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Abstract Since no direct signs of new physics have been
observed so far indirect searches in the Higgs sector have
become increasingly important. With the discovered Higgs
boson behaving very standard model (SM)-like, however,
indirect new physics manifestations are in general expected
to be small. On the theory side, this makes precision pre-
dictions for the Higgs parameters and observables indis-
pensable. In this paper, we provide in the framework of
the CP-violating next-to-minimal supersymmetric extension
of the SM (NMSSM) the complete next-to-leading order
(SUSY-)electroweak corrections to the neutral Higgs boson
decays that are on-shell and non-loop induced. We also inves-
tigate possible gauge-dependence issues in the decays of
light Higgs bosons into fermion pairs. Together with the also
provided SUSY-QCD corrections to colored final states, the
newly calculated SUSY-electroweak corrections are imple-
mented in the Fortran code NMSSMCALC which already
includes the state-of-the art QCD corrections. The new code
is called NMSSMCALCEW. This way we provide the NMSSM
Higgs boson decays and branching ratios at presently highest
possible precision and thereby contribute to the endeavor of
searching for New Physics at present and future colliders.

1 Introduction

The discovery of a scalar particle by the LHC experiments
ATLAS [1] and CMS [2] and the subsequent investigation of
its properties revealed a Higgs boson that behaves very stan-
dard model (SM)-like. Also years after its discovery there
are no evidences for new physics from direct searches. In
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this situation the precise investigation of the Higgs sector
plays an important role. Indirect effects of physics beyond
the SM (BSM) might show up in the properties of the discov-
ered Higgs boson. With a mass of 125.09 GeV [3] it does not
exclude the possibility for the Higgs boson of a supersymmet-
ric (SUSY) extension of the SM, like the minimal (MSSM)
or the next-to-minimal (NMSSM) ones. Supersymmetry cer-
tainly belongs to the best motivated and most intensively
studied BSM extensions, and the NMSSM, with a Higgs sec-
tor consisting of seven Higgs bosons arising after electroweak
symmetry breaking (EWSB) from the two doublet and sin-
glet fields of the Higgs sector, provides a rich phenomenology
[4,5]. The experimental limits strongly restrict possible new
physics effects in the Higgs sector and call for precision in
the theory predictions for the Higgs boson observables. This
is also necessary in order to be able to distinguish between
new physics extensions in case of discovery.

In this paper, we concentrate on the NMSSM Higgs boson
decays. While the (SUSY-)QCD corrections can be taken
over from the MSSM case with the appropriate modifica-
tions and a minimum of effort, this is not the case for the
electroweak (EW) corrections. In the recent years there has
been some progress on this subject. In the CP-conserving
NMSSM, members of our group computed the next-to-
leading order (NLO) SUSY-EW and SUSY-QCD correc-
tions to the decays of CP-odd NMSSM Higgs bosons into
stop pairs and found that both the EW and the SUSY-QCD
corrections are significant and can be of opposite sign [6].
The authors of [7,8] provided in the framework of the CP-
conserving NMSSM its full one-loop renormalization and the
two-body Higgs decays at one-loop order in the on-shell (OS)
renormalization scheme. A generic calculation of the two-
body partial decays widths at full one-loop level was provided
in [9] in the DR scheme. In [10] the full one-loop corrections
for the neutral CP-violating NMSSM Higgs bosons were
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calculated to their decays into fermions and gauge bosons
and combined with the leading QCD corrections. For the
Higgs-to-Higgs decays, we provided in previous papers the
complete one-loop [11] and the order O(αtαs) two-loop [12]
corrections in the CP-conserving and CP-violating NMSSM,
respectively.

In this work, we compute, in the framework of the
CP-violating NMSSM, the complete next-to-leading order
(SUSY-)electroweak corrections to the neutral NMSSM
Higgs boson decays into all tree-level induced SM final
states, i.e. into fermion and massive gauge boson pairs, but
also into non-SM pairs, namely gauge and Higgs boson
final states, chargino and neutralino pairs, and into squarks.1

Where applicable we combine our corrections with the
already available (SUSY-)QCD corrections. We furthermore
include the complete one-loop corrections to the decays into
Higgs boson pairs, cf. Refs. [11,12]. We also include a dis-
cussion of the gauge dependence of the computed decay
widths. We explicitly show that it does not arise from the
pure electroweak one-loop corrections but is due to the mix-
ing of different higher orders that arises from the inclusion
of higher loop-corrected Higgs boson masses and resummed
wave function renormalization factors ZH . This issue has
been well known and needs further detailed investigations
that are beyond the scope of this paper. We note that our
nominal predictions for the loop-corrected Higgs masses and
for the loop-corrected decay widths have been calculated in
the ’t Hooft-Feynman gauge (i.e. the gauge-fixing param-
eters have been set to one). For the loop-induced decays
into gluon and photon pairs as well as a photon and a Z
boson no corrections are provided as they would be of two-
loop order. For the first time, we present the one-loop cor-
rections to the electroweakino, stop and sbottom masses in
the context of the CP-violating NMSSM, by applying both
OS and DR schemes. We have implemented our corrections
in our original code NMSSMCALC [14], which calculates,
based on a mixed OS-DR scheme, the NMSSM Higgs mass
corrections and decays in both the CP-conserving and CP-
violating case. This way we provide the NMSSM Higgs
boson decays and branching ratios at presently highest possi-
ble precision including the state-of-the-art (SUSY-)QCD and
the computed (SUSY-)EW corrections. In the EW higher-
order corrections we not only include the NLO vertex cor-
rections but also take into account the proper on-shell con-
ditions of the external decaying Higgs bosons up to two-
loop order O(αtαs + α2

t ). This is the order up to which
the mass corrections for the NMSSM Higgs bosons both

1 In Ref. [13], the impact of the EW corrections to heavy NMSSM
Higgs boson decays into fermion pairs was discussed. It was shown
that these contributions are dominated by Sudakov double logarithms.
The authors furthermore stressed the relevance of three-body decays
for a consistent evaluation of the total widths and branching ratios at
complete one-loop order.

in the CP-conserving [15] and CP-violating case [16–18]
have been implemented inNMSSMCALC. The new program is
calledNMSSMCALCEW and can be obtained at the url: https://
www.itp.kit.edu/~maggie/NMSSMCALCEW/. Here also a
detailed description of the program and its structure are given,
instructions on how to compile and run it as well as informa-
tion on modifications, which is constantly updated. A brief
description of the code is given in “Appendix B”.

The paper is organized as follows. In Sect. 2 we intro-
duce the NMSSM sectors at tree level, that are relevant for
our computation, and set our notation before we move on to
the NMSSM at one-loop level in Sect. 3. We here describe
the renormalization of the Higgs, chargino/neutralino, and
squark sectors as well as the loop corrections to the Higgs
boson masses and mixings, to the neutralino and chargino
masses, and finally to the squark masses and their mixings.
Section 4 is devoted to the detailed presentation of our cal-
culation of the one-loop corrections to the neutral non-loop
induced Higgs boson decays into on-shell final states, namely
into fermion pairs, massive gauge boson pairs, final states
with one gauge and one Higgs boson, neutralino and chargino
pairs, and squark final states. In Sect. 5 we present the
numerical analysis of the one-loop corrections to the Higgs
boson branching ratios into SM and SUSY final states, where
we discuss in particular the size of the newly implemented
corrections to both the branching ratios and to the elec-
troweakino and third generation squark masses. A discus-
sion on the gauge-parameter dependence issue in the Higgs
boson decays into fermion pairs is presented in Sect. 5.6. Our
conclusions are given in Sect. 6. Explicit expressions of the
counterterm couplings for the decays of neutral Higgs bosons
into a squark pair are displayed in “Appendix A”.

2 The NMSSM at tree level

We are working in the complex NMSSM with a preservedZ3

symmetry. The Lagrangian of the NMSSM can be divided
into the Lagrangian of the MSSM without Z3-symmetry-
violating terms such as μ- and Bμ-terms and the addi-
tional part coming from the NMSSM. For convenience of
the reader and to set our notation, we give here the parts
of the Lagrangian that are relevant for our calculations. For
the Higgs sector we need the NMSSM Higgs potential. It is
derived from the NMSSM superpotential WNMSSM, the cor-
responding soft SUSY-breaking terms, and the D-term con-
tributions. With the Higgs doublet superfields Ĥu and Ĥd

coupling to the up- and down-type quark superfields, respec-
tively, and the singlet superfield Ŝ, we have for the NMSSM
superpotential

WNMSSM = WMSSM − εabλŜ Ĥ
a
d Ĥ

b
u + 1

3
κ Ŝ3 , (2.1)
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where a, b = 1, 2 are the indices of the fundamental SU (2)L
representation and εab is the totally antisymmetric tensor
with ε12 = ε12 = 1 . The MSSM part reads

WMSSM = −εab
(
yu Ĥ

a
u Q̂

bÛ c

− yd Ĥ
a
d Q̂

b D̂c − ye Ĥ
a
d L̂

b Êc) , (2.2)

in terms of the left-handed quark and lepton superfield dou-
blets Q̂ and L̂ and the right-handed up-type, down-type,
and electron-type superfield singlets Û , D̂, and Ê , respec-
tively. Charge conjugation is denoted by the superscript c,
and color and generation indices have been omitted. The
NMSSM superpotential contains the coupling κ of the self-
interaction of the new singlet superfield and the coupling λ

for the Ŝ interaction with the two Higgs doublet superfields.
Both couplings are complex. The quark and lepton Yukawa
couplings yd , yu , and ye are in general complex. However, in
case of no generation mixing, as assumed in this paper, the
phases of the Yukawa couplings can be absorbed through a
redefinition of the quark fields, so that the phases can be cho-
sen arbitrarily without changing the physical meaning [19].
The soft SUSY-breaking NMSSM Lagrangian in terms of
the component fields Hu, Hd and S reads

Lsoft
NMSSM = Lsoft

MSSM − m2
S|S|2

+
(

εab AλλSH
a
d H

b
u − 1

3
AκκS3 + h.c.

)
. (2.3)

It contains two more complex parameters specific to the
NMSSM, the soft SUSY-breaking trilinear couplings Aλ and
Aκ . The soft SUSY-breaking MSSM contribution can be cast
into the form

Lsoft
MSSM = −m2

Hd
|Hd |2 − m2

Hu
|Hu |2 − m2

Q̃
|Q̃|2 − m2

ũ R
|ũ R |2

− m2
d̃R

|d̃R |2 − m2
L̃
|L̃|2 − m2

ẽR
|ẽR |2

+ εab(yu AuH
a
u Q̃

bũ∗
R − yd Ad H

a
d Q̃

bd̃∗
R

− ye AeH
a
d Q̃

bẽ∗
R + h.c.)

− 1

2
(M1 B̃ B̃ + M2W̃i W̃i + M3G̃G̃ + h.c) ,

(2.4)

where the SM-type and SUSY fields corresponding to a
superfield (denoted with a hat) are represented by a let-
ter without and with a tilde, respectively. The indices Q̃
(L̃) of the soft SUSY-breaking masses denote, exemplary
for the first generation, the left-handed quark (lepton) dou-
blet component fields of the corresponding quark and lep-
ton superfields, and ũ R, d̃R, ẽR the right-handed component
fields for the up-type and down-type quarks, and charged lep-
tons, respectively. The trilinear couplings Au , Ad and Ae of
the up-type and down-type quarks and charged leptons are

in general complex, whereas the soft SUSY-breaking mass
terms m2

x (x = S, Hu, Hd , Q̃, ũ R, d̃R, L̃, ẽR) are real. The
soft SUSY-breaking mass parameters of the gauginos, M1,
M2, M3, for the bino, the winos, and the gluinos, B̃, W̃i

(i = 1, 2, 3), and G̃, corresponding to the weak hypercharge
U (1), the weak isospin SU (2), and the color SU (3) symme-
try, are in general complex. The R-symmetry can be exploited
to choose either M1 or M2 to be real. In this paper we keep
both M1 and M2 complex.

Expanding the scalar Higgs fields about their vacuum
expectation values (VEVs) vu , vd , and vs , two further phases,
ϕu and ϕs , are introduced which describe the phase differ-
ences between the VEVs,

Hd =
(

1√
2
(vd + hd + iad)

h−
d

)

,

Hu = eiϕu

(
h+
u

1√
2
(vu + hu + iau)

)

,

S = eiϕs√
2

(vs + hs + ias) . (2.5)

For vanishing phases, the fields hi and ai with i = d, u, s cor-
respond to the CP-even and CP-odd part of the neutral entries
of Hd , Hu and S. The charged components are denoted by
h±
d,u . In this paper, we set the phases of the Yukawa couplings

to zero. We furthermore re-phase the left- and right-handed
up-quark fields as uL → e−iϕu uL and uR → eiϕu uR , so that
the quark and lepton mass terms yield real masses.

After electroweak symmetry breaking (EWSB) the six
Higgs interaction states mix and in the basis φ = (hd , hu, hs,
ad , au, as)T the mass term is given by

Lm
neutral = 1

2
φT Mφφφ . (2.6)

The mass matrix Mφφ is obtained from the second derivative
of the Higgs potential with respect to the Higgs fields in the
vacuum. The explicit expression of the mass matrix Mφφ can
be found in Ref. [16]. The transformation into mass eigen-
states at tree level can be performed with orthogonal matrices
R,RG ,

diag
(
m2

h1
,m2

h2
,m2

h3
,m2

h4
,m2

h5
, M2

Z

)

= RRGMφφ

(
RRG
)T

, (2.7)

(h1, h2, h3, h4, h5,G)T = RRG(hd , hu, hs, ad , au, as)
T

= R(hd , hu, hs, a, as,G)T , (2.8)

where the matrix RG is used first to single out the Goldstone
boson G whose mass is equal to the Z -boson mass, MZ ,
in the ’t Hooft-Feynman gauge. The tree-level Higgs mass

123
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eigenstates are denoted by the small letter h, and their masses
are ordered as mh1 ≤ · · · ≤ mh5 .

The mass term for the charged components of the Higgs
doublets in

Lm
charged = (h+

d , h+
u

)
Mh+h+

(
h−
d

h−
u

)
, (2.9)

in general Rξ gauge, is given by

Mh+h+ = 1

2

(
tβ 1
1 1/tβ

)

×
[
M2

Ws2β + |λ| vs
cos(ϕλ + ϕu + ϕs)

×
(√

2 Re Aλ + |κ| vs cos(ϕκ + 3ϕs)
)

− 2|λ|2M2
Ws2

θW

e2 s2β

]

+ M2
W ξW

(
cβ

2 −cβsβ
−cβsβ sβ2

)
, (2.10)

where MW is the mass of the W boson, ξW is the W -boson
gauge parameter, θW the electroweak mixing angle, e the
electric charge and ϕλ, ϕκ the complex phases of λ and κ ,
respectively. The angle β is defined as

tan β = vu/vd . (2.11)

Here and in the following we use the short hand notation
cx = cos x , sx = sin x and tx = tan x . Diagonalizing this
mass matrix by a rotation matrix with the angle βc, for which
at Born level βc = β, one obtains the charged Higgs boson
mass as

M2
H± = M2

W + |λ| vs
s2β cos(ϕλ + ϕu + ϕs)

×
(√

2Re Aλ + |κ| vs cos(ϕκ + 3ϕs)
)

− 2|λ|2M2
Ws2

θW

e2 . (2.12)

The mass of the charged Goldstone boson G± is
√

ξWMW .
We work in the ’t Hooft-Feynman gauge (ξW = 1), therefore
its mass is equal to MW .

The fermionic superpartners of the neutral Higgs bosons,
H̃0
d , H̃0

u , S̃, and of the neutral gauge bosons, B̃, W̃3, mix,
and in the Weyl spinor basis ψ0 = (B̃, W̃3, H̃0

d , H̃0
u , S̃)T the

neutralino mass matrix MN is given by

MN =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

M1 0 −cβMZsθW MZsβsθW e
−iϕu 0

0 M2 cβMW −MWsβe−iϕu 0

−cβMZsθW cβMW 0 −λ vs√
2
eiϕs −

√
2MWsβ sθW λeiϕu

e

MZsβsθW e
−iϕu −MWsβe−iϕu −λ vs√

2
eiϕs 0 −

√
2MWcβ sθW λ

e

0 0 −
√

2MWsβ sθW λeiϕu

e −
√

2MWcβ sθW λ

e

√
2κvseiϕs

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

(2.13)

after EWSB. The symmetric neutralino mass matrix can
be diagonalized by a 5 × 5 matrix N , yielding diag(mχ̃0

1
,

mχ̃0
2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5
) = N∗MN N †. In the diagonalization

process, the i th mass eigenvalue mi can have an arbitrary
complex phase, we choose to make it positive by applying
Ni j → Ni j

√
mi/ |mi |, j = 1, . . . , 5. As a result, the neu-

tralino masses are positive and are ordered as mχ̃0
1

≤ · · · ≤
mχ̃0

5
. The neutralino mass eigenstates χ̃0

i , expressed as Majo-
rana spinors, can then be obtained by

χ̃0
i =
(

χ0
i

χ0
i

)

with χ0
i = Ni jψ

0
j , i, j = 1, . . . , 5 ,

(2.14)

where, in terms of the Pauli matrix σ2,

χ0
i = iσ2χ

0∗
i . (2.15)

The fermionic superpartners of the charged Higgs and gauge
bosons are given in terms of the Weyl spinors H̃±

d , H̃±
u , W̃−

and W̃+. With

ψ−
R =
(
W̃−
H̃−
d

)
and ψ+

L =
(
W̃+
H̃+
u

)
(2.16)

the mass term for these spinors is of the form

L = (ψ−
R )T MCψ+

L + h.c., (2.17)

where

MC =
(

M2
√

2sβMWe−iϕu√
2cβMW λ vs√

2
eiϕs

)

. (2.18)

The chargino mass matrix MC can be diagonalized with the
help of two unitary 2 × 2 matrices, U and V , yielding

diag(mχ̃±
1
,mχ̃±

2
) = U∗MCV

†, (2.19)

with mχ̃±
1

≤ mχ̃±
2

. The left-handed and the right-handed part
of the mass eigenstates are

χ̃+
L = Vψ+

L and χ̃−
R = Uψ−

R , (2.20)

respectively, with the mass eigenstates (i = 1, 2)

123
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χ̃+
i =
(

χ̃+
Li

χ̃−
Ri

)

(2.21)

written as Dirac spinors. In summary, the bilinear terms in
the chargino and neutralino mass eigenstates are given by

L = χ̃+
i /pPL χ̃+

i + χ̃+
i /pPR χ̃+

i − χ̃+
i

[
U∗MCV

†
]

i j
PL χ̃+

j

−χ̃+
i

[
V M†

CU
T
]

i j
PR χ̃+

j

+χ̃0
k /pPL χ̃0

k + χ̃0
k /pPRχ̃0

k − χ̃0
k

[
N∗MN N

†
]

kl
PL χ̃0

l

−χ̃0
k

[
NM†

N N
T
]

kl
PRχ̃0

l , (2.22)

where the left- and right-handed projectors are defined as
PL/R = (1 ∓ γ5) /2 and i, j = 1, 2 and k, l = 1, . . . , 5.

The scalar partners of the left- and right-handed quarks
are denoted by q̃L and q̃R , respectively. The mixing matrix
for the top squark is given by

Mt̃ =
(
m2

Q̃3
+ m2

t + M2
Z c2β( 1

2 − 2
3 s

2
θW

) mt
(
A∗
t e

−iϕu − μeff/tβ
)

mt
(
At eiϕu − μ∗

eff/tβ
)

m2
t + m2

t̃R
+ 2

3 M
2
Z c2βs2

θW

)

,

(2.23)

while the bottom squark matrix reads

Mb̃ =
(
m2

Q̃3
+ m2

b + M2
Z c2β(− 1

2 + 1
3 s

2
θW

) mb
(
A∗
b − eiϕu μefftβ

)

mb
(
Ab − e−iϕu μ∗

efftβ
)

m2
b + m2

b̃R
− 1

3 M
2
Z c2β s2

θW

)

,

(2.24)

where

μeff = λvseiϕs√
2

. (2.25)

The mass eigenstates are obtained by diagonalizing these
squark matrices with the unitary transformations

diag
(
m2

q̃1
,m2

q̃2

)
= Uq̃Mq̃U

q̃†,

(
q̃1

q̃2

)
= Uq̃
(
q̃L
q̃R

)
, q = t, b, (2.26)

with the usual convention mq̃1 ≤ mq̃2 .

3 The NMSSM at one-loop level

3.1 Renormalization

3.1.1 The Higgs sector

For the Higgs sector we follow the mixed OS-DR renormal-
ization scheme described and applied in Refs. [15–18]. We
do not repeat all details here but quote the most important

formulae. There are eighteen parameters entering the Higgs
sector at tree level,

m2
Hd

,m2
Hu

,m2
S, M

2
W , M2

Z , e, tan β, vs, ϕs,

ϕu, |λ| , ϕλ, |κ| , ϕκ ,

Re Aλ, Im Aλ, Re Aκ , Im Aκ . (3.1)

Note that for the sake of convenience we decompose the com-
plex trilinear couplings Aλ and Aκ into a real and imaginary
part in contrast to Ref. [16] where the absolute values and
complex phases were used. It was found in Ref. [16] that
the four complex phases ϕs, ϕu, ϕλ and ϕκ do not need to
be renormalized at the one-loop level, which can be inferred
from the existing renormalization group equations (RGEs).
We verified this statement and will discard them in our renor-
malization procedure.

In our introduction of the NMSSM Higgs sector in Sect. 2
we have already replaced the U (1) and SU (2) gauge cou-
plings g′ and g and the VEV v by the physical observables
MW , MZ and e. It is convenient to further convert, where
possible, the input parameters in Eq. (3.1) to parameters that
can be interpreted more easily in terms of physical quantities.
Thus we trade the three soft SUSY-breaking mass parameters
m2

Hd
,m2

Hu
,m2

S as well as Im Aλ and Im Aκ for the tadpole
parameters tφ (φ = hd , hu, hs, ad , as). These coefficients
of the terms of the Higgs potential VHiggs are linear in the
Higgs boson fields and have to vanish, in order to ensure the
minimum at non-vanishing VEVs vu, vd , vs ,

tφ ≡ ∂VHiggs

∂φ

∣
∣∣∣
Min.

!= 0 . (3.2)

It is debatable whether the tadpole parameters can be called
physical quantities, but certainly their introduction is moti-
vated by physical interpretation. In the same way, in a slight
abuse of the language, we will call the renormalization con-
ditions for the tadpole parameters on-shell. With the new set
of input parameters, we allow for two possible renormal-
ization schemes in our Higgs mass calculation. The differ-
ence between the two schemes relates to the treatment of the
charged Higgs mass. In the first scheme the charged Higgs
mass is an OS input parameter,

thd , thu , ths , tad , tas , M
2
H± , M2

W , M2
Z , e

︸ ︷︷ ︸
on-shell

, tan β, vs , |λ| , |κ| , Re Aκ︸ ︷︷ ︸
DR

,

(3.3)

while in the second scheme Re Aλ is an input parameter
renormalized as a DR parameter and the charged Higgs mass
is a derived quantity,

thd , thu , ths , tad , tas , M
2
W , M2

Z , e
︸ ︷︷ ︸

on-shell

, tan β, vs , |λ|, |κ|, Re Aλ, Re Aκ︸ ︷︷ ︸
DR

.

(3.4)

123
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We use the dimensional reduction scheme [20,21], which
up to one-loop order has been proven to be SUSY conserv-
ing, to regularize the UV-divergent tadpoles and unrenor-
malized self-energies. In particular, the manipulation of the
Dirac matrices is done in 4-dimensional space-time while the
tensor reduction and one-loop integrals are computed in D-
dimensional space-time, D = 4 − 2ε. The UV divergence is
then parameterized by the pole 1/ε in the limit ε → 0, i.e. in
the physical D = 4 space-time dimension. For the definition
of the one-loop OS counterterms we refer the reader to Ref.
[16]. For the counterterms of the DR parameters, they are
proportional to the combination 1/ε − γE + log(4π), where
γE is the Euler–Mascheroni constant. Therefore, they do not
contribute to the final physical results. We, however, keep
them to ensure the cancellation of the UV divergences as it
is a powerful check of our implementation of the renormal-
ization procedure. We define these counterterms solely in the
Higgs sector by requiring that all renormalized self-energies
of the Higgs bosons be finite. This is different with respect to
the definition in Ref. [16] where the chargino and neutralino
sectors were used. The numerical results between the two
definitions are identical, however. We renormalize the Higgs
fields in the DR scheme as described in Ref. [16] at one-loop
level, and in Refs. [17,18] at two-loop order O(αtαs) and
O(α2

t ), respectively.

