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Abstract

The recovery of offshore wind farm wakes in the German Bight was analyzed by a

unique in situ data set, measured on-board the research aircraft Dornier Do-128

during the WIPAFF project in 2016 and 2017. These observations were used to

validate a simple analytical wake recovery model in five case studies. The observed

recovery rates were compared with the results of the mesoscale Weather Research

and Forecasting (WRF) model. The airborne data show that the wake recovery can

be described by an exponential function as expected by the analytical model and

strengthens the hypothesis that the vertical downward moment flux has an impor-

tant influence on the wake recovery. However, the predicted wake recovery rates

(by the analytical model) do not always fully agree with the observations. Although,

as a first-order approximation, the model seems to perform well, further optimization

has to be implemented to account for wind park layout, turbine induced turbulence,

and horizontal momentum flux. WRF simulations reveal an exponential recovery,

although the mesoscale model does not reproduce the correct atmospheric condi-

tions for most of the cases. Therefore, the wake recovery rates estimated by WRF

disagree with the measured data in most of the studied cases.
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1 | INTRODUCTION

In 2019, wind energy turbines produced 24.4% of the gross electricity in Germany with an installed capacity of 60.9 GW.1 In the German North

Sea and Baltic Sea, 7.7 GW offshore wind energy has been installed so far until July 2020.2 Compared to installations on land, the large potential

of offshore deployments is based on higher wind speeds over the ocean and a lower level of turbulence. Moreover, the sea provides large unused

areas3 and a reduced noise or visual impact on the public.4 For an optimal area use and in order to minimize costs for infrastructure, offshore wind

turbines are clustered into large wind farms with an extent of several tens of kilometers.5

As each turbine extracts kinetic energy, a region downstream of the wind farm builds up, where the wind speed is reduced (ideally down

to 1/3 of the undisturbed wind speed according to the classic theory of Betz from 1926), the so called wake. At the edges of this zone,

there is an increased level of turbulence.6,7 The extension of wakes depends on the mixing within the atmosphere. Hence, wakes are

expected to be especially large at offshore locations, where a low surface roughness leads (in general) to low turbulence intensities that

inhibit the dissipation of the wake. It is expected that the length of wind farm wakes increases with increasing atmospheric stability.3 Satellite

images8-10 as well as first in situ measurements show that offshore wakes exceed several tens of kilometers in the North Sea during stable

atmospheric conditions.7,11

With such large wake extensions, wind farms significantly impact and decelerate the flow field. This implies that lower energy production is

achieved at wind farms located downstream. Therefore, the understanding and modeling of wind-farm wakes is of significant concern for the suc-

cessful planning of future wind-farm clusters in the German Bight.

Basically, two types of model implementations capturing the effect of wind farms can be distinguished. On the one hand, there is the

bottom-up approach. This means that the impact of the single turbine is examined and the effect of the turbine cluster is obtained by superposi-

tion.12 However, this approach requires a good understanding of the single turbine wake as well as an appropriate “wake superposition

method.”13,14 When it comes to large wind farms, as today's offshore installations, the approach becomes increasingly complicated. Therefore, for

large offshore wind farm clusters, it may be advantageous to model the wind farm as a whole, with the so called top-down models.15,16 In this sec-

ond model class on the other hand, the farm is parameterized and implemented as an additional surface roughness, a sink of momentum, or as a

gravity-wave generator.17,18

Recent studies with numerical simulations using the Weather Research and Forecasting (WRF) model have reproduced these wakes in the far

field of offshore wind farm sites and show good agreement with observations.7,19,20 Here, WRF acts as a top-down model by parameterizing the

wind turbines within one grid cell as a whole. All these studies used the wind farm parameterization of Fitch et al.21 With the mesoscale resolu-

tion, WRF is a suitable tool to study the far field downstream of larger wind farm clusters. However, although computational power is easily

accessible, these days, mesoscale simulations are still computationally expensive. Remedy for this can be a simple analytical approach to evaluate

wakes and plan wind farm clusters.18,22,23 This study will focus on such a model introduced by Emeis,23 (hereafter E10), which considers atmo-

spheric stability and is based on an exponential wake recovery approach. With the E10, modeled wake lengths of 10 km for strongly convective

conditions and wakes exceeding 40 km during very stable conditions are obtained for a theoretical offshore site.23

Within this study, the wake characteristics of offshore wind farm wakes are evaluated with the airborne data set collected during the WIPAFF

project.7 This study carries out a detailed validation of the E10 model, and the predictions from the E10 model are compared with the airborne in

situ data and mesoscale simulations.

In Section 2, a brief summary of the analytical E10 model is given. In Section 3, an overview of the WIPAFF campaign is given and the data

analysis is explained. In Section 4, results of five case studies are described with a subsequent discussion and summary in Section 5 and a conclu-

sion in Section 6.

2 | WAKE RECOVERY ACCORDING TO THE ANALYTICAL MODEL

In order to estimate the wind speed reduction at hub height behind large, offshore wind farms, the following approach was introduced by

Emeis,23 called E10 hereafter. Under the assumption that the upwind wind farm is infinitely large, the missing momentum, here downstream of

the farm, is compensated with time by the turbulent vertical momentum flux τ from aloft:

∂ur
∂t

=
∂ τ
ρ

∂z
, ð1Þ

where ur is the reduced wind speed downstream of the wind farm at hub height h, ρ the air density, and z is the height above ground or sea.

A complete derivation and a detailed description of the E10 model can be found in Emeis.17,23 The advantage of the model is that the tempo-

ral behavior of the reduced wind speed ur tð Þ in the wake downstream of a wind farm is described in a single equation and depends on the initial

wind speed deficit ur1 (observed directly downstream of the wind farm) and the stability of the atmosphere represented by the friction velocity,
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which will be further explained in more detail in Section 3.3. Note that the wind park density is therefore included in the model by ur1, since ur1

depends on the park density itself. The wind deficit decreases exponentially with the wake recovery rate α:

ur tð Þ= uf tð Þ+ ur1−uf tð Þð Þ exp −α tð Þ, ð2Þ

where uf is the undisturbed (free) wind speed outside the wake. The wake recovery rate α is described.

