := 𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU); select

′(𝔔U, 𝑞𝑖𝑑)
?
= ⊥) then

𝜏∗SP
$←− 𝔔𝑞𝑖𝑑(

(𝜏 ′V , 𝜏
∗∗
SP𝑏U ),

(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
USim (tdSim, pkRA , pkSP , 𝑞𝑖𝑑, 𝜏∗SP ,𝑚),
A(pkSP , skSP )

〉
if 𝑏U

?
= 1 then

𝔖′U := 𝔖′U ∪ {𝜏
′
V }

endif
else

(skU,𝑤U, 𝜏UI ,𝔔U,𝔖U) := 𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU)

𝜏
U,𝑞𝑖𝑑

SP := select′(𝔔U, 𝑞𝑖𝑑)(
(𝜏V , 𝜏∗SP , 𝑏U ),
(𝑐, 𝑐𝑜𝑚V , dstag, hid, 𝑏I )

)
← SubmitReport

〈
U(pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑, 𝜏

U,𝑞𝑖𝑑

SP ,𝑚),

A(pkSP , skSP )

〉
if 𝑏U

?
= 1 then

𝔖∗U := 𝔖∗U ∪ {𝜏V }

𝔔 ′U := 𝔔U\{𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP }
𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU) := (skU,𝑤U, 𝜏UI ,𝔔

′
U,𝔖U)

endif
endif

if 𝑏U
?
= 1 then

𝑐𝑡𝑟U
𝑞𝑖𝑑

:= 𝑐𝑡𝑟U
𝑞𝑖𝑑
− 1

else
𝔈 := 𝔈 ∪ {pkU}

endif
endif

Figure 7.16: Transaction unlinkability oracles, part 4. Hereby, select′(𝔔U, 𝑞𝑖𝑑) returns 𝜏U,𝑞𝑖𝑑

SP where
(𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP ) ∈ 𝔔U or ⊥ if no such tuple exists.
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SimHonCollect(pkU, 𝑐𝑜𝑚V)

𝜏 ′V := select(𝔖′U ∪𝔖U, 𝑐𝑜𝑚V)
if pkU ∈ ℑ and pkU ∉ 𝔈 and 𝜏 ′V ≠ ⊥ then

if 𝑐𝑜𝑟𝑟𝑢𝑝𝑡I
?
= ⊥ then

kmac := getMacKey(𝜏 ′V)

((𝜏∗I, 𝑏U,𝑤
∗), (𝑡mac, dstag, hid, 𝑏I)) ← Collect

〈
USim (tdSim, pkI , 𝑐𝑜𝑚V , kmac),
A(pkI , skI , 𝑐𝑜𝑚V , 𝑟V , 𝑣)

〉
if 𝑏U

?
= 1 then

𝑤U := 𝑤∗

endif
else

(skU,𝑤U, 𝜏UI ,𝔔U,𝔖U) := 𝑐𝑜𝑟𝑟𝑢𝑝𝑡I (pkU)
𝜏V := select(𝔖U, 𝑐𝑜𝑚V)

((𝜏∗I, 𝑏U,𝑤
∗), (𝑡mac, dstag, hid, 𝑏I)) ← Collect

〈
U(pkI , pkU , skU , 𝜏UI ,𝑤U , 𝜏V ),
A(pkI , skI , 𝑐𝑜𝑚V , 𝑟V , 𝑣)

〉
if 𝑏U

?
= 1 then

𝑤U := 𝑤U +𝑤∗

𝑐𝑜𝑟𝑟𝑢𝑝𝑡I := ⊥
endif

endif

if 𝑏U
?
= 0 then

𝔈 := 𝔈 ∪ {pkU}
endif

endif

Figure 7.17: Transaction unlinkability oracles, part 5. Hereby, the select algorithm used within
RealHonCollect returns the first bulletin token 𝜏V from the set of bulletin tokens spec-
ified in the first parameter which contains the bulletin commitment 𝑐𝑜𝑚V specified in the
second parameter. If no such element exists, the algorithm returns ⊥. Additionally, the
getMacKey algorithm returns the message authentication key kmac contained in a bulletin
token 𝜏V . 𝜏∗I remains unused.
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SimHonRedeem(pkU, 𝑣)

if pkU ∈ ℑ and pkU ∉ 𝔈 and 𝑣 ≤ 𝑤U then

if 𝑐𝑜𝑟𝑟𝑢𝑝𝑡I
?
= ⊥ then

((𝜏∗I, 𝑏U,𝑤
′), (dstag, hid, 𝑏I)) ← Redeem

〈
USim (tdSim, pkI,𝑤U, 𝑣),A(pkI, skI,𝑤U, 𝑣)

〉
else

(skU,𝑤U, 𝜏UI ,𝔔U,𝔖U) := 𝑐𝑜𝑟𝑟𝑢𝑝𝑡I (pkU)

((𝜏∗I, 𝑏U,𝑤
′), (dstag, hid, 𝑏I)) ← Redeem

〈
U(pkI, pkU, skU, 𝜏UI ,𝑤U, 𝑣),A(pkI, skI,𝑤U, 𝑣)

〉
endif

if 𝑏U
?
= 1 then

𝑤U := 𝑤U − 𝑣
𝑐𝑜𝑟𝑟𝑢𝑝𝑡I := ⊥

else
𝔈 := 𝔈 ∪ {pkU}

endif

SimCorrupt(pkU)

(𝜏UI ,𝔔U,𝔖U) ← Sim(tdSim, pkU, skU,𝑤U,ℜ,𝔖′U,𝔖
∗
U)

𝑐𝑜𝑟𝑟𝑢𝑝𝑡SP (pkU) := (skU,𝑤U, 𝜏UI ,𝔔U,𝔖U)
𝑐𝑜𝑟𝑟𝑢𝑝𝑡I (pkU) := (skU,𝑤U, 𝜏UI ,𝔔U,𝔖U)
return (skU,𝑤U, 𝜏UI ,𝔔U,𝔖U)

Figure 7.18: Transaction unlinkability oracles, part 6. In the SimHonCollect oracle, 𝜏∗I remains unused.

ExpTU-realGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkI, pkRA, pkSP , state0) ← A0 (CRS)

𝑏 ← AHonUser,RealHonIssue,RealHonRegisterUser,RealHonSubmitReport,RealHonCollect,RealHonRedeem,RealCorrupt
1 (𝑠𝑡𝑎𝑡𝑒0)

ExpTU-idealGI,A (n)

(CRS, tdSim) ← SimSetup(1𝑛)
(pkI, state0) ← A0 (CRS)

𝑏 ← AHonUser,SimHonIssue,SimHonRegisterUser,SimHonSubmitReport,SimHonCollect,SimHonRedeem,SimCorrupt
1 (𝑠𝑡𝑎𝑡𝑒0)

Figure 7.19: Real and ideal world transaction unlinkability experiments. The oracles available to A
within the experiments are defined in Figures 7.13 to 7.18
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Definition 7.10 (Transaction unlinkability) LetExpTU-realGI,A andExpTU-idealGI,A be defined as in Figure 7.19.
An instantiation GI of I3PS ensures transaction unlinkability if for all adversaries A := (A0,A1), there
exists a negligible function negl (𝑛 ) such that���Pr [ExpTU-realGI,A (𝑛) ?

= 1
]
− Pr

[
ExpTU-idealGI,A (𝑛) ?

= 1
] ��� ≤ negl (𝑛 )

7.4.10 False accusation protection

This property demands that an honest user cannot be falsely accused of double-spending by an adversary
that may collude with the RA, SP, and ISP.

In the security experiment, an honest user is created and the same user oracles as specified for the real
world experiment of transaction unlinkability above (Figures 7.13 and 7.14) are available to the adversary
A to interact with the user. Note that A does not have access to the HonUser and RealCorrupt oracles.
Afterward, the adversary has to output a valid proof of guilt for this user.

ExpFACPGI,A (𝑛)

(CRS, td) ← Setup(1𝑛)
(pkRA, skRA, pkSP , skSP) ← SetupRA(CRS)
(pkI, state0) ← A0 (CRS, pkRA, skRA, pkSP, skSP)
(pkU, skU) ← UGen(CRS)

𝛱 ← ARealHonIssue,RealHonRegisterUser,RealHonSubmitReport,RealHonCollect,RealHonRedeem
1 (pkRA, pkSP , pkI, pkU, 𝑠𝑡𝑎𝑡𝑒0)

return (VerifyGuilt(pkI, pkU, 𝛱 ) or VerifyGuilt(pkSP, pkU, 𝛱 ))

Figure 7.20: False accusation protection experiment for I3PS. The oracles available to A are defined in
Figure 7.13 and Figure 7.14. They can only be called for pkU , as A does not have access to
the HonUser oracle to create new user identities.

Definition 7.11 (False accusation protection) Let ExpFACPGI,A be defined as in Figure 7.20. An instan-
tiation GI of our model ensures false accusation protection if for all PPT adversaries A, there exists a
negligible function negl such that

Pr
[
ExpFACPGI,A (𝑛)

?
= 1

]
≤ negl (𝑛 )

7.5 Instantiation

In this chapter, we give an instantiation for the I3PS model. We make use of PEPSICo in a white box
manner and two adapted versions of BBA+, one for the incentive mechanism similar to the interim
model and one for the report limitation mechanism.

In the following, we first specify the building blocks used within our instantiation, then discuss how
some of the core mechanisms are designed and lastly, give an instantiation for all the algorithms and
protocols defined by the model.
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7.5.1 Building blocks

MAC

Within the bulletin mechanism, we a mac to achieve verifiable delivery. Therefore, we make use of a
EUF-CMA secure MAC (Gen, Mac, Verify) denoted by𝑀 .

Group setup

Let SetupGrp generate the description 𝑔𝑝 of a bilinear group for which the SXDH problem is assumed
to be hard and the 𝑞-DDHI assumption holds over 𝐺1.

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)

All the other building blocks used by the incentive mechanism and report limitation mechanism make
use of SetupGrp as their common group setup algorithm.

NIZK

We make use of 𝐹 (1)𝑔𝑝 -, 𝐹 (2)𝑔𝑝 -, 𝐹 (3)𝑔𝑝 -, 𝐹 (4)𝑔𝑝 -, and 𝐹 (5)𝑔𝑝 -extractable NIZK proof systems, denoted by 𝑃1, 𝑃2, 𝑃3,
𝑃4 and 𝑃5, respectively. 𝐹 (1)𝑔𝑝 , 𝐹 (2)𝑔𝑝 , 𝐹 (3)𝑔𝑝 , 𝐹 (4)𝑔𝑝 , and 𝐹 (5)𝑔𝑝 behave as the identity function with respect to
group elements and map elements from ℤ𝑝 either to𝐺1 or 𝐺2 depending on whether these are used as
exponents of a 𝐺1 or 𝐺2 element within the language. The proof systems have a shared setup algorithm
CRSpok ← SetupPoK(𝑔𝑝) but we make use of two different CRS. One shared between 𝑃1, 𝑃2 and 𝑃3,
the proof systems used within the incentive mechanism and a separate one for 𝑃4 and 𝑃5 which are
used within the report limitation mechanism (CRSpokI and CRSpokSP , respectively). We make use of an
SXDH-based instantiation of Groth-Sahai proofs [GS08].

Homomorphic commitments

We use three equivocable, additively homomorphic commitment schemes 𝐶I , 𝐶SP and 𝐶V .
𝐶I is used within the incentive mechanism. The message space of the scheme is ℤ4

𝑝 and the com-
mitment space 𝐺2. Decommitment values are from 𝐺1. Furthermore, the commitment is 𝐹 I𝑔𝑝-binding,
where 𝐹 I𝑔𝑝 is a function mapping𝑚 := (𝑚0,𝑚1,𝑚2,𝑚3) to𝑀 := (𝑔𝑚0

1 , 𝑔
𝑚1
1 , 𝑔

𝑚2
1 , 𝑔

𝑚3
1 ) and, thus, 𝐺4

1 is the
implicit message space.
𝐶SP is used within the report limitation mechanism but has the same properties as 𝐶I . We call its

binding function 𝐹 SP𝑔𝑝 , but it is equivalent to 𝐹 I𝑔𝑝 .
𝐶V is used within the bulletin mechanism. Its message space is ℤ𝑝 and the commitment space 𝐺2.

Decommitment values are from 𝐺1. It is 𝐹V𝑔𝑝 -binding, where 𝐹V𝑔𝑝 is a function mapping𝑚 to 𝑀 := 𝑔𝑚1 .
Thus, it implicit message space is 𝐺1.

The verification equations have to be compatible with the proof system, as users will have to prove
that they can open commitments to specific values. Therefore, the commitment scheme from Abe et al.
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[Abe+11] is used. As CAdd and DAdd coincide with the multiplication of commitments and decommitment
values, respectively, these operations are denoted by ’·’.

Signatures

We use signatures on commitments to attest the validity of the corresponding balance and report counter
tokens. Moreover, users required to prove their knowledge of a valid signature without revealing it. We,
therefore, use two EUF-CMA secure signature schemes 𝑆I and 𝑆SP for messages in 𝐺2 and 𝐺1 ×𝐺2,
respectively, which have to be compatible with the proof systems. As a concrete instantiation, the
structure-preserving signature scheme from [Abe+11] is used. In this scheme, the signatures are in
𝐺2
2 ×𝐺1.

PKE

We use a IND-CPA secure PKE scheme 𝐸𝜏 to generate the hidden user ID hid. Its message space is 𝐺1

and it has to be compatible with our proof systems. We use the ElGamal encryption scheme [ElG84].

PEPSICo

We extend the generic PEPSICo instantiation given in [GMP14]. It is based upon an IBE scheme
𝐸PI := (Setup, Extract, Enc, Dec) and a PRF {0,1}𝑛 × {0,1}∗ → {0,1}𝑛 . We replace this PRF with a VRF
𝐹 = (SetupGrp, SetupVRF, Gen, Eval, Prove, Verify) in the same bilinear group setting as our other
building blocks where the underlying PRF is of the form ℤ𝑝 ×ℤ𝑝 → 𝐺1. This restricts the query identity
space to ℤ𝑝 , but has the advantage that the VRF is compatible with the other building blocks we use.

The complete construction of the extended scheme PI is given in Figure 7.21. We include a SetupGrp
and SetupVRF algorithm, equal to their counterparts in 𝐹 to generate the CRS for the VRF. In addition,
we compute the VRF key pair (pk𝐹 , sk𝐹 ) in PI.Setup and include include them in the keys of the RA.
We further extend PI.RegisterMN to output the proof of correctness 𝜋𝑞𝑖𝑑 together with the VRF image
regMN𝑞𝑖𝑑 of 𝑞𝑖𝑑 . To be able to verify that regMN𝑞𝑖𝑑 has been computed honestly by the RA we include
a Verify algorithm that executes 𝐹 .Verify. Note that the node privacy, query privacy and transaction
unlinkability of PI still hold as a VRF is pseudorandom. However, in the node privacy experiment,
CorruptMN outputs the proof 𝜋𝑞𝑖𝑑 in addition to regMN𝑞𝑖𝑑 .

For the IBE scheme, we need to choose the message length large enough for the report data and a
MAC key to be contained within a single message, eg. {0,1}2𝑛 . Note that this can also be achieved by
using hybrid encryption, that is, using the IBE scheme to encrypt the key of a symmetric encryption
scheme and encrypting the message symmetrically under this key. A possible instantiation of the IBE
scheme would be the IND-CCA secure variant of Boneh and Franklin [BF01]. For the VRF, we use the
construction from [Bel+09] which is based on the 𝑞-DDHI assumption and Groth-Sahai proofs.



102 7 Advanced model

SetupGrp(1𝑛)

𝑔𝑝 ← 𝐹 .SetupGrp(1𝑛)
return 𝑔𝑝

SetupVRF(𝑔𝑝)

CRS← 𝐹 .SetupVRF(𝑔𝑝)
return CRS

Setup(CRS)

(mpk,msk) ← 𝐹PI.Setup(1𝑛)
(pk𝐹 , sk𝐹 ) ← 𝐹 .Gen(CRS)
pkRA := (mpk, pk𝐹 )
skRA := (msk, sk𝐹 )
return (pkRA, skRA)

RegisterMN(pkRA, skRA, 𝑞𝑖𝑑)

(𝑇𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑 ) ← 𝐹 .Prove(CRSpokPI , sk𝐹 , 𝑞𝑖𝑑)
regMN𝑞𝑖𝑑 := 𝑇𝑞𝑖𝑑
return (regMN𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑 )

Verify(pkRA, 𝑞𝑖𝑑, regMN𝑞𝑖𝑑 , 𝜋)

𝑏 ← 𝐹 .Verify(pk𝐹 , 𝑞𝑖𝑑, regMN)
return 𝑏

RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)

sk𝑖𝑑 ← 𝐸PI.Extract(mpk,msk, 𝑞𝑖𝑑)
𝑇𝑞𝑖𝑑 ← 𝐹 .Eval(CRSpokPI , sk𝐹 , 𝑞𝑖𝑑)
regQ𝑞𝑖𝑑 := (sk𝑖𝑑 ,𝑇𝑞𝑖𝑑 )
return regQ𝑞𝑖𝑑

ExecuteQuery(pkRA, 𝑐, 𝑠𝑡𝑞𝑖𝑑 )

(𝑇, 𝑐1) := 𝑐

if 𝑇 ?
= 𝑠𝑡𝑞𝑖𝑑 then

return 𝑐
else return ⊥
endif

ReportData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)

𝑐1 := 𝐸PI.Enc(mpk, 𝑞𝑖𝑑,𝑚)
𝑐 := (𝑇𝑞𝑖𝑑 , 𝑐1)
return 𝑐

SubscribeQuery(pkRA, regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)

𝑠𝑡𝑞𝑖𝑑 := 𝑇𝑞𝑖𝑑
return 𝑠𝑡𝑞𝑖𝑑

DecodeData(pkRA, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)

(𝑇, 𝑐1) := 𝑐
𝑚 ← 𝐸PI.Dec(mpk, sk𝑞𝑖𝑑 , 𝑐1)
return𝑚

Figure 7.21: Generic instantiation of PEPSICo extended with a VRF. In ReportData, 𝑞𝑖𝑑 has to be
interpreted as a bitstring
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7.5.2 Used mechanisms

Incentive mechanism

As in the interim model, we use BBA+ as our incentive mechanism. During the Issue protocol, users are
issued a balance token of the form 𝜏I = (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1), Hereby, 𝑐𝑜𝑚 ← 𝐶I .Com(CRSI, (𝑠,𝑤, skU, 𝑢1))
is a commitment to the token’s version number 𝑠 , he token’s balance 𝑤 , the user’s secret key skU
and the user randomness 𝑢1. Moreover, the token contains the commitment value 𝑑 required to open
the commitment and a signature 𝜎 ← 𝑆I .Sign(skI, 𝑐𝑜𝑚) which is generated by the ISP and attests
the validity of the token. With each Collect and Redeem protocol run, the user obtains a new token
containing the modified balance.

Using the zero-knowledge proof systems 𝑃1, 𝑃2 and 𝑃3, a user can prove to the 𝐼𝑆𝑃 that the commit-
ment 𝑐𝑜𝑚 is of the correct for without revealing secret information. Moreover, due to the homomorphism
of the commitments, the ISP can modify the balance contained within the commitment without knowing
its content. The user, however, can validate that the commitment has been modified correctly.