3.1.2 The chargino and neutralino sector

The chargino and neutralino sectors are described by fourteen
real parameters: MW , MZ , tan β, vs, ϕs, ϕu, |λ| , ϕλ, |κ| ,
ϕκ , |M1|, ϕM1 , |M2|, ϕM2 . Since the first ten of these already
appear in the Higgs sector, there remains to define the renor-
malization conditions for the four parameters |M1|, ϕM1 ,

|M2|, ϕM2 .2 There are no physical renormalization condi-
tions to fix the counterterms of the phases ϕM1 , ϕM2 . It has
been found in Ref. [16] that the complex phases of M1 and
M2 do not need to be renormalized at the one-loop level.
We verified this statement in our computation.3 In addition,
we have to renormalize the chargino and neutralino fields
in order to obtain finite self-energies. In the literature there
exist two descriptions for the introduction of wave function
renormalization (WFR) constants. In the Espriu–Manzano–
Talavera (EMT) description two independent renormaliza-
tion constants were introduced for incoming and outgoing
fermions [22–24]. Thanks to more degrees of freedom one
can keep contributions arising from absorptive parts of the
loop integrals and eliminate completely the mixing self-

2 In the case of the MSSM one needs to renormalize three complex
parameters M1, M2, μ.
3 The same holds true in the complex MSSM [22] The three complex
phases of M1, M2 and μ do not need to be renormalized in order to
render all Green functions finite.

energies thereby fulfilling the standard OS conditions. How-
ever, the hermicity of the renormalized Lagrangian is not
satisfied any more. In the Denner description [25], one WFR
constant was used instead. It preserves the hermicity con-
straint, but the absorptive part of the loop integral must be
eliminated. We want to investigate the effect of the absorp-
tive part and therefore apply both descriptions. In the follow-
ing we will derive the formulae in the EMT method. From
these formulae, one can easily obtain the ones in the Denner
description. The bare parameters and fields are replaced by
the renormalized ones and the corresponding counterterms as

M1 → M1 + δ |M1| eiϕM1 , (3.5)

M2 → M2 + δ |M2| eiϕM2 , (3.6)

PL χ̃+
i →
(

1 + 1

2
δZ χ̃+

L

)

i j
PL χ̃+

j ,

χ̃+
i PL → χ̃+

j

(
1 + 1

2
δ Z̄ χ̃+

R

)

j i
PL , (3.7)

PRχ̃+
i →
(

1 + 1

2
δZ χ̃+

R

)

i j
PRχ̃+

j ,

χ̃+
i PR → χ̃+

j

(
1 + 1

2
δ Z̄ χ̃+

L

)

j i
PR, (3.8)

PL χ̃0
k →
(

1 + 1

2
δZ χ̃0

L

)

kl
PL χ̃0

l ,

χ̃0
k PL → χ̃0

l

(
1 + 1

2
δ Z̄ χ̃0

R

)

lk
PL , (3.9)

PRχ̃0
k →
(

1 + 1

2
δZ χ̃0

R

)

kl
PRχ̃0

l ,

χ̃0
k PR → χ̃0

l

(
1 + 1

2
δ Z̄ χ̃0

L

)

lk
PR, (3.10)

where i, j = 1, 2 and k, l = 1, . . . , 5. Since the neutralinos
are Majorana fermions we have

δZ χ̃0

R =
(
δ Z̄ χ̃0

L

)T
and δZ χ̃0

L =
(
δ Z̄ χ̃0

R

)T
. (3.11)

Note that we do not need to renormalize the rotation matrices
U, V and N because their counterterms are redundant. They
always appear in combination with WFR constants. One can
therefore always redefine the WFR constants to absorb the
counterterms of the rotation matrices, as shown in Ref. [26].
In general, the renormalized self-energies �̂ of the fermions
can be cast into the following form, cf. Ref. [25],

�̂i j (p) = /p�̂L
i j (p

2)PL + /p�̂R
i j (p

2)PR + �̂Ls
i j (p2)PL

+�̂Rs
i j (p2)PR , (3.12)

with

�̂L
i j (p

2) = �L
i j (p

2) + 1

2

(
δZL + δ Z̄ L

)
i j , (3.13)

�̂R
i j (p

2) = �R
i j (p

2) + 1

2

(
δZR + δ Z̄ R

)
i j , (3.14)
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�̂Ls
i j (p2) = �Ls

i j (p2)

−
(

1

2
(δ Z̄ R)i jmχ̃ j + 1

2
(δZL )i jmχ̃i + (δM tree

χ̃ )i j

)
,

(3.15)

�̂Rs
i j (p2) = �Rs

i j (p2)

−
(

1

2
(δ Z̄ L )i jmχ̃ j + 1

2
(δZR)i jmχ̃i +

(
δM tree

χ̃

)†

i j

)
,

(3.16)

where �i j (p) denotes the unrenormalized self-energy of the
transition χ̃+

i → χ̃+
j , i, j = 1, 2, for the charginos and

χ̃0
i → χ̃0

j , i, j = 1, . . . , 5, for the neutralinos. For the

charginos, the tree-level mass matrix M tree
χ̃

and its countert-

erm δM tree
χ̃

are given by

M tree
χ̃ = U∗MCV

†, δM tree
χ̃ = U∗δMCV

† (3.17)

and for the neutralinos by

M tree
χ̃ = N∗MN N

†, δM tree
χ̃ = N∗δMN N

† . (3.18)

In the following, we will discuss the OS conditions for the
general fermion fields χ̃i having the tree-level masses mχ̃i .
The renormalized fermion propagator matrix is given by

Ŝ(p) = −�̂(p)−1, (3.19)

where the renormalized one-particle irreducible (1PI) two-
point functions �̂ are related to the renormalized self-energies
as

�̂i j (p) = iδi j
(
/p − mχ̃i

)+ i�̂i j (p) . (3.20)

The propagator matrix has complex poles at M2
χ̃i

= M2
χ̃i

−
iMχ̃i �χ̃i , where �χ̃i denotes the decay widths. In the OS
scheme we require that the tree-level masses are equal to the
physical masses, the mixing terms are vanishing at the poles
and that the residues of the propagators are unity,4

Re �̂i i (p)χ̃i

∣∣
∣∣
p2=m2

χ̃i

= 0, (3.21)

�̂i j (p)χ̃ j

∣∣∣∣
p2=m2

χ̃ j

= 0,

χ̃i �̂i j (p)

∣
∣∣∣
p2=m2

χ̃i

= 0 , i 	= j (3.22)

4 In the Denner description, �̂i i in Eq. (3.21), �̂i j in Eq. (3.22) and �̂i i

in Eq. (3.23) are replaced by R̃e�̂i i , R̃e�̂i j and R̃e�̂i i , respectively. R̃e
means that one takes only the real part of the loop integrals but leaves
the couplings unaffected.

lim
p2→mχ̃i

1

/p − mχ̃i

Re �̂i i χ̃i = i χ̃i ,

lim
p2→mχ̃i

χ̃iRe �̂i i
1

/p − mχ̃i

= i χ̃i . (3.23)

In addition, we require the chiral structure to vanish in the
OS limit,5

�̂L
ii

(
m2

χ̃i

)
= �̂R

ii

(
m2

χ̃i

)
, �̂Ls

ii

(
m2

χ̃i

)
= �̂Rs

ii

(
m2

χ̃i

)
.

(3.24)

Applying the decomposition in Eq. (3.12) and the tree-level
relations

(/p − mχ̃i )χ̃i = 0, χ̃i (/p + mχ̃i ) = 0, (3.25)

one obtains the mass counterterms δmχ̃i = Re (δM tree
χ̃

)i i ,
with

Re (δM tree
χ̃ )i i = 1

2

(
mχ̃i Re �L

ii

(
m2

χ̃i

)
+ mχ̃i Re �R

ii

(
m2

χ̃i

)

+Re �Ls
ii

(
m2

χ̃i

)
+ Re �Rs

ii

(
m2

χ̃i

))
,

(3.26)

the off-diagonal wave function renormalization constants,
δZL/R,i j , δ Z̄ L/R,i j ,6,7

δZL ,i j = 2

m2
χ̃i

− m2
χ̃ j

×
[
m2

χ̃ j
�L
i j

(
m2

χ̃ j

)
+ mχ̃i mχ̃ j �

R
i j

(
mχ̃2

j

)

+ mχ̃i�
Ls
i j

(
m2

χ̃ j

)
+ mχ̃ j�

Rs
i j

(
m2

χ̃ j

)

− mχ̃ j

(
δM tree

χ̃

)†

i j
− mχ̃i

(
δM tree

χ̃

)

i j

]
, (3.27)

δZR,i j = 2

m2
χ̃i

− m2
χ̃ j

×
[
m2

χ̃ j
�R
i j

(
m2

χ̃ j

)
+ mχ̃i mχ̃ j �

L
i j (m

2
χ̃ j

)

+ mχ̃i�
Rs
i j

(
m2

χ̃ j

)
+ mχ̃ j �

Ls
i j

(
m2

χ̃ j

)

− mχ̃i

(
δM tree

χ̃

)†

i j
− mχ̃ j

(
δM tree

χ̃

)

i j

]
, (3.28)

δ Z̄ L ,i j = δZL ,i j

(
m2

χ̃ j
↔ m2

χ̃i

)
, (3.29)

δ Z̄ R,i j = δZR,i j

(
m2

χ̃ j
↔ m2

χ̃i

)
, (3.30)

5 If we use the Denner OS conditions in Ref. [25] then these relations
are automatically satisfied for the real parts only.
6 In the Denner description �

L/R/Ls/Rs
i j are replaced by R̃e�L/R/Ls/Rs

i j .
7 Note that the δ Z̄ are obtained from δZ by interchanging the m2

χ̃
of

the electroweakinos, but not the mχ̃ .
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and the diagonal wave function renormalization constants8

δZL ,i i = −�L
ii

(
m2

χ̃i

)
− mχ̃i

∂

∂p2

×
[
mχ̃i �

L
ii (p

2) + mχ̃i �
R
ii (p

2) + �Ls
ii (p2) + �Rs

ii (p2)
]∣∣
∣
p2=m2

χ̃i

+ a (3.31)

δZR,i i = −�R
ii

(
m2

χ̃i

)
− mχ̃i

∂

∂p2

×
[
mχ̃i �

L
ii (p

2) + mχ̃i �
R
ii (p

2) + �Ls
ii (p2) + �Rs

ii (p2)
]∣∣∣

p2=m2
χ̃i

+ b + a (3.32)

δ Z̄ L ,i i = δZL ,i i − 2a (3.33)

δ Z̄ R,i i = δZR,i i − 2b − 2a , (3.34)

where

b = − 1

mχ̃i

[
�Ls
ii (m2

χ̃i
) − �Rs

ii

(
m2

χ̃i

)
−
(
δM tree

χ̃

)

i i

+
(
δM tree

χ̃

)∗
i i

]
(3.35)

a = −b

2
. (3.36)

Our results coincide with those given in Ref. [22]. The above
wave function renormalization constants have been chosen
such that for all fermions the mixing terms are cancelled and
the correct propagators are produced at the tree-level mass
values. Note that in case we do not have enough parame-
ters to renormalize all fermions on-shell, only some of these
fermions satisfy OS conditions, i.e. their tree-level masses
are equal to the physical masses. The remaining fermions
have loop-corrected masses. This is the case for the elec-
troweakino sector. Given the fact that we have already fixed
the renormalization scheme for the Higgs sector, only the
two gaugino masses M1 and M2 remain to be renormalized,
while we have seven masses (5 neutralino and 2 chargino
masses), so that only two of them can be set OS. The remain-
ing 5 particles receive loop-corrections to their masses. At
loop level the mixing between fermions is in general not van-
ishing any more, and the residues of the propagators are not
unity. These effects should be taken into account if the loop
corrections to the masses are large. This is not the case for the
renormalization schemes chosen here, therefore we neglect
these effects.

In the chargino and neutralino sector hence only the two
counterterms δ |M1| and δ |M2| remain to be determined.
There are 20 different ways to choose two out of the seven
masses for the OS conditions. We will consider here two
different schemes. In the first scheme (OS1), we require the
masses of the wino-like chargino χ̃+

i and the bino-like neu-
tralino χ̃0

k to be OS. The bino-like neutralino is sensitive to

8 In the Denner description a = b = 0 and the �
L/R/Ls/Rs
ii are replaced

by R̃e�L/R/Ls/Rs
ii .

M1 while the wino-like chargino is sensitive to M2.9 Note
that we do not choose the chargino and neutralino by refer-
ring to a fixed index order since they may not be sensitive to
M1 or M2. This can then lead to numerical instability, as was
found in the MSSM [26–29] and in [7,8] for the NMSSM. We
denote the tree-level masses for the neutralinos (charginos)
by a small letter m

χ̃
0(+)
i

, and the loop corrected masses by a

capital letter M
χ̃

0(+)
i

. In the OS scheme the tree-level masses

are equal to the loop-corrected ones. We define the countert-
erm mass matrices of the chargino and neutralino sector in
the interaction basis, δMN and δMC , through

MN → MN + δMN and MC → MC + δMC , (3.37)

with the neutralino mass matrix given in Eq. (2.13) and the
chargino mass matrix in Eq. (2.18). The counterterms for M1

and M2 are then given by

δ |M2| = 1

Re [U∗
i1V

∗
i1e

iφM2 ]

×
[

1

2
mχ̃+

i

(
Re �

χ̃+
i ,L

ii

(
m2

χ̃+
i

)
+ Re �

χ̃+
i ,R

ii

(
m2

χ̃+
i

))

+ 1

2
Re �

χ̃+
i ,Ls

ii

(
m2

χ̃+
i

)
+ 1

2
Re �

χ̃+
i ,Rs

ii

(
m2

χ̃+
i

)

−Re
[
U∗δMCV

†]
i i

∣
∣∣
δM2=0

]
(3.38)

δ |M1| = 1

Re [N∗
k1N

∗
k1e

iφM1 ]
×
[

1

2
mχ̃0

k

(
Re �

χ̃0
k ,L

kk (m2
χ̃0
k
) + Re �

χ0
k ,R

kk (m2
χ̃0
k
)

)

+ 1

2
Re �

χ̃0
k ,Ls

kk (m2
χ̃0
k
) + 1

2
Re �

χ̃0
k ,Rs

kk (m2
χ̃0
k
)

− Re
[
N∗δMN N

†]
kk

∣
∣∣
δM1=0

]
. (3.39)

In the second scheme (OS2), we use the masses of the
bino-like neutralino, denoted by χ̃0

k , and of the wino-like
neutralino, denoted by χ̃0

l , as inputs. The renormalization
conditions for their OS masses are given by

�̂
χ̃0
i

kk (p2)χ̃0
k

∣∣∣∣
p2=m2

χ̃0
k

= 0 (3.40)

�̂
χ̃0
i

ll (p2)χ̃0
l

∣∣∣
p2=m2

χ̃0
l

= 0 . (3.41)

This results in the two solutions for the counterterms δ|M1|
and δ|M2|,

9 We find the bino-like neutralino (wino-like chargino) by looking at
the tree-level rotation matrix N (U/V ). The position of the maximal
value in the list {|N11| , . . . , |N51|} is identical to the position of the
bino-like neutralino. For the wino-like neutralino position we look for
the position of the maximal value in the list {|N12| , . . . , |N52|}. The
wino-like chargino is found by identifying the position of the maximal
value of {|U11| , |U21|}.
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δ |M1| = a1Re [N∗
l2N

∗
l2e

iφM2 ] − a2Re [N∗
k2N

∗
k2e

iφM2 ]
Re [N∗

k1N
∗
k1e

iφM1 ]Re [N∗
l2N

∗
l2e

iφM2 ] − Re [N∗
k2N

∗
k2e

iφM2 ]Re [N∗
l1N

∗
l1e

iφM1 ] (3.42)

δ |M2| = − a1Re [N∗
l1N

∗
l1e

iφM1 ] − a2Re [N∗
k1N

∗
k1e

iφM1 ]
Re [N∗

k1N
∗
k1e

iφM1 ]Re [N∗
l2N

∗
l2e

iφM2 ] − Re [N∗
k2N

∗
k2e

iφM2 ]Re [N∗
l1N

∗
l1e

iφM1 ] (3.43)

with

a1 =
[

1

2

(
mχ̃0

k

(
Re �

χ̃0
k ,L

kk

(
m2

χ̃0
k

)
+ Re �

χ̃0
k ,R

kk

(
m2

χ̃0
k

))

+Re �
χ̃0
k ,Ls

kk

(
m2

χ̃0
k

)
+ Re �

χ̃0
k ,Rs

kk

(
m2

χ̃0
k

))

−Re
(
N∗δMN N

†
)

kk

∣
∣∣
δM1=δM2=0

]
(3.44)

a2 =
[

1

2

(
mχ̃0

l

(
Re �

χ̃0
l ,L

ll

(
m2

χ̃0
l

)
+ Re �

χ̃0
l ,R

ll

(
m2

χ̃0
l

))

+Re �
χ̃0
l ,Ls

ll

(
m2

χ̃0
l

)
+ Re �

χ̃0
l ,Rs

ll

(
m2

χ̃0
l

))

−Re
(
N∗δMN N

†
)

ll

∣∣
∣
δM1=δM2=0

]
. (3.45)

For the field renormalization constants of the charginos
and neutralinos, we impose the OS conditions for the tree-
level masses. Besides the two OS schemes, we will also adopt
the DR renormalization scheme for M1 and M2, while for the
field renormalization constants we use the OS conditions.

3.1.3 The squark sector

We consider here only the third-generation squarks. The
results for the first- and second-generation squarks are
obtained analogously.10 There are seven parameters to be
renormalized in this sector,

mt ,mb,m
2
Q̃3

,m2
t̃R

,m2
b̃R

, At , Ab, (3.46)

where At , Ab are complex and the mass terms are real. We
denote their corresponding counterterms as

δmt , δmb, δm
2
Q̃3

, δm2
t̃R

, δm2
b̃R

, δAt , δAb, (3.47)

and define the squark-mass counterterm matrices as

Mq̃ → Mq̃ + δMq̃ , (3.48)

with Mq̃ given in Eq. (2.23) for the stops and in Eq. (2.24) for
the sbottoms. The renormalization of the remaining parame-
ters appearing in the squark mass matrices has been specified

10 If the light quark masses are set to zero, the mixing between left- and
right-handed squarks vanishes. In this case, it is not required to renor-
malize the quark masses and the trilinear couplings. Equations (3.55),
(3.56), (3.67) are still usable by removing the contribution that then
becomes zero. At present, the SUSY-QCD and SUSY-EW corrections
are not included in the decays into light squarks in our code.

in the renormalization of the Higgs sector, more specifically
see Refs. [15–18].

We have to renormalize the squark fields in order to make
the squark self-energies finite. Here we use both the EMT
and the Denner description. For the EMT description we
have to introduce two separate WFR constants, one for the
particle and one for the anti-particle. We introduce the squark
WFR constants for the particles and anti-particles in the mass
eigenstate basis as11

(
q̃1

q̃2

)
→
(

1 + 1

2
δZq̃

)(
q̃1

q̃2

)
,

(
q̃1

q̃2

)†

→
(
q̃1

q̃2

)† (
1 + 1

2
δ Z̄ q̃
)

. (3.49)

The renormalized self-energies in the mass eigenstate basis
are given by (i, j = 1, 2)

�̂
q̃
i j (p

2) = �
q̃
i j (p

2) + 1

2

(
δ Z̄ q̃

i j + δZq̃
i j

)
p2

−1

2

(
δ Z̄ q̃

i jm
2
q̃ j

+ m2
q̃i

δZq̃
i j

)

−
(
Uq̃δMq̃U

†
q̃

)

i j
, (3.50)

where we denote by �
q̃
i j the unrenormalized self-energies for

the q̃∗
i → q̃∗

j transition.12 In the following, we give the OS

counterterms. The DR counterterms are then easily obtained
by taking only the divergent parts of the corresponding OS
counterterms.

Applying the decomposition of the fermionic self-energies
as given in Eq. (3.12), the mass counterterm in the OS
scheme for the top and bottom quark, respectively, is given
by (q = t, b)13

δmq = 1

2
Re

×
{(

�L
q

(
m2

q

)
+ �R

q

(
m2

q

))
mq + �Ls

q

(
m2

q

)
+ �Rs

q

(
m2

q

)}
.

(3.51)

11 In the Denner description, we have δ Z̄q̃ = δZ†
q̃ .

12 Note that in the real NMSSM the unrenormalized self-energies for
the q̃∗

i → q̃∗
j transition and for the q̃i → q̃ j transition are identical.

They are different, however, in the complex case.
13 In the Denner description, Re is replaced by R̃e.
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The OS conditions for the scalar renormalized self-energies
are (i, j = 1, 2)14

Re �̂
q̃
i i

(
m2

q̃i

)
= 0 (3.52)

�̂
q̃
i j

(
m2

q̃i

)
= 0, �̂

q̃
i j

(
m2

q̃ j

)
= 0, i 	= j (3.53)

∂Re �̂
q̃
i i (p

2)

∂p2

∣∣∣
∣
p2=m2

q̃i

= 0 . (3.54)

We apply the conditions in Eqs. (3.52) and (3.53) for the top
squark to determine δAt , δm2

Q̃3
and δm2

t̃R
,15

δm2
Q̃3

=
∣∣
∣Ut̃

11

∣∣
∣
2
δm2

t̃1
+
∣∣
∣Ut̃

12

∣∣
∣
2
δm2

t̃2
+Ut̃

21U
t̃∗
11δY

+Ut̃
11U

t̃∗
21 (δY )∗ − 2mtδmt

+2

3
sin β cos3 βM2

Z (3 − 4 sin2 θW ) δ tan β

+1

6
cos 2β δM2

Z − 2

3
cos 2β δM2

W (3.55)

δm2
t̃R

=
∣∣∣Ut̃

12

∣∣∣
2
δm2

t̃1
+
∣∣∣Ut̃

22

∣∣∣
2
δm2

t̃2
+Ut̃

22U
t̃∗
12δY

+Ut̃
12U

t̃∗
22 (δY )∗ − 2mtδmt

+8

3
sin β cos3 βM2

Z sin2 θW δ tan β − 2

3
cos 2β δM2

Z

+2

3
cos 2β δM2

W (3.56)

δAt = e−iϕu

mt

×
[
Ut̃

11U
t̃∗
12

(
δm2

t̃1
− δm2

t̃2

)
+Ut̃

11U
t̃∗
22(δYt̃ )

∗

+Ut̃
21U

t̃∗
12δYt̃ −

(
Ate

iϕu − μ∗
eff

tan β

)
δmt

]

−e−iϕuμ∗
effδ tan β

tan2 β
+ e−iϕu δμ∗

eff

tan β
, (3.57)

where

δm2
t̃1

= Re � t̃
11

(
m2

t̃1

)
(3.58)

δm2
t̃2

= Re � t̃
22

(
m2

t̃2

)
(3.59)

δYt̃ =
[
Ut̃δMt̃U

t̃†
]

12
=
[
Ut̃δMt̃U

t̃†
]∗

21

= 1

2
R̃e
(
� t̃

12

(
m2

t̃1

)
+ � t̃

12

(
m2

t̃2

))
. (3.60)

14 In the Denner description, Re �̂
q̃
i i is replaced by R̃e�̂q̃

i i in Eqs. (3.52)

and (3.54) while in Eq. (3.53) Re �̂
q̃
i j is replaced by R̃e�̂q̃

i j .
15 In the Denner description, Re � t̃

i i in Eqs. (3.58) and (3.59) is replaced

by R̃e� t̃
i i . Note, however, that Eq. (3.60) is the same in both the EMT

and the Denner description. We use R̃e in the definition of δYq̃ (q = t, b)
so that δAq = (δA∗

q )
∗. The contribution from the imaginary part of the

loop integrals is then moved into δZq̃
i j and δ Z̄ q̃

i j .