α=
Km

Δzð Þ2
= κu∗

zf

Δzð Þ2
, ð3Þ

where Km is the turbulent momentum exchange coefficient, which can be approximated by Km = κu∗zf with κ =0:4 being the von Kármán constant

and u∗ the friction velocity. The height zf = h+Δz describes the height at which the undisturbed wind speed is reached above the wind farm. Con-

sequently, Δz is the height difference between the hub height and the undisturbed flow top of the rotor blades.

Finally, Equation (2) can be expressed by the ratio Rr between the wind speed ur in the wake and the undisturbed wind speed uf outside the

wake.

Rr tð Þ= ur tð Þ
uf tð Þ =1− 1−

ur1
uf tð Þ

� �
exp −αtð Þ: ð4Þ

3 | METHOD

3.1 | WIPAFF campaign

The study is based on airborne meteorological measurements in the German Bight conducted in the research project WInd PArk Far Field

(WIPAFF). Five field campaigns were carried out from September 2016 to October 2017, comprising 41 measurement flights in total. An overview

of all flights can be found in Platis et al.7 The measurements were performed with the research aircraft Dornier Do-128 of the Technische

Universität of Braunschweig. It is equipped among others with sensors for temperature, humidity, pressure, and wind components, sampling with

a frequency of 100 Hz. Details about the measurement devices can be found in Corsmeier et al.24 and Lampert et al.25 The airspeed of the aircraft

during the measurements flights was 66 m s−1.

All measurement flights were conducted over the North Sea. An overview of all analyzed flights for this study is given in Table 1. They were

performed in the vicinity of the operating offshore wind farm cluster Amrumbank West, Nordsee Ost, Meerwind Süd/Ost (AW/NO/MSO); see

Figure 1. Only those flights were analyzed that exhibit a well-developed wake and were accompanied by WRF simulations for the respective case

study. A typical flight comprises the following features: The take-off and landing was at the German coast at one of the airports Wilhelmshaven,

Borkum or Husum. In the vicinity of the wind farm cluster, vertical profiles of the lower atmosphere from 30 - 500 m were measured to determine

the thermal stability. Downstream of the wind farm cluster, a so called meander pattern was flown (visualized by the black line in Figure 2). While

the first leg has a distance of about 1 km to the farm, the farther downstream legs follow with a spacing of 10 km. The number of consecutive legs

was adjusted to the observed wake for each flight but was limited by the flight endurance. The altitude of the flights was is 100 m above sea level,

which is the turbine hub height of the respective wind farms.

TABLE 1 Overview of all flights used in this study

Flight No. Date Take off in UTC Landing in UTC Thermal Stability WS in m s−1 WD in �

7 2016-09-10 07:33 11:15 slightly stable 8.5 190

24 2017-05-27 08:35 11:58 stable 10.0 150

25 2017-05-27 12:31 16:36 stable 12.0 130

30 2017-08-08 08:34 12:33 slightly stable 10.0 85

31 2017-08-08 12:59 17:07 stable 15.0 80

Note. The Flight No. is according to the total numbering of all flights during the WIPAFF campaigns in 2016 and 2017.7,25 Thermal stability represents the

atmospheric stratification.

Abbreviations: WD, wind direction; WS, wind speed.
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For the estimation of the friction velocity u∗ in the marine boundary layer, sonic data from the research mast FINO1 at 40 m above the sea

surface was used. FINO1 is a meteorological measurement tower located about 45 km offshore, north of the German Island Borkum in the

German Bight (see Figure 1) and is equipped among others with 20 Hz high frequency sonic anemometers.26 Further, mean temperature and wind

data at several heights from FINO1 and FINO3 (a second measurement tower located north of the wind farm AW) is used for vertical profiling of

the lowest boundary layer between the sea surface and 100 m.

3.2 | Wake characterization

The data source for the wake characterization are the wind speed measurements obtained during the meander pattern measured at hub height.

The flight path is transferred from the GPS reference coordinate system to a Cartesian system with x (along the flow) and y-coordinates (perpen-

dicular to the flow) in meters and rotated in the mean wind direction (wind is coming from negative x). An example is given in Figure 2. In this

contour-plot figure, a linear interpolation along the mean wind direction is done.

The first step of the wake characterization is to determine the wake region. This is done manually, choosing a left and a right boundary of the

wake directly downstream of the wind farm within which the wind speed is significantly reduced. In the example, distinct wakes build up behind

the three different wind farms AW/NO/MSO in the cluster; thus, several wake areas are defined. The wake region is then extended linearly along

the mean wind direction (Figure 2).

F IGURE 1 Positions of offshore wind
farms in the German Bight as of December
2017. Blue regions are farms that were in
operation, and red regions indicate farms still
in the approval process. Orange regions are
those wind farms that are under construction.
The purple cross indicates the take-off airport
Wilhelmshaven, and the red box indicates the
location of the FINO1 measurement tower

and the green box of FINO3. The red line
along the flight path in the left figure marks
the track where the vertical profile was
measured. The map is adapted from the data
of the German Federal Maritime and
Hydrographic Agency (BSH) and copied from
Platis et al.7 [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Contour plot of the interpolated wind field along the
mean wind direction, measured during the Flight 31 on August 8, 2017.
The orientation of the plot is west, and the mean wind direction is east.
The black line indicates the flight track. The black dots indicate the
wind turbines. The undisturbed wind field (outside the wake) is
indicated by gray dashed lines and the wake boundaries by gray solid
lines. The wind parks are Amrumbank West, Nordsee Ost, Meerwind
Süd/Ost (AW/NO/MSO). At x=1 km, the initial wind speed deficit Dr1

is measured inside the wake [Colour figure can be viewed at
wileyonlinelibrary.com]
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In the next step, the undisturbed zone is defined left and right of the wake using a distance of at least 4000 m as buffer zone between wake

and undisturbed area. In this zone, the undisturbed wind speed uf xð Þ was measured.