Report limitation mechanism

For the report limitation mechanism, we use a modified version of BBA+. Instead of an incentive balance
𝑤 , the commitment within a report counter token contains a counter 𝑐𝑡𝑟 . Initially, 𝑐𝑡𝑟 is the maximum
number of data reports𝑚𝑎𝑥𝑞𝑖𝑑 allowed to be submitted for 𝑞𝑖𝑑 . This number is decreased with every
submitted report and is required to be larger than 0 to submit another report. The modified token is of
the form 𝜏SP = (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1, regMN𝑞𝑖𝑑 , 𝑐𝑡𝑟 ) where 𝑐𝑜𝑚 ← 𝐶SP .Com(CRScomV , (𝑠, 𝑐𝑡𝑟, skU, 𝑢1)). To
bind the report counter token to 𝑞𝑖𝑑 , the corresponding mobile node registration value regMN𝑞𝑖𝑑 is
signed together with the commitment, ie. 𝜎 ← 𝑆SP .Sign(skSP, regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚). The signature key
pair (pkSP, skSP), which is required to generate and verify 𝜎 , is shared by the RA and the SP as both
parties need to be able to sign commitments.

Double-spending detection mechanism

The same double-spending detection mechanism is used in both, the incentive and the report counter
mechanism. Each token is associated with a specific token version number 𝑠 which is revealed during
SubmitReport, Collect and Redeem protocol runs. Moreover, the user has to reveal a value 𝑡 which
is of the form 𝑡 = skU𝑢2 + 𝑢1, whereby skU is the user’s secret key, 𝑢2 is a random value supplied
by the SP or ISP and 𝑢1 is the user randomness contained within the commitment. As long as each
token is only used once, 𝑡 looks completely random to the SP or ISP, however, if double-spending is
committed, that is, an old token is used within a transaction, the same token version number 𝑠0 = 𝑠1
and user randomness 𝑢1 has to be used during the protocol run, but the random value from the SP or
ISP differs with overwhelming probability (𝑢2 ≠ 𝑢 ′2). Therefore, two different values 𝑡 = skU𝑢2 + 𝑢1 and
𝑡 ′ = skU𝑢

′
2 + 𝑢1 are obtained. As 𝑢2 and 𝑢 ′2 are known, skU can be extracted which proves that the user

identified by pkU has committed double-spending.
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Trapdoor-linkability

Within each SubmitReport, Collect and Redeem protocol run, a hidden user ID ℎ𝑖𝑑 is revealed to the
SP or ISP. Hereby, ℎ𝑖𝑑 = 𝐸𝜏 .Enc(pk𝜏 , pkU) is an encryption of the user’s public key pkU and is proven
to contain the correct public key during the zero-knowledge proof used within the incentive or report
limitation mechanism. The public encryption key pk𝜏 is contained in the CRS and the private encryption
key sk𝜏 is the trapdoor 𝑡𝑑 that allows to link transactions.

Bulletin mechanism

During SubmitReport, the user uses𝐶V to compute a commitment 𝑐𝑜𝑚V on his secret key skU , which is
sent to the SP. During the NIZK proof 𝑃4 used for the report limitation mechanism, the user additionally
proves that 𝑐𝑜𝑚V can be opened to the same pkU as contained within the report counter token. The
user stores 𝑐𝑜𝑚V and the corresponding decommitment value 𝑑V . The SP passes 𝑐𝑜𝑚V on to the
querier, who is then able to post incentives for 𝑐𝑜𝑚V . During the NIZK proof 𝑃2, which is used to collect
incentives, the user proves that 𝑐𝑜𝑚V can be opened to the same pkU as contained within his balance
token. This ensures that incentives can only be collected by the same user that submitted the report.

Delivery verification

To enable the querier to verify that posted incentives have indeed been delivered correctly, during
SubmitReport, the user includes a newly generated MAC key 𝑘mac in the plaintext for the PEPSICo
report. Therefore, only authorized queriers can obtain 𝑘mac. The user remembers 𝑘mac together with
the bulletin commitment 𝑐𝑜𝑚V . As there might be multiple queriers and, therefore, multiple incentives
posted for 𝑐𝑜𝑚V , an additional value 𝑟V , randomly chosen by the querier, is added to each incentive
post. The user computes 𝑡mac ← 𝑀.Mac(𝑘mac, 𝑐𝑜𝑚V ∥𝑟V) and sends it to the SP. The SP can then use
𝑡mac to proof to the querier that the incentives have been submitted successfully. Hereby, the message
𝑐𝑜𝑚V ∥𝑟V is already known to the querier. Hereby, 𝑟V ensures that the proof cannot be reused by the
SP for other incentive posts for the same 𝑐𝑜𝑚V .

7.5.3 Setup algorithms

Setup

The Setup algorithm given in Figure 7.22 generates the CRS of the system. It has the form CRS :=
(𝑔𝑝,CRScomI ,CRScomSP ,CRScomV , pk𝜏 ,CRSpokI ,CRSpokSP ) where 𝑔𝑝 are the group parameters defining
the bilinear group used in the commitments and Groth-Sahai proofs. CRScomI , CRScomSP and CRScomV
are the CRS’s for the commitment schemes used in the incentive mechanism, the report limitation
mechanism and the bulletin mechanism, respectively. Furthermore, CRSpokI and CRSpokSP are the
CRS’s for the proof systems used within the incentive mechanism and report limitation mechanism,
respectively. The trapdoor td is the secret decryption key for the encryption scheme used in both, the
incentive and the report limitation mechanism.
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Setup(1𝑛)

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
CRScomI ← 𝐶I .Gen(𝑔𝑝)
CRScomSP ← 𝐶SP .Gen(𝑔𝑝)
CRScomV ← 𝐶V .Gen(𝑔𝑝)
(sk𝜏 , pk𝜏 ) ← 𝐸𝜏 .Gen(𝑔𝑝)
CRSpokI ← SetupPoK(𝑔𝑝)
CRSpokSP ← SetupPoK(𝑔𝑝)
CRSpokPI ← PI.SetupVRF(𝑔𝑝)
CRS := (𝑔𝑝,CRScomI ,CRScomSP ,CRScomV ,

pk𝜏 ,CRSpokI ,CRSpokSP ,CRSpokPI )
td := sk𝜏
return (CRS, td)

SetupRA(CRS)

(pkRA, skRA) ← PI.Setup(CRS)
(pkSig, skSig) ← 𝑆.Gen(CRS)
(pkSP , skSP) := ((CRS, pkSig), skSig)
return (pkRA, skRA, pkSP, skSP)

Figure 7.22: Setup and SetupRA algorithm

IGen(CRS)

(pkSig, skSig) ← 𝑆.Gen(CRS)
(pkI, skI) := ((CRS, pkSig), skSig)
return (pkI, skI)

UGen(CRS)

𝑦 ← ℤ𝑝

(pkU, skU) := (𝑔
𝑦

1 , 𝑦)
return (pkU, skU)

Figure 7.23: IGen and UGen algorithm

SetupRA

The SetupRA algorithm generates (pkRA, skRA), the secret and private key pair of the RA as well as
(pkSP, skSP), the key pair it shares with the SP. The first one is used to generate mobile node and
querier registration values, the second is the signature key that is used to sign the report counter tokens
within the report limitation mechanism. Hereby, pkSP contains the CRS.

IGen

The issuer key generation algorithm IGen (Figure 7.23) generates a signature key pair (pkI, skI). With
skI , the ISP signs the commitments within the balance tokens to attest their validity and with pkI , the
signatures can be verified. In addition, pkI contains the CRS.

UGen

The user key generation algorithm UGen (Figure 7.23) generates the user’s public key pkU and private
key skU used during the protocols. Hereby, the public key is the 𝐺1 element corresponding to skU .
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7.5.4 User protocols

Issue

With the balance token issuing protocol Issue (Figure 7.24), a user identified by pkU can obtain an
initial balance token, which is required to collect or redeem incentive points. We use the Issue protocol
from BBA+. First, the user generates a 𝐶I commitment 𝑐𝑜𝑚′ to the balance 0 and his private key skU ,
together with some random values 𝑠 ′ and 𝑢1. He then sends the commitment to the ISP and proofs that
it contains the correct balance and the skU corresponding to the pkU which the user used to identify
himself towards the ISP. The ISP verifies the proof, and if it is valid, uses the homomorphism of 𝐶I to
add a random share to 𝑠 ′ to ensure the token version number 𝑠 = 𝑠 ′ + 𝑠 ′′ is random even if one of the
two parties is cheating. It then signs the resulting commitment 𝑐𝑜𝑚. The user computes his balance
token 𝜏I from the values supplied by the ISP and checks if it is indeed a valid token linked to his user
ID and with the balance 0 before he outputs the token.

Issue
〈
U(pkI, pkU, skU),I(pkI, skI, pkU)

〉
U (pkSP , pkU, skU) I (pkI, skI, pkU)
𝑠 ′, 𝑢1 ← ℤ𝑝

(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶I .Com(CRScomI , (𝑠
′, 0, skU , 𝑢1))

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU )

𝑤𝑖𝑡 ← (𝑔skU2 , 𝑔𝑠
′
1 , 𝑔

𝑢1
1 , 𝑑

′)

𝜋 ← 𝑃1.Prove(CRSpokI , 𝑠𝑡𝑚,𝑤𝑖𝑡)
𝑐𝑜𝑚′, 𝜋

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU )

if 𝑃1.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return 0
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .𝐶𝑜𝑚(CRScomI , (𝑠
′′, 0, 0, 0))

𝑐𝑜𝑚 := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝑐𝑜𝑚,𝑑 ′′, 𝜎, 𝑠 ′′ 𝜎 ← 𝑆.Sign(skI, 𝑐𝑜𝑚)

𝑠 := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 := 𝑑 ′ · 𝑑 ′′

𝜏I := (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1)

if UVerI (pkI , pkU , skU , 𝜏I , 0)
?
= 0 then

return (⊥, 0)
endif

return (𝜏I, 1) return 1

Figure 7.24: Issue protocol. The language for 𝑃1 is defined in Figure 7.25 and the UVerI algorithm in
Figure 7.26
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𝐿
(1)
pkI

:=


(𝑐𝑜𝑚′, pkU)

�����������
∃𝑆𝐾𝑈 ∈ 𝐺2;
𝑆 ′,𝑈1, 𝑑

′ ∈ 𝐺1 :

𝐶.Open(CRScomI , 𝑐𝑜𝑚
′, 𝑑 ′, (𝑆 ′, 1, pkU,𝑈1)

?
= 1

𝑒 (pkU, 𝑔1)
?
= 𝑒 (𝑔1, 𝑆𝐾𝑈 )


Figure 7.25: Language for 𝑃1 (used within Issue)

UVerI (pkI, pkU, skU, 𝜏I,𝑤)

(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1) := 𝜏I
if pkU

?
= 𝑔

skU
1 ∧𝐶I .Open(CRScomI , 𝑐𝑜𝑚,𝑑, (𝑔

𝑠
1, 𝑔

𝑤
1 , pkU, 𝑔

𝑢1
1 ))

?
= 1 ∧ 𝑆.Verify(pkI, 𝑐𝑜𝑚, 𝜎)

?
= 1 then

return 1
else
return 0

endif

Figure 7.26: UVerI algorithm

RegisterUser

The RegisterUser protocol (Figure 7.27) allows a user to obtain all the report counter token 𝜏SP
necessary elements to submit reports for a query identity 𝑞𝑖𝑑 . The RA controls who can register for a
query identity and should ensure that no user can register multiple times for the same query identity.
The protocol combines the mobile node registration from PEPSICo and a modified version of the

issue protocol from BBA+. In addition to the protocol, the RA must make sure that no user can register
multiple times for the same query identity. In the protocol, the RA sends the report limit𝑚𝑎𝑥𝑞𝑖𝑑 , the
maximum number of reports that users are allowed to submit for this query identity, to the user. The
user generates a commitment 𝑐𝑜𝑚′ on 𝑚𝑎𝑥𝑞𝑖𝑑 , his secret key skU and some additional randomness
required for the double-spending detection. He proofs in zero-knowledge to the registration authority
that the commitment contains the correct values (cf. Figure 7.28). The RA adds a random share to
the token version number 𝑠 ′ contained in 𝑐𝑜𝑚′, resulting in a new commitment 𝑐𝑜𝑚, and computes
the mobile node registration value regMN𝑞𝑖𝑑 for 𝑞𝑖𝑑 as well as a proof 𝜋𝑞𝑖𝑑 that regMN𝑞𝑖𝑑 has been
computed correctly. It then signs the 𝑐𝑜𝑚 together with regMN𝑞𝑖𝑑 and sends regMN𝑞𝑖𝑑 , the signature 𝜎
and the added randomness 𝑠 ′′ to the user. The user then computes the corresponding report counter
token 𝜏SP and verifies that it is valid and that regMN𝑞𝑖𝑑 was computed correctly, before outputting 𝜏SP .

SubmitReport

The SubmitReport protocol (Figure 7.31) adapts the Accum protocol of BBA+ to enforce the report limit.
The user generates the report 𝑐 containing the report data𝑚 and a new message authentication key
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RegisterUser
〈
U(pkSP, pkU, skU, 𝑞𝑖𝑑),RA(pkRA, skRA, pkSP, skSP, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
U (pkSP , pkU, skU, 𝑞𝑖𝑑) RA(pkRA, skRA, pkSP, skSP , pkU, 𝑞𝑖𝑑,

𝑚𝑎𝑥𝑞𝑖𝑑 )

𝑚𝑎𝑥𝑞𝑖𝑑

𝑠 ′, 𝑢1 ← ℤ𝑝

(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶SP .Com(CRScomSP ,

(𝑠 ′,𝑚𝑎𝑥𝑞𝑖𝑑 , skU , 𝑢1))

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU , 𝑔
𝑚𝑎𝑥𝑞𝑖𝑑
1 )

𝑤𝑖𝑡 ← (𝑔skU2 , 𝑔𝑠
′
1 , 𝑔

𝑢1
1 , 𝑑

′)

𝜋 ← 𝑃4.Prove(CRSpokSP , 𝑠𝑡𝑚,𝑤𝑖𝑡)
𝑐𝑜𝑚′, 𝜋

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU , 𝑔
𝑚𝑎𝑥𝑞𝑖𝑑
1 )

if 𝑃4.Verify(CRSpokSP , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return 0
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶SP .𝐶𝑜𝑚(CRScomSP ,

(𝑠 ′′, 0, 0, 0, 0))
𝑐𝑜𝑚 := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

(regMN𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑 ) ← PI.RegisterMN(pkRA ,
skRA , 𝑞𝑖𝑑)

regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚,𝑑
′′,

𝜎, 𝑠 ′′, 𝜋𝑞𝑖𝑑
𝜎 ← 𝑆.Sign(skSP, regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚)

𝑠 := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 := 𝑑 ′ · 𝑑 ′′

𝜏SP := (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1, regMN𝑞𝑖𝑑 ,𝑚𝑎𝑥𝑞𝑖𝑑 )

if UVerSP (pkSP , pkU , skU , 𝜏SP )
?
= 0

∨ PI.Verify(pkRA , 𝑞𝑖𝑑, regMN𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑 )
?
= 0 then

return (⊥,⊥, 0)
endif

return (𝜏SP , 1) return 1

Figure 7.27: RegisterUser protocol. The UVerSP algorithm used within the protocol is given in Fig-
ure 7.29 and the language for 𝑃4 in Figure 7.28
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𝐿
(4)
pkSP

:=


(𝑐𝑜𝑚′, pkU, 𝑀𝐴𝑋𝑞𝑖𝑑 )

�����������
∃𝑆𝐾𝑈 ∈ 𝐺2;
𝑆 ′,𝑈1, 𝑑

′ ∈ 𝐺1 :

𝐶.Open(CRScomSP , 𝑐𝑜𝑚
′, 𝑑 ′, (𝑆 ′,𝑀𝐴𝑋𝑞𝑖𝑑 , pkU,𝑈1)

?
= 1

𝑒 (pkU, 𝑔1)
?
= 𝑒 (𝑔1, 𝑆𝐾𝑈 )


Figure 7.28: Languages for 𝑃4 (used within RegisterUser)

UVerSP (pkSP, pkU, skU, 𝜏SP)

(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1, regMN𝑞𝑖𝑑 , 𝑐𝑡𝑟 ) := 𝜏SP

if pkU
?
= 𝑔

skU
1 ∧𝐶SP .Open(CRScomSP , 𝑐𝑜𝑚,𝑑, (𝑔

𝑠
1, 𝑔

𝑐𝑡𝑟
1 , pkU, 𝑔

𝑢1
1 ))

?
= 1

∧ 𝑆.Verify(pkSP , regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚, 𝜎)
?
= 1 then

return 1
else
return 0

endif

Figure 7.29: UVerSP algorithm

𝐿
(5)
pkSP

:=



(
𝑐𝑜𝑚′, 𝑐𝑜𝑚V, 𝑆, 𝑡,

𝑢2, regMN𝑞𝑖𝑑 , ℎ𝑖𝑑

)

��������������������������������������

∃𝑐𝑜𝑚 ∈ 𝐺2;
𝜎 ∈ 𝐺2

2 ×𝐺1;
pkU,𝑈1, 𝑑, 𝑆

′,𝑈 ′1, 𝑑
′, 𝑑V,𝐶𝑇𝑅 ∈ 𝐺1;

skU, 𝑢1, 𝑟 ∈ ℤ𝑝 :

𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
?
= ℎ𝑖𝑑

𝐶SP .Open(CRScomSP , 𝑐𝑜𝑚,𝑑, (𝑆,𝐶𝑇𝑅, pkU,𝑈1))
?
= 1

𝐶SP .Open(CRScomSP , 𝑐𝑜𝑚
′, 𝑑 ′, (𝑆 ′,𝐶𝑇𝑅, pkU,𝑈 ′1))

?
= 1

𝐶V .Open(CRScomV , 𝑐𝑜𝑚V, 𝑑V, pkU)
?
= 1

𝑆.Verify(pkSP, regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚, 𝜎)
?
= 1

𝐶𝑇𝑅 ≠ 1

pkU
?
= 𝑔

𝑠𝑘U
1

𝑈1
?
= 𝑔

𝑢1
1

𝑡
?
= skU𝑢2 + 𝑢1 mod 𝑝


Figure 7.30: Language for P5 (used within SubmitReport)
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SubmitReport
〈
U(pkRA, pkSP, pkU, skU, 𝑞𝑖𝑑, 𝜏SP,𝑚),SP(pkSP, skSP)

〉
U (pkRA , pkSP , pkU , skU , 𝑞𝑖𝑑,𝜏SP ,𝑚) SP(pkSP , skSP)

𝑢2 𝑢2 ← ℤ𝑝

kmac ← 𝑀.Gen(1𝑛)
(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1, regMN𝑞𝑖𝑑 , 𝑐𝑡𝑟 ) := 𝜏SP
𝑐 ← PI.ReportData(pkRA , regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚∥kmac)
(𝑐𝑜𝑚V , 𝑑V ) ← 𝐶V .Com(CRScomV , skU )

𝑡 := skU𝑢2 + 𝑢1 mod 𝑝
𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶SP .Com(CRScomSP , (𝑠

′, 𝑐𝑡𝑟, skU , 𝑢
′
1))

𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑐𝑜𝑚V , 𝑔𝑠1, 𝑡, 𝑢2, regMN𝑞𝑖𝑑 , hid)

𝑤𝑖𝑡 := (𝑐𝑜𝑚, 𝜎, pkU , 𝑔
𝑢1
1 , 𝑑, 𝑔

𝑠′
1 , 𝑔

𝑢′1
1 , 𝑑

′, 𝑑V , 𝑔
𝑐𝑡𝑟
1 , skU , 𝑢1, 𝑟 )

𝜋 ← 𝑃5.Prove(CRSpokSP , 𝑠𝑡𝑚,𝑤𝑖𝑡)
𝑐, 𝑐𝑜𝑚V , 𝑐𝑜𝑚

′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
(regMN𝑞𝑖𝑑 , 𝑐1) := 𝑐
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, regMN𝑞𝑖𝑑 , hid)

if 𝑃5.Verify(CRSpokSP , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return (⊥,⊥,⊥, 0)
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶SP .Com(CRScomSP ,

(𝑠 ′′,−1, 0, 0, 0))
𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skSP , regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚
∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑐𝑡𝑟∗ := 𝑐𝑡𝑟 − 1
𝑢∗1 := 𝑢 ′1
𝜏∗SP := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1, regMN𝑞𝑖𝑑 , 𝑐𝑡𝑟

∗)

if UVerSP (pkSP , pkU , skU , 𝜏∗SP )
?
= 0 then

return (⊥, 0)
endif

𝜏V := (𝑐𝑜𝑚V , 𝑑V , kmac)

return (𝜏V , 𝜏∗SP , 1) return (𝑐, comV , dstag, hid, 1)

Figure 7.31: SubmitReport protocol. The UVerSP algorithm used within the protocol is given in Fig-
ure 7.29
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kmac using the ReportData algorithm form PEPSICo and computes a commitment 𝑐𝑜𝑚V to his public
key, which is required for the bulletin mechanism. The rest of the protocol largely corresponds to the
BBA+ Accum. The user re-randomizes the commitment within the report counter token and sends it
together with 𝑐 , 𝑐𝑜𝑚V and some additional information required to provide trapdoor-linkability and
double-spending detection to the SP. Moreover, he proves in zero-knowledge that the new commitment
𝑐𝑜𝑚′ contains the same query identity and report counter 𝑐𝑡𝑟 as the original commitment for which the
user has a valid signature from the SP or RA. In addition, it is proven that the bulletin commitment 𝑐𝑜𝑚V
can be opened to the same pkU as 𝑐𝑜𝑚′ and 𝑐𝑜𝑚 and that 𝑐𝑡𝑟 not 0 (by verifying that 𝑔𝑐𝑡𝑟1 ≠ 1), meaning
that the user did not exceed his report limit. If the proof is accepted, the SP creates and signs a new
commitment with the report counter reduced by one (using the homomorphism of the commitment).
The new commitment and signature, together with its randomness, is sent to the user which now can
compute a new report counter token. Furthermore, the user outputs a bulletin token 𝜏V consisting of
the commitment 𝑐𝑜𝑚V , the corresponding decommitment value 𝑑V and the message authentication
key kmac. The SP outputs the data report 𝑐 , the bulletin commitment comV , the double-spending tag
dstag and an encryption ℎ𝑖𝑑 of the user’s public key.