There remain two parameters from the bottom squark sec-
tor to be determined, Ab, m2

b̃R
. We choose the OS scheme

where the bottom squark with the dominant contribution from
the right-handed sbottom,16 which we denote by b̃iR , is OS
and the mixing between the two bottom squark states van-
ishes. The three counterterms δm2

b̃R
, Re δAb, Im δAb are then

obtained by solving three linear equations

∣
∣∣Ub̃

iR2

∣
∣∣
2
x + 2mbRe

[
Ub̃
iR2U

b̃∗
iR1

]
y

− 2mbIm
[
Ub̃
iR2U

b̃∗
iR1

]
z = d1 (3.61)

Re
[
Ub̃

12U
b̃∗
22

]
x + mbRe

[
Ub̃

12U
b̃∗
21 +Ub̃

11U
b̃∗
22

]
y

− mbIm
[
Ub̃

12U
b̃∗
21 −Ub̃

11U
b̃∗
22

]
z = Re d2 (3.62)

Im
[
Ub̃

12U
b̃∗
22

]
x + mbIm

[
Ub̃

12U
b̃∗
21 +Ub̃

11U
b̃∗
22

]
y

+ mbRe
[
Ub̃

12U
b̃∗
21 −Ub̃

11U
b̃∗
22

]
z = Im d2, (3.63)

where (x, y, z) = (δm2
b̃R

, Re δAb, Im δAb) and17

d1 = Re �b̃
iRiR (m2

b̃iR
) −
(
Ub̃δMb̃U

b̃†
)

iR ,iR

∣∣∣∣
x=y=z=0

(3.64)

d2 = δYb̃ −
(
Ub̃δMb̃U

b̃†
)

12

∣∣
∣∣
x=y=z=0

(3.65)

δYb̃ = 1

2
R̃e
(
�b̃

12(m
2
b̃1

) + �b̃
12(m

2
b̃2

)
)

, (3.66)

where we have introduced the notation δYb̃ for later use. The
other bottom squark mass gets loop corrections.18 Its loop-
corrected mass Mb̃j

is obtained by solving iteratively the

following equation19

M2
b̃ j

= m2
b̃ j

− Re �̂b̃
j j

(
M2

b̃ j

)
. (3.67)

We stop the iteration when the difference between two con-
secutive solutions is less than 10−5.

16 We find the right-handed sbottom by looking at the tree-level rotation

matrix Ub̃. If
∣∣
∣Ub̃

12

∣∣
∣ is larger than

∣∣
∣Ub̃

22

∣∣
∣ then the right-handed sbottom

is the b̃1 state, otherwise it is the b̃2 state.
17 In the Denner description, Re �b̃

iR iR
in Eq. (3.64) is replaced by

R̃e�b̃
iR iR

.
18 Note that in principle all four masses of the stops and sbottoms can be
renormalized on-shell simultaneously by adapting the input parameters
appropriately.
19 In the Denner description Re �̂b̃

j j is replaced by R̃e�̂b̃
j j .
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The OS wave function renormalization constants for the
squarks are given by20

δZq̃
ii = −∂Re �

q̃
i i (p

2)

∂p2

∣
∣∣∣
p2=m2

q̃i

(3.68)

δZq̃
12 = 2

�
q̃
12

(
m2

q̃2

)
− δYq̃

m2
q̃1

− m2
q̃2

(3.69)

δZq̃
21 = −2

�
q̃
21

(
m2

q̃1

)
− δY ∗

q̃

m2
q̃1

− m2
q̃2

(3.70)

δ Z̄ q̃
12 = −2

�
q̃
12

(
m2

q̃1

)
− δYq̃

m2
q̃1

− m2
q̃2

(3.71)

δ Z̄ q̃
21 = 2

�
q̃
21

(
m2

q̃2

)
− δY ∗

q̃

m2
q̃1

− m2
q̃2

, (3.72)

where the δYq̃ are given in Eqs. (3.60) and (3.66) for q = t
and q = b, respectively. Besides the OS scheme we also
provide the option to use the DR scheme for all parameters
and the wave function renormalization constants. In the DR
scheme, all squarks receive loop-corrections to their masses.
We will discuss this issue in Sect. 3.4.

3.2 Loop-corrected Higgs boson masses and mixings

Since we use the mixed OS-DR renormalization scheme for
the Higgs sector parameters together with the DR scheme for
the Higgs fields, all Higgs bosons are mixed and receive loop
corrections to their masses. For the evaluation of the loop-
corrected Higgs boson masses and the Higgs mixing matrix,
we use the numerical results obtained from NMSSMCALC
[14]. In this code the two-loop corrected Higgs boson masses
are obtained by determining the zeros of the determinant of
the two-point function �̂(p2) with
(
�̂(p2)
)

i j
= iδi j (p

2 − m2
hi ) + i�̂i j (p

2), i, j = 1, . . . , 5,

(3.73)

where mhi are the tree-level masses and �̂i j (p2) is the renor-
malized self-energy of the hi → h j transition at p2. In
NMSSMCALC, we have included in the renormalized Higgs
self-energies the complete one-loop contributions with full
momentum dependence [15,16] and the two-loop contribu-
tions of O(αtαs) [12] and of O(α2

t ) [18] in the gaugeless
limit at zero momentum. We note that the renormalized one-
loop Higgs boson self-energies have been computed in the

20 In the Denner description, Re �
q̃
i i in Eq. (3.68) is replaced by

R̃e�q̃
i i and Re �

q̃
12, Re �

q̃
21 in Eqs. (3.69)–(3.72) are replaced by

R̃e�q̃
12, R̃e�q̃

21, respectively.

’t Hooft–Feynman gauge. The self-energies mixing the tree-
level neutral Higgs bosons and the Goldstone boson or the
longitudinal component of the Z boson, denoted by �̂hiG/Z ,
give negligible contributions to the loop-corrected Higgs
boson masses, as we confirmed numerically. We therefore
do not include �̂hiG/Z in the two-point function defined in
Eq. (3.73). We take the mixings into account, however, in
the decays of the neutral Higgs bosons. This will be speci-
fied in the sections presenting the computation of the decay
widths. The loop-corrected masses of the Higgs bosons are
then sorted by ascending masses21

MH1 ≤ MH2 ≤ MH3 ≤ MH4 ≤ MH5 . (3.74)

We have improved the stability of the determination of the
Higgs boson masses in NMSSMCALC by implementing two-
point loop integrals with complex momentum. In the old ver-
sion of NMSSMCALC, in order to take into account the contri-
bution of the imaginary part of the complex momentum we
expanded the renormalized Higgs self-energies around the
real part of the complex momentum as

�̂i j (p
2) = �̂i j (Re p2) + iIm p2 ∂�̂i j (Re p2)

∂Re p2 . (3.75)

Note that this was done only for the one-loop correction
with full momentum dependence. This expansion is not
good when Re p2 is close to threshold regions in which
∂�̂i j (Re p2)/∂Re p2 contains threshold singularities. To
overcome this problem one can use complex masses for
the loop particles or complex momenta. Using complex
masses requires the decay widths of the particles. These
have to be obtained in an iterative procedure which is
very time consuming. We have decided to use the com-
plex momenta and to keep the masses real. We have imple-
mented the two-point loop integrals with complex momenta
and therefore do not use any more the mentioned approxi-
mation. We have confirmed that the evaluation of the Higgs
masses is stable in the singularities region and the differ-
ences between Higgs masses using the complex momentum
and the expansion in Eq. ((3.75)), defined as (Mexpansion

Hi
−

Mcomplex p2

Hi
)/Mexpansion

Hi
(i = 1, . . . , 5) are of per mille level.

The renormalized Higgs boson self-energies �̂i j can
be decomposed into one-loop and two-loop contributions
denoted by the superscript (1) and (2), respectively,

�̂i j = �̂
(1)
i j (p2) + �̂

(2)
i j (0) . (3.76)

The complete one-loop corrections to the neutral NMSSM
Higgs bosons have been computed in Refs. [15,16] for
the CP-conserving and CP-violating NMSSM, respectively.

21 We denote loop-corrected Higgs mass eigenstates by capital letters
Hi (i = 1, ..., 5).
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The renormalized two-loop self-energies �̂i j (0) are evalu-
ated in the approximation of vanishing external momentum,
i.e. p2 = 0, and include the O(αtαs) corrections calculated
in [17] and the O(α2

t ) contributions of [18]. Hence,

�̂(2)(0)i j = �̂
(2),αtαs
i j (0) + �̂

(2),α2
t

i j (0) . (3.77)

The renormalized one-loop Higgs self-energy for the transi-
tion hi → h j (i, j = 1, . . . , 5) is given by

�̂
(1)

i j (p
2) = �

(1)

i j (p
2) + 1

2
p2
[
R(δ(1)Z† + δ(1)Z)RT

]

i j

−
[
R
(

1

2
δ(1)Z†Mhh + 1

2
Mhhδ

(1)Z + δ(1)Mhh

)
RT
]

i j
.

(3.78)

The terms in the square brackets represent the one-loop coun-
terterm consisting of the wave function renormalization con-
stant matrix δ(1)Z and the mass counterterm δ(1)Mhh . The renor-
malized self-energy at two-loop order is given by

�̂
(2)

i j (p
2) = �

(2)

i j (p
2)

+1

2
p2
[
R
(

1

2
(δ(1)Z)†δ(1)Z + δ(2)Z† + δ(2)Z

)
RT
]

i j

−
(
δ(2)M2
)

i j
, (3.79)

where �
(2)
i j (p2) is the unrenormalized two-loop self-energy

evaluated at p2 = 0 and
(
δ(2)M2
)
i j denotes the two-loop mass

counterterm,

(
δ(2)M2
)

i j
= 1

2

[
R
(

1

2
(δ(1)Z)†Mhhδ

(1)Z + δ(1)Z†δ(1)Mhh

+ δ(1)Mhhδ
(1)Z + δ(2)Z†Mhh + Mhhδ

(2)Z
)
RT
]

i j

+
(
Rδ(2)MhhRT

)

i j
. (3.80)

The Higgs field renormalization constant matrix is diagonal
and reads

δ(n)Z = diag(�(n)ZHd ,�
(n)ZHu ,�

(n)ZS, s
2
β�(n)ZHd

+c2
βδ(n)ZHu ,�

(n)ZS) , n = 1, 2, (3.81)

with the renormalization constants �(n)ZHu ,Hd ,S for the dou-
blet and singlet fields. In terms of the Higgs wave function
renormalization constants δZ (1,2)

i (i = Hu, Hd , Hs) at one-
and two-loop order, respectively, they read for n = 1

�(1)Zi ≡ δ(1)Zi (3.82)

and for n = 2,

�(2) ≡ δ(2)Zi − 1

4
(δ(1)Zi )

2 . (3.83)

We point out that in the above formulae the momentum
dependence is kept for the purpose of defining the Higgs

field renormalization constants, while the computations at
two-loop level are perfomed in the approximation of vanish-
ing external momentum, i.e. for p2 = 0. The mass matrix
counterterms δM(1,2)

hh implicitly contain the counterterms of
the parameters that need to be renormalized. The renormal-
ization of these parameters and of the Higgs fields has been
presented in Sect. 3.1.1. For further details on the computa-
tion of the one- and two-loop corrections to the Higgs boson
masses, we refer to [15–18].

In processes with external Higgs bosons finite wave-
function renormalization factors ZH have to be taken into
account in order to ensure the on-shell properties of these
Higgs bosons. The wave-function renormalization factor
matrix performing the rotation to the OS states is given by
[30]

ZH =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

√
Ẑh1

√
Ẑh1 Ẑh1h2

√
Ẑh1 Ẑh1h3

√
Ẑh1 Ẑh1h4

√
Ẑh1 Ẑh1h5

√
Ẑh2 Ẑh2h1

√
Ẑh2

√
Ẑh2 Ẑh2h3

√
Ẑh2 Ẑh2h4

√
Ẑh2 Ẑh2h5

√
Ẑh3 Ẑh3h1

√
Ẑh3 Ẑh3h2

√
Ẑh3

√
Ẑh3 Ẑh3h4

√
Ẑh3 Ẑh3h5

√
Ẑh4 Ẑh4h1

√
Ẑh4 Ẑh4h2

√
Ẑh4 Ẑh4h3

√
Ẑh4

√
Ẑh4 Ẑh4h5

√
Ẑh5 Ẑh5h1

√
Ẑh5 Ẑh5h2

√
Ẑh5 Ẑh5h3

√
Ẑh5 Ẑh5h4

√
Ẑh5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

(3.84)

where

Ẑhi = 1
(

i
�h

ii (p
2)

)′
(M2

Hi
)

, Ẑhi h j = �h
i j (p

2)

�h
ii (p

2)

∣∣∣∣
p2=M2

Hi

,

(3.85)

with

�h = −
[
�̂h(p2)

]−1
. (3.86)

Here prime denotes the derivative with respect to p2.

3.3 Loop-corrected neutralino and chargino masses

Within the OS and DR schemes defined for the neutralino
and chargino sector, the electroweakinos cannot all be renor-
malized OS, and there remain neutralinos and charginos that
receive loop corrections to their masses. In the following
we define our procedure to determine the loop-corrected
masses for fermions in the general case where mixing con-
tributions are present.22 This procedure will be used for both
the OS and the DR scheme. To give an intuitive definition of

22 In the literature there exist many papers that deal with loop-corrected
masses for neutralinos and charginos in the MSSM such as Refs.
[26,31,32] to name a few of them. For the definition of the loop-
corrected masses applied there, OS conditions for the field renormal-
ization constants were applied to eliminate mixing effects between
fermions at tree-level mass values.
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the loop-corrected fermion masses, we express the propaga-
tor matrix in terms of left- and right-handed Weyl spinors,
ψD = (ψL , ψR)T . In this basis, the tree-level propagator
matrix is given by

S(p) = −�(p)−1 , �(p) = i

(
pμσμ −m
−m pμσ̄μ

)
, (3.87)

with

σμ = (1, σ ) and σ̄ μ = (1,−σ ), (3.88)

where σ = (σ 1, σ 2, σ 3) denotes the three Pauli matrices.
The mass matrix is given by
(

0 m
m 0

)
. (3.89)

The loop-corrected propagator matrix in the Weyl basis
(ψL , ψR)T is defined as

S(p) = i

(
pμσμ(1 + �̂L(p2)) −m + �̂Ls(p2)

−m + �̂Rs(p2) pμσ̄μ(1 + �̂R(p2))

)−1

.

(3.90)

The loop-corrected mass M is determined from the real
pole p2 = M2 of the propagator matrix satisfying the equa-
tion

det

(
pμσμ(1 + Re �̂L (p2)) −m + Re �̂Ls(p2)

−m + Re �̂Rs(p2) pμσ̄μ(1 + Re �̂R(p2))

)
= 0 .

(3.91)

The solution of Eq. (3.91) is given by

p2 = m2(1 − Re �̂Ls(p2)/m)(1 − Re �̂Rs(p2)/m)

(1 + Re �̂L(p2))(1 + Re �̂R(p2))
,

(3.92)

which can be solved iteratively. When the fermion is OS,
p2 = m2, the above relation is nothing else but the
OS condition obtained from Eq. (3.21). For the case of
n Dirac spinors, the 1PI two-point function in the basis
(ψ1

L , ψ2
L , . . . , ψn

L , ψ1
R, ψ2

R, . . . , ψn
R) is a 2n × 2n matrix

�(p) = i

(
pμσμa(p2) d(p2)

c(p2) pμσ̄μb(p2)

)
. (3.93)

The matrices a, b, c, d are 2 × 2 matrices (i.e.n = 2) in case
of charginos and 5 × 5 matrices (i.e.n = 5) for neutralinos.
Withmχ̃i generically denoting the mass of an electroweakino
with index i , the matrices are given by

ai j (p
2) = δi j + �̂L

i j (p
2) (3.94)

bi j (p
2) = δi j + �̂R

i j (p
2) (3.95)

ci j (p
2) = −mχ̃i δi j + �̂Ls

i j (p2) (3.96)

di j (p
2) = −mχ̃i δi j + �̂Rs

i j (p2), (3.97)

with i, j = 1, 2 for charginos and i, j = 1, ..., 5 for neutrali-
nos.

The poles of the propagator matrix are the solutions of the
equation

det[�(p)] = 0 . (3.98)

This is equivalent to [33],

det[p2 − c(p2)b−1(p2)d(p2)a−1(p2)] = 0 . (3.99)

In practice, we solve the equation numerically through iter-
ation together with the diagonalization of the mass matrix
Mχ̃ = c(p2)b−1(p2)d(p2)a−1(p2) to obtain the complex
poles. The loop-corrected masses are then obtained from the
real parts of these complex poles. This procedure is applied
for the calculation of the loop-corrected masses for neutrali-
nos using the OS definition of the neutralino WFR constants.
However, for the chargino sector the mass matrix Mχ̃± con-
tains infrared (IR) divergences at arbitrary momentum. We
have implemented the approximation used in Ref. [26] and
calculate the loop-corrected chargino masses by using the
formula

Mχ̃+
i

= mχ̃+
i

(
1 − 1

2
Re �

χ̃+
i ,L

ii (m2
χ̃+
i
) − 1

2
Re �

χ̃+
i ,R

ii (m2
χ̃+
i
)

)

−1

2
Re �

χ̃+
i ,Ls

ii

(
m2

χ̃+
i

)

−1

2
Re �

χ̃+
i ,Rs

ii

(
m2

χ̃+
i

)
+ Re
(
U∗δMCV

†)
i i .

(3.100)

3.4 Loop-corrected squark masses and mixings

In our DR scheme, the counterterms

δmt , δmb, δm2
Q̃3

, δm2
t̃R

, δm2
b̃R

, δAt , δAb (3.101)

contain only the UV divergent parts. For the renormalization
of the squark fields we use a modified OS scheme. In the fol-
lowing, we will describe the details of this scheme. We first
compute the DR squark WFR constants by taking the UV-
divergent parts of the OS counterterms, defined in Eqs. (3.68)
to (3.72), with tree-level mass values. Using these DR squark
WFR constants, we then compute the loop-corrected squark
masses Mq̃i that are obtained by solving iteratively the equa-
tions

M2
q̃i

= m2
q̃i

− Re �̂
q̃
i i

(
M2

q̃i

)
, i = 1, 2 . (3.102)

We have assumed here that the off-diagonal renormalized
self-energies vanish and that the residues of the propagators
are unity at the loop-corrected masses. This is equivalent
to redefining the diagonal squark WFR constants at loop-

123



  960 Page 14 of 46 Eur. Phys. J. C           (2020) 80:960 

corrected masses as

δZq̃
ii (M

2
q̃i

) = −∂�
q̃ div
i i (p2)

∂p2

∣∣∣∣
p2=m2

q̃i

− ∂�̂
q̃
i i (p

2)

∂p2

∣∣∣∣
p2=M2

q̃i

,

i = 1, 2, (3.103)

and the off-diagonal WFR constants as

δZq̃
i j

(
M2

q̃k

)
=

�
q̃ div
i j

(
m2

q̃i

)
− �

q̃ div
i j

(
m2

q̃ j

)

m2
q̃ j

− m2
q̃i

− 2
�̂

q̃
i j

(
M2

q̃k

)

M2
q̃k

− m2
q̃i

,

i, j, k = 1, 2, i 	= j. (3.104)

In the above equations the renormalized self-energies are
computed with the DR squark WFR constants. We keep
also the imaginary part of the two-point loop integrals in
the renormalized self-energies. Note that the WFR constants
δZq̃

i j (M
2
q̃k

) will enter the evaluation of the decay width. The

diagonal WFR constants δZq̃
ii (M

2
q̃k

) contain IR divergences
evaluated at the loop-corrected masses. These IR divergences
will cancel exactly with those arising from the virtual part and
the real radiation contributions which are also evaluated at the
loop-corrected masses. We have verified that this statement
is true for both the EW and the QCD corrections.

4 Higher-order corrections to the two-body decays of
the neutral Higgs bosons

In this section, we present those two-body decay channels
that we have improved by including the missing NLO EW
and QCD corrections. These channels are the decays into OS
SM fermion pairs, OS massive gauge bosons, into a pair of
Higgs and gauge bosons, into chargino or neutralino pairs and
into top or bottom squark pairs. We will not discuss decays
into gluon pairs, photon pairs or Zγ which can be found in
Ref. [14]. For these decays, NLO EW corrections are of two-
loop order as the leading order (LO) decay widths are already
loop-induced. The inclusion of the NLO EW corrections to
Higgs-to-Higgs decays on the other hand have been presented
in Ref. [11] and the dominant two-loop corrections of the
O(αtαs) have been provided in Ref. [12].

For our computation we have used several programs. The
generation of the amplitudes was done by FeynArts [34,
35] using a model file created by SARAH [36–39]. The output
amplitudes were further processed usingFeynCalc [40,41]
for the simplification of the Dirac matrices and for the tensor
reduction. The one-loop integrals were evaluated with the
help of LoopTools [42].

4.1 Higgs boson decays into fermion pairs

In order to make use of the published results of higher-order
corrections in the literature for CP-even and CP-odd Higgs
bosons, it is convenient to write the interaction vertex of the
complex NMSSM Higgs boson hi (i = 1, . . . , 5) and quarks
as

Lhi qq̄ = −mq

v
q̄hi
(
gShi qq̄ − igP

hi qq̄γ5

)
q, (4.1)

where the scalar and pseudoscalar coupling coefficients for
the up- and down-type quarks at tree-level are given by

gS
hi dd̄

= Ri1

cβ

, gP
hi dd̄

= Ri4tβ, (4.2)

gShi uū = Ri2

sβ
, gP

hi uū = Ri4

tβ
, (4.3)

where Ri j (i, j = 1, 5) denotes the matrix elements of the
mixing matrix rotating the tree-level Higgs gauge eigenstates
to the mass eigenstates, see Eq. (2.8).

Following the prescription outlined in our publication
[14], we improve the widths of the Higgs boson decays
into quark pairs by including the missing SUSY–QCD and
SUSY–EW corrections. We decompose the EW corrections
into the known QED corrections arising from a virtual pho-
ton exchange and a real photon emission and the remaining
EW corrections from the genuine EW one-loop diagrams.

The one-loop SUSY–QCD corrections originate from loop
diagrams with the exchange of a gluino, while the SUSY–
EW corrections stem from loop diagrams with weak gauge
bosons W, Z , fermions, Higgs bosons and their superpart-
ners in the internal lines. They are both IR finite quantities.
The computation of the Higgs boson decays into a bottom
quark pair shows that the bottom quark mass counterterm
contains terms proportional to tβ . This contribution is large
in the large-tβ regime and universal. In many cases, this con-
tribution is the leading part of the SUSY–QCD and SUSY–
EW corrections and can be absorbed into an effective bottom
quark Yukawa coupling. This can be done by using an effec-
tive Lagrangian formalism [43–45]. In Ref. [14], we have
presented the effective bottom Yukawa couplings in the real
and complex NMSSM. We do not repeat every detail here
but only quote the relevant formulae. In Eq. (4.2) we have
given the tree-level scalar and pseudoscalar coupling coef-
ficients appearing in the Feynman rule for the CP-violating
Higgs bosons hi to a bottom-quark pair. The Feynman rule
for the effective coupling including the leading SUSY–QCD
and SUSY–EW corrections [43–52] (denoted by a tilde to
mark the inclusion of the corrections) is also decomposed
into a scalar and a pseudoscalar part and reads [14]

− imb

v

[
g̃S
hi bb̄

− iγ5g̃
P
hi bb̄

]
, (4.4)
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with

g̃S
hi bb̄

= Re g̃hibL and g̃P
hi bb̄

= Im g̃hibL , (4.5)

where

g̃hibL = 1

(1 + �b)

[ Ri1

cos β
+ Ri2

sin β
�b + Ri3v

vs
�b + iRi4 tan β

×
(

1 − �b

tan2 β

)
− i

Ri5v

vs
�b

]
. (4.6)

The correction �b including the leading SUSY–QCD and
SUSY–EW corrections can be cast into the form

�b = �
QCD
b + �elw

b

1 + �1
, (4.7)

with the one-loop corrections given by

�
QCD
b = CF

2

αs(μR)

π
M∗

3 μ∗
eff tan β I

(
m2

b̃1
,m2

b̃2
,m2

g̃

)
,

(4.8)

�elw
b = αt (μR)

4π
A∗
t μ∗

eff tan β I
(
m2

t̃1
,m2

t̃2
, |μeff |2

)
, (4.9)

�1 = −CF

2

αs(μR)

π
M∗

3 Ab I
(
m2

b̃1
,m2

b̃2
,m2

g̃

)
, (4.10)

where αt = y2
t /(4π) with yt = √

2mt/(v sin β) is the top-
Yukawa coupling and CF = 4/3. The generic function I is
defined as

I (a, b, c) = ab log a
b + bc log b

c + ca log c
a

(a − b)(b − c)(a − c)
. (4.11)

Note that the scale of αs in the SUSY–QCD corrections has
been set equal to μR = (mb̃1

+ mb̃2
+ |Mg̃|)/3, while in

the SUSY–EW corrections it is μR = (mt̃1 + mt̃2 + |μ|)/3.
The strong coupling constant αs is evaluated with five active
flavors.