The extent of the wake is then defined by the ratio Rr xð Þ according to Equation (4) but for the spatial domain. ur xð Þ is the wind speed in the

wake zone calculated as arithmetic mean for each leg and thus at different distances x to the wind farm. uf xð Þ is the mean wind speed in the

undisturbed zone on both sides of the wake. It should be noted that different from the E10-Theory, uf xð Þ varies along x as well. Similar to the

methodology by Christiansen and Hasager8 and Djath et al,10 the decision of a variable undisturbed wind speed uf was made because of signifi-

cantly heterogeneous wind fields in the data due to mesoscale effects. The maximum length of a wake is defined at the downstream distance at

which the recovery Rr reaches 95%. The wind speed deficit D is obtained by

D xð Þ=1−R xð Þ: ð5Þ

For the first leg downstream of the wind farm located at the distance x = 1 km, this leads to the initial wind speed deficit Dr1

Dr1 = 1−Rr 1kmð Þ= 1− ur1
uf1

: ð6Þ

The E10 theory describes the wake recovery in the time domain in terms of a wake duration. As the flight data are measured in the spatial

domain x, the x-axis is transferred into the time domain t with the relationship

t=
x
ur
: ð7Þ

With this, the ratio of Equation (4) is obtained where ur is the mean wind speed within each wake averaged over all legs. For simplicity, the

time domain index t for the recovery rate α is skipped hereafter.

For a better overview, all important variables are summarized inTable 2 with their corresponding meaning.

3.3 | Calculation of wake recovery coefficient α by E10

The theoretical value of α is validated according to the theory of the exponential wake recovery by E10. Recalling the definition of Equation (3),

the following terms have to be defined: first, zf
ðΔzÞ2 describing the ratio between the height zf of undisturbed wind speed and its vertical separation

TABLE 2 Overview of all important variables used in this study

Variable Meaning

h Hub height

zf Height of the undisturbed (free) flow

Δz Height difference between h and zf

ur Reduced wind speed downstream of the wind farm inside the wake at h

uf Undisturbed (free) wind speed outside of the wake at h

ur1 Initial reduced wind speed downstream (at x=1 km) of the wind farm (inside the wake) at h

uf1 Initial undisturbed wind speed downstream (at x=1 km) of the wind farm (outside the wake) at h

Dr1 Initial wind speed deficit at x=1 km at h

Rr Ratio of ur / uf

α Wake recovery rate

αobs Wake recovery rate observed by the airborne data

αWRF Wake recovery rate by the WRF model

αFINO Wake recovery rate calculated by E10 with u∗FINO

αprofile Wake recovery rate calculated by E10 with u∗profile

u∗ Friction velocity

u∗FINO Friction velocity calculated by the FINO1 data (Equation 8 “direct method”)

u∗profile Friction velocity calculated by the “profile method” (Equation 9)

PLATIS ET AL. 5



Δz to hub height h, squared. As no empirical values for zf (or Δz) are available, and no recording of vertical profiles of the wind speed in and above

the wind farm was possible during the measurements flights, the cross-section of the turbulent momentum flux and the wind field modeled by

the WRF simulation are used (see more details in Section 3.4) for the respective cases.

To make the influence of the vertical momentum flux and the change of the flow by the wind farm apparent, an example is illustrated for the

WRF model run of Flight 7 (Figure 3). It shows the difference between a control run without the wind farm cluster and a run with the wind farm

cluster implemented. A significant change in the downward flux and in the wind field up to an altitude of 500 m is evident, implying a separation

height ΔzWRF of 400 m. The index “WRF” highlights that the estimation is done by the WRF runs, hereafter. For the other runs, the information

of ΔzWRF is included inTable 4.

Two approaches were applied to obtain the shear or friction velocity u∗, required in Equation (3):

• Direct method: the calculation of u∗ by the vertical fluxes of horizontal momentum (i.e., the wind-speed covariances)27 using sonic FINO1 data

of the wind speed components u, v,w.:

u∗FINO = u0w0� �2
+ v0w0� �2� �1

4
: ð8Þ

F IGURE 3 Cross-section of the vertical
momentum flux (top) and wind speed (bottom) by
the WRF run for case study 7, 09:00 UTC
alongside the mean wind direction from left to
the right (southerly wind). The black dashed
rectangles mark the wind farms Meerwind
Süd/Ost (MSO), Nordsee Ost (NO), and
Amrumbank West (AW) from left to right [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Overview of the wake recovery rates and friction velocities for each case study