Collect

The Collect protocol (Figure 7.32) allows a user to collect incentives that have been posted for a report
previously submitted by this user. It combines the Accum protocol of BBA+, to add the incentive value
to the balance of the user’s token, with the bulletin collection mechanism.

First, the ISP sends a random 𝑢2 together with the 𝑟V from the querier and the incentive value 𝑣 that
will be added to the user’s balance. The user computes 𝑡 required for the double-spending detection
mechanism, ℎ𝑖𝑑 required for trapdoor-linkability and a new commitment 𝑐𝑜𝑚′ containing the same
values as the commitment 𝑐𝑜𝑚 contained in his balance token apart from a new token version number 𝑠 ′

and user randomness 𝑢 ′1. Within the NIZK proof, he proves that 𝑐𝑜𝑚′ contains the correct values, 𝑡 and
ℎ𝑖𝑑 are generated correctly and he knows a signature 𝜎 on 𝑐𝑜𝑚. The user additionally proves that the
bulletin commitment 𝑐𝑜𝑚V can be opened to the same user secret key as included within 𝑐𝑜𝑚, to verify
that he submitted the corresponding report (cf. Figure 7.33). This ensures that the incentives cannot
be collected by a different user. The ISP verifies the proof and adds a random share 𝑠 ′′ to the token
version number of 𝑐𝑜𝑚′ and the incentive value 𝑣 to its balance. He signs the resulting commitment 𝑐𝑜𝑚∗

and sends it together with the signature, 𝑠 ′′ and 𝑑 ′′, which is required to compute the decommitment
value 𝑑∗ of 𝑐𝑜𝑚∗, to the user. Upon receiving those values, the user computes a new balance token 𝜏∗I
and verifies that it contains the new balance𝑤 + 𝑣 , where𝑤 was the old incentive balance of the user.
Moreover, at the end of the protocol, the user computes a MAC of 𝑐𝑜𝑚V and 𝑟V , attesting that the
incentives have been correctly delivered and send it to the ISP.
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Collect
〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝜏V),I(pkI, skI, 𝑐𝑜𝑚V, 𝑟V, 𝑣)

〉
U (pkI, pkU, skU, 𝜏I,𝑤, 𝜏V) I (pkI, skI, 𝑐𝑜𝑚V , 𝑟V , 𝑣)

𝑢2, 𝑟V , 𝑣 𝑢2 ← ℤ𝑝

(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1) := 𝜏I
𝑡 := skU𝑢2 + 𝑢1 mod 𝑝
𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶I .Com(CRScomI , (𝑠

′,𝑤, skU , 𝑢
′
1))

(𝑐𝑜𝑚V , 𝑑V , kmac) := 𝜏V
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑐𝑜𝑚V , 𝑔𝑠1, 𝑡, 𝑢2, hid)

𝑤𝑖𝑡 := (𝑐𝑜𝑚, 𝜎, 𝑔𝑤1 , pkU , 𝑔
𝑢1
1 , 𝑑, 𝑔

𝑠′
1 , 𝑔

𝑢′1
1 , 𝑑

′,

𝑑V , skU , 𝑢1, 𝑟 )

𝜋 ← 𝑃2.Prove(CRSpokI , 𝑠𝑡𝑚,𝑤𝑖𝑡)
𝑐𝑜𝑚′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑐𝑜𝑚V , 𝑔𝑠1, 𝑡, 𝑢2, hid)

if 𝑃2.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return (⊥,⊥,⊥, 0)
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .Com(CRScomI ,

(𝑠 ′′, 𝑣, 0, 0))
𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skI , 𝑐𝑜𝑚∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑤∗ = 𝑤 + 𝑣
𝑢∗1 := 𝑢 ′1
𝜏∗I := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1)

if UVerI (pkI , pkU , skU , 𝜏∗I ,𝑤
∗) ?

= 0 then

return (⊥, 0)
endif

𝑡mac ← 𝑀.Mac(kmac, 𝑐𝑜𝑚V ∥𝑟V) 𝑡mac

return (𝜏∗I, 1,𝑤
∗) return (𝑡mac, dstag, hid, 1)

Figure 7.32: Collect protocol. The language for 𝑃2 is defined in Figure 7.33
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𝐿
(2)
pkI

:=



(𝑐𝑜𝑚′, comV, 𝑆, 𝑡, 𝑢2, ℎ𝑖𝑑)

�����������������������������������

∃𝑐𝑜𝑚 ∈ 𝐺2;
𝜎 ∈ 𝐺2

2 ×𝐺1;
𝑊, pkU,𝑈1, 𝑑, 𝑆

′,𝑈 ′1, 𝑑
′, 𝑑V ∈ 𝐺1;

skU, 𝑢1, 𝑟 ∈ ℤ𝑝 :

𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
?
= ℎ𝑖𝑑

𝐶I .Open(CRScomI , 𝑐𝑜𝑚,𝑑, (𝑆,𝑊 , pkU,𝑈1))
?
= 1

𝐶I .Open(CRScomI , 𝑐𝑜𝑚
′, 𝑑 ′, (𝑆 ′,𝑊 , pkU,𝑈

′
1))

?
= 1

𝐶V .Open(CRScomV , 𝑐𝑜𝑚V, 𝑑V, 𝑝𝑘U)

𝑆.Verify(pkI, 𝑐𝑜𝑚, 𝜎)
?
= 1

pkU
?
= 𝑔

𝑠𝑘U
1

𝑈1
?
= 𝑔

𝑢1
1

𝑡
?
= skU𝑢2 + 𝑢1 mod 𝑝


Figure 7.33: Language for P2 (used within Collect)

Redeem

The Redeem protocol (Figure 7.34) is nearly equivalent to the Verify Protocol of BBA+. It allows the
user to redeem a subset of the incentive points accumulated on his balance token and reveals the balance
of the token to the ISP, wherefore it can be verified that the balance exceeds the amount that should be
withdrawn. It is very similar to Collect, with the exception that the𝐺1 element of the user’s balance𝑊
is in the statement of the NIZK proof, there is no bulletin commitment 𝑐𝑜𝑚V involved and the incentive
value 𝑣 is subtracted from the balance instead of added to it.

7.5.5 Querier protocols

RegisterQ

The querier registration protocol (Figure 7.36) is used by a querier to register for a query identity 𝑞𝑖𝑑 .
The RA generates the querier registration value regMN𝑞𝑖𝑑 , which is required to compute the subscription
token and to decrypt data reports, and sends it to the querier. The querier then additionally computes
the subscription token 𝑠𝑡𝑞𝑖𝑑 for 𝑞𝑖𝑑 , therefore obtaining all the information required to collect reports
for this query identity.

CollectReports

To collect all the submitted reports for a query identity 𝑞𝑖𝑑 from the SP, the querier executes the
CollectReports protocol (Figure 7.37). First, the querier sends the subscription token 𝑠𝑡𝑞𝑖𝑑 to the SP.
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Redeem
〈
U(pkI, pkU, skU, 𝜏I,𝑤, 𝑣),I(pkI, skI,𝑤, 𝑣)

〉
U (pkI, pkU, skU, 𝜏I,𝑤, 𝑣) I (pkI, skI,𝑤, 𝑣)

𝑢2 𝑢2 ← ℤ𝑝

(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1) := 𝜏I
𝑡 := skU𝑢2 + 𝑢1 mod 𝑝
𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶I .Com(CRScomI , (𝑠

′,𝑤, skU , 𝑢
′
1))

𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, hid, 𝑔
𝑤
1 )

𝑤𝑖𝑡 := (𝑐𝑜𝑚, 𝜎, pkU , 𝑔
𝑢1
1 , 𝑑, 𝑔

𝑠′
1 , 𝑔

𝑢′1
1 , 𝑑

′,

skU , 𝑢1, 𝑟 )

𝜋 ← 𝑃3.Prove(CRSpokI , 𝑠𝑡𝑚,𝑤𝑖𝑡)
𝑐𝑜𝑚′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, hid, 𝑔

𝑤
1 )

if 𝑃2.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0

or𝑤 < 𝑣 then

return (⊥,⊥, 0)
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .Com(CRScomI ,

(𝑠 ′′,−𝑣, 0, 0))
𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skI , 𝑐𝑜𝑚∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑤∗ = 𝑤 + 𝑣
𝑢∗1 := 𝑢 ′1
𝜏∗I := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1)

if UVerI (pkI , pkU , skU , 𝜏∗I ,𝑤
∗) ?

= 0 then

return (⊥, 0)
endif

return (𝜏∗I, 1,𝑤
∗) return (dstag, hid, 1)

Figure 7.34: Redeem protocol. The language for 𝑃3 is defined in Figure 7.35
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𝐿
(3)
pkI

:=



(𝑐𝑜𝑚′, 𝑆, 𝑡,𝑢2, ℎ𝑖𝑑,𝑊 )

��������������������������������

∃𝑐𝑜𝑚 ∈ 𝐺2;
𝜎 ∈ 𝐺2

2 ×𝐺1;
pkU,𝑈1, 𝑑, 𝑆

′,𝑈 ′1, 𝑑
′ ∈ 𝐺1;

skU, 𝑢1, 𝑟 ∈ ℤ𝑝 :

𝐸𝜏 .Enc(pk𝜏 , pkU ; 𝑟 )
?
= ℎ𝑖𝑑

𝐶I .Open(CRScomI , 𝑐𝑜𝑚,𝑑, (𝑆,𝑊 , pkU,𝑈1))
?
= 1

𝐶I .Open(CRScomI , 𝑐𝑜𝑚
′, 𝑑 ′, (𝑆 ′,𝑊 , pkU,𝑈

′
1))

?
= 1

𝑆.Verify(pkI, 𝑐𝑜𝑚, 𝜎)
?
= 1

pkU
?
= 𝑔

𝑠𝑘U
1

𝑈1
?
= 𝑔

𝑢1
1

𝑡
?
= skU𝑢2 + 𝑢1 mod 𝑝


Figure 7.35: Language for P3 (used within Redeem)

RegisterQ
〈
Q(pkRA, 𝑞𝑖𝑑),RA(pkRA, skRA)

〉
Q(pkRA, 𝑞𝑖𝑑) RA(pkRA, skRA)

𝑞𝑖𝑑

regQ𝑞𝑖𝑑 regQ𝑞𝑖𝑑 ← PI.RegisterQ(pkRA, skRA, 𝑞𝑖𝑑)

𝑠𝑡𝑞𝑖𝑑 ← PI.SubscribeQuery(pkRA , regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑)
return (regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ) return 1

Figure 7.36: RegisterQ protocol
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CollectReports
〈
Q(pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ),SP(pkRA,ℭ)

〉
Q(CRS, pkRA, 𝑞𝑖𝑑, regQ𝑞𝑖𝑑 , 𝑠𝑡𝑞𝑖𝑑 ) SP(pkRA,ℭ)

𝑠𝑡𝑞𝑖𝑑

ℭ∗ := ∅
for (𝑐, 𝑐𝑜𝑚V ) ∈ ℭ do

𝑐∗ ← PI.ExecuteQuery(pkRA , 𝑐, 𝑠𝑡𝑞𝑖𝑑 )

if 𝑐 ?
= 𝑐∗ then

ℭ∗ := ℭ∗ ∪ {(𝑐, 𝑐𝑜𝑚V )}
endif

endfor

ℭ∗

𝔐 := ∅
for (𝑐, 𝑐𝑜𝑚V ) ∈ ℭ∗ do
𝑚∥kmac ← PI.DecodeData(pkRA , regQ𝑞𝑖𝑑 , 𝑞𝑖𝑑, 𝑐)
𝔐 := 𝔐 ∪ {(𝑚,𝑐𝑜𝑚V , kmac)}

endfor

return 𝔐 return 1

Figure 7.37: CollectReports protocol. ℭ is a list of reports together with their public bulletin informa-
tion (𝑐, 𝑐𝑜𝑚V)

PostIncentives
〈
Q(CRS, 𝑣, comV, 𝑞),I

〉
Q(CRS, 𝑣, 𝑐𝑜𝑚V , 𝑞) I

𝑟V ← ℤ𝑝
𝑐𝑜𝑚V , 𝑣, 𝑟V , 𝑞

if 𝑣 ≤ 0 then
return (⊥, 0, 0, 0)

endif

return (ℎ∗) return (𝑐𝑜𝑚V , 𝑣, 𝑟V , 𝑞)

Figure 7.38: PostIncentives protocol
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VerifyDelivery
〈
Q(𝑐𝑜𝑚V, kmac, 𝑟V),I(𝑐𝑜𝑚V, 𝑡mac)

〉
Q(𝑐𝑜𝑚V , kmac, 𝑟V) I (𝑐𝑜𝑚V , 𝑡mac)

𝑐𝑜𝑚V , 𝑡mac

if 𝑀.Verify(kmac, 𝑐𝑜𝑚V ∥𝑟V , )
?
= 0 do

return 0
endif

return 1 return 1

Figure 7.39: VerifyDelivery protocol

The SP uses the ExecuteQuery algorithm from PEPSICo to determine the reports belonging to the
subscription token. These reports, together with their bulletin commitment comV , are sent to the
querier. The querier then uses PI.DecodeData to decrypt the reports obtaining𝑚 and kmac. These values
are outputted together with 𝑐𝑜𝑚V .

PostIncentives

The PostIncentives protocol is used by the querier to put an incentive reward for a received report
on the bulletin board, where it can be collected by the corresponding user. Therefore, the querier simply
sends the incentive value to be rewarded together with the bulletin commitment 𝑐𝑜𝑚V , identifying the
user and a random value 𝑟V required for delivery verification to the ISP. Moreover, the querier sends an
indicator 𝑞 for the quality of the data report, which can help to identify and delete bad data reports from
the SP’s database. Please note that queriers should not be allowed to reward negative incentive points
for obvious reasons. The querier has to remember 𝑟V to verify the delivery of the incentive points later.

VerifyDelivery

With the VerifyDelivery protocol, the ISP can convince the querier that the incentive points posted
for a report have been delivered. Therefore, he sends the bulletin commitment 𝑐𝑜𝑚V together with the
MAC tag 𝑡mac, which was obtained from the user during the execution of the Collect protocol, to the
querier. The querier checks whether 𝑡mac verifies for the message authentication key kmac which he
obtained during the CollectReports protocol.

7.5.6 Double-spending detection algorithms

IdentDS

We use the IdentDS algorithm of BBA+ (Figure 7.40), as it works with the double-spending tags from
both, the incentives mechanism and the report limitation mechanism. If a token has been used twice,
that is, the token version number 𝑠 included within the double spending tag is identical, then the
corresponding user’s secret key can be extracted as this ensures that 𝑡 = skU𝑢2 +𝑢1 and 𝑡 ′ = skU𝑢

′
2 +𝑢1
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IdentDS(pkI, dstag0, dstag1)

(𝑠1, (𝑡,𝑢2)) := dstag0
(𝑠2, (𝑡 ′, 𝑢 ′2)) := dstag1

if 𝑠1 ≠ 𝑠2 or 𝑢2
?
= 𝑢 ′2 then

return ⊥
else

skU := (𝑡 − 𝑡 ′) · (𝑢2 − 𝑢 ′2)−1 mod 𝑝

pkU := 𝑔skU1
𝛱 := skU
return (pkU, 𝛱 )

endif

VerifyGuilt(pkI, pkU, 𝛱 )

if 𝑔𝛱1
?
= pkU then

return 1
else
return 0

endif

Figure 7.40: IdentDS and VerifyGuilt algorithms

for the same unknown user randomness 𝑢1 and (𝑡,𝑢2), (𝑡 ′, 𝑢 ′2) contained within the double spending
tags. The knowledge of the secret key is then considered a proof for the user’s guilt.

VerifyGuilt

The VerifyGuilt algorithm (Figure 7.40) is used to verify if 𝛱 indeed proofs that the user identified by
pkU has committed double-spending. In this case, 𝑃𝑖 is the secret key skU corresponding to pkU , that
is, pkU = 𝑔

skU
1 . If this is the case, the algorithm returns 1, else 0.
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7.6 Security of the instantiation

In the following, we proof that the instantiation GI of I3PS as defined within Section 7.5 meets the
security notions defined in Section 7.4.

7.6.1 Data-hiding

Theorem 7.12 (Data-hiding) If PI is node-private, then GI is data-hiding.

Proof We assume there exist a successful adversary A, winning the data-hiding experiment ExpDHGI,A
(Figure 7.5) with more than negligible advantage. We use this adversary to build an reduction A ′ that
breaks the node privacy property of PEPSICo (Figure 4.3). Our reduction has to be able to simulate the
experiment as well as all the oracles available to A within the experiment.