The decay width of the CP-violating NMSSM Higgs
bosons Hi into qq̄ , including the QCD, SUSY–QCD, QED,
EW and SUSY–EW corrections, can then be cast into the
form

�(Hi → qq̄) = 3GFMHi

4
√

2π
m2

q(MHi )

×
[(

1 − 4xq
)3/2

�S
QCD�S

QED�S
Hi→qq̄

+ (1 − 4xq
)1/2

�P
QCD�P

QED�P
Hi→qq̄

]
,

(4.12)

where xq = m2
q/M

2
Hi

, and

�S
Hi→qq̄ =

⎛

⎝
5∑

j=1

ZH
i j g̃

S
h j qq̄

⎞

⎠
(

5∑

k=1

ZH
ik g̃

S
hkqq̄

)∗

+2Re

⎡

⎣

⎛

⎝
5∑

j=1

ZH
i j g̃

S
h j qq̄

⎞

⎠

(
5∑

k=1

ZH
ik δMrem,S(hk → qq̄)

)∗⎤

⎦

+2Re

⎡

⎣

⎛

⎝
5∑

j=1

ZH
i j g̃

S
h j qq̄

⎞

⎠
(

5∑

k=1

ZH
ik δSsub(hk → qq̄)

)∗⎤

⎦

(4.13)

and

�P
Hi→qq̄ =

⎛

⎝
5∑

j=1

ZH
i j g̃

P
h j qq̄

⎞

⎠

(
5∑

k=1

ZH
ik g̃

P
hkqq̄

)∗

+2Re

⎡

⎣

⎛

⎝
5∑

j=1

ZH
i j g̃

P
h j qq̄

⎞

⎠
5∑

k=1

(ZH
ik )

∗

×
(
δMrem,P (hk → qq̄) + δMGZ ,mix(hk → qq̄)

)∗]

+2Re

⎡

⎣

⎛

⎝
5∑

j=1

ZH
i j g̃

P
h j qq̄

⎞

⎠
(

5∑

k=1

ZH
ik δPsub(hk → qq̄)

)∗⎤

⎦ .

(4.14)

In the numerical analysis presented in Sect. 5 we will use
the quantity �SEW(+QCD) for the decays into fermion pairs
to denote the partial decay widths including the SUSY-EW
and (for the quarks) SUSY-QCD corrections, i.e. exactly the
partial decay width as defined in Eq. (4.12) with the loop-
corrected �S and �P given in Eqs. (4.13) and (4.14), respec-
tively. In contrast, we will denote by �tree the partial decay
widths that only include the �b corrections, i.e. Eq. (4.12)
but with �S and �P given by the first lines in Eqs. (4.13) and
(4.14), respectively.

Note that in δMrem,S/P , δS/P
sub and δMGZ ,mix (which will

be explained below) we use the tree-level Higgs couplings
ghkqq̄ to the quarks. We take the occasion to remind the reader
that tree-level mass eigenstates are always denoted by hi
and loop-corrected ones by Hi . Unless stated otherwise, this
means that we use tree-level couplings for externalhi but with
loop-corrected masses, and for particles inside loop diagrams
we always use tree-level masses and tree-level couplings.
We comment on the various terms appearing in Eqs. (4.12),
(4.13) and (4.14) one by one. The one-loop QED corrections,
denoted by �QED have been known in the SM for a long time,
cf. Refs. [53–58]. In the limit mq � MHi they are given by
Ref. [59],23

23 Note that actually in the code we have programmed the QCD cor-
rections for the completely massive case at next-to-leading order, trans-
lated to the MS scheme, and interpolated with the massless expression
for large Higgs masses, according to the implementation in HDECAY
[60,61].
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�S
QED = �P

QED = 1 + α

π
Q2

q

(
9

4
− 3 log

m2
q

M2
Hi

)

, (4.15)

where Qq denotes the electric charge of the quark q. The
one-loop SM QCD corrections are similar to the QED cor-
rections, with the replacement of Q2

q α by (4/3)αs(M2
Hi

). It
is well-known that the SM QCD corrections are rather large.
The large logarithmically enhanced part has been absorbed in
Eq. (4.12) into the running MS quark mass mq(M2

Hi
) at the

corresponding Higgs mass scale MHi to improve the con-
vergence of the perturbative expansion. The QCD correc-
tions can be taken over from the MSSM case by adapting
the Higgs couplings [53–56,62–71]. After subtracting the
enhanced part, the remaining QCD correction �QCD reads

�S
QCD = �P

QCD = 1 + 17

3

αs(M2
Hi

)

π
+ (35.94 − 1.359NF )

×
(

αs(M2
Hi

)

π

)2

+(164.14 − 25.77NF + 0.259N 2
F )

(
αs(M2

Hi
)

π

)3

+(39.34 − 220.9NF + 9.685N 2
F − 0.0205N 3

F )

×
(

αs(M2
Hi

)

π

)4

, (4.16)

where NF = 5 active flavors are taken into account. In the
CP-conserving case we also include top quark induced cor-
rections �

S/P
t by adding them to �QCD. They can be taken

over from the MSSM case and read [53–56,62–70],

�S
t =

gShi t t̄
gS
hi bb̄

(
αs(MHi )

π

)2

×
[

1.57 − 2

3
log

M2
Hi

m2
t

+ 1

9
log2 m2

b(MHi )

M2
Hi

]

(4.17)

�P
t =

gP
hi t t̄

gP
hi bb̄

(
αs(MHi )

π

)2

×
[

3.83 − log
M2

Hi

m2
t

+ 1

6
log2 m2

b(MHi )

M2
Hi

]

. (4.18)

In the decay into a bottom quark pair, the large universal cor-
rections proportional toO(αs tβ, αbtβ) are resummed into the
effective bottom Yukawa couplings g̃S,P

hi bb̄
, given in Eqs. (4.5)

and (4.6), while in the decay into top quarks we use the tree-
level values of the effective couplings, i.e.

g̃S,P
hi t t̄

= gS,P
hi t t̄

, (4.19)

with ghi t t̄ given in Eq. (4.3). The remaining SUSY–QCD and
SUSY–EW corrections are collected in δMrem,S , δMrem,P

and δMGZ ,mix, where

δMrem,S/P = δMrem,S/P
SQCD + δMrem,S/P

SEW

+δMcounter,S/P , (4.20)

with δMcounter,S/P denoting the counterterm contributions.
Since in the decay into bottom quarks we have resummed
the dominant corrections into the effective couplings, in the
remaining SUSY–QCD and SUSY–EW correction we have
to subtract these corrections to avoid double counting by
adding appropriate counterterms. This is taken care of by the
last terms in Eqs. (4.13) and (4.14), respectively, to which
we will come back below.

The term δMGZ ,mix is the sum of the contributions from
the mixing of the CP-odd component of the Higgs bosons
with the neutral Goldstone boson G and with the Z boson,
respectively. We use the tree-level masses for the Higgs
bosons in the loops in order to ensure the proper cancel-
lation of the UV-divergent pieces, but we use the loop-
corrected Higgs boson masses for the external particles in
the evaluation of the wave-function renormalization fac-
tors, of the amplitudes, and of the decay widths. It is well-
known that the use of loop-corrected Higgs boson masses24

for the external particles violates the gauge-parameter inde-
pendence [10,11,30,72]. The Slavnov–Taylor identities25

between the renormalized self-energies �̂hiG and �̂hi Z , with
i = 1, . . . , 5, are given by

MZ �̂hiG(p2) + i p2�̂hi Z (p2) = MZ

(
p2 − m2

hi

)
f (p2),

(4.21)

where

f (p2) = α

4π sin2(2θW )

6∑

j=1

×
(
Ri1R j4 − Ri2R j5 − R j1Ri4 − R j2Ri5

)

× (cos βR j1 + sin βR j2
)
B0

(
p2, M2

Z ,m2
h j

)
.

(4.22)

Here, the rotation matrix R = RRG with R,RG being
defined in Eq. (2.8) and B0 is the scalar one-loop two-point
function. For p2 = m2

hi
, the Slavnov–Taylor identities reduce

to

MZ �̂hiG

(
m2

hi

)
= −im2

hi �̂hi Z

(
m2

hi

)
. (4.23)

24 The resummation through the WFR factor,ZH , causes also violation
of the gauge parameter independence as shown in Ref. [74].
25 See Refs. [28,30,72] for the Slavnov–Taylor identities in the MSSM,
Ref. [11] for the real NMSSM and Ref. [10] for the relation between
unrenomalized self-energies in the complex NMSSM.
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Using this relation, the term δMGZ ,mix in general Rξ gauge
is given by

δMGZ ,mix(hi → qq̄) = I2emq

sin(2θW )

�̂hi Z

(
m2

hi

)

M2
Z

, (4.24)

with I2 being the isospin of the quark q. Using the tree-level
masses, the Slavnov–Taylor identities are satisfied. It how-
ever causes a mismatch with the phase-space factor (where
we use the loop-corrected Higgs boson masses) and with
the evaluation of the other amplitudes. We therefore use the
loop-corrected masses for the i th external Higgs boson also
in these contributions,26 i.e.

δMGZ ,mix(hi → qq̄) = I2emq

sin(2θW )

�̂hi Z (M2
Hi

)

M2
Z

. (4.25)

The usage of p2 	= m2
hi

violates the Slavnov–Taylor iden-
tity Eq. (4.23), and the possible gauge-parameter dependence
due to using M2

Hi
in δMGZ ,mix and in the triangle genuine

contributions δMrem,S/P may be an issue that we investigate
in more details in Sect. 5.6.27 In order to get a rough esti-
mate of the uncertainty induced by our procedure, we eval-
uated the loop-corrected decay widths once with δMGZ ,mix

evaluated for m2
hi

and once evaluated for M2
Hi

. Denoting
by �δMGZ ,mix(M2

Hi
) (�δMGZ ,mix(m2

hi
)) the decay width with

δMGZ ,mix evaluated for M2
Hi

(m2
hi

) we found relative differ-
ences |�δMGZ ,mix(M2

Hi
)−�δMGZ ,mix(m2

hi
)|/�δMGZ ,mix(M2

Hi
) of

O(10−6) for all possible Hi → qq̄ decays for all chosen
parameter points used in our scan. The smallness of the rela-
tive differences can be understood as follows. The loop cor-
rections to the masses are only significant for the hu-like
Higgs boson and for the hs-like Higgs boson with small
mass. These are, however, CP-even-like Higgs bosons. The
δMGZ ,mix term on the other hand gives significant contri-
butions only for the doublet CP-odd-like Higgs boson which
receives less than one percent loop corrections to its mass.
For the singlet CP-odd-like Higgs boson, loop corrections
to its mass can be of order 10% compared to the tree-level
mass, however in such cases the mixing between the singlet
and doublet CP-odd is small. This leads to the negligible
relative differences as observed.

Note that we apply the same method also for the other
decays that contain the contribution δMGZ ,mix. In Ref. [11],

26 This result is identical to the result obtained in the general Rξ gauge
provided that the Slavnov–Taylor identities are satisfied with the loop-
corrected masses. Another solution has been proposed in [10], where
the two-loop term is added such that the Slavnov–Taylor identities are
restored with the loop-corrected Higgs masses.
27 We remark that barring this aspect, the full decay amplitude will
nonetheless be gauge-dependent due to the usage of loop-corrected
external Higgs bosons which induces a mixing of different orders in
perturbation theory, see Sect. 5.6.

δMGZ ,mix was computed only for the i th tree-level mass
eigenstate of the decay Hi → qq̄ . This may cause instabil-
ities in the case of large mixing between Higgs boson mass
eigenstates at loop-level. We avoid this by multiplying it also
with the WFR factor ZH .

The remaining SUSY–QCD and SUSY–EW corrections
are computed in the Feynman diagrammatic approach. The
corrections consist of the contributions from genuine one-
loop diagrams and the counterterms. The counterterms are
given by

δMcounter,S/P (hi → qq̄) = δλ
S/P
hi qq̄

, (4.26)

with the expressions for the scalar and pseudoscalar parts,
δλ

S/P
hi qq̄

, reading28

δλS
hi bb̄

=
(

δmb

mb
− δv

v
− δcβ

cβ

) Ri1

cβ

+
5∑

k=1

δZhi hk

2

Rk1

cβ

+ ghibL
δ Z̃bL

2
+ ghi∗bL

δ Z̃bR

2
(4.27)

δλP
hi bb̄

=
(

δmb

mb
− δv

v
− δcβ

cβ

)
Ri4tβ +

5∑

k=1

δZhi hk

2
Rk4

+ ghibL
δ Z̃bL

2
− ghi∗bL

δ Z̃bR

2
(4.28)

δλS
hi t t̄

=
(

δmt

mt
− δv

v
− δsβ

sβ

) Ri2

sβ
+

5∑

k=1

δZhi hk

2

Rk2

sβ

+ ghit L
δ Z̃t L

2
+ ghi∗t L

δ Z̃t R

2
(4.29)

δλP
hi t t̄

=
(

δmt

mt
− δv

v
− δsβ

sβ

) Ri4

tβ
+

5∑

k=1

δZhi hk

2

Rk4

tβ

+ ghit L
δ Z̃t L

2
− ghi∗t L

δ Z̃t R

2
, (4.30)

with

ghibL =Ri1

cβ

+ iRi4tβ and ghit L = Ri2

sβ
+ i

Ri4

tβ
. (4.31)

The counterterm δv for the VEV is given by

δv

v
= − δZe + c2

θW

2s2
θW

(
δM2

W

M2
W

− δM2
Z

M2
Z

)

+ δM2
W

2M2
W

. (4.32)

The electric coupling e, the W and Z boson masses and
tan β are renormalized according to the Higgs sector. The
top and bottom quarks are renormalized OS using both the
EMT and the Denner descriptions. The terms being related

28 Note, that the angle β in the sense of a mixing angle does not get
renormalized.
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to left-handed and right-handed OS wave function renormal-
ization constants for the quarks (δZqL/R) and anti-quarks
(δ Z̄qL/R) (q = t, b) are29

δ Z̃qL/R = δZqL/R + δ Z̄qL/R

2

= − �
L/R
q (m2

q ) − mq
∂

∂p2
[
mq

(
�L
q (p2) + �R

q (p2)
)

+ �Ls
q (p2) + �Rs

q (p2)
]

p2=m2
q

.

(4.33)

The DR wave function renormalization constants for the
Higgs bosons are denoted by δZhi hk . We have checked the
UV-finiteness of the SUSY–QCD and SUSY–EW corrections
to the decay amplitude.

As mentioned above, in the decay into bottom quarks we
have to take care to avoid double counting after resumming
the dominant part of the SUSY–QCD and SUSY–EW cor-
rections into the effective bottom coupling. To subtract these
contributions we add in the decays into a b-quark pair the
following counterterms to Eq. (4.13) and Eq. (4.14),

δSsub(hi → bb̄) =
(Ri1

cβ

− Ri2

sβ
− Ri3v

vs

)
Re�b

−
(
Ri4tβ + Ri4

tβ
+ Ri5

v

vs

)
Im�b,

(4.34)

δPsub(hi → bb̄) =
(
Ri4tβ + Ri4

tβ
+ Ri5

v

vs

)
Re�b

+
(Ri1

cβ

− Ri2

sβ
− Ri3v

vs

)
Im�b, (4.35)

where �b equals �
QCD
b − �1 and �elw

b for the SUSY–QCD
and SUSY–EW corrections, respectively. For the decays into
a top-quark pair, these contributions are

δ
S/P
sub (hi → t t̄) = 0 . (4.36)

In the decays into strange quarks we also include the one-
loop SUSY–QCD corrections. They are obtained after sub-
stituting �b as given in Eq. (4.7) with

�s = �
QCD
b

1 + �1

∣∣∣
∣∣
b→s

. (4.37)

The decays into charm quarks are treated as the decays into
top quarks, with the appropriate replacements.

The decays into lepton final states l = e, μ, τ do not
receive QCD corrections at the one-loop order. Their SUSY–
EW corrected decay width is given by

29 In the Denner description, �q is replaced by R̃e�q .

�(Hi → ll̄) = GFMHi

4
√

2π
m2

l

[
(1 − 4xl)

3/2 �S
QED�S

Hi→ll̄

+ (1 − 4xl)
1/2 �P

QED�P
Hi→ll̄

]
, (4.38)

where xl = m2
l /M

2
Hi

. The �
S,P
QED are given by Eq. (4.15) after

replacing (Qq ,mq) with (Ql ,ml). Furthermore, we resum
the dominant SUSY–EW corrections into the effective cou-
plings g̃S,P

hi ll
. They are obtained from the effective couplings

g̃hi bb̄ in Eqs. (4.5) and (4.6) after replacing �b with �l , where
�l in the complex case is given by

�l = e2

(4πsW )2 M∗
1 μ∗

eff tβ I
(
m2

l̃1
,m2

l̃2
, |M1|2

)

+ e2

(4πcW )2 M
∗
2 μ∗

eff tβ I
(
m2

ν̃l
, |M2|2, |μeff |2

)
.

(4.39)

The contributions �
S,P
Hi→ll̄

are obtained from the ones given
in Eqs. (4.13) and (4.14) after replacing q → l.

4.2 Higgs boson decays into W+W− and Z Z

We now address the higher-order corrections to the Higgs
boson decays into gauge boson pairs. We consider corrections
only for on-shell decays. Off-shell decays are still treated
at tree-level as done in NMSSMCALC [14]. The one-loop
corrected decay amplitude for the decay of a CP-violating
NMSSM Higgs boson Hi (i = 1, ..., 5) into a pair of mas-
sive gauge bosons V = Z ,W±, Hi (p) → V (k1)V (k2), is
given by
⎡

⎣
5∑

j=1

ZH
i j (Mμν

tree(h j → VV ) + Mμν
1L (h j → VV ))

⎤

⎦

εμ(k1)εν(k2), (4.40)

where εμ(k1) and εν(k2) are the polarization vectors of the
two gauge bosons with four-momenta k1 and k2, respectively.
Note that the contribution arising from the mixing of the CP-
odd component of the Higgs bosons with the neutral Gold-
stone boson G and with the Z boson vanishes. The tree-level
amplitudes for the two final-state pairs are

Mμν
tree(h j → VV ) = gμνMtree(h j → VV ), (4.41)

= gμνgh j V V
(
cβR j1 + sβR j2

)
(4.42)

with

gh j V V =
{ eMW

sθW
for V = W

eMZ
sθW cθW

for V = Z
. (4.43)

And the tensor structure of the NLO corrections is given by

Mμν
1L (h j → VV ) = (M(1)

1L + MCT
1L )gμν + M(2)

1L k
ν
1k

μ
2

+ iM(3)
1L εμνρσ k1ρk2σ . (4.44)
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The genuine one-loop triangle diagram contributions are
denoted by M(i)

1L (i = 1, 2, 3) and the counterterm contribu-

tion by MCT
1L . The term M(3)

1L vanishes in the CP-conserving
case.

The decay width for the decay Hi → VV , including the
NLO corrections, is given by

�(Hi → VV )

= R
(
�tree(Hi → VV ) + �1L(Hi → VV )

)
, (4.45)

where R = 1/2 for V = Z and R = 1 for V = W . The
improved tree-level decay width reads

�tree(Hi → VV )

=
√
r2
V − rV M2

V

4πM3
Hi

fgg

∣∣
∣∣∣∣

5∑

j=1

ZH
i jMtree(h j → VV )

∣∣
∣∣∣∣

2

,

(4.46)

with

rV = M2
Hi

4M2
V

(4.47)

and

fgg = 4r2
V − 4rV + 3 . (4.48)

The NLO partial width for the Z -boson pair final state con-
tains only virtual contributions,

�1L(Hi → Z Z) = �virt(Hi → Z Z) . (4.49)

For the W -boson pair final state it contains both virtual and
real radiation contributions,

�1L(Hi → W+W−)

= �virt(Hi → W+W−) + �real(Hi → W+W−γ ).

(4.50)

The virtual part is given by

�virt(Hi → VV ) =
√
r2
V − rV M2

V

2πM3
Hi

× Re

⎧
⎨

⎩

⎛

⎝
5∑

j=1

ZH
i jMtree(h j → VV )

⎞

⎠

×
[

fgg

5∑

l=1

(ZH
il )

∗
(
M(1)∗

1L (hl → VV ) + MCT∗
1L (hl → VV )

)

+M2
Hi

fgp

5∑

l=1

(ZH
il )

∗M(2)∗
1L (hl → VV )

]⎫⎬

⎭
, (4.51)

with

fgp = 2r2
V − 3rV + 1 . (4.52)

The formulae for M(1)
1L and M(2)

1L are quite lengthy and we
do not display them explicitly here. The counterterm contri-
butions for V = W and Z , respectively, read

MCT
1L (h j → W+W−) = Mtree(h j → WW )

×
(

δZe + δM2
W

2M2
W

− δsθW
sθW

+ δZW

)

+ eMW

sθW

(
−sβc

2
βR j1 + c3

βR j2

)
δtβ

+ 1

2

5∑

l=1

δZh j hlMtree(hl → WW ) (4.53)

MCT
1L (h j → Z Z) = Mtree(h j → Z Z)

×
(

δZe + δM2
Z

2M2
Z

− δsθW
sθW

− δcθW

cθW

+ δZZ

)

+ eMZ

sθW cθW

(
−sβc

2
βR j1 + c3

βR j2

)
δtβ

+ 1

2

5∑

l=1

δZh j hlMtree(hl → Z Z) . (4.54)

For the decay Hi → W+W− we have to include the con-
tribution from the radiation of a real photon in order to get
an infrared-finite result. This contribution is given by

�real(Hi → W+W−γ )

= R3
e2

64π3MHi

∣∣∣
5∑

j=1

ZH
i jMtree(h j → VV )

∣∣∣
2
, (4.55)

where

R3 = 1

M2
W

[
4M2

W (−4r2
W + 4rW − 3)

× (I1 + I2 + M2
W I11 + M2

W I22)

+ 4I 2
1 + 4I 1

2 + 2I 22
11 + 2I 11

22 + 4I

+ 8M4
W (8r3

W − 12rW + 10rW − 3)I12

]
. (4.56)

The formula is in agreement with the result given in
Ref. [73]. Here, we have neglected the arguments of the
Bremsstrahlung integrals I j1,..., j2i1,...,i2

(MHi , MW , MW ) for the
sake of readability. In terms of the photon momentum q,
the W+ momentum k1 and the W− momentum k2, these
integrals are defined as

I j1,..., jmi1,...,in
(MHi , MW , MW )

= 1

π2

∫
d3k1

2k10

d3k2

2k20

d3q

2q0
δ(k0 − k1 − k2 − q)

× (±2qk j1) . . . (±2qk jm )

(±2qki1) . . . (±2qkin )
, (4.57)
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where k0 is the four-momentum of Hi and il , jk = 0, 1, 2.
The plus signs correspond to k1, k2, the minus sign to k0.
Their analytic expressions are given in Ref. [25].