Flight wind u∗FINO u∗profile αFINOD αFINOWRF αprofileD αprofileWRF
αobs ΔzWRF

No. farm m s−1 m s−1 h−1 h−1 h−1 h−1 h−1 m

7 MSO/NO/AW 0.21 0.28 4.59 0.94 6.16 1.26 1.26 400

24 MSO/NO/AW 0.28 0.35 6.11 1.78 7.70 2.24 0.90 300

25 MSO/NO 0.33 0.44 7.28 1.29 9.68 1.72 1.26 450

25 AW 0.33 0.44 7.28 1.29 9.68 1.72 0.96 450

30 MSO 0.22 0.26 4.73 2.32 5.72 2.81 4.26 200

30 NO 0.22 0.26 4.73 2.32 5.72 2.81 2.76 200

30 AW 0.22 0.26 4.73 2.32 5.72 2.81 1.26 200

31 MSO 0.29 0.08 6.48 3.18 1.76 0.86 3.60 200

31 NO 0.29 0.08 6.48 3.18 1.76 0.86 6.60 200

31 AW 0.29 0.08 6.48 3.18 1.76 0.86 1.80 200

Note. αobs is obtained by the airborne data. αFINO and αprofile are calculated by the E10 model using either the friction velocity u∗FINO by the FINO1 mea-

surements or u∗profile by the profile method. The additional index D or WRF at αFINOD and αprofileD indicates which Δz by E10 was used to estimate the sepa-

ration height. D refers to a height of 125 m which approximately equals the rotor diameter of the wind farm Amrumbank West (AW), Nordsee Ost (NO),

and Meerwind Süd/Ost (MSO). ΔzWRF is the separation height estimated by the WRF model for each case study.
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• Profile method: Assuming a logarithmic wind profile and considering the stability,27 u∗ is obtained from

u∗profile =
uf zð Þκ

ln z
z0

� �
+Ψ z

L

� �h i , ð9Þ

where L is the Obukhov length,27 Ψ z
L

� �
is the stability function according to Paulson28 and Högström,29 and z = h is the height of the upstream

flight leg located in the undisturbed flow at hub height. The stability correction in Ψ z
L

� �
is estimated using the observed z/L by the undisturbed

leg. Moreover, the roughness length is set to z0 = 0.0001 m which is common for the sea surface during moderate wind speeds between

10 and 15 m s−1according to Charnock30 and Garratt.31 All values of u∗ are included inTable 4.

3.4 | WRF simulation

The mesoscale simulations were performed with the WRF model (version 3.8.1). Three domains were used, with a 15-km horizontal resolution in

the coarsest followed by two domains with 5 and 1.6 km. The wind farms in the mesoscale simulations were represented by the wind farm param-

eterization of Fitch et al.21 interacting with the boundary layer scheme of Nakanishi and Niino.32 The boundary conditions were provided by

ERA5 data. This model setup is identical to the one used in Siedersleben et al.20,33,34 Therefore, the interested reader is referred to these three

articles for full details. To evaluate the analytical wake model E10 by the WRF simulation, analogously to the flight measurements, data have to

be processed first. The model output is transferred to x- and y-coordinates in meters using the same origin as for the according flight measure-

ments. Next, the output of wind speed at hub height is linearly interpolated to a grid with a spacing of 100 m in x- and y-direction. Then the pro-

cedure is the same as for the flight evaluation: first, the boundaries of the wake and the undisturbed zone are chosen. Second, ur xð Þ and uf xð Þ are
evaluated, and finally, the wake recovery is expressed in terms of Rr and transferred to the time domain.

4 | RESULTS

In this section, the five case studies are analyzed, as listed in Table 1, to compare the in situ results of the wake recovery with the E10 model and

with WRF simulations.

The detailed analysis of the case studies comprises three parts:

• an overview about the synoptic and atmospheric conditions

• a characterization of the wake by airborne measurements and WRF simulations

• a comparison of the measurements and simulations to the analytical model

The two flights (no. 30 and no. 31) on August 8, 2017, comprise similar wind directions and flight patterns but different thermal stability con-

ditions. Therefore, they are considered as exemplary cases to analyze the influence of a stability change from stable (Flight 31) to slightly stable

(Flight 30) in detail.

4.1 | Flight 31—August 8, 2017, afternoon—with strong thermal stability

The synoptic situation during the measurement Flight 31 is a low pressure system approaching the German Bight at 12:00 UTC. For 12:00 UTC,

its center is predicted over the Netherlands leading to easterly winds at the wind farm cluster AW/NO/MSO with a wind speed of about

15 m s−1 at hub height. However, with the North-Eastwards moving low pressure system, the wind direction turns to a southern and more

variable direction at 18:00 UTC. According to the temperature profile measured in the vicinity of the wind farm cluster, a thermally stable layer

was present up to approximately 100 m above sea level with a lapse rate of +1.24 K/100 m (see Figure 4). The hub height of the turbines of the

wind farm cluster is around 100 m, with a rotor diameter of 120 m; thus, the total turbine height reaches 160 m. In this case, with the detected

surface layer up to 100 m, the turbines are in the stable layer, but the rotor blades do cut into the neutral layer above. The situation is similar for

NO and MSO.

4.1.1 | Flight data

During Flight 31 (13:59 UTC to 17:07 UTC), a 65 km long meander pattern behind the wind farm cluster AW/NO/MSO was measured (Figure 2).

The contour plot reveals that the wakes of MSO and NO overlap, whereas downstream of AW, a distinct wake is observed. The measured wind

PLATIS ET AL. 7



speed in the wake and in the undisturbed flow is displayed in Figure 2. The wind speed in the undisturbed, upstream leg of the wind farm (x =

−11 km) is homogeneous along the flight leg except for the section between AW and NO with higher wind speeds. This could be explained by a

channel flow effect with an accelerated flow between the wind parks. Looking at the background mesoscale wind field, an overall acceleration

from the undisturbed leg upstream to the downstream zone of about 2 m s−1 is measured.

The recovery curve is shown in Figure 5B, where the ratio Rr between the wind speed in the wake and the undisturbed zone over the down-

stream distance x is plotted. The following wake parameters are determined: initial deficit Dr1 at x= 1 km, wake length, and duration to 95%

recovery. These parameters were determined for all three wind farms and are summarized inTable 3. The highest initial wind speed deficit of 31%

and longest wake extension to 47 km or 62 min is observed behind the densest farm AW. The medium deficit (22%) and medium wake length

(25 km) and duration (30 min) develops behind MSO with the medium turbine density of the three farms, respectively. And finally, the lowest def-

icit (19%) and shortest wakes with 12 km or 14 min are assigned to the cluster NO with lower wind turbine density.