C A
′

A

pkRA (CRS, td) ← Setup(1𝑛)

(pk∗RA , sk
∗
RA , pkSP , skSP ) ← SetupRA(CRS) pkRA, pkSP

Figure 7.41: Reduction proof for data-hiding, part 1

The simulation of ExpDHGI,A looks as follows: First A ′ receives the RA’s public key pkRA from the
challenger. It then performs parts of the Setup algorithm and embeds pkRA . More precisely,A ′ generates
(CRS, td) with Setup and (pkSP, skSP) using SetupRA. Instead of the RA’s key pair (pk∗RA, sk

∗
RA)

generated by the algorithm, the public key pkRA from the challenger is used for interactions with A.
Therefore, A ′ now sends pkRA and pkSP to A (Figure 7.41). This is equal to the real experiment from
A ′’s perspective.

Next,A can make use of his oracles before outputting two query identity and message pairs (𝑞𝑖𝑑0,𝑚0)
and (𝑞𝑖𝑑1,𝑚1). Let us first look at the simulation of oracle queries. In the data-hiding experiment, the ad-
versary has access to the CorruptSP, MalRegisterUser, MalRegisterQ, SubmitReport and CollectReports
oracles. The reduction has access to the CorruptMN, CorruptQ, CorruptSP, ReportData, SubscribeQuery
and DecodeData oracles from PEPSICo’s node privacy experiment. We simulate the oracles available to
A as follows:

CorruptSP
This oracle allows A to corrupt the secret key material of the SP. Therefore, after calling this
oracle A can impersonate the SP. A ′ simulates CorruptSP oracle queries as in Figure 7.42. First,
it calls its own CorruptSP oracle, notifying the challenger that the SP has been corrupted. Then it
returns the SP’s secret key skSP to A. A ′ has to remember that the SP has been corrupted to
modify its behavior accordingly.

From the view of A, this simulation behaves exactly like CorruptSP in ExpDHGI,A .
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C A
′

A

. . . . . . . . . . . . . . . . . . . . . . . . . CorruptSP oracle queries . . . . . . . . . . . . . . . . . . . . . . . . .

′CorruptSP′ 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑆𝑃 := 1
′CorruptSP′

skSP

Figure 7.42: Simulation of CorruptSP oracle queries

MalRegisterUser
This oracle allowsA to register a user for a query identity 𝑞𝑖𝑑 with the RA. This user is completely
controlled by the adversary, ie. A obtains the report counter token 𝜏SP for 𝑞𝑖𝑑 , which contains the
mobile node registration value regMN𝑞𝑖𝑑 . However, A is not allowed to query MalRegisterUser
for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 which he has to output later in the experiment.

The simulation is shown in Figure 7.43. Given pkU, 𝑞𝑖𝑑 and𝑚𝑎𝑥𝑞𝑖𝑑 , A ′ checks whether the user
identified by pkU has already registered for 𝑞𝑖𝑑 and makes sure that the maximum for report
submissions𝑚𝑎𝑥𝑞𝑖𝑑 is consistent with previous calls. ThenA ′ uses its CorruptMN oracle to obtain
regMN𝑞𝑖𝑑 and 𝜋𝑞𝑖𝑑 . A ′ is not allowed to use this oracle on 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 but the same restrictions
apply to A with respect to MalRegisterUser as discussed above.

Finally,A ′ executes the RegisterUser protocol from the RA’s point of viewwithA impersonating
the user identified by pkU . Within the protocol,A ′ does not generate the mobile node registration
value for 𝑞𝑖𝑑 but instead uses regMN𝑞𝑖𝑑 and 𝜋𝑞𝑖𝑑 obtained from CorruptMN as described above.
Therefore,A ′ does not require knowledge of skRA to execute the protocol. ForA, this simulation
looks identical to the real MalRegisterUser.

MalRegisterQ
This oracle allows A to register as a querier for the query identity 𝑞𝑖𝑑 . MalRegisterQ can be
simulated byA ′ through relaying the call to its CorruptQ oracle. For both oracles, the same usage
restrictions apply: They are not allowed to be queried for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1.

SubmitReport
This oracle allows A to have an honest user submit a report to the (honest) SP. A is not allowed
to call SubmitReport for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 if CorruptSP is called during the experiment. As it does
not return any data, A ′ can simulate it by simply remembering the submitted data. Therefore
A ′ stores any 𝑞𝑖𝑑,𝑚 for which A has called SubmitReport within the list of submitted reports
𝔖ℜ. Note that as SubmitReport can be called for 𝑞𝑖𝑑0 and 𝑞𝑖𝑑1 in case the SP is not compromised
during the experiment, A ′ cannot necessarily generate the corresponding report 𝑐 .

CollectReports
This oracle allows A to have an honest querier execute CollectReports for a query identity
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C A
′

A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MalRegisterUser oracle queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑

if {(pkU , 𝑞𝑖𝑑)} ∉ ℜ then

if 𝑚𝑎𝑥𝑞𝑖𝑑 > 0 and (𝔏(𝑞𝑖𝑑) := ⊥ or

𝔏(𝑞𝑖𝑑) :=𝑚𝑎𝑥𝑞𝑖𝑑 ) then
𝔏(𝑞𝑖𝑑) :=𝑚𝑎𝑥𝑞𝑖𝑑

′CorruptMN′, 𝑞𝑖𝑑

regMN𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑

RegisterUser∗ regMN𝑞𝑖𝑑

𝜋𝑞𝑖𝑑

if 𝑏RA
?
= 1 then

ℜ := ℜ ∪ {(𝑝𝑘U , 𝑞𝑖𝑑)}
endif

endif

endif

Figure 7.43: Simulation of MalRegisterUser oracle queries. The RegisterUser∗ protocol is identical to
RegisterUser with the exception that the mobile node registration value regMN𝑞𝑖𝑑 and
the corresponding proof 𝜋𝑞𝑖𝑑 , which are send to A during the protocol, are not computed
but replaced with the values obtained by querying the CorruptMN oracle. The other inputs
and outputs are omitted in the figure.
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C A
′

A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CollectReports oracle queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑞𝑖𝑑, ®𝑠𝑡

for (𝑞𝑖𝑑,𝑚) in𝔖ℜ do

′ReportData′, 𝑞𝑖𝑑,𝑚∥kmac, ®𝑠𝑡 𝑘mac← 𝑀.Gen(1𝑛)

®𝑐

for 𝑐 ≠ ⊥ in ®𝑐 do
′DecodeData′, 𝑞𝑖𝑑, 𝑐

𝑚′∥k′mac

(pkU , skU ) ← UGen(CRS)
comV := 𝐶V .Com(CRS𝑐𝑜𝑚V , skU )
𝔐 := 𝔐 ∪ {(𝑐𝑜𝑚V ,𝑚, k′mac)}

endfor

endfor

𝔐

Figure 7.44: Simulation of CollectReports oracle queries for 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑆𝑃 = 0

a subscription token of his choice and to obtain the resulting output. In combination with
SubmitReport, A can try to forge a subscription token for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 which he could use to win
the experiment.

We distinguish between two cases. If the SP has not been corrupted, A ′ simulates CollectReports
oracle queries a shown in Figure 7.44. Upon obtaining a query identity 𝑞𝑖𝑑 and a vector of
subscription tokens ®𝑠𝑡 , A ′ calls its ReportData oracle for all the previously submitted reports
stored in 𝔖ℜ together with the subscription token vector ®𝑠𝑡 and generating a new message
authentication key kmacfor each of them. Note that in case the SP is corrupted later within the
experiment, ReportData is only called for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 given that A has called SubmitReport for
the same query identity and therefore already lost the data-hiding experiment. For each element
≠ ⊥ in the report vector ®𝑐 returned by ReportData,A ′ calls its DecodeData oracle with the query
identity 𝑞𝑖𝑑 supplied by the adversary. For each report content 𝑚′ obtained in this way, A ′

generates public bulletin commitment comV belonging to a new user identity. A list of all the
obtained report contents together with their bulletin commitments and message authentication
keys kmac is sent to A. To A, the simulation behaves like the real oracle. He obtains the content
of all previously submitted reports for which ®𝑠𝑡 contains a valid subscription token. Moreover,



7.6 Security of the instantiation 123

each report is accompanied by a bulletin commitment for a newly generated user identity and an
independently generated message authentication key.

Let us consider the case that the SP has already been corrupted. In this case, A should not have
queried SubmitReport for𝑞𝑖𝑑0 or𝑞𝑖𝑑1 as elseA would have already lost the experiment. Therefore,
A ′ can just use its CorruptMN and CorruptQ oracles to obtain the necessary information to exe-
cute the real oracle code, except for the invocation of RegisterUser within SubmitReport where
the mobile node generation value has to be replaced with the value obtained from CorruptMN
instead of computed (cf. Simulation of MalRegisterUser).

C A
′

A

kmac ← 𝑀.Gen(1𝑛) (𝑞𝑖𝑑0,𝑚0), (𝑞𝑖𝑑1,𝑚1)

(𝑞𝑖𝑑0,𝑚0∥kmac), (𝑞𝑖𝑑1,𝑚1∥kmac), ®𝑠𝑡 ®𝑠𝑡 := ⊥

𝑐

(pkU , skU ) ← UGen(CRS)
𝑚𝑎𝑥𝑞𝑖𝑑 := 1

(𝜏SP , 𝑏U ), 𝑏RA ) ← RegisterUser∗〈
U(pkSP , pkU , skU ),
RA(pkSP , skSP , pkU , 𝑐,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉

SubmitReport∗

𝑏 ′ 𝑏 ′

Figure 7.45: Reduction proof for data hiding, part 2 case 1. RegisterUser∗ is a modification of
RegisterUser where the mobile node registration value is not computed but taken from a
report 𝑐 and the verification of the corresponding proof 𝜋𝑞𝑖𝑑 is ignored. Therefore, the RA’s
key pair and the query identity is not required to execute the protocol. SubmitReport∗ is a
modification of SubmitReportwhere the challenge report 𝑐 is injected instead of computing
a new report

After the adversary outputs (𝑞𝑖𝑑0,𝑚0) and (𝑞𝑖𝑑1,𝑚1), the experiment distinguishes whether the
SP has already been corrupted and is impersonated by A or not. In the first case (Figure 7.45), that
is the SP has been corrupted, A ′ directly forwards the two query identity and message pairs to the
challenger together with an empty vector of subscription tokens ®𝑠𝑡 . After obtaining the challenge report
𝑐 = (regMN𝑞𝑖𝑑 , 𝑐1),A ′ generates a new user key pair (pkU, skU). To generate the report counter token
for the simulation of the SubmitReport protocol,A ′ simulates the execution of RegisterUser. Hereby,
the regMN𝑞𝑖𝑑 from the challenge report is used instead of computing the value using PI.RegisterMN.
Therefore, knowing the corresponding query identity or the RA’s secret key is not required.
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A ′ now simulates the execution of SubmitReport with A, where A ′ plays the role of the user
identified by pkU and A the role of the corrupted SP. Within the protocol run, A ′ does not generate a
data report with PI.ReportData but instead uses the challenge report 𝑐 . As 𝜏SP is a valid report counter
token for the same query identity as 𝑐 , there are no complications in generating the zero-knowledge
proof in the protocol.

If A ′ accepts the protocol run (which is done on the same conditions as for an honest user), it waits
for the adversary to output a guess 𝑏 ′ for 𝑏. This guess is then relayed to the challenger. A ′ wins with
the same probability then A.

C A
′

A

(𝑞𝑖𝑑0,𝑚0), (𝑞𝑖𝑑1,𝑚1)

(𝑞𝑖𝑑0,𝑚0∥kmac), (𝑞𝑖𝑑1,𝑚1∥kmac), ®𝑠𝑡 kmac ← 𝑀.Gen(1𝑛) ®𝑠𝑡

®𝑐

(pkU , skU ) ← UGen(CRS)
for 𝑐 in ®𝑐 do
𝑐𝑜𝑚V := 𝐶V .Com(CRS𝑐𝑜𝑚V , skU )
ℭ∗ := ℭ∗ ∪ {(𝑐, 𝑐𝑜𝑚V )}

endfor

ℭ∗

𝑏 ′ 𝑏 ′

Figure 7.46: Reduction proof for data hiding, part 2 case 2

Now, let us consider the second case (Figure 7.46) where the service provider has not been corrupted
when A outputs (𝑞𝑖𝑑0,𝑚0) and (𝑞𝑖𝑑1,𝑚1). In this case, A ′ delays forwarding (𝑞𝑖𝑑0,𝑚0) and (𝑞𝑖𝑑1,𝑚1)
and waits for the adversary to send a vector of subscription tokens ®𝑠𝑡 as part of the CollectReports
protocol whereA plays the role of the querier andA ′ the role of the SP.A ′ now sends (𝑞𝑖𝑑0,𝑚0∥kmac)
and (𝑞𝑖𝑑1,𝑚1∥kmac), for a newly generated message authentication key kmac, together with ®𝑠𝑡 to the
challenger. After the challenger responded with a vector of reports ®𝑐 , A ′ generates a new user ID.
Subsequently, for all reports 𝑐 in ®𝑐 , A ′ generates a bulletin commitment 𝑐𝑜𝑚V using this user ID and
adds (𝑐, 𝑐𝑜𝑚V) to the list of reports ℭ∗, which is returned to A. The guess 𝑏 ′ that A outputs for 𝑏 is
relayed to the challenger. Again A ′ has the same advantage as A.

Therefore, we have shown that the node privacy of PI implies that GI is data-hiding, ie. for all A,A ′

there exist negligible functions negl, negl′ such that

AdvNP-CCAPI,A′ (𝑛) ≤ negl′(𝑛) =⇒ AdvDHGI,A (𝑛) ≤ negl (𝑛 )
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7.6.2 Subscription-hiding

Theorem 7.13 (Subscription-hiding) If PI is query private, then GI is subscription-hiding.

Proof We reduce the subscription-hiding property of our instantiation to the query privacy of the
underlying PEPSICo instantiation. More precisely, we assume there exists a successful adversary A,
winning the subscription-hiding experiment of I3PS with more than negligible advantage. We use this
adversary to construct an adversary A ′ that breaks the query privacy property of PEPSICo, which
contradicts its security.

C A
′

A

pkRA (CRS, td) ← Setup(1𝑛)

(pk∗RA , sk
∗
RA , pkSP , skSP ) ← SetupRA(CRS) pkRA, pkSP, skSP

𝑞𝑖𝑑0, 𝑞𝑖𝑑1 𝑞𝑖𝑑0, 𝑞𝑖𝑑1

𝑠𝑡 𝑠𝑡

𝑏 ′ ℭ∗, 𝑏 ′

Figure 7.47: Reduction of an adversary on the subscription-hiding property of I3PS to the query privacy
of PEPSICo

The reduction A ′ is given in Figure 7.47. It has to generate the CRS and the key pair for the report
limitation mechanism and send those together with the public key of the RA, which is obtained from
the challenger, to the adversary. After obtaining the query identity pair and relaying it to the challenger,
it then executes the CollectReports protocol with the adversary but using the challenge subscription
token instead of computing one. Moreover, as A ′ is not interested in the message list𝔐, it can abort
the protocol after receiving the list of reports ℭ∗, without encrypting its elements. Lastly, the decision
of the adversary is relayed to the challenger.
Furthermore, in the experiment A has access to the oracles MalRegisterUser and MalRegisterQ,

whereas A ′ can use the CorruptMN, CorruptQ, ReportData, SubscribeQuery and DecodeData oracles
from the query privacy experiment from PEPSICo. The oracles available to A are simulated as in the
previous proof (Section 7.6.1). To simulate MalRegisterUser queries, the reduction has to check the
conditions, eg. users are only allowed to register once per query identity, and maintain the lists of
registered users and previously defined report maximums. It uses its CorruptMN oracle to obtain the
mobile node registration value for the queried 𝑞𝑖𝑑 and initiates the RegisterUser protocol with the
adversary. Within this protocol, instead of computing a mobile node registration value, the one obtained
from the challenger is used. Therefore, the RA’s secret key, which is unknown to the reduction, is not
required to execute the protocol.
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MalRegisterQ oracle queries can be simulated using the CorruptQ oracle available to the reduction.
Keep in mind thatA is not allowed to query MalRegisterUser and MalRegisterQ for 𝑞𝑖𝑑0 or 𝑞𝑖𝑑1 as well
as A ′ is not allowed to query CorruptMN and CorruptQ for these two query identities.

Our reductionA ′ is successful wheneverA is successful. Therefore, the existence of an adversaryA
with more than negligible advantage would contradict the query privacy of PEPSICo and, thus, no such
adversary exists. More precisely, we have shown that for all PPT adversaries A,A ′

AdvQPPI,A (𝑛) ≤ negl (𝑛 ) =⇒ AdvQPGI,A′ (𝑛) ≤ negl (𝑛 )

where PI is the PEPSICo instantiation used within the I3PS instantiation GI.

7.6.3 Trapdoor-linkability

Theorem 7.14 (Trapdoor-linkability) If GI and 𝐸𝜏 are correct and P2, P3 and P5 are perfectly sound,
then GI is trapdoor-linkable.

Proof idea

Completeness
Consider a hidden user ID token hid which the SP outputs after a SubmitReport protocol run.
This implies that the proof 𝜋 sent during the protocol verifies, and since 𝑃5 is sound, hid can
therefore be generated using 𝐸𝜏 .Enc. More precisely, there exists𝑚 ∈ 𝐺1 and 𝑟 ∈ ℤ𝑝 such that
𝐸𝜏 .Enc(pk𝜏 ,𝑚; 𝑟 ) ?

= hid. As the message space for 𝐸𝜏 coincides with the space for user public keys,
𝑚 is a valid public key pkU . By the definition of UGen, there exists a corresponding secret key
skU .

As we assume GI is correct, an honest user with the key pair (pkU, skU) could have obtained a
valid report counter token 𝜏SP by executing SubmitReport successfully. Using the randomness 𝑟
for encrypting pkU , this would have led to hid. Hence, any hidden user ID hid appearing within
the view of a successful SubmitReport protocol run can be generated by an honest user.

The proofs for completeness with respect to Collect and Redeem work analogously, using the
soundness of 𝑃2 and 𝑃3.

Extractability
The trapdoor td contains the secret decryption key sk𝜏 corresponding to pk𝜏 . For an honest user,
hid is the encryption of the user’s pkU under pk𝜏 . Hence, we can set ExtractUID(td, hid) :=
𝐸𝜏 .Dec(sk𝜏 , hid), which outputs pkU . This works with respect to all three protocols in question:
SubmitReport, Collect and Redeem.
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7.6.4 Owner-binding

Theorem 7.15 (Owner-binding) If the Co-CDH assumption holds and 𝑃1, 𝑃2, 𝑃3, 𝑃4 and 𝑃5 are per-
fectly 𝐹 (1)𝑔𝑝 -, 𝐹 (2)𝑔𝑝 -, 𝐹 (3)𝑔𝑝 -, 𝐹 (4)𝑔𝑝 - and 𝐹 (5)𝑔𝑝 -extractable, respectively, 𝐶I , 𝐶SP and 𝐶V are 𝐹 I𝑔𝑝 , 𝐹

SP
𝑔𝑝 and 𝐹V𝑔𝑝

binding, respectively, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI is owner-binding.

The owner binding property is split into multiple experiments which are each required to only return
one for any adversary with negligible probability. In the following, we give separate proofs for each of
the experiments.

Owner-binding wrt. Issue and RegisterUser

Lemma 7.16 (Owner-binding wrt. Issue and RegisterUser) If the Co-CDH assumption holds and
𝑃1 and 𝑃4 are perfectly 𝐹 (1)𝑔𝑝 - and 𝐹 (4)𝑔𝑝 -extractable, respectively, then GI is owner-binding with respect to
Issue and RegisterUser.