We have checked the UV finiteness of the NLO decay
widths of both the Hi → Z Z and the Hi → W+W− decays.
The IR divergence in the decay Hi → W+W−, however, is
more demanding. At strict one-loop level, i.e. one must use
the tree-level Higgs boson mass for the external Higgs boson
and the unity WFR factor matrix, the IR finiteness is fulfilled.
However, the use of the loop-corrected Higgs masses and the
WFR factors ZH

i j breaks the IR finiteness, because differ-
ent orders of perturbation theory are mixed in this case. At
tree level there exists a relation between the coupling of the
neutral Higgs boson with the charged Goldstone bosons and
the coupling of the neutral Higgs boson with the W bosons.
Defining the Lagrangian for the interaction between Higgs
and Goldstone bosons by

Lh jG+G− = gh jG+G−h jG
+G− + h.c., (4.58)

it is given by

gh jG+G− = −
m2

h j

gvMW
(cβR j1 + sβR j2)gh jW+W− , (4.59)

with the tree-level Higgs boson mass mh j . In order to obtain
an IR-finite result while using the loop-corrected mass MHi ,
we chose to modify the coupling gh jG+G− as

gh jG+G− = − M2
Hi

gvMW
(cβR j1 + sβR j2)gh jW+W− , (4.60)

where the tree-level mass m2
h j

has been replaced by the loop-

corrected mass M2
Hi

of the decaying Higgs boson Hi . We ver-
ified that the modification of this coupling ensures IR finite-
ness while not affecting UV finiteness. The same method has
been used in Ref. [75]. While taking the loop-corrected mass
for the external decaying Higgs boson ensures compatibility
with the observation of a 125 GeV SM-like Higgs boson, this
approach breaks gauge invariance, however. For more details
on this issue, we refer to our investigations in Ref. [74].

For the non-SM-like neutral Higgs bosons, the tree-level
coupling ghi V V is in general suppressed, in particular in
case the Higgs boson with mass 125.09 GeV behaves very
SM-like. In this case, the one-loop corrected decay width
�1L(Hi → VV ) can be even larger than the tree-level
improved one �tree(Hi → VV ). This becomes a problem
when the one-loop correction is negative, as then the one-
loop corrected partial decay width becomes negative. In this
case, we have to include the one-loop squared term, which is
formally of higher order. For the decay Hi → Z Z , we will
include the one-loop squared contribution.30 In particular,

30 Note, however, that the thus obtained result has to be taken with
caution. The complete two-loop calculation contributes further terms

the decay width now is given by

�(Hi → Z Z) = 1

2(
�tree(Hi → Z Z) + �1L(Hi → Z Z) + �1Ls(Hi → Z Z)

)
,

(4.61)

where

�1Ls(Hi → Z Z)

=
√
r2
V − rV M2

V

4πM3
Hi

⎧
⎨

⎩

⎛

⎝
5∑

j=1

ZH
i jM(1)+CT

1L (h j → Z Z)

⎞

⎠

×
(

fgg

5∑

l=1

ZH
il M(1)+CT

1L (hl → Z Z)

+M2
Hi

fgp

5∑

l=1

ZH
il M(2)

1L (hl → Z Z)

)∗

+M4
Hi

(rV − 1)2

⎛

⎝
5∑

j=1

ZH
i jM(2)

1L (h j → Z Z)

⎞

⎠

×
(

5∑

l=1

ZH
il M(2)

1L (hl → Z Z)

)∗

+M4
Hi

rV − 1

rV

⎛

⎝
5∑

j=1

ZH
i jM(3)

1L (h j → Z Z)

⎞

⎠

×
(

5∑

l=1

ZH
il M(3)

1L (hl → Z Z)

)∗⎫⎬

⎭
, (4.62)

where M(1)+CT
1L is the sum of M(1)

1L + MCT
1L . For the decay

Hi → W+W−, the form factor M(1)+CT
1L contains IR diver-

gences so that we cannot treat it in the same way as in the
decay Hi → Z Z . Note, however, that the 1L decay width
�1L(Hi → WW ) can always be divided into three parts
that are separately UV and IR finite: the (s)fermion contri-
bution arising from loops containing SM model fermions
and their superpartners, the chargino/neutralino contribution
from loops with internal charginos and neutralinos and the
gauge/Higgs contribution from loops with gauge and Higgs

that might cause the complete two-loop result to differ considerably
from the result obtained in the here applied approximation. Moreover,
the inclusion of (part of) the two-loop corrections explicitly includes
a dependence on the renormalization scheme chosen at one-loop order
that would need to be cancelled by transforming the input parameters
appropriately so as not to become inconsistent. We still use this approach
in order to obtain physical, i.e. positive, partial decay widths and hence
physical branching ratios. Since the partial decay width is suppressed
here anyway, the effect of the difference between the approximation
and the full two-loop result on the branching ratio is expected to be
subleading. Still, the code NMSSMCALC will print out a warning to
make the user aware of this issue.
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particles. In many cases the dominant contribution is the
(s)fermion part. That was also observed in the MSSM case
[75,76]. We therefore add to the one-loop corrected decay
width Hi → W+W− the one-loop squared contribution from
the (s)fermion part only. This part is IR finite as it solely
involves fermions and sfermions but no photons. Both for
the decays into Z Z and into WW we include the respective
one-loop squared terms in case the one-loop contribution is
larger than 80% of the tree-level decay width.

4.3 Higgs boson decays into a Z boson and a Higgs boson

The one-loop corrected amplitude for the decay of a heavy
Higgs boson Hi with four-momentum p into a light Higgs
boson Hj and a Z boson, with four-momenta k1 and k2,
respectively, Hi (p) → Hj (k1)Z(k2), can be written as

M1L(Hi → Hj Z) = εμ(k2)p
μM1L(Hi → Hj Z), (4.63)

where

M1L(Hi → Hj Z) =
5∑

k′,l ′=1

ZH
ik′ZH

jl ′

×
(
M(0)

hk′hl′ Z + M(1)
hk′hl′ Z + MGZ ,mix

hk′hl′ Z

)
. (4.64)

The tree-level expression M(0)
hi h j Z

reads

M(0)
hi h j Z

= e

sθW cθW

(sβ
(Ri4R j1 − Ri1R j4

)

+cβ

(−Ri4R j2 + Ri2R j4
)
) , (4.65)

and the one-loop term M(1)
hi h j Z

consists of the genuine one-
loop diagram contribution and the counterterm part given by

MCT
hi h j Z = 1

2

5∑

i ′=1

(
δZhi hi ′M(0)

hi ′h j Z
+ δZh j hi ′M(0)

hi hi ′ Z

)

+1

2
M(0)

hi h j Z
δZZ

+M(0)
hi h j Z

(

δZe − c2θW δsθW
sθW c

2
θW

)

. (4.66)

Also here, the contribution from the one-loop diagrams with
the transition hi → Z(G), MGZ ,mix

hi h j Z
, is calculated using

the same technique as discussed in Sect. 4.1. The improved
tree-level decay width is given by

�tree(Hi → Hj Z) = RHHZ

∣
∣∣∣∣∣

5∑

i ′, j ′=1

ZH
ii ′Z

H
j j ′M(0)

hi ′h j ′ Z

∣
∣∣∣∣∣

2

(4.67)

and the NLO decay width by

�NLO(Hi → Hj Z) = RHHZ
∣∣M1L(Hi → Hj Z)

∣∣2 ,

(4.68)

with the 2-particle phase-space factor

RHHZ =
λ3/2
(
M2

Hi
, M2

Hj
, M2

Z

)

64πM3
Hi
M2

Z

,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz .

(4.69)

Since the formulae for the 1-loop amplitudes are quite
lengthy we do not display them explicitly here. Note that,
as in the decay into massive gauge bosons, in Eq. (4.68) we
also included, keeping in mind the caveat mentioned there,
one-loop contributions squared as the one-loop corrections
can be large and negative.

4.4 Higgs boson decays into neutralinos and charginos

The couplings of a neutral Higgs boson hi with the elec-
troweakinos can be defined as

− i
e

2sθW

(
gLhi χ̃ j χ̃k

PL + gR
hi χ̃k χ̃ j

PR

)
, (4.70)

where χ̃ stands generically for the neutralinos and charginos

and gR
hi χ̃k χ̃ j

=
(
gLhi χ̃k χ̃ j

)∗
. At tree level, the left- and right-

handed coefficients for the Higgs-chargino couplings are
given in terms of [14]

gL
hi χ̃

+
j χ̃−

k
= λv(Ri3 + iRi5)U∗

j2V
∗
k2e

iϕs

√
2MZcθW

+ √
2U∗

j1V
∗
k2e

−iϕu (Ri2 − icβRi4)

+ √
2U∗

j2V
∗
k1(Ri1 − isβRi4), (4.71)

where i = 1, . . . , 5, j, k = 1, 2, and for the Higgs-neutralino
couplings we have

gL
hi χ̃0

l χ̃0
m

=
[

1

cθW

N∗
l3

(
cθW N∗

m2 − sθW N∗
m1

) (Ri1 − isβRi4
)

− 1

cθW

N∗
l4

(
cθW N∗

m2 − sθW N∗
m1

)
e−iϕu
(Ri2 − icβRi4

)

− λvN∗
l5N

∗
m3e

iϕu
(Ri2 + icβRi4

)

√
2MZcθW

− λvN∗
l5N

∗
m4

(Ri1 + isβRi4
)

√
2MZcθW

+ v(Ri3 + iRi5)eiϕs
(
2κN∗

l5N
∗
m5 − λN∗

l4N
∗
m3

)

√
2MZcθW

+ l ↔ m

]
, (4.72)

123



  960 Page 22 of 46 Eur. Phys. J. C           (2020) 80:960 

with l,m = 1, . . . , 5. The decay width for the decay of a
Higgs boson Hi into a neutralino pair or a chargino pair
including higher order corrections is given by

�(Hi → χ̃ j χ̃k)

= R
(
�tree(Hi → χ̃ j χ̃k) + �1L(Hi → χ̃ j χ̃k)

)
, (4.73)

where R = 1/2 for identical final states and R = 1 otherwise.
The improved tree-level decay width reads

�tree(Hi → χ̃ j χ̃k)

= R2

(
M2

Hi
, M2

χ̃ j
, M2

χ̃k

)

×
[ (

M2
Hi

− M2
χ̃ j

− M2
χ̃k

)(∣∣∣ML ,0
Hi χ̃ j χ̃k

∣
∣∣
2 +
∣
∣∣MR,0

Hi χ̃ j χ̃k

∣
∣∣
2
)

−4Mχ̃ j Mχ̃k Re
[
ML ,0

Hi χ̃ j χ̃k
MR,0∗

Hi χ̃ j χ̃k

] ]
, (4.74)

where the 2-body phase space factor is

R2(x, y, z) = λ1/2(x, y, z)

16πx3/2 , (4.75)

in terms of the improved tree-level amplitude

ML/R,0
Hi χ̃ j χ̃k

=
5∑

i ′=1

ZH
ii ′

e

2sθW
gL/R
hi ′ χ̃ j χ̃k

. (4.76)

The one-loop decay width for the decay into a neutralino pair
is given by

�1L(Hi → χ̃0
j χ̃

0
k ) = �virt(Hi → χ̃0

j χ̃
0
k ) (4.77)

and for the decay into a chargino pair it is

�1L(Hi → χ̃+
j χ̃−

k )

= �virt(Hi → χ̃+
j χ̃−

k ) + �real(Hi → χ̃+
j χ̃−

k ), (4.78)

where the virtual contribution can be cast into the form

�virt(Hi → χ̃ j χ̃k)

= 2R2(M
2
Hi

, M2
χ̃ j

, M2
χ̃k

)

×
[ (

M2
Hi

− M2
χ̃ j

− M2
χ̃k

)

× Re

(
ML ,0

Hi χ̃ j χ̃k
ML ,1∗

Hi χ̃ j χ̃k
+ MR,0

Hi χ̃ j χ̃k
MR,1∗

Hi χ̃ j χ̃k

)
− 2Mχ̃ j Mχ̃k

× Re
[
ML ,0

Hi χ̃ j χ̃k
MR,1∗

Hi χ̃ j χ̃k
+ MR,0

Hi χ̃ j χ̃k
ML ,1∗

Hi χ̃ j χ̃k

] ]
, (4.79)

with the left- and right-handed one-loop amplitudes contain-
ing genuine triangle, counterterm and ’GZ , mix’ contribu-
tions,

ML/R,1
Hi χ̃ j χ̃k

=
5∑

i ′=1

ZH
ii ′

×
(
ML/R,�

hi ′ χ̃ j χ̃k
+ ML/R,CT

hi ′ χ̃ j χ̃k
+ ML/R,GZ ,mix

hi ′ χ̃ j χ̃k

)
.

(4.80)

We do not display explicitly here the lengthy expressions
for the triangle and ’GZ , mix’ contributions. Note that the
’GZ , mix’ contributions are computed using the same tech-
nique as discussed in Sect. 4.1. The explicit expressions of
the counterterm amplitudes for the decays into neutralinos
are

ML ,CT
hi χ̃0

j χ̃
0
k

= e

4sθW

⎡

⎣
∑

i ′=1,5

gL
hi ′ χ̃0

j χ̃
0
k
δZhi hi ′

+
∑

j ′=1,5

gL
hi χ̃0

j ′ χ̃
0
k
δZ χ̃0

L , j ′ j

+
∑

k′=1,5

gL
hi χ̃0

j χ̃
0
k′
δ Z̄ χ̃0

L ,kk′

⎤

⎦

+ e

2sθW
gL
hi χ̃0

j χ̃
0
k

(
δZe − δsθW

sθW

)
+ e

2sθW

×
[

− N∗
l3N

∗
m1δtθW

(Ri1 − isβRi4
)

+ N∗
l4N

∗
m1e

−iϕu δtθW
(Ri2 − icβRi4

)

− λv√
2MZcθW

(
N∗
l5N

∗
m3e

iϕu

× (Ri2 + icβRi4
)+ N∗

l5N
∗
m4

(Ri1 + isβRi4
)

+ (Ri3 + iRi5)e
iϕs N∗

l4N
∗
m3

)

×
(

δv

v
+ δλ

λ
− δM2

Z

2M2
Z

− δcθW

cθW

)

+
√

2vκ(Ri3 + iRi5)eiϕs N∗
l5N

∗
m5

MZcθW

×
(

δv

v
+ δκ

κ
− δM2

Z

2M2
Z

− δcθW

cθW

)

+ l ↔ m

]

,

(4.81)

and for the decays into charginos they read

ML ,CT
hi χ̃

+
j χ̃−

k
= e

4sθW

×
⎡

⎣
∑

i ′=1,5

gL
hi ′ χ̃+

j χ̃−
k
δZhi hi ′ +

∑

j ′=1,2

gL
hi χ̃

+
j ′ χ̃

−
k
δZ χ̃+

L , j ′ j

+
∑

k′=1,2

gL
hi χ̃

+
j χ̃−

k′
δ Z̄ χ̃+

L ,kk′

⎤

⎦
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+ e√
2sθW

(
U∗

j1V
∗
k2e

−iϕu (Ri2 − icβRi4) +U∗
j2V

∗
k1(Ri1 − isβRi4)

)

×
(

δZe − δsθW
sθW

)
+ U∗

j2V
∗
k2e

iϕs (Ri3 + iRi5)√
2

δλ . (4.82)

The right-handed counterterm amplitudes are equal to the
complex conjugate of the corresponding left-handed parts
after interchanging the indices of the charginos and neu-
tralinos in the final state. The real photon contribution for
the decays into a chargino pair is expressed in terms of the
Bremsstrahlung integrals as

�real(Hi → χ̃+
j χ̃−

k ) = e2

32π3MHi

×
{

2

(∣
∣∣ML ,0

Hi χ̃ j χ̃k

∣
∣∣
2 +
∣
∣∣MR,0

Hi χ̃ j χ̃k

∣
∣∣
2
)(

I 1
2 + I 2

1 + 2I
)

−
(
I1 + I2 − 2(M2

Hi
− M2

χ̃+
j

− M2
χ̃−
k
)I12 + 2M2

χ̃+
j
I11 + 2M2

χ̃−
k
I22

)

×
[(

M2
Hi

− M2
χ̃+
j

− M2
χ̃−
k

)(∣
∣∣ML ,0

Hi χ̃ j χ̃k

∣
∣∣
2 +
∣
∣∣MR,0

Hi χ̃ j χ̃k

∣
∣∣
2
)

− 4Mχ̃+
j
Mχ̃−

k
Re
[
ML ,0

Hi χ̃ j χ̃k
MR,0∗

Hi χ̃ j χ̃k

] ]}
, (4.83)

where the arguments of the Bremsstrahlung integrals I j1,..., jm
i1,...,in

(MHi , Mχ̃+
j
, Mχ̃−

k
) have been neglected. Note that we use the

loop-corrected masses for the external Higgs boson and the
external charginos and neutralinos in the tree-level, virtual
and real contributions. However, for particles inside loops we
use the tree-level masses and tree-level couplings. This does
not affect the UV-finiteness but can break the IR-finiteness in
the decay into a pair of charginos. We overcome this problem
by replacing the tree-level mass of the chargino in the loop
diagrams with a photon by the corresponding loop-corrected
chargino mass. Our treatment is different from Ref. [9] where
the authors define an IR divergent counterterm to cancel the
mismatch between the real and virtual contributions. Note
finally, that in case the NLO decay width into neutralino
final states becomes negative, the improved tree-level decay
width is calculated instead in NMSSMCALCEW, including the
ZH factor.

4.5 Higgs boson decays into squark pairs

The NLO corrections to the decay of a neutral Higgs boson
into a squark-antisquark pair consist of the QCD and EW
corrections. In the CP-conserving NMSSM, the NLO cor-
rections to the decay of a CP-odd Higgs boson into a stop
pair have been calculated and discussed in Ref. [6]. We extend
this computation to the CP-violating case and include also the
decay into a sbottom-antisbottom pair in this paper. The NLO
QCD corrections are positive and large. They can be larger
than 100% as observed in Ref. [6] while the EW correction
are negative and can be of up to −40%. In our calculation,

we have implemented both the OS and the DR scheme. We
have three options here. First, the seven parameters are renor-
malized in the OS scheme. Second, the parameters of the
stop sector, mt ,mQ̃3

,mt̃R , At , are renormalized in the OS
scheme while the remaining parameters, mb,mb̃R

, Ab, are

renormalized in the DR scheme.31 Third, all parameters are
renormalized in the DR scheme. The loop-corrected decay
width is decomposed into the improved tree-level, one-loop
QCD and one-loop EW decay widths,

�(Hi → q̃ j q̃
∗
k ) = �tree(Hi → q̃ j q̃

∗
k ) + �

(1)
QCD(Hi → q̃ j q̃

∗
k )

+�
(1)
EW(Hi → q̃ j q̃

∗
k ) . (4.84)

Denoting the color factor by NF , with NF = 3, the improved
tree-level decay width is given by

�tree(Hi → q̃ j q̃
∗
k )

= NF R2

(
M2

Hi
, M2

q̃ j
, M2

q̃k

) ∣∣∣M0
Hi q̃ j q̃∗

k

∣∣∣
2
, (4.85)

in terms of the improved tree-level amplitude

M0
Hi q̃ j q̃∗

k
=

5∑

i1=1

ZH
ii ′ghi ′ q̃ j q̃∗

k
. (4.86)

The tree-level Higgs–squark–squark couplings are given by
[14]

ghi t̃ j t̃∗k = eMZ

sθW cθW

⎡

⎣
m2

t Ri2

(
Ut̃∗

j1U
t̃
k1 +Ut̃∗

j2U
t̃
k2

)

sβM2
Z

+
mt

(
Ut̃∗

j2U
t̃
k1F1 +Ut̃∗

j1U
t̃
k2F

∗
1

)

2sβM2
Z

+ 1

6

(
cβRi1 − sβRi2

)

×
(
(4c2

θW
− 1)Ut̃∗

j1U
t̃
k1 + 4s2

θW
U t̃∗

j2U
t̃
k2

)
⎤

⎦ ,

(4.87)

ghi b̃ j b̃∗
k

= eMZ

sθW cθW

⎡

⎣
m2

bRi1

(
Ub̃∗

j1U
b̃
k1 +Ub̃∗

j2U
b̃
k2

)

cβM2
Z

+
mb

(
Ub̃∗

j2U
b̃
k1F2 +Ub̃∗

j1U
b̃
k2F

∗
2

)

2cβM2
Z

31 While it is possible to choose different renormalization schemes of
the (s)top sector in the loop-corrected Higgs mass and decay width
calculations, we recommend users to select the same renormalization
scheme in order to avoid spurious contributions which have been shown
in Ref. [77] to arise for very large MH± .
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− 1

6

(
cβRi1 − sβRi2

)

×
(
(2c2

θW
+ 1)Ub̃∗

j1U
b̃
k1 + 2s2

θW
Ub̃∗

j2U
b̃
k2

)
⎤

⎦ ,

(4.88)

with

F1 = A∗
t e

−iϕu
(Ri2 − icβRi4

)− μeff
(Ri1 + isβRi4

)

− λvcβ (Ri3 + iRi5) eiϕs√
2

(4.89)

F2 = A∗
b

(Ri1 − isβRi4
)− μeffe

iϕu
(Ri2 + icβRi4

)

− λvsβ (Ri3 + iRi5) ei(ϕs+ϕu)

√
2

. (4.90)

The one-loop QCD and EW contributions to the decay
width are given by the sum of the virtual and real contribu-
tions, respectively,

�
(1)
QCD/EW(Hi → q̃ j q̃

∗
k ) = �virt

QCD/EW(Hi → q̃ j q̃
∗
k )

+�real
QCD/EW(Hi → q̃ j q̃

∗
k g/γ ) .

(4.91)

For the virtual QCD contribution we have

�virt
QCD(Hi → q̃ j q̃

∗
k )

= NF R2

(
M2

Hi
, M2

q̃ j
, M2

q̃k

)

×2Re

[

M0∗
Hi q̃ j q̃∗

k

(
5∑

i ′=1

ZH
ii ′(M�,QCD

hi ′ q̃ j q̃∗
k

+ MCT,QCD
hi ′ q̃ j q̃∗

k
)

)]

,

(4.92)

with the 2-body phase space factor R2 defined in Eq. (4.75).
The expression for the virtual EW contribution is different
from the QCD one due to an extra contribution containing
the transition hi → G, Z . Explicitly, we have

�virt
EW(Hi → q̃ j q̃

∗
k )

= NF R2

(
M2

Hi
, M2

q̃ j
, M2

q̃k

)
2

×Re

[

M0∗
Hi q̃ j q̃∗

k

5∑

i ′=1

ZH
ii ′

(
M�,EW

hi ′ q̃ j q̃∗
k

+ MCT,EW
hi ′ q̃ j q̃∗

k
+ MGZ ,mix

hi ′ q̃ j q̃∗
k

)]

.

(4.93)

The explicit expressions for the counterterm contributions
are quite lengthy and given in “Appendix A”. We do not
display, however, the more cumbersome amplitudes of the
virtual QCD and EW contributions, M�,QCD

hi ′ q̃ j q̃∗
k

and M�,EW
hi ′ q̃ j q̃∗

k
,

respectively.

The real photon radiation contribution in the EW correc-
tions is expressed in terms of the Bremsstrahlung integrals
as

�real
EW(Hi → q̃ j q̃kγ )

= NF

4π2MHi

Q2
qα

×
(

− I1 − I2 − M2
q̃ j
I11 − M2

q̃k
I22 + (M2

Hi
− M2

q̃ j
− M2

q̃k
)I12

)

×
∣∣∣M0

Hi q̃ j q̃∗
k

∣∣∣
2
. (4.94)

As usual, we have neglected the arguments of the
Bremsstrahlung integrals Il(M2

Hi
, M2

q̃ j
, M2

q̃k
) and Ilm

(M2
Hi

, M2
q̃ j

, M2
q̃k

) (l,m = 1, 2 and j, k = 1, 2). The real
gluon radiation contribution in the QCD corrections can be
obtained from the EW real photon radiation contribution by
replacing Q2

qα withCFα2
s , whereCF = 4/3 for SU (3)C . We

have checked the UV and IR finiteness of the EW and QCD
corrections. We have compared numerically with the NLO
EW and QCD corrections in the OS scheme for the decay
A2 → t̃1 t̃2 [6] using their description in the real NMSSM
and found full agreement.