Following the theory of the exponential wake recovery (Equation 4), an exponential function is fitted to the results. The parameters used for

the fitting are the initial wind speed deficit Dr1 and the recovery rate α as provided inTable 3. For better clarity, the recovery rate observed by the

airborne measurements is represented with αobs hereafter. The exponential function agrees well with the measured data as revealed by the fitted

exponential curve in Figure 5B and by the low root mean square error (RMSE) of 0.6 to 1.2 between the fit and the measurements. αobs ranges

from 6.60 h−1 for NO to 1.80 h−1 for AW and decreases with the farm density. These results provide evidence that not only the initial wind speed

deficit and wake extension but also the recovery rate α depend on the wind farm layout.

F IGURE 4 Vertical profile of virtual potential temperature (left), wind speed (middle), and wind direction (right), measured during Flight 31 in
the vicinity of the wind farm AW/MSO/NO as shown in Figure 1. FL is the abbreviation for flight data, and F1 corresponds to FINO1 data and F3
to FINO3 data [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 (A) Wind speed in the
wake and undisturbed zone of Flight 31.
The blue line indicates the wind speed in

the wake downstream of the wind farm
MSO, the red NO and the yellow one
AW. The dashed black line indicates the
wind speed of the undisturbed flow aside
of the wake. (B) Relative wind speed
deficit of Flight 31 [Colour figure can be
viewed at wileyonlinelibrary.com]

8 PLATIS ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


4.1.2 | WRF simulation

The WRF output was analyzed hourly from 13:00 UTC to 16:00 UTC covering the flight time. The model outputs are hourly averaged. The pro-

files of virtual potential temperature by the WRF model agree with the measured stable thermal stratification, although the modeled temperature

is slightly warmer. The transition from the stable surface layer to the residual layer above is smoother. Compared to the measurements, the wind

speed by the WRF runs is underestimated by 1–2 m s−1. Analyzing the wind field and the recovery Rr (see Figures 6A–D and 7A–C), the WRF

model overestimated the length of the wakes. This can be explained by the higher initial wind speed deficit Dr1. On average, Dr1 for MSO is 33%,

for NO 35%, and for AW even 40%.

By fitting an exponential function to the WRF results (Figure 6A–D), also the recovery rate αWRF is underestimated and remains almost con-

stant for the three farms with 0.96 h−1 for MSO and 0.78 h−1 for NO and AW. The fit error (with RMSE = 2.1) is higher than the one of the in situ

data. The WRF model does not picture the observation for this case study properly as it simulates a lower initial wind speed deficit. Therefore,

the recovery rates are higher compared to the observation and the analytical model as evaluated below.

4.1.3 | E10 model

For the calculation of the recovery rate by the E10 model, the same separation height of ΔzWRF =200 m assumed by the WRF model is used.

The friction velocity u∗FINO measured at FINO1 is 0.21 m s−1. Thus, a recovery rate αFINO = 3.18 h−1 is calculate by the E10 model. Using the

calculated friction velocity by the profile method (Equation 9) with u∗profile = 0:08 m s−1, a recovery rate αprofile = 0.86 h−1 is calculated by E10.

This is 3.5 times smaller than using the FINO data. The question arises why there is such a difference between u∗FINO and u∗profile. For the calcula-

tion of u∗profile according to Equation (9), the Obukhov length L is measured by the research aircraft at z= 100 m above the sea surface. Remem-

bering that the inversion height is at about 100 m in the case of the Flight 31 as well, L is not representative for the layer below. This leads to an

underestimation of the friction velocity.

TABLE 3 Measured and fitted values of the wake parameters of Flights 31 and 30

Flight measurement Best fit

Dr1 x95 in km t95 in min αobs in h−1 RMSE

Flight 31

MSO 22 25 30 3.6 1.2

NO 19 12 14 6.6 1.2

AW 31 47 62 1.8 0.6

Flight 30

MSO 29 15 29 4.2 2.4

NO 19 21 40 2.8 2.4

AW 28 38 76 1.3 1.8

Note. Wake length x95 and duration t95 are evaluated at the point of 95% recovery. Dr1 is the initial wind speed deficit measured at the distance x=1 km

downstream of the wind park. αobs is the recovery rate in h−1, and the RMSE describes the root mean square of the fitting.

(A) (B) (C) (D)

F IGURE 6 Wind speed contour plots and assigned wake boundaries of the WRF output for the case study of Flight 31 for different times of
the simulation run [Colour figure can be viewed at wileyonlinelibrary.com]
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Comparing the result from the E10 model with the airborne measurements with a range of 1.80 ≤ αobs ≤ 6.60 h−1, there is a suitable agree-

ment for αFINO. Especially for the MSO wake (αobs = 3:60 h−1), the observation matches with the analytical model. However, a difference in the

wake recovery is indicated by the different farm layout (between AW and MSO by a factor of 4), which is not consider by the E10 model.

4.2 | Case study for Flight 30—August 8, 2017, morning

The data of the second case study were obtained from morning to noon on the same day, August 8, 2017, with the same flight pattern. Again, an

easterly flow with wind speeds of about 10 m s−1 leads to distinct wakes behind AW, NO, and MSO. In contrast to the first case study, the strati-

fication has a less stable to almost neutral gradient, with a thermal inversion at 160 m above sea level (see Figure 8). Thus, with the inversion at

160 m, the rotor blade area remains completely in the neutral layer.

4.2.1 | Flight data

Regarding the wind speeds of the undisturbed leg and the downwind zone (Figures 9 and 10A), a mesoscale variation with an acceleration of

the flow from west to east in the range of 1 m s−1 exists. This increase is most likely ascribed to a land breeze, that accelerates over the

smooth water surface.