Proof Idea The Issue protocol is the same as in BBA+, wherefore the same proof idea holds. Our
definition also covers the RegisterUser protocol. However, the changes made to the included issue
protocol do not affect the proof (cf. [Har+19]).

Due to the extractability property of 𝑃1 and 𝑃4, 𝑔skU2 can be extracted from the proofs given during the
Issue and RegisterUser protocols. This value is a solution to the Co-CDH instance 𝑔1, 𝑔2, 𝑔

skU
1 = pkU .

Owner-binding wrt. SubmitReport

Lemma 7.17 (Owner-binding wrt. SubmitReport) If 𝑃4 and 𝑃5 are perfectly 𝐹 (4)𝑔𝑝 - and 𝐹 (5)𝑔𝑝 -extract-
able, respectively, 𝐶SP is 𝐹 SP𝑔𝑝 -binding, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI is owner-binding
with respect to Collect and Redeem.

Proof idea The proof works analogously to the owner-binding with respect to Accum and Verify

proof of BBA+ (cf. [Har+19]). Consider the first call to MalSubmitReport that fulfills the winning
condition, ie. the adversary did call MalSubmitReport successfully for an extracted public key pk′U for
which there has been no successful call to MalRegisterUser before. The soundness of the NIZK proof,
the 𝐹 SP𝑔𝑝 -binding property of 𝐶SP and the correctness of 𝐸𝜏 ensure that the public key pkU extracted
from the corresponding NIZK proof and the key pk′U extracted by ExtractUID(td, hid) are well-defined
and identical.
Now, there are two cases to be distinguished. Let 𝑐𝑜𝑚′ be the commitment from the NIZK proof.

Either 𝑐𝑜𝑚′ is a fresh commitment or it is a replayed commitment from a previous protocol invocation.
In the first case, the EUF-CMA security of the signature scheme 𝑆 would be violated, as proofs only

verify for signed commitments and the commitment has not been signed under skSP before. In the
second case, the adversary has to have equivocated an old commitment for some p̂kU to pkU . This
contradicts the 𝐹 SP𝑔𝑝 -binding property of 𝐶SP .



128 7 Advanced model

Owner-binding wrt. Collect and Redeem

Lemma 7.18 (Owner-binding wrt. Collect and Redeem) If 𝑃1, 𝑃2 and 𝑃3 are perfectly 𝐹 (1)𝑔𝑝 -, 𝐹 (2)𝑔𝑝 -
and 𝐹 (3)𝑔𝑝 -extractable, respectively, 𝐶I is 𝐹 I𝑔𝑝-binding, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI is
owner-binding with respect to Collect and Redeem.

Proof idea The proof works analogously to the proof for Lemma 7.17, ie. the proof idea from BBA+
still holds (cf. [Har+19]).

Owner-binding bulletin mechanism

Lemma 7.19 (Owner-binding bulletin mechanism) If 𝑃3 and 𝑃5 are perfectly 𝐹 (3)𝑔𝑝 - and 𝐹 (5)𝑔𝑝 -extract-
able, respectively, 𝐶I , 𝐶SP and 𝐶V are 𝐹 I𝑔𝑝 , 𝐹

SP
𝑔𝑝 and 𝐹V𝑔𝑝 binding, respectively, and 𝐸𝜏 is correct, then GI

has an owner-binding bulletin mechanism.

Proof idea We adapt the proof idea for Lemma 7.17. Consider the first call to MalCollect that fulfills
the winning condition, ie. the adversary did collect incentives for a (pkU, 𝑐𝑜𝑚V) which has not been
used within a successful call to SubmitReport before. However, there must have been a successful call
to SubmitReport for 𝑐𝑜𝑚V for a different user, ie. (𝑝𝑘U, 𝑐𝑜𝑚V) ∈ 𝔙, as otherwise 𝑐𝑜𝑚V would not
have been on the bulletin board and, therefore, could not have been collected using MalCollect. The
soundness of 𝑃5, the 𝐹 SP𝑔𝑝 -binding property of𝐶SP , the 𝐹V𝑔𝑝 -binding property of𝐶V and the correctness
of 𝐸𝜏 ensure that the public key 𝑝𝑘

′
U extracted from the corresponding NIZK proof, 𝑝𝑘U and the public

key comV can be opened to are identical.
In the MalCollect call, the soundness of 𝑃3, the 𝐹 I𝑔𝑝-binding property of 𝐶I , the 𝐹V𝑔𝑝 -binding property

of 𝐶V and the correctness of 𝐸𝜏 ensure that the public key pk′U extracted from the corresponding NIZK
proof, pkU and the public key comV can be opened to are identical.
Therefore, the adversary has to have equivocated the commitment 𝑐𝑜𝑚V for 𝑝𝑘U to pkU . This

contradicts the 𝐹V𝑔𝑝 -binding property of 𝐶V .

7.6.5 Limit-binding

Theorem 7.20 (Limit-binding) If 𝑃4 and 𝑃5 are perfectly sound and perfectly 𝐹 (4)𝑔𝑝 - and 𝐹 (5)𝑔𝑝 -extract-
able, respectively, 𝐶SP is 𝐹 SP𝑔𝑝 -binding, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI is limit-binding.

Proof We adapt the proof idea for the balance-binding property of BBA+. The proof consists of a
series of Game hops, starting with the original limit-binding experiment and modifying it until the
adversary has no chance to win. If the adversary could distinguish between two consecutive games,
we could use the adversary to construct a new adversary breaking the security of one of the building
blocks of the protocol.

Let us only consider report counter tokens for a fixed query identity 𝑞𝑖𝑑 and, therefore, a fixed mobile
node registration value �regMN𝑞𝑖𝑑 contained in 𝜏SP . Note that the probability that two query identities
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have the same mobile node registration value is negligible. Note further that the first MalRegisterUser
call of the adversary A also fixes the report limit𝑚𝑎𝑥𝑞𝑖𝑑 > 0, because of the definition of the oracle.
We denote the advantage of A in game 𝑖 with AdvLB-game-1

GI,A (𝑛). The following proof works for any
(𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 ) pair.

Game 1
We start with the original limit-binding experiment ExpLBGI,A Additionally, the game keeps track
of the internal details of all successful transactions from the SP’s and ISP’s point of view.

For every successful (𝑏RA = 1) call to MalRegisterUser a record (pkU, 𝜋, comout, 𝑠
′′,𝐶𝑇𝑅 =

𝑔
�𝑚𝑎𝑥𝑞𝑖𝑑

1 ) is stored. Hereby, pkU is the user’s public key, given as an input to the RA, 𝜋 is the proof
sent byU to the RA and 𝑐𝑜𝑚out = 𝑐𝑜𝑚 and 𝑠 ′′ are the commitment and random value sent toU
by the RA.𝐶𝑅𝑇 is the𝐺1 element representing𝑚𝑎𝑥𝑞𝑖𝑑 , which is the value 𝑐𝑟𝑡 should be initialized
with during RegisterUser. We use its 𝐺1 element, as we want to compare it with values we can
extract from the proofs received during calls of the MalSubmitReport oracle.

For every successful (𝑏I = 1) call to MalSubmitReport a record (pkU, 𝜋, comin, comout, 𝑠, 𝑠
′′,𝐶𝑇𝑅)

is stored. Hereby, pkU is the public key extracted with ExtractUID, 𝜋 and 𝑠 are the proof
and the token version number send by U, comin = 𝑐𝑜𝑚 is the commitment extracted from 𝜋 ,
𝑐𝑜𝑚out = 𝑐𝑜𝑚∗ and 𝑠 ′′ are the commitment and random value send to U by the SP and 𝐶𝑇𝑅
is the current report counter as a 𝐺1-element which can be extracted from 𝜋 as 𝑃5 is perfectly
extractable.

By definition, we have that
AdvLB-game-1

GI,A (𝑛) = AdvLBGI,A (𝑛) (7.1)

Game 2
We first ensure that the submitted reports contain the correct mobile node registration value�regMN𝑞𝑖𝑑 . Therefore, we modify the experiment as follows: After every successful SubmitReport

transaction, where 𝑐 = (regMN∗
𝑞𝑖𝑑
, 𝑐1) has been submitted, the experiment verifies that regMN∗

𝑞𝑖𝑑

?
=�regMN𝑞𝑖𝑑 . If this is not the case, then the experiment aborts and returns 0. We call this event

failure event 𝐹1 (wrong query identity).

In case 𝐹1 occurs, let 𝑟𝑒𝑐 := (𝑝𝑘U, 𝜋, 𝑐𝑜𝑚in, 𝑐𝑜𝑚out, 𝑠̂, 𝑠̂
′′,𝐶𝑇𝑅) denote the record on a new success-

ful MalSubmitReport call. A signature 𝜎 on the new message (regMN∗
𝑞𝑖𝑑
, 𝑐𝑜𝑚in) can be extracted

from 𝜋 , which has to be valid due to the soundness of 𝑃5. Hence, in this case we can construct an
adversary B0 against the EUF-CMA security of 𝑆 with the advantage

AdvEUF-CMA
𝑆,B0 (𝑛) = Pr [𝐹1 ] (7.2)

Game 3
Let us picture the set of successful transactions as a directed graph. For each transaction, there is
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a node within the graph labeled with the corresponding record. There is an edge from node 𝐴 to
node 𝐵 if 𝐴’s 𝑐𝑜𝑚out label equals 𝐵’s 𝑐𝑜𝑚in label.

For the third game, we modify the second game as follows: On every successful MalSubmitReport
call, the experiments verifies that there exists a predecessor MalRegisterUser or MalSubmitReport
record. More precisely, let 𝑟𝑒𝑐 := (𝑝𝑘U, 𝜋, 𝑐𝑜𝑚in, 𝑐𝑜𝑚out, 𝑠̂, 𝑠̂

′′,𝐶𝑇𝑅) denote the record on a new
successful MalSubmitReport call. If no previous record satisfying 𝑐𝑜𝑚out = 𝑐𝑜𝑚in exists, then the
experiment aborts and returns 0. We call this event failure event 𝐹2 (no predecessor commitment).

Note that if 𝐹2 occurs, a signature 𝜎 for the new message (�regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚in) can be extracted from
𝜋 , which has to be valid due to the soundness of 𝑃5. Hence, in this case we can construct an
adversary B1 against the EUF-CMA security of 𝑆 with the advantage

AdvEUF-CMA
𝑆,B1 (𝑛) = Pr [𝐹2 ] (7.3)

In case 𝐹2 does not occur, every commitment 𝑐𝑜𝑚in used within a MalSubmitReport call has been
generated in a previous transaction, which means that in the transaction graph, the indegree of
every node representing a MalSubmitReport transaction is at least one.

Game 4
In the fourth game, the experiment additionally verifies that the indegree of every node in the
transaction graph is at most one. More precisely, the experiment additionally checks whether
𝑐𝑜𝑚in occurs in more than one previous transaction as 𝑐𝑜𝑚out. If this is the case, the experiment
aborts and returns 0. We call this event failure event 𝐹3 (two predecessor commitments).

Let 𝑟𝑒𝑐0 and 𝑟𝑒𝑐1 be the record of two such predecessor transactions, containing the random
numbers 𝑠 ′′0 and 𝑠 ′′1 , which have been sent toU during these transactions. We split the event into
two subevents 𝐹 (𝑠

′′
0 =𝑠

′′
1 )

3 and 𝐹 (𝑠
′′
0 ≠𝑠

′′
1 )

3 based on whether 𝑠 ′′0 and 𝑠 ′′1 are identical.

Note that 𝑠 ′′0 and 𝑠 ′′1 have been chosen uniformly at random from ℤ𝑝 by the SP. Therefore, for
𝐹
(𝑠′′0 =𝑠′′1 )
3 , we have that

Pr
[
𝐹
(𝑠′′0 =𝑠′′1 )
3

]
:= Pr

[
𝐹3 ∧ 𝑠 ′′0 = 𝑠 ′′1

]
≤ 𝑚

2

𝑝
(7.4)

where𝑚 is the polynomial bound on the number of MalSubmitReport queries.

For 𝐹 (𝑠
′′
0 =𝑠

′′
1 )

3 , we can extract two valid openings for 𝑐𝑜𝑚in for the proofs included in 𝑟𝑒𝑐0 and
𝑟𝑒𝑐1 such that the corresponding implicit message vectors differ in the token version number
component. If this case occurs, we can construct an adversary C0 against the 𝐹 SP𝑔𝑝 -binding property
of 𝐶SP with the advantage

Adv
𝐹SP𝑔𝑝 -binding
𝐶SP ,C0 (𝑛) = Pr

[
𝐹
(𝑠′′0 =𝑠′′1 )
3

]
(7.5)

Note that in case 𝐹3 does not occur, the indegree of every node representing a MalSubmitReport
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transaction is exactly one.

Game 5
We modify the previous game with an additional check if 𝑐𝑜𝑚in has already occurred as 𝑐𝑜𝑚in in
a previous transaction. If this is the case, the experiment aborts and returns 0. We call this event
failure event 𝐹4 (two successor commitments).

Let 𝑟𝑒𝑐 be such a record with the commitment 𝑐𝑜𝑚in = 𝑐𝑜𝑚in extracted from the proof 𝜋 and 𝑠
being the token version number send byU. We distinguish two different subevents, 𝐹 (𝑠=𝑠̂)4 and
𝐹
(𝑠≠𝑠̂)
4 , based on whether 𝑠 = 𝑠̂ .

For 𝐹 (𝑠=𝑠̂)4 , due to the winning condition of A excluding this case, we have that

Pr
[
ExpLB-game-1

GI,A (𝑛) = 1 ∧ 𝐹 (𝑠=𝑠̂)4

]
= 0 (7.6)

In case 𝐹 (𝑠≠𝑠̂)4 occurs, we can extract two implicit messages𝑀 ≠ 𝑀 and opening values 𝑑,𝑑 from
𝜋 and 𝜋 for 𝑐𝑜𝑚in = 𝑐𝑜𝑚in, respectively. Therefore, we can construct an adversary C1 against the
𝐹 SP𝑔𝑝 -binding property of 𝐶SP with the advantage

Adv
𝐹SP𝑔𝑝 -binding
𝐶SP ,C1 (𝑛) = Pr

[
𝐹
(𝑠≠𝑠̂)
4

]
(7.7)

If 𝐹4 does not occur, every node in the transaction graph has an outdegree of at most 1.

Game 6
In the sixth game, the experiment verifies for every MalSubmitReport node that the same public
key has been used as within its predecessor node. More precisely, the experiment additionally
checks for each new MalSubmitReport call 𝑟𝑒𝑐 if for the previous record where 𝑐𝑜𝑚in occurred as
𝑐𝑜𝑚out (there is exactly one by now) it also holds that the included user public key pkU = 𝑝𝑘U . If
this is not the case, the experiment aborts and returns 0. We call this even failure event 𝐹5 (token
sharing).

Let 𝑟𝑒𝑐 be such a previous record containing 𝑐𝑜𝑚out = 𝑐𝑜𝑚in but pkU ≠ p̂kU and the proof 𝜋 .
As 𝑃4 and 𝑃5 are sound and extractable and 𝐸𝜏 is correct and, therefore, perfectly binding, two
different implicit messages𝑀 ≠ 𝑀 and opening values 𝑑,𝑑 for 𝑐𝑜𝑚out = 𝑐𝑜𝑚in can be extracted
from 𝜋 and 𝜋 . Therefore, an adversary C2 on the 𝐹 SP𝑔𝑝 -binding property of𝐶SP can be constructed
with the advantage

Adv
𝐹SP𝑔𝑝 -binding
𝐶SP ,C2 (𝑛) = Pr [𝐹5 ] (7.8)

Note that so far, if no failure event occurs, then each MalSubmitReport node in the transaction
graph has exactly one predecessor and at most one successor, which are both associated with the
same user ID as the node itself. As there can be at most one successful register user call per pkU
by the definition of MalRegisterUser and the outdegree of the corresponding node is also limited
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to at most one, there is only one such path per user ID. So to verify that the reporting limit has
not been exceeded, we can check the length of these paths.

Game 7
In the seventh game, we verify that the counter values stored in the report limitation tokens are
correct alongside the path, ie. the report counter value is decreased by one with each step along
the path. On each new SubmitReport transaction, we check for the corresponding record 𝑟𝑒𝑐
and it’s predecessor record 𝑟𝑒𝑐 with 𝑐𝑜𝑚out = 𝑐𝑜𝑚in and the extracted counter value 𝐶𝑇𝑅 (as 𝐺1

element) it holds that 𝐶𝑇𝑅 = 𝐶𝑇𝑅 · 𝑔−11 in case that 𝑟𝑒𝑐 is a record for a MalSubmitReport oracle
call. If 𝑟𝑒𝑐 is a MalRegisterUser record, we check whether 𝐶𝑇𝑅 = 𝐶𝑇𝑅. If the check fails, the
experiment aborts and returns 0. We call this event failure event 𝐹6 (wrong claim).

If 𝐹6 occurs, we can extract two openings for 𝑐𝑜𝑚out = 𝑐𝑜𝑚in from 𝜋 and 𝜋 with different (implicit)
report counter values. Therefore, we can construct an adversary C3 on the 𝐹 SP𝑔𝑝 -binding property
of 𝐶SP with the advantage

Adv
𝐹SP𝑔𝑝 -binding
𝐶SP ,C3 (𝑛) = Pr [𝐹6 ] (7.9)

Game 8
At the end of the experiment, before returning 1 to A we now additionally check for each pkU
used within the experiment that there are no more than𝑚𝑎𝑥𝑞𝑖𝑑 + 1 (1 MalRegisterUser +𝑚𝑎𝑥𝑞𝑖𝑑 )
MalSubmitReport calls) successful transactions associated with pkU . If the check fails, we return
0 instead. We call this event failure event 𝐹7.

In case 𝐹7 occurs, because each successful transaction is part of the unique path of pkU within the
transaction graph, there has to be a path longer than𝑚𝑎𝑥𝑞𝑖𝑑 + 1. As the for the first and second
node in the path, we have that 𝐶𝑇𝑅 = 𝑔

�𝑚𝑎𝑥𝑞𝑖𝑑

1 and each subsequent step reduces the counter by
one, in step𝑚𝑎𝑥𝑞𝑖𝑑 + 2 it holds that 𝐶𝑇𝑅 = 𝑔01 = 1. As 𝑃5 is perfectly sound, we have that

Pr [𝐹7 ] = 0 (7.10)

Note that A cannot win Game 7.
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Combining Equations (7.1) to (7.10), we obtain

AdvLBGI,A (𝑛) = AdvLB-game-1
GI,A (𝑛)

= Pr
[
ExpLB-game-1(𝑛) ?

= 1 ∧ ¬
(∨7

𝑖=1 𝐹𝑖
) ]
+ Pr

[
ExpLB-game-1(𝑛) ?

= 1 ∧
(∨7

𝑖=1 𝐹𝑖
) ]

= AdvLB-game-7
GI,A (𝑛) + Pr

[
ExpLB-game-1(𝑛) ?

= 1 ∧
(∨7

𝑖=1 𝐹𝑖
) ]

≤ Pr [𝐹1 ] + Pr [𝐹2 ] + Pr [𝐹3 ] + Pr
[
ExpLB-game-1(𝑛) ?

= 1 ∧ 𝐹4
]
+ Pr [𝐹5] + Pr [𝐹6 ] + Pr [𝐹7 ]

≤ Pr [𝐹1 ] + Pr [𝐹2 ] + Pr
[
𝐹
𝑠′′0 =𝑠

′′
1

3

]
+ Pr

[
𝐹
(𝑠′′0 ≠𝑠′′1 )
3

]
+ Pr

[
ExpLB-game-1(𝑛) ?