5 Numerical results

To illustrate the importance of the higher-order corrections to
the decays of the light and heavy neutral Higgs bosons and to
test the stability of the NLO results in various regions of the
parameter space we have performed a scan in the NMSSM
parameter space. The parameter points are checked against
compatibility with the experimental constraints from the
Higgs data by using the programsHiggsBounds5.3.2 [78–
80] andHiggsSignals2.2.3 [81]. These programs require
as input the effective couplings of the Higgs bosons, normal-
ized to the corresponding SM values, as well as the masses,
the widths and the branching ratios of the Higgs bosons.
These have been obtained for the SM and NMSSM Higgs
bosons from the Fortran code NMSSMCALCEW [14,82]. One
of the neutral CP-even Higgs bosons is identified with the
SM-like Higgs boson – it will be called h from now on – and
its mass is required to lie in the range

123 GeV ≤ mh ≤ 127 GeV . (5.1)

For the SM input parameters we use the following values
[83,84]

α(MZ ) = 1/127.955, αMS
s (MZ ) = 0.1181

MZ = 91.1876 GeV MW = 80.379 GeV

mt = 172.74 GeV mMS
b (mMS

b ) = 4.18 GeV

mc = 1.274 GeV ms = 95.0 MeV

mu = 2.2 MeV md = 4.7 MeV
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mτ = 1.77682 GeV mμ = 105.6584 MeV

me = 510.9989 keV GF = 1.16637 · 10−5 GeV−2.

(5.2)

Concerning the NMSSM sector, we follow the SUSY Les
Houches Accord (SLHA) format [85] in which the soft SUSY
breaking masses and trilinear couplings are understood as DR
parameters at the scale

μR = Ms = √mQ̃3
mt̃R . (5.3)

This is also the renormalization scale that we use in the com-
putation of the higher-order corrections. Note that we chose
the charged Higgs boson mass as an OS input parameter. The
computation of the O(αtαs + α2

t ) corrections to the Higgs
boson masses is done in the DR renormalization scheme of
the top/stop sector. We have included the contribution of the
gauge parameters g1, g2 into the conversion from pole to DR
top masses. In Table 1 we summarize the ranges applied in
our parameter scan. In order to ensure perturbativity we apply
the rough constraint

λ2 + κ2 < 0.72 . (5.4)

The remaining mass parameters of the third generation
sfermions that are not listed in the table are chosen as

Ab = Aτ = 2 TeV, and m τ̃R = mL̃3
= mb̃R

= 3 TeV .(5.5)

The mass parameters of the first and second generation
sfermions are set to

mũR ,c̃R = md̃R ,s̃R
= mQ̃1,2

= mL̃1,2
= mẽR ,μ̃R = 3 TeV .

(5.6)

We have performed two scans. In the first (smaller) scan
we took care to select only such scenarios where the light-
est CP-even Higgs boson H1 is singlet-like and the second
lightest CP-even Higgs boson is the SM-like Higgs boson.
We refer to this scan as scan1 in the following. In the second
(larger) scan, called scan2 in the following, we only retained
scenarios where the SM-like Higgs boson is the lightest CP-
even Higgs boson. Both scans allow for points that have a
χ2 computed by HiggsSignals-2.2.3 that is consistent with
an SM χ2 within 2σ . All the branching ratios shown in the
following have been calculated by implementing the here pre-
sented higher-order corrections to the various decay widths
in NMSSMCALCEW. In this way the new EW corrections are
combined with the state-of-the-art higher-order QCD cor-
rections already implemented in NMSSMCALC. Note, how-
ever, that the EW corrections are only taken into account if
the respective decay is kinematically allowed. Otherwise, the
corresponding decay width without the higher-order correc-
tions discussed in this paper, which only apply for on-shell
decays, are taken into account in the computation of the total
decay width and branching ratios. Ta
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5.1 Decays into SM fermion pairs

In the old implementation inNMSSMCALC the tree-level cou-
plings entering the various decay widths were improved by
including loop effects in the Higgs mixing matrix elements.
Thus, the tree-level rotation matrix R was replaced by the
loop-corrected rotation matrix

Rl = ZHR, (5.7)

evaluated at zero external momentum both at one-loop and
at two-loop order to ensure unitarity.32 The implementation
here differs by the fact that in the computation of ZH we
include the momentum dependence at one-loop order and
we do not apply the approximation of Ref. [15] to deduce
ZH but proceed as described in Eqs. (3.84)–(3.86). In the
following, we call the couplings where we apply Rl as
obtained from Eq. (5.7) with zero external momentum and
by applying the approximation of Ref. [15] ’effective tree-
level couplings’ while those with ZH calculated according
to Eqs. (3.84)–(3.86) including the momentum dependence
at one-loop order are denominated ’improved couplings’.

The decays into SM fermion pairs in the old imple-
mentation in NMSSMCALC were calculated using the loop-
corrected rotation matrix, Rl, evaluated at zero external
momenta and by including the �b corrections33 into the
effective tree-level couplings, as specified in Ref. [14]. The
thus obtained ’effective couplings’ are given by34

g̃eff,S/P
h j qq̄

= g̃S/P
h j qq̄

, . (5.8)

Beyond the �b approximation no further SUSY-EW nor
SUSY-QCD corrections were included. To quantify the dif-
ference between the branching ratio computed in this paper
and the old implementation in NMSSMCALC we introduce
the relative change in the branching ratio for the decay
Hi → X j Xk as

�BR(Hi X j Xk)

= BRSEW(+SQCD)
ZH (Hi → X j Xk) − BRtree

Rl (Hi → X j Xk)

max(BRSEW(+SQCD)
ZH (Hi → X j Xk), BRtree

Rl (Hi → X j Xk))
,

(5.9)

with X j Xk ≡ f f̄ for the decays into fermions. Here the

branching ratio BRSEW(+SQCD)
ZH (Hi → f f̄ ) means that we

32 We remind the reader, that in contrast the one-loop corrected masses
are obtained at non-vanishing external momenta and the two-loop cor-
rections at zero external momenta.
33 For simplicity, we collectively call them �b corrections although we
also include the corresponding corrections in the decays into strange
quarks and into leptons.
34 We call them ‘effective couplings’ and not ‘effective tree-level cou-
plings’ as they also contain the �b corrections.

Fig. 1 Scan1: Loop-corrected branching ratios of the lightest Higgs
boson, which is the singlet-like state, into SM particles versus the ele-
ment Rl

1hd
of the loop-corrected Higgs rotation matrix

include the SUSY-EW corrections (and SUSY-QCD correc-
tions for the decays into quarks) together with the wave-
function renormalization factor into the decay width of the
decay Hi → f f̄ . The formulae are given by Eq. (4.12) for the
decays into quarks and by Eq. (4.38) for the decays into lep-
tons together with the definitions Eqs. (4.13) and (4.14). The
branching ratio in the old implementation in NMSSMCALC is
denoted by BRtree

Rl (Hi → f f̄ ) (although it also includes the
�b corrections where applicable). The quantity �BR hence
gives information on the importance of the improvement of
the branching ratios by the ZH factor and the SEW(+SQCD)
corrections. This quantity will also be used in the investiga-
tions of the decays into gauge boson pairs and into a pair of
Z and Higgs bosons.

The SM-like Higgs boson is given by the hu-like Higgs
state,35 and in our scans we found valid scenarios where
this can be the lightest or the second lightest of the CP-even
Higgs bosons. We first consider only the parameter points
where the lightest CP-even Higgs boson H1 is the singlet-
like state, i.e. has a large hs component. These are points
obtained in the above described scan1. Here and in the fol-
lowing we denote a Higgs boson Hi to be dominantly x-like
(x = hs, hu, hd , as, ad ) if the corresponding matrix element
squared |Rl

i x |2 exceeds 80%. When H1 is hs-like, the ques-
tion which final state has the largest decay width strongly
depends on the amount of admixture of hd and hu compo-
nents to the singlet-state. In Fig. 1 we show, for all parameter
points that pass our constraints, the scatter plot of the H1

branching ratios into SM particles against its hd component
represented by the element Rl

1hd
of the loop-corrected Higgs

35 As the SM-like Higgs boson has to comply with the experimentally
measured Higgs rates and for small values of tan β, as preferred by
the NMSSM, is dominantly produced through gluon fusion it needs a
substantial coupling to top quarks so that it is the hu-dominated Higgs
state that turns out to be SM-like.
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rotation matrix.36 The mass of H1 lies between 70 and 118
GeV for these points. As can be inferred from the plot, the
dominant decays are those into bb̄, cc̄, τ τ̄ and gg. In most
cases the branching ratio into a bottom-quark pair is domi-
nant followed by the decay into ττ . However, when the hd
component of H1 is very small the branching ratios into gg
and cc̄ become competitive and can even be larger than those
for the decay into bb̄ with values beyond 60% for the gg final
state and of up to 35–39% for cc̄ in some of the scenarios.
In this case, i.e. for |Rl

1hd
| <∼ 0.02, also the branching ratios

into γ γ and into the off-shell final state W+∗W ∗− increase
and can reach up to about 30% in the latter and about 2% in
the former case. The branching ratio into the off-shell Z∗Z∗
final state, which also increases then, is about one order of
magnitude smaller than the one into W+∗W−∗. But already
for |Rl

1hd
| >∼ 0.02 the decay into bb̄ takes over again and

reaches branching ratio values of up to 90% followed by the
branching ratio into ττ with values of up to 10%.

In order to investigate the importance of the higher-order
corrections we define for our new implementation the relative
correction of the partial width for the decay Hi → X j Xk as

δSEW(+SQCD)(Hi X j Xk)

= �
SEW(+SQCD)
ZH (Hi → X j Xk) − �tree

ZH (Hi → X j Xk)

�tree
ZH (Hi → X j Xk)

,

(5.10)

with the higher-order decay widths for the decays Hi → qq̄
into quarks given in Eq. (4.12) and the higher-order decay
widths for the decays Hi → ll̄ into leptons given in Eq. (4.38)
and with the tree-level decay width �tree

ZH including only the
�b corrections. The tree-level and higher-order decay widths
are both evaluated with the new implementation of ZH . Note
that the quantity δ gives information on the importance of
the SEW(+SQCD) corrections in the decay width alone as
the factor ZH cancels in the ratio. In Fig. 2 we show the
scatter plot of the relative change of the branching ratios,
�BR(H1 f f̄ ), f = b, c, τ , for all the parameter points pass-
ing the constraints, against BRSEW(+SQCD)

ZH (H1 → f f̄ ).
The color code in Fig. 2 as well as in Figs. 3, 4, 5 and

6 denotes the sizes of the relative corrections of the par-
tial decay widths. The points where the absolute value of
δSEW(+SQCD) exceeds 10% are marked in blue, those with∣∣δSEW(+SQCD)

∣∣ in the [5,10]% range in black and those with
relative corrections less than 5% in red. For Figs. 5b and 6b
we distinguish two regimes for the larger corrections, in blue
where
∣
∣δSEW+SQCD

∣
∣ is in the [10, 20]% range and in green

36 Note, that Rl
1hd

is the (1, hd )-component of the mixing matrix Rl

given by Eq. (5.7), evaluated at zero external momentum both at one-
and at two-loop order and where for the computation of ZH the approx-
imation of Ref. [15] is used. In the computation of the loop-corrected
branching ratios, however, we of course use the new implementation
described at the beginning of this section.

Fig. 2 Scan1: Relative difference �BR (see text, for definition) in per-
cent for the H1 decays into bb̄, τ τ̄ , cc̄. Red: relative corrections δ (see
text, for definition) in percent of the SUSY-EW(+SUSY-QCD) correc-
tions to the decay widths with |δ| < 5%; black: 5 ≤ |δ| < 10%; blue:
|δ| ≥ 10%

where
∣∣δSEW+SQCD

∣∣ is in the [20,40]% range; in Fig. 4b
we also add two other categories of points, in cyan where∣∣δSEW+SQCD

∣∣ is in the [40, 60]% range and in pink where∣
∣δSEW+SQCD

∣
∣ is in the [60, 80]% range. Note that for the τ

decays there are no SUSY-QCD corrections. The ballpark
of the relative change �BR(H1bb̄) in the branching ratios
between the old and the new implementation ranges below
about 30% with vertex corrections |δ| smaller than 5%. There
are some very rare scenarios where

∣∣�(H1bb̄)
∣∣ exceeds 50%

and where at the same time the relative vertex corrections
are between 5 and 10%. We investigated these cases and
observed that there is an accidental cancellation either in
the effective tree-level or in the improved couplings. These
parameter points lead to similar results for the τ final states,
i.e. |�BR(H1τ τ̄ )| > 50% and at the same time |δ| between
5 and 10%. The cancellation results in a suppression of the
branching ratio, to less than 4% for the τ τ̄ final state and
10% at maximum for the bb̄ final state. In most of the cases,
the large �BR(H1 f f̄ ) is due to the use of the wave-function
renormalization factor ZH , however. There are also cases
with a cancellation between the SUSY-EW/SUSY-QCD cor-
rections and the wave-function renormalization factor ZH

correction. This results in �BR(H1cc̄) being less than 1%.
We have performed the same analysis for the heavier

Higgs bosons, using the full set of points from our scan2.
Figure 3 is the scatter plot of the �BR(h f f̄ ), f = b, τ, c, t ,
against BRSEW(+SQCD)

ZH (h → f f̄ ) for an SM-like Higgs
boson h, while Figs. 4, 5, and 6 are the scatter plots of
�BR(Hi f f̄ ), f = b, t , against BRSEW(+SQCD)

ZH (Hi → f f̄ )
for a heavy as-, a- and hd -like Higgs boson i.e. Hi = Has ,
Ha , Hhd , respectively. As before, the SM-like Higgs boson
h is always hu-like and decays dominantly into a bottom-
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Fig. 3 Scan2: Same as Fig. 2 but for the SM-like Higgs boson h that
is hu-like

quark pair with a branching ratio of about 60%, as expected,
followed by the decay into a τ pair and the decay into a
c-quark pair. As can be inferred from Fig. 3, the relative
changes between the old and the new implementation are
much smaller than for the singlet-like lightest Higgs boson
and amount only to a few percent. The relative vertex correc-
tions |δ| are below 10% for the b-quark pair final state and
below 5% for the decays both into τ τ̄ and cc̄.

For the heavy Higgs bosons, the decay into a top quark pair
can become kinematically possible. We start by discussing
the decay pattern of the heavy singlet state Has , with a mass
between 120 GeV and 1.7 TeV, into the b-quark and t-quark
final states, presented in Fig. 4.37 For the bb̄ final states the
relative change in the branching ratios due to the new imple-
mentation is mostly between −20 and 20%. We also find
points where the relative change is close to 100%, in partic-
ular for branching ratios close to 100%. Most points exhibit
small relative vertex corrections (see, red points in Fig. 4a),
so that the large changes of �BR(Has bb̄) are due to the imple-
mentation ofZH . This is especially the case for large branch-
ing ratios close to 100%. There are a few points where the
relative vertex corrections lie between 5 and 10% (black) and
even above 10% (blue). This happens for the cases where the
effective tree-level couplings Has f f̄ are suppressed. The rel-
ative change�BR can still be very small when the effects from
the ZH factor and the vertex corrections cancel. The decay
pattern for the t t̄ channel, finally, is displayed in Fig. 4b.
The branching ratio takes all values between almost 0 and
100%. The relative changes �BR(Has t t̄) are mostly between
−20 and 20% and close to 0% for large branching ratios
above about 60%. We also observe large �BR, in particular
for branching ratios close to zero. This is mainly due to very

37 Since we will not gain much new information, for Has , Ha and Hhd
we do not show the corresponding plots into τ τ̄ and cc̄.

suppressed effective tree-level Has t t̄ couplings correspond-
ing to the regions where the branching ratio BR(Has → bb̄)
is enhanced. These regions correspond to large values of tan β

close to the upper bound in our scan, or to smaller mass val-
ues of Has with not sufficient phase space to decay into an
on-shell top-quark pair. In these regions the relative correc-
tions |δ| are most of the time below 40%, and for cases where
|δ| < 5% the large changes in �BR are mostly due to the use
of the wave-function renormalization factor ZH . For larger
branching ratios the relative corrections |δ| are mostly below
10% (red and black points). Some rare scenarios display cor-
rections above 40% and up to 80% (in cyan and in pink),
again mostly in regions with lower branching ratios.

Similar observations can be made for the other heav-
ier Higgs states Ha (with a mass between 539 GeV and
2 TeV) and Hhd (with a mass between 548 GeV and
2 TeV), with the notable exception that the relative changes
�BR(Ha/hd Xi X j ) are more reduced and never reach 100%.
The relative changes�BR(Ha/hd bb̄) are most of the time pos-
itive and below 40% as seen in Figs. 5a and 6a. The decays
into top-quark pairs can be dominant where the decays into
bb̄ are suppressed, and the relative changes �BR between
the old and new implementation are close to zero when
BR(Ha/hd → t t̄) → 100% as seen in Figs. 5b and 6b.
For some rare scenarios the relative vertex corrections |δ|
can reach 40%, depicted in green in the figures. Note that
BR(Ha/hd → bb̄) can reach 90%, corresponding to regions
where the effective tree-level coupling Ha/hd bb̄ is strongly
enhanced due to large values of tan β while at the same
time the effective tree-level coupling Ha/hd t t̄ is strongly sup-
pressed.

5.2 Decays into a massive gauge boson pair

In the CP-conserving case, the heavy Higgs boson that can
decay into two on-shell massive gauge bosons is hd -like. The
tree-level coupling of a Higgs boson Hi to VV (V = W, Z )
is proportional to

Ri,1cβ + Ri,2sβ . (5.11)

Due to the SM-like (i.e. hu-like) Higgs boson coupling with
almost SM-strength to the massive gauge bosons the tree-
level coupling of the hd -like heavy Higgs boson to VV is
almost zero because of sum rules. This leads to very sup-
pressed tree-level partial decay widths �(Hhd → VV ).

In order to compare the results obtained in this paper with
the old implementation in NMSSMCALC using the tree-level
coupling together with the loop-corrected rotation matrixRl ,
we show in Fig. 7a the relative change �BR(HhdWW ) of
the branching ratio into WW between the old and the new
implementation including the NLO-EW vertex corrections
as described in Sect. 4.2 and the improvement with the ZH

factor, as a function of the loop-corrected branching ratio
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(a) (b)

Fig. 4 Scan2: Same as Fig. 2 but for the heavier as -like Higgs boson Has decaying into bb̄ (left) and t t̄ (right)

(a) (b)

Fig. 5 Scan2: Same as Fig. 2 but for the heavier a-like Higgs boson Ha decaying into bb̄ (left) and t t̄ (right)

BRSEW
ZH (Hhd → W+W−). The plotted points are those of

our scan that pass the constraints we have applied. We dis-
play in Fig. 7b the same but for the decay into Z Z . The
color and symbol code denotes the magnitude of the relative
NLO electroweak vertex corrections alone, with δ defined in
Eq. (5.10). As can be inferred from the plots both theZH fac-
tor and the NLO electroweak corrections can be responsible
for the large relative changes in the branching ratios. This
is in particular reflected by the black points for which the
vertex corrections are below 20% and at the same time the
relative changes �BR can reach up to 100%. In some cases
there is a cancellation between the two contributions (the ver-
tex corrections and the ZH factor) leading to relatively small
relative changes in the branching ratios. These cases are the
pentagon-marked full (red) points in Fig. 7a for the decay
Hhd → W+W−, which are mostly located in regions where

|�BR(HhdWW )| <∼ 25% while the relative vertex correction
|δ| is at least 100%. In the case of the decay into a Z boson
pair, however, the bulk of these pentagon-marked full (red)
points, indicating again a relative vertex correction |δ| of at
least 100%, induces large relative changes of �BR(Hhd Z Z)

close to 100%. These points correspond to a region which is
discussed in more detail in the next paragraph.

We also note that there are two regions concentrating many
points for the decay into a Z boson pair, the region for which
�BR(Hhd Z Z) � 0% and the one for which �BR(Hhd Z Z) �
100%. This is in contrast to the decay into a W boson pair
which is mostly centered around �BR(HhdWW ) � 0% for
vertex corrections |δ| < 80% and much more scattered for
the points where 80 < |δ| < 100%, displayed with cyan-
pentagon-marked points (for |δ| ≥ 100% the above described
cancellation takes place in the decay Hhd → W+W−). This
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(a) (b)

Fig. 6 Scan2: Same as Fig. 2 but for the heavier hd -like Higgs boson Hhd decaying into bb̄ (left) and t t̄ (right)

(a) (b)

Fig. 7 Scan2: Relative difference �BR in percent for the hd -like Higgs
boson Hhd into a W boson pair (left) and into a Z boson pair (right) as
a function of the corresponding loop-corrected branching ratio. Black:
relative corrections δSEW in percent of the SUSY-EW corrections to

the decay widths with |δSEW| < 20%; blue: 20 ≤ |δSEW| < 40%;
pink: 40 ≤ |δSEW| < 60%; green: 60 ≤ |δSEW| < 80%; cyan:
80 ≤ |δSEW| < 100%; red: |δSEW| ≥ 100%

presence of the second region in the Z boson final state, for
which �BR is close to 100% can be explained by the occur-
rence of many parameter points having a very suppressed
tree-level coupling Hhd Z Z . They also correspond to regions
where the loop-corrected partial decay width �(Hhd → Z Z)

is higher, up to 1 GeV, while the decay width is at most 5 MeV
for the region centered around �BR(Hhd Z Z) = 0. Note,
that while the tree-level couplings Hhd Z Z and HhdWW are
the same, the loop-corrected decay widths differ by the fact
that the decay into WW bosons receives real corrections and
that in the one-loop squared contributions to the decay width

Hhd → W+W− we only include the (s)fermion contribu-
tions in contrast to the decay Hhd → Z Z .38

5.3 Decays into a Z boson and a Higgs boson

In the searches for heavy pseudoscalars, this decay can be
an important search channel [86,87]. We are interested here
in how large the branching ratio can be and how important
are the newly included higher-order corrections, in the case

38 We remind the reader that we take into account this part of the
two-loop corrections in case the one-loop corrected partial decay width
becomes negative, see also Eq. (4.62).
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for which on-shell decays are possible. With the obtained
valid set of parameter points, we present in Fig. 8a scatter
plots of the relative changes of the branching ratios between
the old and new implementation for the decay of a heavy
pseudoscalar-like Higgs boson Ha into ZH1 and in Fig. 8b
for the decay into ZH2, against the respective loop-corrected
branching ratios. The color and marker codes denote the rel-
ative sizes of the one-loop vertex corrections within specific
ranges, identical to the ranges used in the previous section
for the decays into gauge boson pairs. The mass values of
the individual involved CP-even Higgs bosons in the final
state range in 123 GeV ≤ mH1 ≤ 127 GeV and 463 GeV ≤
mH2 ≤ 1.73 TeV, while the mass of the decaying Higgs
boson ranges in 539 GeV ≤ mHa ≤ 2.0 TeV for the on-shell
decay into ZH1 pairs and in 713 GeV ≤ mHa ≤ 2.0 TeV
for the on-shell decay into ZH2 pairs. As can already be
inferred from the mass ranges, the H1 state is the SM-like
Higgs boson h, while the H2 state is the singlet-like scalar
Higgs boson Hhs .

We observe that the branching ratios into the ZH1 final
state remain very small, below 0.4%, while those of the decay
into ZH2 can reach 11%. This is due to the nature of the H1

Higgs boson that is SM-like, with very suppressed tree-level
H1HaZ couplings. The relative changes �BR of the branch-
ing ratio for the decay Ha → ZH1 are mostly between
0 and −75% corresponding to relative vertex corrections
|δSEW| being at most 60% (black, blue, and pink points),
while a few points corresponding to higher vertex correc-
tions up to more than 100% (green, cyan, and red points) can
reach �BR = ±100%. These extreme points correspond to
very small values for the branching ratios themselves which
explains in turn the very large relative corrections |δ| that
we observe. Note that in these decays we take into account
the one-loop squared term as described in Eq. (4.68) which
makes up for the main contribution to the very large rela-
tive corrections. As for the decay Ha → ZH2 the relative
correction �BR is most of the time between 0 and ±25%,
corresponding to points where the relative vertex corrections
|δ| are below 20%. A few points display larger �BR values,
and also larger relative vertex corrections |δ| that can reach
100% and even beyond, again for points that display very
small branching ratios, below about 10−4 %. Note that there
are points for which the correction |�BR| is rather limited,
below 25%, while the relative vertex correction can reach
40% (for one scenario even more than 100%). This can be
explained by a sign compensation between theZH factor and
the vertex correction.