(A) (B) (C)

F IGURE 7 Relative wind speed Rr deficit in WRF behind the three wind farms MSO, NO, and AW for the case study of Flight 31. The solid
line displays the best exponential fit of the airborne measurements. The red line shows the best fit of the WRF run at 13:00 UTC, the yellow at
14:00 UTC, green at 15:00 UTC, and blue at 16:00 UTC [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Vertical profile of virtual potential temperature (left), wind speed (middle), and wind direction (right), measured during Flight 30 in
the vicinity of the wind farm AW/MSO/NO as shown in Figure 1. FL is the abbreviation for flight data, and F1 corresponds to FINO1 data and F3
to FINO3 data [Colour figure can be viewed at wileyonlinelibrary.com]
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The observed wake recovery features spikes which are visible for all three evaluated wakes (Figure 10B). The wakes of the two adjacent

farms MSO and NO are similar in their length (15–21 km). However, they differ significantly in the initial wind speed deficit, which is observed to

be very high with 29% for MSO and only 19% for NO. In contrast, the wake of AW is significantly longer with 38 km or 76 min and with 28% ini-

tial deficit (Table 3). The approximation of the wake recovery with an exponential function seems to be as adequate as in the previous case study

for Flight 31. The recovery rate of the fit aobs ranging from 1.26 to 4.26 h−1 is lowest for the densest wind farm AW and highest for the farm

MSO with a medium density.

4.2.2 | WRF model

With 6–8 m s−1, the WRF model underestimates the wind speed compared to the measurements. The mean wind direction is estimated by the

model with 90� which is about 10� higher than the observation. The thermal stratification is comparable to the measurements with an inversion

at about 150 m above sea level and a neutral layer below. Between 9:00 to 11:00 UTC, however, a warming is modeled which has not been

detected by the flight measurements.

The contour plots of the wake recovery in the WRF runs from 9:00 to 11:00 UTC are provided in Figure 11A–C. In all WRF runs, a strong

wind speed gradient in north-east direction is evident, which has not been observed in the airborne data. This mesoscale background flow influ-

ences the result of Rr significantly. Thus, Rr is underestimated for MSO and overestimated for AW, where it even exceeds 1 (Figure 12A–C). In

F IGURE 9 Contour plot of the interpolated wind field measured
during Flight 30 including the indication of the undisturbed wind field
(gray dashed lines) and the wake boundaries (gray solid lines) [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 (A) As in Figure 5A but
for Flight 30. (B) As in Figure 5B but for
Flight 30 [Colour figure can be viewed at
wileyonlinelibrary.com]
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summary, the model does not picture the measured recovery due to a different background wind field; nevertheless, the recovery rate modeled

by WRF has still the same order of magnitude as the observation.

4.2.3 | E10 model

According to the WRF model, also a vertical separation ΔzWRF of 200 m is used for the E10 model for the case study of Flight 30. With the fric-

tion velocity u∗FINO = 0:22 m s−1 and u∗profile = 0:26 m s−1 being in the same range, this results in similar recovery rates by E10 of αFINO = 2.32 h−1

and αprofile = 2.81 h−1 (Table 4). The analytical model is therefore in agreement with the observations of the wake recovery for the wind farm

MSO (αobs = 2.76 h−1).

Concluding the case study of Flight 30, the observations and the analytical model show reasonable agreement. A comparison with the WRF

model reveals that the mesoscale model does not reproduce the atmospheric conditions correctly. Therefore, the wake estimations do not agree

with the observations and lead to misinterpretation of the wake recovery.

4.3 | Summary of further case studies

In addition to the two presented case studies, three further measurement flights with corresponding WRF modeling are evaluated and compared

to the analytical model. Since the analysis method is very similar to the first two cases, only a brief summary of those studies is given.

4.3.1 | Case study for Flight 24

Summing up the analysis for Flight 24, stable atmospheric conditions are present during the measurement flight of the wake which was conducted

on May 27, 2017, from 9:11 to 10:47 UTC. Extensive wakes exceeding 54 km or 117 min are observed downstream of AW and parts of the clus-

ter NO/MSO (Figure 13A). The wake recovery can be described by an exponential fit with αobs= 0.9 h−1 (Figure 13B).

(A) (B) (C)

F IGURE 11 Wind speed contour plots and assigned wake boundaries of the WRF output for the case study 30 for different times of the
simulation run [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

F IGURE 12 Relative wind speed deficit Rr in WRF behind the three wind farms MSO, NO and AW for case study of Flight 30. The solid line
displays the best exponential fit of the airborne measurements. The red line shows the best fit of the WRF run at 09:00 UTC, the yellow at 10:00
UTC and green at 11:00 UTC [Colour figure can be viewed at wileyonlinelibrary.com]
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The analytically estimated recovery rates (αprofile = 2.24 h−1 and αFINO = 1.78 h−1) overestimate the observed one by a factor of about 2.

WRF simulations, with model runs of 9:00, 10:00, 11:00, and 12:00 UTC, underestimate the initial wind speed deficit. The recovery rate

exhibits no exponential behavior (see Figure 13C). However, this is mainly because the atmospheric conditions are not estimated correctly since

only the fourth run at 12 UTC represents a similar stable stratification as observed by the in situ data (not shown). The runs before 12 UTC show

a neutral layer below 150 m with a small wake development.

4.3.2 | Case study for Flight 25

The case study for Flight 25 on May 27, 2017, provides wake measurements between 13:16 UTC and 14:55 UTC under relatively stationary, stat-

ically stable conditions. An internal boundary layer upstream of the wind farm with its top below the hub height grows above hub height with

downstream distance. Moreover, a low level jet evolves with wind speeds exceeding 15 m s−1. Wakes of about 50 km length (Figure 14A) are

observed behind the wind farm cluster with an exponential recovery rate (best fit with RSME = 1.8) of approximately αobs = 1.26 h−1 (Figure 14B)

for MSO/NO and 0.96 h−1 for AW. The recovery rate from the analytical model (αprofile = 1.72 h−1 and αFINO = 1.29 h−1) is in the range of the

observations.