= 1 ∧ 𝐹 (𝑠=𝑠̂)4

]
+ Pr

[
𝐹 𝑠≠𝑠̂4

]
+ Pr [𝐹5] + Pr [𝐹6 ] + Pr [𝐹7 ]

≤ AdvEUF-CMA
𝑆,B0 (𝑛) + AdvEUF-CMA

𝑆,B1 (𝑛) + 𝑚
2

𝑝
+ Adv𝐹

SP
𝑔𝑝 -binding

𝐶SP ,C0 (𝑛) + Adv𝐹
SP
𝑔𝑝 -binding

𝐶SP ,C1 (𝑛)

+ Adv𝐹
SP
𝑔𝑝 -binding

𝐶SP ,C2 (𝑛) + Adv𝐹
SP
𝑔𝑝 -binding

𝐶SP ,C3 (𝑛)

as m is polynomial in 𝑛, 𝑆 is EUF-CMA secure and 𝐶SP is 𝐹 SP𝑔𝑝 -binding, this advantage is negligible.

7.6.6 Balance-binding

Theorem 7.21 (Balance-binding) If 𝑃1, 𝑃2 and 𝑃3 are perfectly 𝐹 (1)𝑔𝑝 -, 𝐹 (2)𝑔𝑝 - and 𝐹 (3)𝑔𝑝 -extractable, re-
spectively, 𝐶I is 𝐹 I𝑔𝑝-binding, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI is balance-binding.

Proof idea As our notion of balance-binding is essentially the same as within BBA+, the proof given
in [Har+19] holds. The proof works analogously to the proof of Section 7.6.5 but storing the balance𝑊
and the accumulated/redeemed incentive values 𝑣 instead of 𝐶𝑇𝑅 in the records. Moreover, in Game
6, the experiment checks if the balance of the current record equals the balance contained within the
previous record modified by 𝑣 (𝑊 =𝑊 · 𝑔𝑣1 for Collect,𝑊 =𝑊 · 𝑔−𝑣1 for Redeem).Game 2 and Game
7 are not required, as the goal of the adversary is to claim a false balance and the balance tokens are
independent of 𝑞𝑖𝑑 .

7.6.7 Double-spending detection

Theorem 7.22 (Double-spending detection) If 𝑃1, 𝑃2, 𝑃3, 𝑃4 and 𝑃5 are perfectly 𝐹 (1)𝑔𝑝 -, 𝐹 (2)𝑔𝑝 -, 𝐹 (3)𝑔𝑝 -,
𝐹
(4)
𝑔𝑝 - and 𝐹 (5)𝑔𝑝 -extractable, respectively, 𝐶I and 𝐶SP are additively homomorphic and 𝐹 I𝑔𝑝-binding and
𝐹 SP𝑔𝑝 -binding, respectively, 𝑆 is EUF-CMA secure and 𝐸𝜏 is correct, then GI ensures double-spending de-
tection.

Proof idea We adapt the proof idea from BBA+ to incorporate the report limitation mechanism (cf.
[Har+19]). Let 𝑐𝑜𝑚0, 𝜋0 and 𝑐𝑜𝑚1, 𝜋1 denote the commitment and proof, and 𝑠0 = 𝑠1 the token version
number contained in view0 and view1, respectively. Furthermore, let 𝑧0 = (𝑡,𝑢2) and 𝑧1 = (𝑡 ′, 𝑢 ′2).
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We consider each of the three winning conditions separately. For the first condition, we have that
pk(0)U ≠ pk(1)U . We distinguish three subcases:

𝑐𝑜𝑚0 = 𝑐𝑜𝑚1

Because of the correctness of 𝐸𝜏 and the soundness of 𝑃2, 𝑃3 and 𝑃5, this commitment can be
opened using pk(0)U and pk(1)U . Therefore, by the extractability property of the proofs, we can
extract two valid, implicit messages𝑀 (0) ≠ 𝑀 (1) and two openings 𝑑 (0) , 𝑑 (1) for the commitment
𝑐𝑜𝑚0 = 𝑐𝑜𝑚1. This violates either the 𝐹 I𝑔𝑝-binding property of 𝐶I or the 𝐹 SP𝑔𝑝 -binding property of
𝐶SP .

𝑐𝑜𝑚0 ≠ 𝑐𝑜𝑚1 and 𝑐𝑜𝑚0 or 𝑐𝑜𝑚1 is new
Either 𝑐𝑜𝑚0 or 𝑐𝑜𝑚1 did not occur in any previous transaction as a message sent from the I or
SP and neither within a token issuing (via MalRegisterUser or MalIssue). In this case, A has
managed to forge a signature in the name of the SP or ISP for this commitment, violating the
EUF-CMA security of 𝑆 .

𝑐𝑜𝑚0 ≠ 𝑐𝑜𝑚1 and 𝑐𝑜𝑚0 and 𝑐𝑜𝑚1 occurred before
In this case, the commitments are already associated with some token version numbers 𝑠∗0 and 𝑠

∗
1 ,

which have been chosen uniformly at random. This is ensured as these token version numbers are
generated by a Blum-like coin toss between the adversary and the ISP or SP. Even if the adversary
cheats on his share 𝑠 ′, adding the uniformly random 𝑠 ′′ using the additive homomorphism of the
corresponding commitment 𝐶I or 𝐶SP ensures that 𝑠 is random. Therefore, the probability that
the two version numbers generated by the protocols are equal is negligible. Hence, the adversary
can equivocate at least one of the commitments for the winning condition 𝑠0 = 𝑠1 to occur with
more than negligible probability, violating the binding property of the commitment.

For the second winning condition, we have that IdentDS(pkI, dstag0, dstag1)) ≠ (pk
(0)
U , 𝛱 ). Let us

consider dstag0 = (𝑠, (𝑡,𝑢2)) and dstag1 = (𝑠, (𝑡 ′, 𝑢 ′2)), where 𝑡 = sk(0)U 𝑢2 +𝑢1 and 𝑡
′ = sk(1)U 𝑢

′
2 +𝑢 ′1. Note

that IdentDS(pkI, dstag0, dstag1) = (pk
(0)
U , sk

(0)
U ) if the following conditions are satisfied: sk(0)U = sk(1)U ,

pk(0)U = 𝑔
sk(0)U
1 , 𝑢2 ≠ 𝑢 ′2 and 𝑢1 = 𝑢 ′1. We show that these conditions are satisfied with overwhelming

probability, implying that this case can only occur with negligible probability.
We can assume that pk(0)U = pk(1)U as otherwise we would be in the first case. Considering 𝜋0 and 𝜋1,

from the soundness of 𝑃2, 𝑃3 and 𝑃5, the correctness of 𝐸𝜏 and the languages used within the proofs, it

follows that pk(0)U = 𝑔
sk(0)U
1 , pk(1)U = 𝑔

sk(1)U
1 and sk(0)U = sk(1)U . Moreover, as 𝑢2 and 𝑢 ′2 are chosen uniformly

at random from the ISP or SP, 𝑢2 ≠ 𝑢 ′2 holds with overwhelming probability. The remaining possibility
to violate the conditions of IdentDS would be if 𝑢1 ≠ 𝑢 ′1. We distinguish between three subcases based
on the commitments 𝑐𝑜𝑚0 and 𝑐𝑜𝑚1, similar to the first case.

𝑐𝑜𝑚0 = 𝑐𝑜𝑚1

The extractability of 𝑃2, 𝑃3 and 𝑃5 allows us to extract two implicit messages 𝑀0 and 𝑀1 and
corresponding opening values for this commitment from 𝜋0 and 𝜋1. 𝑀1 includes 𝑔𝑢1

1 and 𝑀2
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includes 𝑔𝑢
′
1

1 . Therefore, 𝑢1 ≠ 𝑢 ′1 violates either the 𝐹
I
𝑔𝑝 property of 𝐶I or the 𝐹 SP𝑔𝑝 property of

𝐶SP based on whether 𝑐𝑜𝑚0 = 𝑐𝑜𝑚1 is a commitment for the incentive or the report limitation
mechanism.

𝑐𝑜𝑚0 ≠ 𝑐𝑜𝑚1 and 𝑐𝑜𝑚0 or 𝑐𝑜𝑚1 is new
In case either of the commitments has not occurred within a previous transaction, the EUF-CMA
security of 𝑆 would be violated as the extractability and soundness of the proof systems would
allow the extraction of a valid signature for the new commitment from the corresponding proof.

𝑐𝑜𝑚0 ≠ 𝑐𝑜𝑚1 and 𝑐𝑜𝑚0 and 𝑐𝑜𝑚1 occurred before
In this case, the token version numbers generated by the protocol runs are only equal with
negligible probability. Hence, the adversary has to be able to equivocate at least one of the
commitments 𝑐𝑜𝑚0 and 𝑐𝑜𝑚1 for 𝑠0 = 𝑠1 to hold with more than negligible probability, violating
the binding property of the corresponding commitment.

For the third and last winning condition, we have that IdentDS(pkI, dstag0, dstag1)) = (pk
(0)
U , 𝛱 )

but VerifyGuilt(pkI, pk
(0)
U , 𝛱 ) = 0. From our definition of IdentDS and VerifyGuilt, it follows that

this case cannot occur.

7.6.8 Verifiable delivery

Theorem 7.23 (Verifiable delivery) If PI is node private and𝑀 is EUF-CMA secure, then GI provides
verifiable delivery.

Proof idea To win the verifiable delivery experiment, A has to provide a valid MAC tag 𝑡mac for
𝑐𝑜𝑚V ∥𝑟V under the message authentication key kmac. If A would be able to do this without the
knowledge of kmac, the EUF-CMA security of𝑀 would be violated.
Let us assume there exists an adversary A that can successfully extract the message authentication

key kmac from the experiment. We use this adversary to construct an adversary A ′ on the node privacy
of PI. A ′ simulates the verifiable delivery experiment for A replacing the RA’s public key pkRA with
the key provided by the challenger. It then generates two message authentication keys k(0)mac and k(1)mac

and chooses a random query identity and message 𝑞𝑖𝑑,𝑚. It calls its CorruptSP oracle and sends
((𝑞𝑖𝑑,𝑚∥k(0)mac), (𝑞𝑖𝑑,𝑚∥k(1)mac)) to the challenger. The mobile node registration number contained in
the challenge report 𝑐 = (regMN𝑞𝑖𝑑 , 𝑐1) is used within the simulation of RegisterUser and 𝑐 is then
injected into the SubmitReport protocol, replacing the one that would otherwise have been internally
computed. This removes the need to know 𝑅𝐴𝑠𝑘 and regMN𝑞𝑖𝑑 .
The MalRegisterUser and MalRegisterQ oracles available to A can be simulated by A ′ using its

CorruptMN and CorruptQ oracles. AsA does not know 𝑞𝑖𝑑 there is only a negligible possibility that he
registers a user identity for this query identity, which would result in A ′ loosing in its experiment. In
fact, if A would be able to extract the query identity from 𝑐 , we could similarly use this to break the
node privacy of PI. Note that A ′ could also use its knowledge of regMN𝑞𝑖𝑑 to simulate the oracle.



136 7 Advanced model

A ′ exploits the fact the subscription token st𝑞𝑖𝑑𝑏 is equivalent to the mobile node registration value
regMN𝑞𝑖𝑑 contained in the report 𝑐 = (regMN𝑞𝑖𝑑 , 𝑐1) to simulate the execution of the CollectReports
protocol. To detect modification, A ′ compares the report 𝑐∗ returned together with 𝑐𝑜𝑚V with 𝑐 . Note
that we use an ANO-IND-ID-CCA secure IBE scheme within PI which is therefore not homomporphic.

If A is successful in extracting kmac, A ′ can compare it with k(0)mac and k(1)mac and return the according
bit 𝑏 ′ to its challenger to win the node privacy experiment.

7.6.9 Transaction unlinkability

Theorem 7.24 (Transaction unlinkability) If 𝑃1, 𝑃2, 𝑃3, 𝑃4 and 𝑃5 are composable zero-knowledge,
𝐶I , 𝐶SP and 𝐶V are equivocable, 𝐸𝜏 is IND-CPA secure, PI provides report unlinkability and the VRF 𝐹
used within PI is correct and unique, then GI provides transaction unlinkability.

Proof The proof follows a series of game hops, similar to the privacy-preserving proof of BBA+
[Har+19]. We start from the real world experiment ExpTU-realGI,A and modify it in several steps until we reach
ExpTU-idealGI,A . Hereby, we denote the experiments of the 𝑖th intermediate game by ExpTU-game-i

GI,A . We further
denote the oracles available toA in ExpTU-game-i

GI,A with HonIssue𝑖 , HonRegisterUser𝑖 , HonSubmitReport𝑖 ,
HonCollect𝑖 , HonRedeem𝑖 and Corrupt𝑖 . Setup𝑖 denotes the implementation of the setup algorithm
used at the beginning of the experiment to generate the CRS. Note that the adversary additionally has
access to HonUser, which remains unchanged between the games.

Game 1
We start with ExpTU-realGI,A (𝑛), that is, in Game 1 we set

Setup1 := Setup HonCollect1 := RealHonCollect
HonIssue1 := RealHonIssue HonRedeem1 := RealHonRedeem
HonRegisterUser1 := RealHonRegisterUser Corrupt1 := RealCorrupt
HonSubmitReport1 := RealHonSubmitReport

Game 2
In the second game, we modify Setup2 such that we generate all the CRSs for the zero-knowledge
proofs and commitments in a way that we can simulate the corresponding proofs and equivocate
the corresponding commitments, respectively. The full algorithm is given in Figure 7.48

As 𝑃1 to 𝑃5 are composable zero-knowledge and𝐶I ,𝐶SP and𝐶V are equivocable,A can distinguish
between Game 1 and Game 2 with at most negligible advantage.

Game 3
In the third game, we exchange all the zero-knowledge proofswithinHonIssue3, HonRegisterUser3,
HonSubmitReport3, HonCollect3 and HonRedeem3 with simulated proofs using the correspond-
ing proof simulators SimProof′ (cf. Section 3.11). Note that in opposite to SimProof, SimProof′

takes the witness and returns ⊥ if the statement and witness pair is not in the language.
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Setup2(1𝑛)

𝑔𝑝 := (𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛)
hk← HGen(1𝑛)
(CRScomI , tdcomI ) ← 𝐶I .SimGen(𝑔𝑝)
(CRScomSP , tdcomSP ) ← 𝐶SP .SimGen(𝑔𝑝)
(CRScomV , tdcomV ) ← 𝐶V .SimGen(𝑔𝑝)
(sk𝜏 , pk𝜏 ) ← 𝐸𝜏 .Gen(𝑔𝑝)
(CRSpokI , tdspokI ) ← SetupSPoK(𝑔𝑝, (tdcomI , tdcomV )
(CRSpokSP , tdspokSP ) ← SetupSPoK(𝑔𝑝, tdcomSP )
CRSpokPI ← PI.SetupVRF(𝑔𝑝)
CRS := (𝑔𝑝, hk,CRScomI ,CRScomSP ,CRScomV , pk𝜏 ,CRSpokI ,CRSpokSP ,CRSpokPI )
tdSim := (sk𝜏 , tdcomI , tdcomSP , tdcomV , tdspokI , tdspokSP )
return (CRS, tdSim)

Figure 7.48: 𝑆𝑒𝑡𝑢𝑝2 algorithm

To show that Game 2 and Game 3 are indistinguishable, we use a nested game proof argument.
First, note that the statements that are proven are correct and, therefore, SimProof′ never returns
⊥ but always a simulated proof.

In Game 3.1, we only replace the proofs for 𝑃1 with simulated proofs. We now assume there
exists an adversary A ′ that can distinguish between Game 3.1 and Game 2 with non-negligible
advantage. We construct an adversary A ′′ against the composable zero-knowledge property of
𝑃1 as follows: A ′′ runs A ′ internally and simulates the experiment and all the user oracles.
However, CRScomI is replaced with the CRS from the challenger and all internal calls to 𝑃1.Prove
are forwarded to 𝐴′′’s oracle that either returns a real or simulated proof. Finally,A ′′ outputs the
same decision as A ′. Note that A ′′ has the same advantage as A ′.

Game 3.2 to 3.5 work analogously by replacing all proofs within 𝑃2 to 𝑃5, one proof system at a
time. In the proof, when replacing 𝑃4 and 𝑃5, CRSpokSP has to be replaced with the CRS from the
challenger. Note that in Game 3.4 (where we replace 𝑃4), A ′ is further restricted as he only has
access to the transcript of the interaction. Moreover, in any case, A ′′ has to simulate all proofs
for the previously replaced proof systems. This is possible as A ′′ gets the simulation trapdoor
tdspok in the zero-knowledge game.

Game 4
We now replace all commitments with simulated commitments. If a user gets corrupted, the
commitments are equivocated to contain the correct user secret key, balance or counter value and
query identity, whichever is applicable for the corresponding commitment scheme. For the token
version number 𝑠 and the user randomness𝑢1 in𝐶I and𝐶SP , new randomℤ𝑝 elements are chosen.
Additionally, before calling UVerSP or UVerI , the corresponding commitment is equivocated to
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contain the user secret key skU := 0, a query identity 𝑞𝑖𝑑 := 0, if applicable, and a known balance
or counter value such that it is still possible to verify if A modified the commitments correctly.
As the statements proven with 𝑃1 to 𝑃5 are no longer valid, the corresponding proof simulator
algorithms SimProof have to be used directly instead of the wrapper SimProof′.

Again, we show that Game 3 and Game 4 are indistinguishable by a nested game proof argument.
More precisely, we use two levels of nested arguments. We first define the games Game 4.1, 4.2,
and 4.3 in which we replace all the usage of 𝐶I , 𝐶SP , and 𝐶V , respectively. We only give a proof
for the indistinguishability of Game 3 and Game 4.1 as the two remaining steps work analogously.

To show the indistinguishability of Game 4.1 and Game 3, we assume there exists an adversary
A ′ distinguishing those games with non-negligible advantage. We define the games Game 4.1.𝑖
for 𝑖 ∈ [0,𝑚] as follows: In Game 4.1.𝑖 , the first 𝑖 𝐶I commitments that are sent to A are replaced
with simulated commitments generated with 𝐶I .SimGen. Hereby, Game 4.1.0 equals Game 3 and
Game 4.1.m is equal to Game 4.1. As A ′ can distinguish Game 4.1.m and Game 4.1.0 there exists
an index 𝑖 such that A ′ can distinguish between Game 4.1.𝑖 and Game 4.1.(𝑖 − 1). We use this
to construct an adversary A ′′ on the equivocability of 𝐶I . A ′′ runs A ′ internally and simulates
the experiment and the oracles for A ′. As A ′′ gets the commitment trapdoor tdcomI from the
equivocability challenger, it can generate the first 𝑖 − 1 𝐶I-commitments with 𝐶I .SimGen and
equivocate for UVerI and Corrupt. Moreover, A ′′ has the 𝑖th 𝐶I-commitment be generated by
the challenger. All remaining 𝐶I-commitments are generated by 𝐶I .Gen as in the real world
experiment. A ′′ has the same advantage as A ′ has in distinguishing Game 4.1.𝑖 and 4.1.(𝑖 − 1).