The corresponding results for the heavy singlet-like Higgs
boson Hhs decaying into Z A1 and Z A2 are shown in Fig. 9a,
b, respectively. We see that the maximum achieved branching
ratios for the decay Hhs → Z A1 are below 20% and for a
large number of parameter points are tiny. In the case of the
decay Hhs → Z A2 the branching ratio can reach around

15%. In most of the cases A1 is singlet-like, corresponding
to points where the branching ratio is small (below 10%),
while A2 is doublet-like. The mass values of the individual
involved Higgs bosons in the final state range in 120 GeV ≤
mA1 ≤ 1.50 TeV and 562 GeV ≤ mA2 ≤ 1.63 TeV, while
the mass of the decaying Higgs boson ranges in 464 GeV ≤
mHhs

≤ 1.75 TeV for the on-shell decay into Z A1 pairs and
in 696 GeV ≤ mHhs

≤ 1.75 TeV for the on-shell decay
into ZH2 pairs. The cases with larger branching ratios for
the decay Hhs → Z A1 (larger than 10%) correspond mostly
to the few A1 pseudoscalar Higgs bosons with doublet-like
admixture and mass values above 400 GeV.

The relative changes �BR in the branching ratios are
mostly positive, and can reach values of 100%. For some
very rare scenarios we get �BR(Hhs Z A1) close to −100%,
while �BR(Hhs Z A2) is not below −15%. The relative ver-
tex corrections are moderate for the decay Hhs → Z A1,
mostly |δ| ≤ 20% (black points). This means that the large
changes in �BR(Hhs Z A1) are mostly due to the ZH factor.
For very small branching fractions below 10−4% larger ver-
tex corrections are possible, mainly because the denominator
in the definition of δ is very small in these regions and can
lead to sharp changes in δ. Note that the bulk of the changes
between the old and the new implementation in these cases
stems from the vertex corrections. In the case of the decay
Hhs → Z A2 the relative vertex corrections are mostly small,
with values |δ| < 5% (red triangle-marked points). For large
relative changes �BR(Hhs Z A2) the ZH factor is responsible
then.

5.4 Decays into charginos and neutralinos

We start by investigating the loop corrections to the masses of
the charginos and neutralinos using the three renormalization
schemes OS1, OS2 and DR, imposed on the two gaugino
masses M1 and M2, as defined in Sect. 3.1.2. According to
the SLHA format that we apply in our code, M1, M2 are DR
parameters given at the scale MSUSY = √mQ̃3

mt̃R . When

we use the OS schemes we have to translate the DR input
parameters to the OS values by applying the approximate
transformation formulae

MOSi
1 = MDR

1 − δMfinOSi
1

MOSi
2 = MDR

2 − δMfinOSi
2 , (5.12)

where δMfinOSi
1/2 are the finite parts of the M1/2 counterterms

computed in the OSi (i = 1, 2) renormalization scheme.
Since the finite parts δMfinOSi

1/2 should be computed with OS
input parameters we have used an iterative method to obtain
these. For all parameter points in our scan, the size of the loop
corrections to the neutralino and charginos masses, quanti-
fied by �M χ̃

i = M loop
χ̃i

− mtree
χ̃i

, with i = 1, ..., 5 for the
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(a) (b)

Fig. 8 Scan2: Relative difference �BR in percent for the Ha-like Higgs
boson decay into ZH1 (left) and into ZH2 (right) as a function of the cor-
responding loop-corrected branching ratio. Black: relative corrections
δSEW in percent of the SUSY-EW corrections to the decay widths with

|δSEW| < 20%; blue: 20 ≤ |δSEW| < 40%; pink: 40 ≤ |δSEW| < 60%;
green: 60 ≤ |δSEW| < 80%; cyan: 80 ≤ |δSEW| < 100%; red:
|δSEW| ≥ 100%

(a) (b)

Fig. 9 Scan2: Same as in Fig. 8 but for a heavy singlet-like Higgs boson Hhs decaying into Z A1 and Z A2 pairs. In the right plot, however, red:
|δSEW| < 5%; black: 5 ≤ |δSEW| < 10%

neutralinos and i = 1, 2 for the charginos, never exceeds 46
GeV.

We illustratively present here a particular point, called
scenario1, with the soft SUSY breaking masses and trilinear
couplings given by

mt̃R = 1384 GeV , mQ̃3
= 1743 GeV ,

mb̃R
= mL̃3

= m τ̃R = 3000 GeV ,

|Au,c,t | = 3594 GeV , |Ad,s,b| = 2000 GeV ,

|Ae,μ,τ | = 2000 GeV ,

|M1| = 560 GeV, |M2| = 684 GeV ,

|M3| = 2494 GeV ,

ϕAe,μ,τ = ϕAd,s,b = 0 , ϕAu,c,t = ϕM1

= ϕM2 = ϕM3 = 0, (5.13)

and the remaining input parameters set to39

|λ| = 0.307, |κ| = 0.517 , Re Aκ = 361 GeV,

|μeff| = 272 GeV,

ϕλ = ϕκ = ϕu = 0, ϕμeff = π,

tan β = 9.38, MH± = 1393 GeV . (5.14)

39 The imaginary part of Aκ is obtained from the tadpole condition.
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Table 2 Scenario1: Masses and
main components of the neutral
Higgs bosons at two-loop order
O(αtαs + α2

t ), using DR
renormalization in the top/stop
sector

DR H1 H2 H3 H4 H5

Two-loop O(αtαs + α2
t ) 125.14 698.05 813.53 1391.6 1392.56

Main component hu as hs a hd

Table 3 Scenario1: Masses and
main components of the
neutralinos and charginos at tree
and one-loop level in the three
renormalization schemes OS1,
OS2 and DR

Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

Mχ̃0
5

Mχ̃+
1

Mχ̃+
2

OS1

Tree-level 265.97 276.05 565.2 730.92 920.76 270.72 730.83

One-loop 273.22 282.48 565.2 730.78 914.39 278.02 730.83

OS2

Tree-level 265.97 276.05 565.2 730.78 920.76 270.72 730.69

One-loop 273.22 282.48 565.2 730.78 914.39 278.02 730.83

DR

Tree-level 265.5 276.2 563.47 694.32 920.76 270.38 694.18

One-loop 273.21 282.44 565.21 730.01 914.39 278.01 729.86

Main component H̃0
d H̃0

u B̃ W̃3 S̃ H̃+ W̃+

The Higgs boson masses and their main composition in
terms of singlet/doublet and scalar/pseudoscalar components
at two-loop order O(αtαs + α2

t ) for DR renormalization in
the top/stop sector computed by NMSSMCALCEW, are sum-
marized in Table 2.

For scenario1, we present in Table 3 the tree-level and
loop-corrected masses of the neutralinos and charginos in
the three different renormalization schemes and for the Den-
ner description. As expected the wino-like neutralino and the
wino-like chargino which couple to the electroweak gauge
bosons, get significant loop corrections in the DR scheme.
The one-loop corrected masses themselves, however, barely
differ in the three renormalization schemes so that the remain-
ing theoretical error due to missing higher-order corrections
is very small.

We vary the phases of the gaugino mass parameters M1

and M2, ϕM1 and ϕM2 , in order to study their effect on the
loop-corrected neutralino and chargino masses. Note that
these complex phases have negligible impact on the Higgs
sector [16,18]. We use the DR scheme for this analysis and
show in the upper plots of Fig. 10 the loop corrections to the
electroweakino masses,

�Mx = M loop
x − mtree

x ,

x = χ̃0
i , χ̃±

j (i = 1, ..., 5, j = 1, 2), (5.15)

as function of ϕM1 (left) and ϕM2 (right). We apply a sub-
traction δMx to the mass corrections �Mx of the different
electroweakinos that allows us to show all corrections, which
can be very different in size, in one plot. In the lower plots
of Fig. 10 we show the differences

diffx = M loop, D
x − M loop, EMT

x , (5.16)

with x denoting any electroweakino, between the loop cor-
rected electroweakino masses computed using the Denner
and the EMT descriptions presented in Sect. 3.1.2. As can
be inferred from the upper plots, the wino-like neutralino χ̃0

4
(cyan line) and wino-like chargino χ̃+

2 (black line) receive
the largest loop corrections of about 35 GeV in absolute val-
ues. The corrections to the Higgsino-like neutralinos χ̃0

1 (blue
line) and χ̃0

2 (green line), the singlino-like neutralino χ̃5
0 (red

line) and the Higgsino-like chargino χ̃+
1 (pink line) range

around 6–8 GeV. The correction to the bino-like neutralino
χ̃0

3 (orange line) is somewhat smaller with values around
1.5–1.8 GeV. A small difference between the Denner and
the EMT descriptions of about 1–2 MeV is observed for the
Higgsino-like neutralinos, cf. lower plots. We do not see any
difference, however, for the chargino masses. This is because
we have used the approximation in Eq. (3.100) for the loop-
corrected chargino masses. There is a compensation between

Re �
χ̃+,Ls
ii (m2

χ̃±
i
) and Re �

χ̃+,Rs
ii (m2

χ̃±
i
) that kills the effect

of the imaginary part of the loop integral function.
In order to study the loop corrections on the decay widths,

we computed the tree-level and loop-corrected decay widths,
defined in Sect. 4.4, for the three different renormalization
schemes OS1, OS2 and DR for the scenario1. Note that we
use the loop-corrected masses for external Higgs bosons,
charginos and neutralinos not only in the loop-corrected
decay widths but also in the tree-level ones. For illustration,
we present in Table 4 for the decays of all Higgs bosons in all
possible electroweakino final states the loop-corrected decay
widths �l ≡ �SEW

ZH (Hi → χ̃ j χ̃k), the relative corrections
δ(Hi χ̃ j χ̃k) as defined in Eq. (5.10), and the loop-corrected
branching ratios BRl ≡ BRSEW

ZH (Hi → χ̃ j χ̃k) using sce-

nario 1, for the OS1 and DR renormalization schemes. We
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Fig. 10 Scenario1: Upper: Loop corrections to the electroweakino
masses, �Mx (see text, for the definition), x = χ̃0

i , χ̃±
j (i = 1, ..., 5,

j = 1, 2), as a function of ϕM1 (left) and ϕM2 (right) in the DR scheme

using the Denner description. The subtraction values δMx are speci-
fied in the legends. Lower: Differences diffx (see text, for the defini-
tion) between the loop-corrected masses using the Denner and the EMT
descriptions

found that �l is almost identical in the two OS schemes.
The relative size of the loop corrections is below 10% in the
OS scheme. The relative corrections in the DR scheme are
always larger than in the OS schemes. For some channels with
small decay widths, we see significant corrections in the DR
scheme. For example in the decay channel H4 → χ̃0

2 χ̃0
2 , the

relative loop correction is −0.13% in the OS scheme while it
is −20% in the DR scheme. Based on our investigation, we
conclude that it is better to use the OS scheme in the decays
of the neutral Higgs bosons into electroweakinos. The largest
uncertainty due to missing higher-order corrections that we
estimate from the variation of the renormalization schemes is
found to be 17% in the decay H5 → χ̃0

1 χ̃0
2 . We also studied

the difference between the Denner and EMT descriptions and
did not observe any significant difference. Defining the differ-
ence as (�D

x − �EMT
x )/�D

x with �x being the loop-corrected
decay width for some Higgs decay into an electroweakino
final state, we see that the differences are of per mille level
for all investigated decays.

5.5 Decays into a squark pair

We start by discussing the top and bottom squark masses
in the OS and DR renormalization schemes defined in
Sect. 3.1.3. We follow the SLHA convention where the input
parameters mQ̃3

,mt̃R ,mb̃R
, At , Ab are DR parameters at the

scale MSUSY. When we apply the OS scheme, these param-
eters must be translated into OS parameters by applying the

approximate transformation formula (i = 1, 2)

XOSi = XDR − δXfinOSi, (5.17)

with X = mQ̃3
,mt̃R ,mb̃R

, At , Ab and the finite part of their

OS counterterms denoted as δXfinOSi. We have used an iter-
ative method to obtain a stable value of δXfinOSi. Note that
we include both the NLO QCD and the full NLO EW con-
tribution in the conversion Eq. (5.17).40 Using these OS
parameters together with the OS top mass in the tree-level
mass matrices, we obtain the top and bottom squark masses.
When we apply the DR renormalization scheme, the top pole
mass has to be translated to the DR top mass for which we
follow the description in “Appendix C” of Ref. [18]. The
DR top and bottom masses together with the DR parame-
ters mQ̃3

,mt̃R ,mb̃R
, At , Ab are then used in the tree-level

mass matrices to get the tree-level rotation matrices. They
are subsequently used in the computation of the renormal-
ized self-energies of the top and bottom squarks to obtain
the loop-corrected squark masses as described in Sect. 3.4.
In principle, we would expect that the loop-corrected masses
computed in the DR scheme are closer to the OS masses in
the OS description if one includes more higher order correc-
tions. We consider here a parameter point (scenario2) given
by the following soft SUSY breaking masses and trilinear

40 This is a bit different from the Higgs mass calculation in
NMSSMCALCEW where we include the NLO QCD correction and the
NLO Yukawa correction of order O(αt ) to the conversion in the OS
renormalization scheme of the top/stop sector.
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Table 4 Scenario 1: Loop-corrected decay widths �l , relative loop
corrections δ and loop-corrected branching ratios BRl of all kinemati-
cally allowed decays into chargino and neutralino pairs of heavy Higgs

bosons in the OS1 and DR renormalization schemes. The results in the
OS2 scheme are nearly the same as in OS1 scheme

�l( MeV) δ (%) BRl (%) �l ( MeV) δ(%) BRl (%)

H2 → χ̃0
1 χ̃0

1 OS1 405.67 0.08 25.14 H2 → χ̃0
1 χ̃0

2 0.43 −0.08 0.03

DR 407.74 8.4 25.15 0.4 −16.34 0.02

H2 → χ̃0
2 χ̃0

2 OS1 404.44 0.07 25.06 H2 → χ̃+
1 χ̃−

1 802.3 0.08 49.72

DR 404.84 7.23 24.98 807.18 9.03 49.8

H3 → χ̃0
1 χ̃0

1 OS1 321.53 0.08 22.01 H3 → χ̃0
1 χ̃0

2 0.78 −0.11 0.05

DR 322.45 8.13 22.04 0.73 −16.24 0.05

H3 → χ̃0
2 χ̃0

2 OS1 308.94 0.07 21.15 H3 → χ̃+
1 χ̃−

1 633.52 0.08 43.38

DR 309.0 7.08 21.12 635.37 8.79 43.42

H4 → χ̃0
1 χ̃0

1 OS1 102.86 0.02 0.8 H5 → χ̃0
1 χ̃0

1 151.31 −0.01 1.18

DR 89.4 −11.31 0.69 132.77 −13.56 1.04

H4 → χ̃0
1 χ̃0

2 OS1 17.87 0.08 0.14 H5 → χ̃0
1 χ̃0

2 9.29 0.24 0.07

DR 14.59 −11.68 0.11 7.65 1.94 0.06

H4 → χ̃0
1 χ̃0

3 OS1 395.9 −5.5 4.59 H5 → χ̃0
1 χ̃0

3 423.04 0.02 3.3

DR 451.86 6.59 3.5 448.9 7.83 3.5

H4 → χ̃0
1 χ̃0

4 OS1 1448.21 −0.03 11.22 H5 → χ̃0
1 χ̃0

4 1161.18 −0.02 9.05

DR 1438.6 −3.68 11.15 1157.98 −2.81 9.03

H4 → χ̃0
1 χ̃0

5 OS1 194.66 −0.02 1.51 H5 → χ̃0
1 χ̃0

5 338.35 −0.02 2.64

DR 195.02 −1.63 1.51 341.12 −1.58 2.66

H4 → χ̃0
2 χ̃0

2 OS1 27.86 −0.13 0.22 H5 → χ̃0
2 χ̃0

2 34.6 −0.1 0.27

DR 25.54 −20.08 0.2 32.72 −15.35 0.26

H4 → χ̃0
2 χ̃0

3 OS1 425.3 0.02 3.29 H5 → χ̃0
2 χ̃0

3 413.74 0.01 3.22

DR 450.13 7.77 3.49 438.11 6.48 3.42

H4 → χ̃0
2 χ̃0

4 OS1 1125.46 −0.02 8.72 H5 → χ̃0
2 χ̃0

4 1379.31 −0.03 10.75

DR 1116.5 −3.34 8.66 1366.13 −3.91 10.66

H4 → χ̃0
2 χ̃0

5 OS1 382.4 −0.02 2.96 H5 → χ̃0
2 χ̃0

5 180.21 −0.02 1.4

DR 381.89 −2.35 2.96 180.34 −1.86 1.41

H4 → χ̃0
3 χ̃0

3 OS1 1.2 0.19 0.01 H5 → χ̃0
3 χ̃0

3 1.19 0.18 0.01

DR 1.29 28.87 0.01 1.29 27.81 0.01

H4 → χ̃0
3 χ̃0

4 OS1 3.18 0.05 0.02 H5 → χ̃0
3 χ̃0

4 1.48 0.06 0.01

DR 2.95 −2.79 0.02 1.43 0.89 0.01

H4 → χ̃+
1 χ̃−

1 OS1 393.59 −0.01 3.05 H5 → χ̃+
1 χ̃−

1 257.68 −0.03 2.01

DR 343.95 −13.61 2.67 215.16 −19.09 1.68

H4 → χ̃+
1 χ̃−

2 OS1 2440.51 −0.01 18.91 H5 → χ̃+
1 χ̃−

2 2482.01 −0.01 19.34

DR 2461.41 −0.61 19.0 2498.8 −0.9 19.49

H4 → χ̃+
2 χ̃−

1 OS1 2440.51 −0.01 18.91 H5 → χ̃+
2 χ̃−

1 2482.01 −0.01 19.34

DR 2461.41 −0.61 19.0 2498.8 −0.9 19.49

couplings41

mũR ,c̃R = md̃R ,s̃R
= mQ̃1,2

= mL̃1,2
= mẽR ,μ̃R = 3 TeV ,

mt̃R = 623 GeV ,

41 This parameter point is allowed by HiggsBounds5.3.2 and its χ2

computed by HiggsSignals2.2.3 is consistent with an SM χ2 less
than 1σ .

mQ̃3
= 1180 GeV , mb̃R

= mL̃3
= m τ̃R = 33 TeV ,

|Au,c,t | = 1760 GeV , |Ad,s,b| = 2000 GeV ,

|Ae,μ,τ | = 2000 GeV ,

|M1| = 1000 GeV, |M2| = 1251 GeV ,

|M3| = 2364 GeV, (5.18)
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Table 5 Scenario2: The tree-level and one-loop corrected stop and
sbottom masses in the DR and OS schemes

mt̃1 (GeV) mt̃2 (GeV) mb̃1
(GeV) mb̃2

(GeV)

OS

Tree 334 1166 1122 2297

1 loop 334 1166 1125 2297

DR

Tree 585 1216 1181 3000

1 loop 341 1152 1152 2294

with the CP phases given by

ϕAu,c,t = ϕAd,s,b = ϕAe,μ,τ = ϕM1 = ϕM2 = ϕM3 = 0 .

(5.19)

The remaining input parameters have been set to

λ = 0.106, κ = −0.238 , Re(Aκ) = −647 GeV,

μeff = −603 GeV,

ϕu = 0, tan β = 17.5, MH± = 1867 GeV . (5.20)

With the given DR parameters of the squark sector, we obtain
their corresponding OS parameters

mQ̃3
= 1120 GeV , mt̃R = 402 GeV , mb̃R

= 2997 GeV ,

At = 1720 GeV , Ab = −581 GeV . (5.21)

The tree-level and loop-corrected masses of the stops and
sbottoms in the OS and DR scheme are shown in Table 5. We
see that for the DR scheme there are large changes between
the tree-level and one-loop masses, in particular for the light-
est stop t̃1. The loop-corrected masses, however, are then
closer to each other in both schemes, as expected. The maxi-
mum difference is found for the light sbottom b̃1 mass, where
the OS and DR results differ by 27 GeV at one-loop order
(compared to 59 GeV at tree level). The two-loop corrected
neutral Higgs boson masses at O(αtαs + α2

t ) together with
their respective main component are displayed in Table 6.
The SM-like Higgs boson mass is around 124 GeV while the
remaining Higgs spectrum is quite heavy with masses above
1.6 TeV.

We now turn on the complex phase of At . In the left plot
of Fig. 11, we show the tree-level (black), NLO EW (green),
NLO QCD (blue), and full, i.e. NLO QCD+EW, (red) correc-

tions to the partial width of the decay H4 → t̃1 t̃∗1 as function
of the phase ϕAt in both the OS (full lines) and the DR (dashed
lines) schemes while their corresponding branching ratios are
depicted in the right plot. The decay H4 → t̃1 t̃∗1 vanishes in
the CP-conserving limit where H4, which is a-like in sce-
nario2, is a CP-odd Higgs boson. (Note that CP-odd Higgs
bosons at tree-level only couple to two different stops.) In
the OS scheme, the relative EW corrections δ (see Eq. (5.10)
for the definition) vary in the range (−6%,−10%) and the
QCD corrections in the range (−4%,−8%) depending on
the phase ϕAt that is varied from zero to ±π/2. In the DR
scheme, the relative EW corrections are of order −10% and
the relative QCD corrections of 22% and depend slightly on
the phase ϕAt . We define the relative differences between the
OS and DR decay widths and branching ratios, as

�� =
∣
∣∣∣∣
�OS
ZH − �DR

ZH

�OS
ZH

∣
∣∣∣∣
, (5.22)

and

�BR =
∣∣∣
∣∣
BROS

ZH − BRDR
ZH

BROS
ZH

∣∣∣
∣∣
, (5.23)

respectively. For ϕAt = −π/2, the relative difference �� of
the partial decay widths between the OS and DR schemes is
then about 40% at tree-level while it reduces to 4% when both
QCD and EW corrections are included, so that at one-loop
level we clearly see a reduction of the theoretical error due to
missing higher-order corrections. For the relative error in the
branching ratios we find values between 32% and 27% at tree
level and between 0.3% and 3% at one-loop order including
both the EW and QCD corrections while the phase ϕAt is
varied from ±π/2 to zero.

For the decay H4(≡ Ha) → t̃1 t̃∗2 , we show in the upper
panels of Fig. 12 the partial decay width (left) and branching
ratio (right) at tree-level (black), NLO EW (green), NLO
QCD (blue), and NLO EW+QCD (red) as a function of ϕAt ,
both for the OS (full) and DR (dashed) scheme . In the middle
panels we show the relative NLO EW, NLO QCD and NLO
EW+QCD corrections which are defined as

δ� = �
EW/QCD/EW+QCD
ZH − �tree

ZH

�Tree
ZH

(5.24)

Table 6 Scenario2: Mass values in GeV and main components of the neutral Higgs bosons at two-loop order O(αtαs + α2
t ) obtained by using the

DR renormalization in the top/stop sector

H1 H2 H3 H4 H5

Two-loop O(αtαs + α2
t ) 123.63 1621.65 1865.39 1895.83 2538.29

Main component hu as hd a hs
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Fig. 11 Scenario2: Tree-level (black), NLO EW (green), NLO QCD (blue) and full (red) partial width (left) and branching ratio (right) of the
decay H4 → t̃1 t̃∗1 (H4 is a-like) as function of the complex phase ϕAt . They are shown for the OS (full) and DR scheme (dashed)

Fig. 12 Scenario2: Upper: Tree-level (black), NLO EW
(green), NLO QCD (blue) and full (red) partial width (left) and
branching ratio (right) of the decay H4(= Ha) → t̃1 t̃∗2 as function
of the complex phase ϕAt . They are shown for the OS (full) and DR
(dashed) scheme. Middle: Relative EW, QCD and EW+QCD correc-

tions δ (see text, for definition) for the decay width (left) and branching
ratio (right) in the OS (full) and DR (dashed) scheme. Lower:
Relative differences � between the OS and DR scheme (see text,
for definition) for the decay width (left) and branching
ratio (right)

and

δBR = BREW/QCD/EW+QCD
ZH − BRtree

ZH

BRTree
ZH

, (5.25)

respectively. The lower panels display the relative differences
between the OS and DR decay widths and branching ratios,

�� and �BR, as defined in Eqs. (5.22) and (5.23), respec-
tively. The corrections vary slightly with the phase ϕAt . The
EW corrections are negative in both schemes while the QCD
corrections are positive and of the same order of magnitude.
This shows the importance to include both types of correc-
tions to make reliable predictions. Overall, the relative cor-
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rections δ in the DR scheme are larger than in the OS scheme.
As can be inferred from the bottom left panel of Fig. 12, for
ϕAt = 0, the relative difference in the partial width, �� ,
between the OS and DR scheme at tree level is about 37%
and decreases dramatically to less than 12% when both the
EW and the QCD corrections are included.42 Similar results
are found for the branching ratios, presented on the right plots
of Fig. 12, with smaller values of 21% at tree level and 7% at
full one-loop order. Note that in the right hand side plots we
treated the decays Ha → t̃1 t̃∗2 and Ha → t̃2 t̃∗1 at the same
level of precision while all other decays are computed at the
highest possible precision.