The comparison of the observations and the WRF model runs at 13:00, 14:00, and 15:00 indicates that the height of the stable layer is over-

estimated in the model. However, WRF still reproduces the situation adequately. It only slightly underestimates the initial wind speed deficit and

overestimates slightly the wake recovery with 1.20 < αWRF < 1.62 h−1 (Figure 14C).

4.3.3 | Case study for Flight 7

During Flight 7 on September 9, 2016, slightly stable conditions were observed. The wake length is measured with 44 km or 104 min. A significant

gradient of wind speed increase lateral to the flow was present (Figure 15A).

(A) (B) (C)

F IGURE 13 Wake extension for the case study of Flight 24 [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

F IGURE 14 Wake extension for case study of Flight 25 [Colour figure can be viewed at wileyonlinelibrary.com]
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The analysis shows that due to an indefinite background wind speed, the analytical model is sensitive toward such gradients. The effect is

most prominent in the determination of the recovery rate αobs, which ranges from 0.48 h−1 to 1.26 min−1 (Figure 15B) depending on the chosen

reference background wind speed uf xð Þ.
A comparison between the observations and the analytical exponential wake recovery model reveals that the analytical model agrees well

with the observations (αFINO = 3:18 h−1), when using the sonic data from FINO1 to calculate u∗ and is slightly lower when using the profile method

(αprofile = 3:02 h−1). The WRF simulation reproduces the atmospheric conditions well and underestimates the initial wind speed deficit only by less

than 10%. However, the wake recovery is underestimated by WRF (Figure 15C) with αWRF from 0.36 to 0.66 h−1.

5 | COMPARISON AND DISCUSSION

The analysis of the five different cases shows that the E10 model can be used as a simple first-order approximation for the wake recovery down-

stream offshore wind farms with an exponential function as expected by Emeis.23 Table 4 and Figure 16 present a summary of the recovery rate

α obtained by the different methods: αobs, which is observed by the airborne measurements, αFINO and αprofile, which is calculated by the E10

model using either the friction velocity u∗FINO by the FINO1 measurements or u∗profile by the profile method, respectively. The E10 model reveals

results in the same order of magnitude as the airborne observations and strengthens the hypothesis that the vertical downward moment flux has

an important influence on the wake recovery. The best agreement of the wake recovery with a fitted exponential function is achieved for the case

study of Flight 31 during stable and homogeneous wind conditions. However, not all wake-recovery curves exhibit such a distinct exponential

behavior. In two case studies (Flights 24 and 25), the pattern can be interpreted to be more of a “step-wise” character which is indicated by a

higher RMSE when fitting an exponential function. This may also be related to the assumption that the atmospheric conditions do not change.

However, the meander pattern is measured in a time span of over 1 h and temporal changes are likely and may influence the results.

All values of the observations and the corresponding WRF simulations have the same order of magnitude if the maximum value of the WRF

simulation αWRFmax is considered, except for the measured wake downstream NO of Flight 31. The best match of WRF model and the

(A) (B) (C)

F IGURE 15 Wake extension for the case study of Flight 7 [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Overview of the recovery rates obtained for the five case studies. Blue dots are the observed ones (αobs). Red and green dots are
the recovery rates calculated by the E10 model either with u∗FINO or u∗profile. The range of the separation height between Δz =D= 125 m and
Δz=ΔzWRF is connected by a line. Recovery rates by the WRF model are indicated with a yellow-blue dot. The range between the minimum and
maximum values of the different WRF model runs is marked with a bar [Colour figure can be viewed at wileyonlinelibrary.com]
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observations is achieved for case study of Flight 25 and shows further adequate results in the case study of Flight 31. For the other cases, results

from the WRF model are not very suitable for a precise size estimation of α, as the simulation of the wake extension deviates due to different sim-

ulated atmospheric conditions.

The deviation between simulations and observation is rooted in an underestimation of the temperature on land. The stable conditions

described herein resulted all from offshore winds advecting warm air over a cold North Sea. The simulations tended to underestimate the temper-

ature on land compared to the observations. Hence, too cold air was advected over the North Sea in the simulations resulting in less stable condi-

tions as observed. As the atmospheric conditions drive the length of the wake, the model failed to described the wakes reasonably in such cases.

Both methods for the estimation of the friction velocity u∗ give similar results (see Table 4 and Figure 16), although for the cases of Flights

31, 24, and 25, u∗ obtained by the profile method and hence the recovery rate αprofile slightly overestimates the observations. The case of Flight

31, however, is an exception. Here, the profile method reveals four to five times smaller value of u∗, since the measured Monin-Obukhov z/L

(as explained in Section 4.1) is not representative for the surface layer in this case. It should be noted that for the calculation of u∗ (Equation 9),

the roughness length is set to z0 = 0:0001 m for all cases. A variation of the length between z0 = 0:001 m and z0 = 0:00001 m will change the

results of the recovery rate α in the range of about maximum 30% and should be considered, but cannot explain a factor of 4–5.

A main drawback of the analytical E10 model is that vertical separation between the hub height and the undisturbed flow Δz is rather difficult

to estimate, which has been already mentioned by Peña and Rathmann.35 As in this study no measured data for the separation height are avail-

able, estimations of Δz by the WRF simulations were used. However, this should be considered only as a rough estimation. Cañadillas et al.36

assumed that the separation height equals the rotor diameter D of the wind turbine. For the case studies with the wind farm cluster

AW/MSO/NO, Δz=D is approximately 125 m. For a comparison, the recovery rate α by the E10 model using Δz=D=125 m, in addition to the

estimates by the WRF, runs Δz=ΔzWRF (Table 4 and Figure 16). The results indicate an overestimation of the recovery rate α using the separation

height D. This implies that larger length scales than D must be considered over which the vertical exchange occurs, and it is has to be further

assumed that the separation height Δz is not a constant value along the wake.