Game 5
In the fifth game, we modify HonSubmitReport5 as follows: Let pkU be the user identity and
𝑞𝑖𝑑 be the query identity used within the call. If there was at least one successful call to
HonSubmitReport5 for pkU and 𝑞𝑖𝑑 between this call and the last call to Corrupt5 for pkU or the
successful call to HonRegisterUser5 for pkU and 𝑞𝑖𝑑 took place after Corrupt5 has been called,
then the value 𝑡 , which is used during the corresponding interactive protocols as part of the
double-spending detection mechanism, is chosen randomly and not calculated as 𝑡 := skU𝑢2 + 𝑢1.

Analogously, we modify HonCollect5 and HonRedeem5, by choosing 𝑡 randomly if there was
at least one successful HonCollect5 or HonRedeem5 call between this call and the last call to
Corrupt5 for the same user identity.

Excluding a transaction directly following a corruption of the user is necessary as in this case, A
knows 𝑢1, 𝑢2 and skU when getting 𝑡 and can, therefore, check if 𝑡 was created honestly. Note
that we do not have to distinguish between HonCollect5 and HonRedeem5 calls as they use the
same token.

For transactions not directly following a corruption where the corresponding token 𝜏UI or 𝜏U,𝑞𝑖𝑑

SP
is exposed, A does not now 𝑢1, which is chosen uniformly at random in every transaction in
Game 4. Therefore, 𝑡 looks uniformly random to A as it is the case in Game 5, which is why A
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cannot distinguish those two games.

Game 6
We replace the encryption hid of pkU within HonSubmitReport6, HonCollect6 and HonRedeem6

with an encryption of 𝑔01 = 1. However, we do not change the cleartext pkU used within the
identifying protocols Issue and RegisterUser, as they are part of the proof statement and,
therefore, the change could be easily detected by A.

To show that this modification is indistinguishable from Game 5, we assume there exists an
adversary A ′ distinguishing between Game 5 and Game 6 with non-negligible advantage. We
define Game 6.0 to Game 6.𝑚 by replacing the encryptions one by one in the same order as they
are sent to A. Hereby, Game 6.0 equals Game 5 and Game 6.𝑚 equals Game 6. In Game 6.𝑖 , the
first 𝑖 hids are replaced with an encryption of 1 while the following are encryptions of the real
pkU . As A ′ can distinguish between Game 6.0 and Game 6.𝑚, there exists an index 𝑖 such that
A ′ can distinguish between Game 6.𝑖 and Game 6.(𝑖 − 1). We use this to construct an adversary
A ′′ on the IND-CPA security of 𝐸𝜏 . Note thatA ′ never gets the decryption key sk𝜏 . A ′′ runsA ′

internally and simulates the experiment and the user oracles for A ′. Up to the (𝑖 − 1)th hid, A ′′

generates them as encryptions of 1. For the 𝑖th hid, A ′′ sends (pkU, 1) to its challenger C and
uses the encryption obtained for C. All following hids are generated as encryptions of pkU . The
decision ofA ′′ is the same as the decision ofA ′. In this constructionA ′′ has the same advantage
as A ′ has in distinguishing Game 6.𝑖 and Game 6.(𝑖 − 1).

Game 7
In Game 7, for all (pkU, 𝑞𝑖𝑑) where the user identified by pkU has not previously been cor-
rupted while already registered for 𝑞𝑖𝑑 , we replace the report counter token 𝜏SP used within
HonSubmitReport7 with a 𝜏∗SP randomly chosen from all the report counter tokens observed in
previous successful calls to HonRegisterUser7 for the same 𝑞𝑖𝑑 .

We assume there exists an adversary A ′ distinguishing between Game 6 and Game 7 with non-
negligible advantage. Note that as we already simulate the proofs within RegisterUser, only the
mobile node registration value from the report counter token is used to execute SubmitReport.
Therefore, as long as all themobile node registration values for the same query identity𝑞𝑖𝑑 issued to
users played by the experiment are equal, the modifications made in Game 7 are not observable by
A ′. Let, therefore, regMN𝑞𝑖𝑑 ≠ regMN∗

𝑞𝑖𝑑
be two different mobile node registration values send by

A ′ during two successful RegisterUser protocol runs for the same query identity 𝑞𝑖𝑑 . Let further
𝜋𝑞𝑖𝑑 and 𝜋∗

𝑞𝑖𝑑
be the corresponding VRF proofs send by A ′. As the user accepted the protocol

run, it holds that 𝐹 .Verify(pk𝐹 , 𝑞𝑖𝑑, regMN𝑞𝑖𝑑 , 𝜋𝑞𝑖𝑑 )
?
= 𝐹 .Verify(pk𝐹 , 𝑞𝑖𝑑, regMN∗

𝑞𝑖𝑑
, 𝜋∗

𝑞𝑖𝑑
) ?
= 1,

which is a direct contradiction to the uniqueness of 𝐹 .

Figures 7.49 to 7.53 show the behavior ofUSim in Game 7 and Figure 7.54 the Sim algorithm used
within Corrupt7, accumulating the changes made in the previous games.



140 7 Advanced model

Issue
〈
USim(tdSim, pkI, pkU),I(pkI, skI, pkU)

〉
USim (tdSim, pkI, pkU) I (pkI, skI, pkU)
𝑠 ′, 𝑢1 ← ℤ𝑝

(𝑐𝑜𝑚′, 𝑟 ′) ← 𝐶I .SimCom(𝑔𝑝)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, pkU )
𝜋 ← 𝑃1.SimProof(CRSpokI , tdspokI , 𝑠𝑡𝑚)

𝑐𝑜𝑚′, 𝜋

𝑠𝑡𝑚 := (𝑐𝑜𝑚′, pkU )

if 𝑃1.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return 0
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .Com(CRScomI ,

(𝑠 ′′, 0, 0, 0))
𝑐𝑜𝑚 := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎 ← 𝑆.Sign(skI , 𝑐𝑜𝑚)

𝑐𝑜𝑚,𝑑 ′′, 𝜎, 𝑠 ′′

𝑠 := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 ′ ← 𝐶I .Equiv(CRScomI , tdcomI , (𝑠, 0, 0, 𝑢1), 𝑟

′)

𝑑 := 𝑑 ′ · 𝑑 ′′

𝜏 := (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1)

if UVerI (pkI , 1.0.𝜏, 0)
?
= 0 then return (⊥, 0)

endif

return (⊥, 1) return 1

Figure 7.49: Behavior ofUSim during the Issue protocol in HonIssue7
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RegisterUser
〈
USim(tdSim, pkSP, pkU, 𝑞𝑖𝑑),RA(pkRA, skRA, pkSP, skSP, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
USim (tdSim, pkSP , pkU, 𝑞𝑖𝑑) RA(pkRA, skRA, pkSP , skSP, pkU,

𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

𝑚𝑎𝑥𝑞𝑖𝑑

𝑠 ′, 𝑢1 ← ℤ𝑝

(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶SP .SimCom(𝑔𝑝)

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU , 𝑔
𝑚𝑎𝑥𝑞𝑖𝑑
1 )

𝜋 ← 𝑃4.SimProof(CRSpokSP , tdspokSP , 𝑠𝑡𝑚)

𝑐𝑜𝑚′, 𝜋

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′, pkU , 𝑔
𝑚𝑎𝑥𝑞𝑖𝑑
1 )

if 𝑃4.Verify(CRSpokSP , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return 0
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶SP .𝐶𝑜𝑚(CRScomSP ,

(𝑠 ′′, 0, 0, 0, 0))
𝑐𝑜𝑚 := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

regMN𝑞𝑖𝑑 ← PI.RegisterMN(pkRA ,
skRA , 𝑞𝑖𝑑)

regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚,𝑑
′′, 𝜎, 𝑠 ′′ 𝜎 ← 𝑆.Sign(skSP , 𝑐𝑜𝑚)

𝑠 := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 ′ ← 𝐶SP .Equiv(CRScomSP , tdcomSP ,

(𝑠,𝑚𝑎𝑥𝑞𝑖𝑑 , 0, 𝑢1), 𝑟 ′)
𝑑 := 𝑑 ′ · 𝑑 ′′

𝜏SP := (𝑐𝑜𝑚,𝑑, 𝜎, 𝑠,𝑢1, regMN𝑞𝑖𝑑 ,𝑚𝑎𝑥𝑞𝑖𝑑 )

if UVerSP (pkSP , 1, 0, 𝜏SP )
?
= 0 then

return (⊥,⊥, 0)
endif

return (𝜏SP , 1) return 1

Figure 7.50: Behavior ofUSim during the RegisterUser protocol in HonRegisterUser7
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SubmitReport
〈
USim(tdSim, pkRA, pkSP, 𝑞𝑖𝑑, 𝜏∗SP,𝑚),SP(pkSP, skSP)

〉
USim (tdSim, pkRA , pkSP , 𝑞𝑖𝑑, 𝜏∗SP ,𝑚) SP(pkSP , skSP)

𝑢2 𝑢2 ← ℤ𝑝

kmac ← 𝑀.Gen(1𝑛)

(𝑐𝑜𝑚,𝑑, 𝜎, 𝑠̂, 𝑢1, regMN𝑞𝑖𝑑 , 𝑐𝑡𝑟 ) := 𝜏∗SP
𝑐 ← PI.ReportData(pkRA , regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚∥kmac)
(𝑐𝑜𝑚V , 𝑑V ) ← 𝐶V .SimCom(𝑔𝑝)
𝑡 ← ℤ𝑝

𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , 1; 𝑟 )
(𝑐𝑜𝑚′, 𝑟 ′) ← 𝐶SP .SimCom(𝑔𝑝)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, regMN𝑞𝑖𝑑 , hid)
𝜋 ← 𝑃5.SimProof(CRSpokSP , tdspokSP , 𝑠𝑡𝑚)

𝑐, 𝑐𝑜𝑚V , 𝑐𝑜𝑚
′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
(regMN𝑞𝑖𝑑 , 𝑐1) := 𝑐
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, regMN𝑞𝑖𝑑 , hid)

if 𝑃5.Verify(CRSpokSP , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return (⊥,⊥,⊥, 0)
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶SP .Com(CRScomSP ,

(𝑠 ′′,−1, 0, 0, 0))
𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skSP , regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚
∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 ′ := 𝐶SP .Equiv(CRScomSP , tdcomSP , (𝑠

′, 1, 0, 𝑢 ′1), 𝑟
′)

𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑢∗1 := 𝑢 ′1
𝜏∗SP := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1, regMN𝑞𝑖𝑑 , 0)

if UVerSP (pkSP , pkU , skU , 𝜏∗SP )
?
= 0 then

return (⊥, 0)
endif

𝜏V := (𝑐𝑜𝑚V , 𝑑V )
return (𝜏V ,⊥, 1) return (𝑐, comV , dstag, hid, 1)

Figure 7.51: Behavior ofUSim during the SubmitReport protocol in HonSubmitReport7
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Collect
〈
USim(tdSim, pkI, 𝑐𝑜𝑚V, kmac),I(pkI, skI, comV, 𝑟V, 𝑣)

〉
USim (tdSim, pkI, 𝑐𝑜𝑚V ,𝑚) I (pkI, skI, comV , 𝑟V , 𝑣)

𝑢2, 𝑟V , 𝑣 𝑢2 ← ℤ𝑝

𝑡 ← ℤ𝑝

𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , 1; 𝑟 )
(𝑐𝑜𝑚′, 𝑟 ′) ← 𝐶I .SimCom(𝑔𝑝)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑐𝑜𝑚V , 𝑔𝑠1, 𝑡, 𝑢2, ℎ𝑖𝑑)
𝜋 ← 𝑃2.SimProof(CRSpokI , tdspokI , 𝑠𝑡𝑚)

𝑐𝑜𝑚′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑐𝑜𝑚V , 𝑔𝑠1, 𝑡, 𝑢2, hid)

if 𝑃2.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0 then

return 0
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .Com(CRScomI , (𝑠
′′, 𝑣, 0, 0))

𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skI , 𝑐𝑜𝑚∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 ′ ← 𝐶I .Equiv(CRScomI , tdcomI ,

(𝑠 ′, 0, 0, 𝑢 ′1), 𝑟
′)

𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑢∗1 := 𝑢 ′1
𝜏∗I := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1)

if UVerI (pkI , 1.0.𝜏∗I , 𝑣)
?
= 0 then

return (⊥, 0)
endif

𝑡mac ← 𝑀.Mac(kmac, 𝑐𝑜𝑚V , 𝑟V) 𝑡mac

return (⊥, 1, 𝑣) return (𝑡mac, dstag, hid, 1)

Figure 7.52: Behavior ofUSim during the Collect protocol in HonCollect7
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Redeem
〈
USim(tdSim, pkI,𝑤U, 𝑣),I(pkI, skI,𝑤U, 𝑣)

〉
USim (tdSim, pkI,𝑤U, 𝑣) I (pkI, skI,𝑤, 𝑣)

𝑢2 𝑢2 ← ℤ𝑝

𝑡 ← ℤ𝑝

𝑟, 𝑠 ′, 𝑢 ′1 ← ℤ𝑝

hid := 𝐸𝜏 .Enc(pk𝜏 , 1; 𝑟 )
(𝑐𝑜𝑚′, 𝑟 ′) ← 𝐶I .SimCom(𝑔𝑝)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, hid, 𝑔

𝑤U
1 )

𝜋 ← 𝑃3.SimProof(CRSpokI , tdspokI , 𝑠𝑡𝑚)

𝑐𝑜𝑚′, 𝑠, 𝑡, 𝜋, hid

𝑧 := (𝑡,𝑢2)
dstag := (𝑠, 𝑧)
𝑠𝑡𝑚 := (𝑐𝑜𝑚′, 𝑔𝑠1, 𝑡, 𝑢2, hid, 𝑔

𝑤U
1 )

if 𝑃2.Verify(CRSpokI , 𝑠𝑡𝑚, 𝜋)
?
= 0

or𝑤 < 𝑣 then

return (⊥,⊥, 0)
endif

𝑠 ′′ ← ℤ𝑝

(𝑐𝑜𝑚′′, 𝑑 ′′) ← 𝐶I .Com(CRScomI ,

(𝑠 ′′,−𝑣, 0, 0))
𝑐𝑜𝑚∗ := 𝑐𝑜𝑚′ · 𝑐𝑜𝑚′′

𝜎∗ ← 𝑆.Sign(skI , 𝑐𝑜𝑚∗)

𝑐𝑜𝑚∗, 𝑑 ′′, 𝜎∗, 𝑠 ′′

𝑠∗ := 𝑠 ′ + 𝑠 ′′ mod 𝑝
𝑑 ′ ← 𝐶I .Equiv(CRScomI , tdcomI , (𝑠

′, 𝑣, 0.𝑢 ′1), 𝑟
′)

𝑑∗ := 𝑑 ′ · 𝑑 ′′

𝑢∗1 := 𝑢 ′1
𝜏∗I := (𝑐𝑜𝑚∗, 𝑑∗, 𝜎∗, 𝑠∗, 𝑢∗1)

if UVerI (pkI , pkU , skU , 𝜏∗I , 0)
?
= 0 then

return (⊥, 0)
endif

return (⊥, 1,−𝑣) return (dstag, hid, 1)

Figure 7.53: Behavior ofUSim during the Redeem protocol in HonRedeem7
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Sim(𝑡𝑑Sim, pkU, skU,𝑤U,ℜ,𝔖′U,𝔖
∗
U)

Let 𝑐𝑜𝑚∗I and 𝜎
∗
I be the latest commitment and signature that were send byA during

HonCollect or HonRedeem calls for pkU and let 𝑟 ′I . Let further 𝑐𝑜𝑚
∗
SP,𝑞𝑖𝑑 and 𝜎

∗
SP,𝑞𝑖𝑑

be the latest commitment and signature send byA during SubmitReport for pkU and
𝑞𝑖𝑑 .

𝑠∗, 𝑢∗1 ← ℤ𝑝

𝑑∗ := 𝐶I .Equiv(CRScomI , tdcomI , (𝑠
∗,𝑤, skU, 𝑢

∗
1), 𝑟 ′)

𝜏UI := (𝑐𝑜𝑚∗I, 𝑑
∗, 𝜎∗, 𝑠∗, 𝑢∗1)

𝔔U := ∅

for (pkU∗, 𝑞𝑖𝑑) ∈ ℜ where pkU
∗ ?
= pkU do

𝑠∗, 𝑢∗1 ← ℤ𝑝

𝑑∗ := 𝐶SP .Equiv(CRScomSP , tdcomSP , (𝑠
∗, 𝑐𝑡𝑟U

𝑞𝑖𝑑
, skU, 𝑢

∗
1))

𝜏
U,𝑞𝑖𝑑

SP := (𝑐𝑜𝑚∗SP,𝑞𝑖𝑑 , 𝑑
∗, 𝜎∗, 𝑠∗, 𝑢∗1, regMNU

𝑞𝑖𝑑
, 𝑐𝑡𝑟U

𝑞𝑖𝑑
)

𝔔U := 𝔔U ∪ {𝑞𝑖𝑑, 𝜏U,𝑞𝑖𝑑

SP }
endfor
𝔖U := ∅
for 𝜏 ′V ∈ 𝔖

′
U do

(𝑐𝑜𝑚V , 𝑟 ′, kmac) := 𝜏 ′V
𝑑V := 𝐶V .Equiv(CRScomV , tdcomV , skU)
𝜏V := (𝑐𝑜𝑚V , 𝑑V , kmac)
𝔖U := 𝔖U ∪ {𝜏V }

endfor
𝔖U := 𝔖U ∪𝔖∗U
return (𝜏UI ,𝔔U,𝔖U)

Figure 7.54: Sim algorithm used in Corrupt7
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Note that with Game 7, we finally reached ExpTU-idealGI,A . As all the previous games have been
indistinguishable from its predecessors, we have shown that Game 7 is indistinguishable from
Game 1 and, thus, ExpTU-realGI,A is indistinguishable from ExpTU-idealGI,A , which concludes our proof.

7.6.10 False accusation protection

Theorem 7.25 (False accusation protection) If GI provides transaction unlinkability and the CDH
assumption holds with respect to 𝐺1, then GI provides false claim protection.

Proof idea The proof idea of the corresponding BBA+ property still holds. Assume there is an efficient
adversary A breaking the false accusation protection of GI. This adversary has access to the oracles
RealHonIssue, RealHonRegisterUser, RealHonSubmitReport RealHonCollect and RealHonRedeem for
a user identity pkU created by the experiment. Note that this is a strict subset of the oracles from the
transaction unlinkability experiment. We replace all this oracles by the ideal world oracles SimHonIssue,
SimHonRegisterUser, SimHonCollect and SimHonRedeem and modify the setup algorithm to allow the
simulation of proofs and equivocation of commitments (cf. Figure 7.48). We distinguish between two
cases:

1. The proof 𝛱 that A outputs is still valid with non-negligible probability. As 𝛱 = skU , this
essentially means thatA can compute the discrete logarithm of pkU , as all the simulation oracles
are PPT and pkU is the only input they get that is not independent of skU . Therefore, in this case,
we could use A to construct an adversary A ′ against the CDH assumption in 𝐺1. A ′ simulates
the experiment and the user oracles for A. Let 𝑔𝑥 = 𝑋,𝑔𝑦 = 𝑌 be the challenge 𝐺1 elements send
by the adversary. The A ′ replaces pkU with 𝑋 . Note that for the simulation of the oracles, no
knowledge of skU = 𝑥 is required. When A outputs a valid proof 𝛱 = skU = 𝑥 , A ′ outputs
𝑌𝛱 = (𝑔𝑦)𝑥 and wins the CDH experiment.