In the CP-invariant scenario the decay width of decay
Ha → t̃1 t̃∗2 is equal to the one of its charge conjugate decay
Ha → t̃2 t̃∗1 . For non-vanishing ϕAt , however, the CP asym-
metry, defined as

δCP = �(Ha → t̃1 t̃∗2 ) − �(Ha → t̃2 t̃∗1 )

�(Ha → t̃1 t̃∗2 ) + �(Ha → t̃2 t̃∗1 )
, (5.26)

is non-zero. In Fig. 13 we show the CP asymmetry as a func-
tion of ϕAt . We see that the CP asymmetry appears already at
tree-level, which results from the imaginary part of the WFR
factor ZH and the imaginary part of the tree-level couplings
ghi q̃ j q̃∗

k
. The relative change of the asymmetry due to loop

corrections ranges between 18% and -9% in the OS scheme
while in the DR scheme it is about 8% when the phase ϕAt

is varied from −π/4 to π/4.
We present in Fig. 14 the same plots for the decay widths

and branching ratios as in Fig. 12 but for the decay of
H3 → t̃1 t̃∗2 which is the dominant decay channel of H3. In
scenario2 H3 is hd -like. For both the OS and the DR scheme
the NLO EW corrections to the decay width are negative
and the relative corrections δ� are around −3% in the OS
and −8% in the DR scheme. The NLO QCD corrections on
the other hand are positive and their relative size can reach
8% in the OS scheme and around 37% in the DR scheme.
For ϕAt = 0, the difference between the decay widths in
the OS and the DR scheme, �� , is about 36% at tree-level
and reduces to 12% at full one-loop level. The corresponding
numbers for the branching ratios are similar.

We have observed that for this parameter point the EW
and QCD corrections in the OS scheme are smaller than in
the DR scheme. In the OS scheme we have seen that this is
due to a cancellation between the genuine triangle diagram
contribution and the counterterm contribution while this does
not happen in the DR scheme. Overall the inclusion of the

42 When we only include the EW corrections the scheme dependence
increases when going from tree- to one-loop level. Overall, the behavior
is as expected, however, when the full set of corrections is included.
This shows that care has to be taken, when estimating the theoretical
uncertainty due to missing higher-order corrections based on a change
of the renormalization schemes, if not all corrections of a given loop
order are included. See also Ref. [18] for a similar discussion.

Fig. 13 CP-asymmetry δCP as function of the complex phase ϕAt at
tree level (black) and including both the EW and the QCD corrections
(red) in the DR (dashed) and OS (full) scheme

QCD corrections in addition to the EW corrections reduces
the difference between the OS and DR results.

5.6 Gauge-parameter dependence in the decay of the
neutral Higgs into fermions

Inspired by the investigation of the gauge-parameter depen-
dence in the computation of the loop-corrected Higgs masses
and the decay width of the decay H± → W±Hi in Ref. [74],
we investigate in this section the gauge-parameter depen-
dence in the decays hi → f f̄ .43 For the other decays com-
puted in this study, we do not present a detailed study. In
fact, these other decay channels are only relevant for heavy
Higgs bosons, for which the gauge-parameter dependence is
negligible because of the smallness of the loop-corrections
to their masses. However, as pointed out in Ref. [74], the
gauge-parameter dependence can be significant for light neu-
tral Higgs bosons receiving large loop-corrections to their
masses. Following the strategy presented in Ref. [74], we
compute the loop-corrected Higgs masses, the WFR factor
ZH , δMrem,S/P , and δMGZ ,mix in Eqs. (4.13) and (4.14) in
a general Rξ gauge.

Only the NLO EW contributions, which are affected by
our treatment of the gauge parameters, are recalculated in this
section; the other corrections will be kept unchanged as in
Eq. (4.12). We now expand the WFR factorZH to retain only

43 It should be noted that a detailed study of the gauge dependence in
the computation of the loop-corrected Higgs masses and the hi → f f̄
decay widths has been presented recently in Ref. [77].
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Fig. 14 Similar to Fig. 12 but for the decay Hhd → t̃1 t̃∗2

the pure one-loop terms, so that we define the pure one-loop
correction to �

S/P
Hi→qq̄ as

�
S,1l
Hi→qq̄ =

(
g̃Shi qq̄

) (
g̃Shi qq̄

)∗

+2Re

⎡

⎣g̃Shi qq̄

(

δMrem,S(hi → qq̄) +
5∑

k=1

δZ1l
ik g̃

S
hkqq̄

)∗⎤

⎦

+2Re
[(

g̃Shi qq̄

) (
δSsub(hi → qq̄)

)∗]
(5.27)

and

�
P,1l
Hi→qq̄ =

(
g̃P
hi qq̄

) (
g̃P
hi qq̄

)∗

+2Re

⎡

⎣g̃P
hi qq̄

(
δMrem,P (hi → qq̄)

+
5∑

k=1

δZ1l
ik g̃

P
hkqq̄ + δMGZ ,mix(hi → qq̄)

)∗⎤

⎦

+2Re
[
g̃P
hi qq̄

(
δPsub(hi → qq̄)

)∗]
. (5.28)

The strict one-loop factor δZ1l is given by

δZ1l =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
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(5.29)

where �̂1l
i j (p

2) is the one-loop renormalized Higgs self-

energy of the transition hi → h j and (�̂1l(p2))′ =
∂p2�̂1l(p2). The external Higgs mass is set to be the tree-
level mass. Although the individual terms δMrem,S/P , δZ1l

ik ,
and δMGZ ,mix are gauge dependent, we have explicitely
checked that the final result �

S/P,1l
Hi→qq̄ is indeed gauge-

parameter independent.
These terms from the EW corrections are then combined

with phase-space factors (and QCD corrections) to obtain
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Table 7 Mass values in GeV
and main components of the
neutral Higgs bosons at tree
level, one-loop level, two-loop
O(αtαs) level, and at two-loop
O(αtαs + α2

t ) level obtained by
using OS renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 58.63 87.34 157.40 704.25 708.97

One-loop 76.95 133.48 147.89 705.24 708.22

Two-loop O(αtαs) 77.03 117.69 147.74 704.83 708.34

Two-loop O(αtαs + α2
t ) 77.11 124.83 147.74 705.03 708.34

Main component hs hu as hd a

Table 8 Same as in Table 7 but
using DR renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 58.63 87.34 157.40 704.25 708.97

One-loop 76.79 112.86 147.68 704.59 708.34

Two-loop O(αtαs) 76.8 118.25 147.74 704.7 708.29

Two-loop O(αtαs + α2
t ) 76.8 118.34 147.74 704.7 708.29

Main component hs hu a as hd

the final decay widths. To illustrate the gauge dependence of
these decay widths, we deliberately take a parameter point
for which not only the hu-like (SM-like) Higgs boson but
also the singlet-like Higgs bosons are light. The soft-SUSY
breaking parameters are given by

mũR ,c̃R = md̃R ,s̃R ,b̃R
= mQ̃1,2

= mL̃1,2,3

= mẽR ,μ̃R ,τ̃R = 3 TeV ,

mt̃R = 1576 GeV , mQ̃3
= 1877 GeV ,

|Au,c,t | = 2132 GeV , |Ad,s,b| = 2000 GeV ,

|Ae,μ,τ | = 2000 GeV ,

|M1| = 763 GeV, |M2| = 909 GeV , |M3| = 2231 GeV,

(5.30)

with the CP phases given by

ϕAu,c,t = ϕAd,s,b = ϕAe,μ,τ = ϕM1 = ϕM2 = ϕM3 = 0 .

(5.31)

The remaining input parameters have been set to

λ = 0.478, κ = −0.099 , Re(Aκ) = 207 GeV,

μeff = 232.1 GeV, ϕu = 0, tan β = 2.55,

MH± = 701 GeV . (5.32)

The Higgs boson masses and their main compositions in
terms of singlet/doublet and scalar/pseudoscalar components
at tree level, one-loop level, as well as two-loop O(αtαs)

and two-loop O(αtαs + α2
t ) levels are given in Table 7

for OS renormalization and in Table 8 for DR renormaliza-
tion in the top/stop sector. They have been computed with
NMSSMCALCEW in the ’t Hooft–Feynman gauge (ξ = 1). In
this table, lower case hi refer to the tree-level mass eigen-
states and capital Hi refer to the loop-corrected mass eigen-
states. As required by the choice of our scenario, the three
light states are the two CP-even and CP-odd singlet-like

Higgs bosons and the hu-like Higgs boson. Their masses
receive large one-loop corrections, whereas the heavier Higgs
bosons are practically insensitive to higher-order corrections
to their masses.

In order to illustrate the gauge-parameter dependence of
the loop-corrected Higgs masses (we have set ξW = ξZ =
ξ ) we vary the parameter ξ from 0 to 100. We display in
Fig. 15 (upper plot) the gauge-parameter dependence of the
CP-even singlet-like Higgs-boson mass Mhs (red lines), of
the SM-like Higgs-boson mass Mhu (blue lines), and of the
CP-odd singlet-like Higgs-boson mass Mas (black lines). The
calculation is performed up to the two-loop order including
theO(αtαs+α2

t ) corrections. The full lines (dashed-lines) are
obtained using the OS (DR) renormalization scheme in the
top/stop sector. The lower plot displays the relative difference
between the mass calculated in a general Rξ gauge, Mx (ξ),
and in the ’t Hooft–Feynman gauge ξ = 1, Mx (ξ = 1),

�M
ξ = |Mx (ξ) − Mx (ξ = 1)|

Mx (ξ = 1)
, with

x = hs, hu, as(≡ H1, H2, H3), (5.33)

as a function of ξ . It is clear from Fig. 15 that the ξ -
dependence of singlet-like Higgs-boson masses is negligi-
ble, while the hu-like Higgs boson mass has a significant
gauge-parameter dependence, up to 9% at ξ = 100.

We now investigate in detail the decay widths �(Hi →
f f̄ ). As mentioned above, the pure one-loop corrections
presented in Eqs. (5.27) and (5.28) are independent of ξ ,
where we set the external Higgs masses to their tree-level
values. Hence, the only gauge dependence appearing in the
decay widths calculated with Eq. (4.12) comes from the
two-body phase-space factors evaluated with loop-corrected
Higgs masses. We quantify the pure SUSY-EW correction
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Fig. 15 Upper panel: The CP-even singlet-like (red), the SM-like
(blue), and the CP-odd singlet-like (black) masses as a function of the
gauge parameter ξ at two-loopO(αtαs+α2

t ) level in the OS (solid lines)
and the DR (dashed lines) scheme of the top/stop sector. The dashed
black line is hidden under the solid black line. Lower panel: Absolute
value of the relative ξ dependence of the loop-corrected masses �M

ξ

(x = hs , hu , as ) defined in the main text in Eq. (5.33), in percent, as
a function of ξ . The color code in the lower plot is the same as in the
upper plot

by

δSEW
pure = (�1l(Hi → qq̄) − �tree(Hi → qq̄))

�tree(Hi → qq̄)
(5.34)

where the NLO decay width �1l
Hi→qq̄ is computed using

Eq. (4.12) wherein the loop-corrected widths�
S/P,1l
Hi→qq̄ contain

pure EW one-loop corrections as calculated with Eq. (5.27)
and Eq. (5.28), respectively. The tree-level decay width is
computed with the tree-level expressions

�
S,tree
Hi→qq̄ =

(
g̃Shi qq̄

) (
g̃Shi qq̄

)∗

�
P,tree
Hi→qq̄ =

(
g̃P
hi qq̄

) (
g̃P
hi qq̄

)∗
. (5.35)

We also define the relative gauge dependence of the LO and
NLO decay widths by

��
ξ = �ξ − �ξ=1

�ξ=1
. (5.36)

The results for the CP-even singlet-like Higgs bosons are dis-
played in Fig. 16 (left plots), where the decay widths into bb̄
(red lines), cc̄ (blue lines), and τ+τ− (black lines) are pre-
sented (upper plot), as well as the corresponding pure SUSY-
EW corrections δSEWpure (middle plot) and the relative gauge

dependence of the decay widths ��
ξ (lower plot). The solid

lines correspond to the LO results, the dashed lines to the
NLO results. As expected by the analysis carried out above
for the Higgs boson masses, ��

ξ is found to be at the per-

mille level for the singlet-like Higgs bosons Hhs (cf. Fig. 16
(lower left plot)) and Has , while the SM-like Higgs boson
Hhu displays a gauge dependence up to ∼ 10% for large ξ

in �(Hhu → bb̄, τ+τ−), and up to ∼ 8% in �(Hhu → cc̄),
these numbers are not shown in figures included in this sec-
tion. This reflects the ∼ 10% gauge dependence observed in
the calculation of the loop-corrected mass MHhu

.
The pure SUSY-EW corrections δSEW

pure , on the other hand,
do not depend on ξ . The corrections are moderate for the
SM-like and the CP-odd singlet-like Higgs bosons, between
+3% and −11%, while they are huge for the CP-even singlet-
like Higgs boson: +293% for �(Hhs → bb̄, τ+τ−), −100%
for �(Hhs → cc̄) (cf. Fig. 16 (middle left plot)). These large
corrections render the NLO predictions unreliable. However,
they are mainly due to the term

∑5
k=1 δZ1l

ik g̃
S
hkqq̄

in Eq. (5.27),
where the contribution from the mixing between the hs and
hu states is dominant. This term is universal and appears at
all orders in perturbation theory. It can thus be resummed to
all orders. This is precisely what is done with the ZH matrix
in Eqs. (4.13) and (4.14). This resummation re-introduces
a mixing of different orders in perturbation theory on top
of the use of the loop-corrected masses, enhancing thereby
the dependence on the gauge parameter as presented in the
right plots of Fig. 16, where we display the corresponding
SUSY-EW corrections with the resummed Z-factor, δSEW,
instead of the pure SUSY-EW corrections. The SUSY-EW
corrections are now reasonably moderate, but at the expense
of a gauge dependence that reaches up to 50% for ξ = 100,
for the sub-dominant decay channel Hhs → cc̄. The gauge
dependence is much more moderate for the decays into b-
quark and τ -lepton pairs. For these decay channels the SUSY-
EW corrections are rather small and the gauge dependence
is below 30% for ξ values between 0 and 100.

The same effects are found for the SM-like Higgs boson
and for the CP-odd singlet-like Higgs boson, as displayed in
Fig. 17 where, in the upper panels, the LO and NLO improved
decay widths into b-quark, c-quark, and τ -lepon pairs, com-
puted using the ZH matrix and the loop-corrected masses,
are displayed for the SM-like Higgs boson (left) and for the
CP-odd singlet-like Higgs boson (right) as a function of the
gauge parameter ξ . The corresponding SUSY-EW correc-
tions δSEW are displayed in the middle panels while the rela-
tive dependence on ξ is displayed in the lower panels. While
the pure SUSY-EW corrections δSEW

pure for the SM-like Higgs
boson are almost constant with respect to a variation of ξ

and between −2% and 3% for ξ = 100, depending on the
decay channel, the SUSY-EW corrections improved δSEW

depend on ξ as seen in Fig. 17 (left) and can reach +30%
at ξ = 100. The relative gauge dependence ��

ξ can now
reach −30% at ξ = 100. The gauge-dependence of the loop-
corrected masses and due to the mixing of different orders
of perturbation theory induced by the ZH matrix add up.
The same happens for the CP-odd singlet-like Higgs boson,
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Fig. 16 Left plots: pure LO and NLO widths computed using
Eqs. (5.27) and (5.28). Right plots: LO and NLO improved widths
computed using the ZH matrix and the loop-corrected masses as done
in Eqs. (4.13) and (4.14). Top Panel: The CP-even singlet-like Higgs
boson decay width into bb̄ (red), cc̄ (blue), τ τ̄ (black) as a function of
the gauge parameter ξ at tree level (solid lines) and pure NLO level
(dashed lines). The dashed blue line on the upper left plot is not shown
since the width is negative and close to zero, about −2.4 × 10−9 GeV.

Middle Panel: Relative correction, defined as in Eq. (5.34), in percent,
as a function of ξ . The black line is hidden under the red line in the
middle left plot. Bottom Panel: Relative dependence of the widths on ξ ,
as defined in Eq. (5.36). In the lower left plot, the red solid and dashed
lines are hidden under the blue solid line while the black dashed line is
hidden under the black solid line. In the lower right plot, the red solid
and dashed lines are hidden under the black solid and dashed lines,
respectively

Fig. 17 Similar to the right-hand side of Fig. 16, but for the SM-like
Higgs boson Hhu (left) and for the CP-odd singlet-like Higgs boson Has
(right). In the lower left plot, the blue and red lines are hidden under the

black solid line and the dashed red line is hidden under the dashed blue
line. In the lower right plot, the red and blue solid lines are hidden under
the black solid line, and the red dashed line under the black dashed line
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as seen on the right-hand side of Fig. 17, but with a more
moderate gauge dependence as the gauge dependence of the
loop-corrected mass is negligible. For the decays of the Hhu
and Has Higgs bosons, we see a significant reduction of the
relative gauge-parameter dependences of the NLO improved
widths compared to the LO improved ones.

6 Conclusions

In this paper, we have presented in the framework of the CP-
violating NMSSM our calculation of the complete one-loop
(SUSY-)EW corrections to the on-shell Higgs boson decays
into fermion pairs, massive gauge boson final states, gauge
and Higgs boson final state pairs, electroweakino and stop
and sbottom pairs. Where applicable we have included the
SUSY-QCD corrections. We have implemented these new
corrections into NMSSMCALC, a Fortran code for the com-
putation of the Higgs mass spectrum up to presently two-loop
order O(αtαs + α2

t ) and the calculation of their branching
ratios. The code already included in the branching ratios the
state-of-the-art QCD corrections and the �b corrections as
well as decays into off-shell massive gauge boson pairs and
decays with off-shell heavy quarks in the final state. The new
code is called NMSSMCALCEW.

The consistent implementation of our newly computed
corrections provides the presently highest level of preci-
sion in the calculation of the NMSSM Higgs boson decays.
In contrast to the previous NMSSMCALC version, we have
included the ZH factor with full momentum dependence in
order to render the loop-corrected Higgs fields on-shell. For
the decays into the electroweakinos and into squark pairs
different renormalization schemes were implemented. The
numerical analysis has demonstrated that the relative change
in the branching ratios due to this new treatment and the
newly implemented corrections is significant. The analysis
of the decays into chargino/neutralino and squark pairs for
different renormalization schemes has shown that the one-
loop corrections reduce the theoretical uncertainty due to
missing higher-order corrections.

Finally, we have also discussed the issue of the gauge
dependence in our calculation of the decay widths in the
fermion-pair channels. We have explicitely shown that this
originates from the loop-corrected masses used in the phase-
space factor as well as from the ZH factor, which both mix
different orders in perturbation theory. Our nominal pre-
dictions for the loop-corrected Higgs masses and for the
loop-corrected decay widths are calculated in the ’t Hooft–
Feynman gauge. It should be noted that this gauge depen-
dence only plays a significant role for light Higgs bosons.

The new code NMSSMCALCEW can be obtained at: https://
www.itp.kit.edu/~maggie/NMSSMCALCEW/.
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A Counterterm contribution to the decay of a neutral
Higgs boson into a squark pair

In this appendix, we give explicit expressions of the countert-
erm couplings for the decays of a neutral Higgs boson into
a squark pair. Note that we have used the redefined WFR
constants for the squarks given in Eqs. (3.103) and (3.104).
For the EW corrections, the counterterm entering Eq. (4.93)
for the Higgs decay into a stop pair is given by

MCT ,EW
hi t̃ j t̃∗k

= 1

2

5∑

i ′=1

ghi ′ t̃ j t̃∗k δZhi hi ′ + 1

2
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and for the decay into a sbottom pair
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where
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(A.4)

For the QCD corrections, the counterterm couplings are
obtained from MCT,EW

hi q̃ j q̃∗
k

by setting the set of EW countert-

erms, δZe, δM2
Z , δv, δvs, δλ, δsθW , δcθW , δsβ, δcβ and δZhi hi ′

to zero. Note that the counterterm δμeff is given in terms of
δλ and δvs as

δμeff = eiϕs
(vsδλ + λδvs)√

2
. (A.5)

B The code NMSSMCALCEW

We here give a brief introduction into our new code
NMSSMCALCEW that includes the newly calculated and here
presented corrections to the decay widths of the neutral
NMSSM Higgs bosons in the CP-violating NMSSM, as well
as the newly calculated and here presented one-loop correc-
tions to the chargino, neutralino, stop, and sbottom masses. It
is derived from the code NMSSMCALC, which is described in
detail in Ref. [14]. We here concentrate on the new features
in NMSSMCALCEW with respect to NMSSMCALC.

NMSSMCALCEW requires ’LoopTools’ version 2.14 (or
higher) [42,88] to work with the EW corrections in the decay
part. If ’LoopTools’ is not installed yet, it can be obtained
from the url: http://www.feynarts.de/looptools/

In order to generate the executable, download and unpack
the tar file ’nmssmcalcew.tar.gz’. It contains two subdirecto-
ries called ’nmssmcalc_rew_alphat2-master’ and
’nmssmcalc_cew_alphat2-master’ for the real and complex
NMSSM, respectively. Go to the subdirectory of the ver-
sion in which you want to work in. Open in a text editor the
file ’makefile’ and in line 31 provide the absolute path to
the ’LoopTools’ binary directory located in the main direc-
tory of LoopTools. Modify also the line 66 (to make sure
it refers to the correct ’lib’ sub-directory within the ’Loop-
Tools’ binary directory). In case the package is compiled
without the EW corrections in the decay widths, the flag
’yesEW’ can be switched to ’FALSE’ on line 19 and ’Loop-
Tools’ is not needed anymore. Subsequently, all files are com-
piled by typing ’make’. An executable ’run’ is created. By
typing’./run’ the executable is run.

For the code to be run, the user has to provide the input files
for ’CalcMasses.F’ (default name ’inp.dat’) and for bhde-
cay(_c).f (to be named ’bhdecay.in’). The user also has the
choice to provide in the command line the names of the input
and output files for ’CalcMasses.F’ (first and second argu-
ment) and the name of the output file provided by the decay
routine (third argument). Hence the command will be ’run
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name_file1 name_file2 name_file3’ in this case. Sample input
files ’inp.dat’ and ’bhdecay.in’ are included in the .tar files.
By typing ’make clean’ the executable as well as the object
files generated in the ’obj’ directory are removed.

In ’bhdecay.in’ that is used by NMSSMCALCEW, new
options have been included. They are

• ’ischhXX’ to choose the renormalization scheme for the
loop corrected electroweakino masses. The options are 1
(OS1), 2 (OS2) and 3 (DRbar). The two OS schemes are
specified in Sect. 3.1.2.

• ’ischhst’ to choose the renormalization scheme for the
stop sector. The options are 1 (OS NLO-EW, OS NLO-
QCD), 2 (OS NLO-EW, DRbar NLO-QCD), 3 (DRbar
NLO-EW, DRbar NLO-QCD).

• ’ischhsb’ to choose the renormalization scheme for the
sbottom sector. The options are 1 (OS NLO-EW, OS
NLO-QCD), 2 (OS NLO-EW, DRbar NLO-QCD), 3
(DRbar NLO-EW, DRbar NLO-QCD).

• ’iewh’ to choose the levels of NLO SUSY-EW (SUSY-
QCD) corrections that are included. The options are 0
(as in NMSSMCALC 3.00), 1 (decays as implemented in
NMSSMCALC, but with the ZH factor), 2 (full NLO cor-
rections as described in this paper). Both for option 1 and
2, the loop-corrected electroweakino and stop/sbottom
masses are used in the phase space factor.

Further information on the organization of the files for
the code and their functionalities as well as modifications on
the code (which are constantly updated) can be found at the
webpage of NMSSMCALCEW. The code has been tested on a
Linux machine.
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