Several studies22,37-39 showed that the wake intensity within the wind farm depends crucially on the wind direction and the farm layout: a

higher wake loss or a larger initial wind speed deficit is observed when the wind direction is parallel to the turbine rows and the turbines are

aligned. The opposite case would be a staggered layout; here, lower wake losses are observed. The in situ data prove that a denser wind farm lay-

out leads to a larger initial wind speed deficit.

However, this effect would only explain a change in the initial wind speed deficit, not the impact on the wake recovery downstream of the

farm itself. The E10 proposes that the recovery rate depends solely on the wind speed deficit behind the wind farm and the atmospheric stability,

expressed by the friction velocity u∗ and Δz. In other words, this means that for the same atmospheric conditions, the recovery rate is expected to

be constant and independent of the wind farm layout as the model already includes the wind speed deficit Dr1 caused by the wind farm. With the

case study of Flight s 30 and 31, we can check this hypothesis as distinct wakes are visible behind the single wind farms AW, MSO, NO within

the same atmospheric conditions, but with different farm layout.

The results show, however, that a clear influence by the farm layout is evident. Most prominent is the impact in the case study of Flight 31.

The relationship is observed that the wake length and duration as well as the initial wind speed Dr1 increase with the wind farm density from NO

over MSO to AW. In contrast, the recovery rate decreases. In the case study of Flight 30, likewise the lowest recovery rate and the longest wake

are observed for the densest farm AW. A possible explanation is that the theory is based on the fact that the wind farm has an infinite lateral

dimension. Therefore, a possible explanation that not only a vertical momentum flux but also a horizontal flux from the sides is present, which

erodes the wind speed deficit in the wake faster for narrow than for wide wakes. It is expected that a more loose wind farm allows a stronger hor-

izontal flux. However, this hypothesis could not be proven with this data set.

A further aspect which is not considered by the E10 model is the influence of the wind farms itself on the turbulence and the atmo-

spheric stratification. The model uses the friction velocity u∗, which is obtained in the undisturbed flow. Due to the production of turbulence

by the wind turbines,38,40,41 a modification of the atmospheric stability (e.g., u∗) by forming a farm-induced internal boundary layer (IBL) is

expected,18 although as shown by Siedersleben,42 who investigated how wind farms change turbulent fluxes and stability, a general statement

in his study was not possible. Emeis17 took the wind farm generated turbulence intensity into account to estimate a modified wind speed def-

icit Dr1 by an extension of the E10 model. Besides that however, the results also indicate that the wind farm generated turbulence has an

influence on the separation height and the friction velocity depending on the wind farm layout. This feature should be implemented by an

extension of the analytical model.

6 | CONCLUSION AND OUTLOOK

The wake recovery of offshore wind farm wakes was analyzed by in situ data, measured with the research aircraft Dornier DO-128 during the

WIPAFF project in 2016 and 2017. This unique data set was used to validate the analytical model E10 by Emeis23 for five case studies. Moreover,

the recovery rates were compared with the results of the mesoscale WRF model.
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The measured data demonstrate that the velocity deficit downstream of offshore wind farms can be approximated by a simple analytical

wake model using an exponential recovery. The recovery rates calculated by the E10 model showed comparable results to the observations.

Based on the measurements, the wind farm layout was identified to influence the resulting wake recovery, which has only been considered

indirectly and not sufficiently by the E10 model.

During stable atmospheric conditions, a difference in the wake length of up to 30 km was observed downstream farms with a different layout,

a difference of up to 10% for the initial wind speed deficit and differences in the recovery rate by a factor of up to 4. The case study of the Flights

30 and 31 showed that the denser the turbines in the wind farm, the longer is the wake and the lower the recovery rate. This variance of the

recovery rate has not been represented by the model results. As the E10 model is based on the assumption that the wake recovery is controlled

only by the vertical momentum flux, it is suggested that not only a vertical momentum flux but also a horizontal flux from the sides is present and

coheres with factors such as the farm width and the wind direction and take into account the wind farm produced turbulence.

Also, some drawbacks have to be considered in this study. The assumption is made that the atmospheric conditions are stationary during the

measurements. Measuring the full extent of the wake by the aircraft takes a time span of over 1 h, and temporal changes in the atmospheric con-

ditions are likely.

Furthermore, wake meandering is not considered with the assumption of a linear development along the mean wind direction. The analysis

could be extended to non-linear wake extension, following the path of lowest wind speed downstream of the wind farms and therefore also

improve the choice of boundary between the wake and the undisturbed wind field. Also, a wind speed gradient perpendicular to the wind direc-

tion influences the results crucially. A variable background speed, for example, evaluated over a linear regression perpendicular to the wind direc-

tion may improve the result but would increase the complexity of the evaluation36,43 and may cause new inaccuracies.

For the future, more measurements are needed for a stronger statement. Right now, the study is based on five case studies only. Further

examination should also include less stable and more convective cases for better universality. Simultaneous flights with a manned aircraft for the

wake extent and small unmanned aircraft systems (UAS)44-46 for the measurement of vertical profiles inside and downwind of the wind farm in

order to obtain the vertical wind profiles could serve for a better estimation of the separation height Δz between the decelerated wind field and

the undisturbed flow. The results in this study indicate that separation height Δz should be considered larger than the wind turbine rotor diameter

as assumed by Cañadillas et al.,36 at least at the beginning of the wake. In addition, it should be examined whether Δz changes along the wake.
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