2. A cannot output a valid proof 𝛱 with more than negligible probability any longer. In this case,
we could use A to construct an adversary A ′ against the transaction unlinkability property of
GI. First A ′ generates an honest user for A by calling its HonUser oracle. Then A ′ forwards
all the oracle calls from A to its own oracles. After A outputs 𝛱 and terminates, A ′ verifies 𝛱
using VerifyGuilt and outputs the result as its decision whether it interacts with the real or ideal
world experiments. As 𝛱 is valid with non-negligible probability in the real world experiment
and only with negligible probability in the ideal world experiment, A ′ can distinguish between
those two experiments with non-negligible probability.

7.7 Performance of the instantiation

We focus on the performance of the code executed by the users as they are the most resource-constrained
entities in our system. We assume that the user codewill be executed on smartphones, which are powerful
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compared to the embedded devices used in traditional WSNs. As our protocols are similar to BBA+, we
use their profiling results as a baseline to estimate the performance of our system. We then estimate the
performance impact of our modifications.
For the evaluation of BBA+, Hartung et al. [Har+19] made use of a OnePlus 3 smartphone with a

Snapdragon 820 Quad-Core Processor (2 × 2.15 GHz & 2 × 1.6 GHz) and 6 GB RAM running Android
v8.0.0. They used the open-source library RELIC [AG16] v0.4.1 with Barreto-Naehrig curves Fp254BNb
and Fp254n2BNb and the optimal Ate pairing for the bilinear group. Executing the Issue protocol takes
the user 117.92 ms without and 123.96 ms with optimizations. The Accum protocol takes 414.87 ms and
338.98 ms and the Verify protocol 399.93 ms and 329.73 ms with and without optimizations, respectively.
Note that around 70%, in case of the optimized version, and around 80%, in case of the non-optimized
version, of this time is spend on calculations that can be pre-computed before the transaction is initiated.

Herold et al. [Her+17] provides benchmarks for the computation of exponentiations in𝐺1 and𝐺2 and
pairing evaluations for the same library, elliptic curves, and platform (except that they are using an older
version of Android). We use estimation techniques from Klooß [Klo17] which give us an upper bound
on the operations executed during Groth-Sahai proofs. Regarding proof verification, these estimations
only apply if batch verification (cf. [Her+17]) is used as an optimization technique.

Using these techniques, we estimate that the Issue protocol of BBA+ uses 27 𝐺1 exponentiations, 18
𝐺2 exponentiations and 12 pairings. Combined with the benchmarks from [Her+17], we would obtain
a total computation time of 116.61 ms, which is close to the real measurement results. Therefore, we
conclude that we can combine those two results to estimate the performance of our system.
To calculate the proof size of the Groth-Sahai proofs, we use the numbers from [EG14].
As our Issue and Redeem protocols are identical to the Issue and Verify protocols of BBA+, we only

examine the RegisterUser, SubmitReport and Collect protocols. We analyze the performance of our
system without optimizations applied. Our results show that our system achieves practical performance
on modern smartphones.

7.7.1 RegisterUser

The RegisterUser protocol is very similar to the Issue protocol from BBA+. The following differences
exist:

• We require one additional𝐺1 exponentiation to compute the statement for the Groth-Sahai proof.
• We require one additional pairing evaluation to verify the signature in UVerSP .
• We additionally have to verify the VRF proof.

Using the benchmarks from [Her+17], we would expect an additional execution time of 6.21 ms for
the pairing and the𝐺1 exponentiation. We estimate that the Groth-Sahai proof of the VRF takes at most
263.04 ms using batch verification, yielding an estimated total execution time of 387.17 ms.

Regarding communication complexity, 2 ℤ𝑝 elements, 25 𝐺1 elements and 22 𝐺2 elements have to be
exchanged during the protocol run.
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7.7.2 SubmitReport

The SubmitReport protocol compares to the Accum protocol of BBA+. Compared to Accum, the following
modifications have been made:

• Additional generation of a MAC key with 𝑀.Gen(1𝑛). This only has negligible impact on the
performance.

• Additional computation of a PEPSICo report with PI.ReportData.
• Additional computation of a commitment to the user’s secret key 𝑐𝑜𝑚V containing oneℤ𝑝 element.
This requires one additional 𝐺1 exponentiation and two additional 𝐺2 exponentiations.

• There is an additional𝐺1 element in the witness of the Groth-Sahai proof. This requires 4 additional
𝐺1 exponentiations to compute the Groth-Sahai commitment.

• There is an additional equation in the Groth-Sahai proof to verify that the bulletin commitment
𝑐𝑜𝑚V can be opened to the same pkU as the commitment 𝑐𝑜𝑚 from the report counter token.
This requires 8 additional 𝐺1 exponentiations and 8 additional 𝐺2 exponentiations.

• In the Groth-Sahai proof, we additionally have to verify that 𝑐𝑡𝑟 ≠ 0, ie. 𝑔𝑐𝑡𝑟1 ≠ 1. Therefore, we
require 5 additional 𝐺1 exponentiations and 16 additional 𝐺2 exponentiations.

• We require one additional pairing evaluation to verify the signature in UVerSP .

Therefore, without the computation of the PEPSICo report, we would expect SubmitReport to take
an additional 63.6 ms compared to Accum. Computing the PEPSICo report is an encryption of the IBE
scheme. We suggest the usage of the Boneh-Franklin IBE, which uses symmetric bilinear groups for
which we do not have benchmarks on the same platform. However, the performance is almost identical
to an ElGamal encryption, with one additional pairing operation, which, however, is independent of
the message and, therefore, only has to be executed once. To support larger message sizes, hybrid
encryption can be used.

During the protocol run, 4 ℤ𝑝 elements, 49 𝐺1 elements and 61 𝐺2 elements have to be exchanged in
addition to the IBE encryption.

7.7.3 Collect

We compare the Collect protocol to the Accum protocol of BBA+.

• There is an additional 𝐺2 element in the statement.
• There is an additional𝐺1 element in the witness. This requires 4 additional𝐺1 exponentiations to
compute the Groth-Sahai commitment.

• There is an additional equation in the Groth-Sahai proof to verify that the bulletin commitment
𝑐𝑜𝑚V can be opened to the same pkU as the commitment 𝑐𝑜𝑚 from the balance token. This
requires 8 additional 𝐺1 exponentiations and 8 additional 𝐺2 exponentiations.

• There is an additional MAC computation, which only has negligible impact on the performance.
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Those changes result in an additional 12𝐺1 exponentiations, 8𝐺2 exponentiations, which would take
an additional 22.60 ms, resulting in an estimated total execution time of 437.47 ms.

During the protocol run, 6 ℤ𝑝 elements, 46 𝐺1 elements, 54 𝐺2 elements and one bitstring {0,1}𝑛 has
to be transmitted.

7.8 Discussion

While we have eliminated PEPSICo’s restriction to an honest-but-curious RA regarding transaction
unlinkability and achieved forward privacy by directly using implementation details instead of its
report unlinkability property, other limitations of PEPSICo still apply. Especially, the data-hiding and
subscription-hiding properties of our system do not hold against an adversary that has compromised the
SP and an honest user registered for the query identities in question. This is implied by the fact that the
mobile node registration value is fixed per query identity (cf. Section 4.3). In our model, we used this
fact in some of our proofs. Especially transaction unlinkability relies on this fact as the signatures that
attest the validity of report counter tokens are over the mobile node registration value as well as over
the corresponding commitment. As the signatures are known to the adversary and exposed if a user is
corrupted, the experiment would have to equivocate the signatures, which is not possible. However,
using a VRF mapping to ℤ𝑝 , and thus resulting in mobile node registration values from ℤ𝑝 , one could
include these values into the commitment. Then, the indistinguishability between real and random
mobile node registration values could be reduced to the transaction unlinkablity of PEPSICo. However,
depending on the implementation, forward privacy might not hold any longer. Note that in case of
a collusion as mentioned above the data submitted in a report remains secret due to the security of
the IBE scheme. How feasible the assumption that such a collusion does not occur is, depends on the
verifications and restrictions for user registration.

In our system, a malicious user could collect incentives for a previously submitted report without
sending the MAC tag verifying its delivery to the SP. Therefore, the SP would not be able to prove their
successful delivery. We argue that there is no disadvantage for users in sending the tag and, thus, it is
feasible to assume that the large majority of users will behave honestly in this regard. However, this
could be further enhanced by using a fair exchange mechanism.
A reputation mechanism could be added by extending the balance token to include an additional

reputation score. Such reputation scores are helpful for the queriers to evaluate the trustworthiness
of the submitted data (cf. Section 2.4). However, there are some aspects to consider in the user of the
reputation scores. Would they be exposed and attached to each report during report submission, this
might allow the tracking of transactions based on the development of the transaction scores. Fortunately,
BBA+ already provides the means to address this problem. Using range proofs, it would be possible for
users to prove that their reputation exceeded a specific threshold, without exposing the actual score.
For example, different reputation levels could be specified. Then, during SubmitReport the user would
claim that he has a specific reputation level and proof this claim by providing a range proof that his
reputation exceeds the threshold of the level. The reputation level could then be attached to the report
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and the querier could use this information when determining the trustworthiness of the submitted data.
Together with the posted incentives, the querier could specify an update to the users’ reputation score
within a specific range defined by the system.

Note that we did not consider external threats such as entities eavesdropping on the network. There-
fore, all protocol messages should additionally be encrypted with an IND-CCA secure encryption
scheme. In addition, similar to PEPSICo, we did not consider privacy towards the network operator
or identification based on communication details such as IP addresses. If the network operator is not
trusted or identifying data would be exposed during the communication, an anonymizing network can
be used.
Additionally, we did not consider possible side-channel attacks that might reveal some information

about submitted reports and query identities, for example via statistics that might be published by the
queriers together with the result of their research.

Moreover, our model does not prevent the identification or linkage of users based on the data within a
single report. Therefore, the software that is used by users to submit data report has to provide absolute
transparency on which data is collected. Furthermore, there would be potential legal problems with
collecting personally identifiable information for query identities that are not exclusively available to
one querier as the purpose the collected data will be used for might not be clearly defined in advance as,
for example, it is required by the purpose limitation principle of the European General Data Protection
Regulation (GDPR) [Eur16].
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8 Conclusion

In this work, we presented I3PS, a participatory sensing system with incentive mechanism that provides
strong security and privacy properties based on weak trust assumptions. We first introduced an interim
model by combining PEPSICo and BBA+ in a black-box manner. We used this model to identify several
issues arising from such a combination, which we addressed in I3PS.

I3PS protects user privacy by ensuring that transactions are unlinkable, even if against a collusion of
malicious system operators, queriers, and other mobile nodes. Moreover, this also holds for transactions
following a corruption of the user, except for the next incentive submission for each query identity
where the corresponding report counter token has been exposed during the corruption and the next
report collection. It keeps the reported data confidential from the SP and, in addition, hides the query
identity of submitted reports and querier subscriptions as long as no user or querier registered for the
same query identity colludes with the SP. Moreover, its incentive mechanism provides strong security
guarantees towards malicious users and its report limitation mechanism provides a flexible way to limit
the extent of the double-reporting problem. This is additionally backed by the prevention of incentive
point sharing among users. Furthermore, queriers can verify that incentive points have been correctly
delivered to the corresponding participants, offering some protection against malicious SPs and ISPs.

Therefore, ourmodel effectively addresses the privacy issues in participatory sensingwithout requiring
strong trust assumptions as in previous work.

As future work, the proposed model could be extended with a reputation mechanism to support the
queriers in assessing data trustworthiness. Moreover, a reference implementation would help system
operators to deploy the model in practical applications and would allow conducting precise performance
benchmarks.
To further improve our model, a PEPSICo instantiation providing node privacy and query privacy

against users registered for the challenge query identities could be helpful. However, it would remain
to be seen how such an implementation would affect the other properties of our model. Furthermore,
including a fair exchange mechanism in the incentive collection protocol, we could achieve verifiable
delivery against malicious users.
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A One-time token mechanism

As an alternative to the report counter mechanism, one-time tokens can be used to limit the number
of reports that a user can submit for a specific query identity. For the one-time token mechanism, we
replace the RegisterMN and the ReportData algorithms from the interim model with the interactive
protocols RegisterUser and SubmitReport respectively. We define them as follows.

((regMN𝑞𝑖𝑑 , ®𝑡, 𝑏U), 𝑏RA) ← RegisterUser
〈
U(pkU, skU, 𝑞𝑖𝑑),RA(pkRA, skRA, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
When registering for a query identity, the RA has to check the identity of the user and that the
user is not already registered. Therefore, the protocol is identifying. In addition to the registration
value regMN𝑞𝑖𝑑 , the user obtains𝑚𝑎𝑥𝑞𝑖𝑑 one-time tokens ®𝑡 .

(𝑏U, (𝑐, 𝑐𝑜𝑚,𝑏I)) ← SubmitReport
〈
U(pkRA, pkU, skU, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚, 𝑡),SP(pkRA)

〉
With each data report, the user has to send the commitment 𝑐𝑜𝑚 and signature 𝜎 from a one-time
token 𝑡 , which is verified by the SP for validity and freshness. Moreover, the SP has to verify that
the submitted report 𝑐 , which has to be sent to the SP during the protocol, contains the same
mobile node registration value as the one-time tokens are issued for.

A possible instantiation of these protocols is given in Figure A.1 and Figure A.2, respectively.
(𝐺1,𝐺2,𝐺𝑇 , 𝑒, 𝑝, 𝑔1, 𝑔2) ← SetupGrp(1𝑛) is the description of a bilinear group where the SXDH problem
is assumed to be hard. We use a Commitment scheme 𝐶 and Signature scheme 𝑆 and IBE scheme 𝐸
compatible with the Groth-Sahai based implementation of BBA+ given in [Har+17]. 𝑃1 and 𝑃2 are
non-interactive Zero-Knowledge proof systems for the languages 𝐿1 and 𝐿2, respectively. They are
defined as beneath the protocols. Furthermore, 𝑞𝑖𝑑 ∈ ℤ𝑝 and regMN𝑞𝑖𝑑 ∈ 𝐺1.
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RegisterUser
〈
U(pkU, skU, 𝑞𝑖𝑑),RA(pkRA, skRA, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

〉
U (pkU, skU, 𝑞𝑖𝑑) RA(pkRA, skRA, pkU, 𝑞𝑖𝑑,𝑚𝑎𝑥𝑞𝑖𝑑 )

regMN𝑞𝑖𝑑 ,𝑚𝑎𝑥𝑞𝑖𝑑 regMN𝑞𝑖𝑑 ← RegisterMNPI (pkRA, skRA, 𝑞𝑖𝑑)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . for 𝑖 = 0 to (𝑚𝑎𝑥𝑞𝑖𝑑 − 1) do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑟𝑖
$←− ℤ𝑝

(𝑐𝑜𝑚𝑖 , 𝑑𝑖 ) ← 𝐶.Com(𝑟𝑖 , skU)
𝑠𝑡𝑚 ← (𝑐𝑜𝑚𝑖 , pkU)

𝑤𝑖𝑡 ← (𝑔skU2 , 𝑔
𝑟𝑖
1 , 𝑑𝑖 )

𝜋 ← 𝑃1.Prove(CRS, 𝑠𝑡𝑚,𝑤𝑖𝑡) 𝑐𝑜𝑚𝑖 , 𝜋

𝑠𝑡𝑚 ← (𝑐𝑜𝑚𝑖 , 𝑔
𝑞𝑖𝑑

1 , pkU )

if 𝑃1.Verify(CRS, 𝑠𝑡𝑚, 𝜋) ?
= 0 then

return 0
endif

𝜎𝑖 𝜎𝑖 ← 𝑆.Sign(skRA, regMN𝑞𝑖𝑑 , 𝑐𝑜𝑚𝑖 )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . endfor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

®𝑡 := ((𝑐𝑜𝑚0, 𝑑0, 𝑟0, 𝜎0),
. . . ,

(𝑐𝑜𝑚 (𝑚𝑎𝑥𝑞𝑖𝑑−1) , 𝑑 (𝑚𝑎𝑥𝑞𝑖𝑑−1) ,

𝑡 (𝑚𝑎𝑥𝑞𝑖𝑑−1) , 𝜎 (𝑚𝑎𝑥𝑞𝑖𝑑−1) ))

return (regMN𝑞𝑖𝑑 , ®𝑡, 1) return 1

𝐿1 :=


𝑐𝑜𝑚, pkU

�����������
∃𝑆𝐾𝑈 ∈ 𝐺2;
𝑅,𝑑 ∈ 𝐺1 :

𝐶.Open(CRS, 𝑐𝑜𝑚,𝑑, (𝑅, pkU)
?
= 1

𝑒 (pkU, 𝑔2)
?
= 𝑒 (𝑔1, 𝑆𝐾𝑈 )


Figure A.1: RegisterUser protocol for the one-time token mechanism
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SubmitReport
〈
U(pkRA, pkU, skU, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚, 𝑡),SP(pkRA)

〉
U (pkRA, pkU, skU, regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚, 𝑡) SP(pkRA)
𝑟𝑐 ← ℤ𝑝

𝑐 ← ReportDataPI (pkRA , regMN𝑞𝑖𝑑 , 𝑞𝑖𝑑,𝑚)
(𝑐𝑜𝑚,𝑑, 𝑟, 𝜎) := 𝑡
(𝑐𝑜𝑚′, 𝑑 ′) ← 𝐶.𝐶𝑜𝑚(CRS, (0, 0, 0))
𝑐𝑜𝑚′′ := 𝑐𝑜𝑚 · 𝑐𝑜𝑚′

𝑑 ′′ := 𝑑 · 𝑑 ′

𝑠𝑡𝑚 ← (𝑐𝑜𝑚′′, regMN𝑞𝑖𝑑 , 𝑔
𝑟
1, pkRA )

𝑤𝑖𝑡 ← (𝑐𝑜𝑚, 𝜎, 𝑑, 𝑑 ′′, pkU , skU ,𝑚)

𝜋 ← 𝑃2.Prove(CRS, 𝑠𝑡𝑚,𝑤𝑖𝑡) 𝑐, 𝑐𝑜𝑚, 𝑟, 𝜋

if 𝑟 ∈ ℜ then

return (⊥,⊥, 0)
endif

ℜ← ℜ ∪ {𝑟 }
(𝑐0, 𝑐1) := 𝑐
𝑠𝑡𝑚 ← (𝑐𝑜𝑚, 𝑐0, 𝑔𝑟1, pkRA )

if 𝑃2.Verify(CRS, 𝑠𝑡𝑚, 𝜋) ?
= 0 then

return (⊥,⊥, 0)
endif

return 1 return (𝑐, 𝑐𝑜𝑚, 1)

𝐿2 :=



(𝑐𝑜𝑚′′, regMN𝑞𝑖𝑑 , 𝑅, pkRA)

�������������������������

∃𝑐𝑜𝑚 ∈ 𝐺2;
𝜎 ∈ 𝐺2

2 ×𝐺1;
𝑑, 𝑑 ′′, pkU ∈ 𝐺1;
skU ∈ ℤ𝑝 :

𝐶.Open(CRS, 𝑐𝑜𝑚,𝑑, (𝑅, pkU))
?
= 1

𝐶.Open(CRS, 𝑐𝑜𝑚′′, 𝑑 ′′, (𝑅, pkU))
?
= 1

𝑆.Verify(pkRA, 𝑐𝑜𝑚, regMN𝑞𝑖𝑑 , 𝜎)
?
= 1

pkU
?
= 𝑔

skU
1

𝑄𝐼𝐷
?
= 𝑔

𝑞𝑖𝑑

1


Figure A.2: SubmitReport protocol for the one-time token mechanism
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