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Abstract. Quality-driven design decisions are often addressed by us-
ing architectural tactics that are re-usable solution options for certain
quality concerns. Creating traceability links for these tactics is useful
but costly. Automating the creation of these links can help reduce costs
but is challenging as simple structural analyses only yield limited results.
Transfer-learning approaches using language models like BERT are a
recent trend in the field of natural language processing. These approaches
yield state-of-the-art results for tasks like text classification. In this paper,
we experiment with treating detection of architectural tactics in code as a
text classification problem. We present an approach to detect architectural
tactics in code by fine-tuning BERT. A 10-fold cross-validation shows
promising results with an average F1-Score of 90%, which is on a par
with state-of-the-art approaches. We additionally apply our approach on
a case study, where the results of our approach show promising potential
but fall behind the state-of-the-art. Therefore, we discuss our approach
and look at potential reasons as well as downsides and future work.
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1 Introduction

Software traceability provides essential support for software engineering activities
like coverage analysis, impact analysis, compliance verification, or testing. A
problem of software traceability is the expensive creation and maintenance of
traceability links [13]. Automation can reduce costs, but is challenging.

Although, the problem to detect architectural tactics is a special case of
design pattern recognition, it turns out to be more challenging. Unlike design
patterns that tend to be described in terms of classes and their associations [14],
tactics are described in terms of roles and interactions [6]. Therefore, structural
analyses only yield limited results.



Prior work by Mirakhorli et al. present an approach to detect architectural
tactics in code, to trace them to requirements, and to visualize them to properly
display the underlying design decision [23,24]. Their work is based on the premise
that programmers use meaningful terms, e.g., for variables or methods. This is
also a best practice [10] and used in other traceability approaches [3].

Recently, a lot of progress has been made in the domain of natural language
processing (NLP), including text classification, by using (statistical) language
models. Modern language models like the so-called Bidirectional Encoder Rep-
resentations from Transformers (BERT) [11] can be fine-tuned on tasks such
as text classification using so-called transfer learning. Hey et al. state in their
introduction to BERT that fine-tuning (with BERT) for text classification is a
good way to achieve good results with less training data [15]. For example, Ruder
et al. [17] show that their transfer-learning approach could match performance
with approaches that are trained on 100x the data. BERT and similar approaches
are as of late replacing traditional discrete natural language processing pipelines
[32]. However, Tenney et al. show that BERT also learns similar structures to
traditional NLP pipelines.

In this work, we experiment with BERT and with the assumption that code is
a special kind of text that can be used as input for BERT. Therefore, our research
questions are: Do the available pretrained models of BERT understand code?
Can we use language models like BERT and their transfer-learning capabilities
to classify code for the detection of architectural tactics?

Thus, this paper has the following contributions: We present an approach
that uses BERT to classify code that has, to the best of our knowledge, not been
tried before. We evaluate our approach, compare it to others, and discuss results.
Moreover, we discuss the lessons learned, especially benefits and downsides of
using (natural) language models like BERT on code.

Additional details are given in our technical report [19].

2 Related Work

The most relevant related work regarding the detection of architectural tactics
is by Mirakhorli et al. [23,24]. The authors use trained classifiers to detect the
presence of architectural tactics like heartbeat, scheduling and authentication.

Besides that, there is other related work in the context of design pattern
detection (cf. [4,9]). However, the detection of architectural tactics differs as
these describe higher-level problems that can be solved using multiple different
strategies.

Additional related work can be divided into three main areas: documenting
design rationales, reconstructing architectural knowledge, and automated trace-
ability. Documenting design rationales is important and different approaches try
to help in this directions (cf. [5,8,25]). Unfortunately, knowledge about design
decisions and architectures are mostly undocumented in many projects (cf. [16]).
Therefore, researchers like Ducasse and Pollet [12] have developed techniques to
reconstruct architectural knowledge. When documentation is present, approaches



that create traceability links can be used. Our approach, where we want to trace
architectural design patterns, is a special case of automated trace retrieval, similar
to the work by Antoniol et al. [3] and further work.

Additionally, there is some related work about the application of language mod-
els like BERT to different problems like text classification using fine-tuning.Two
examples for such work are Docbert for document classification by Adhikari et
al. [1] and NoRBERT for the classification of requirements [15].

Finally, approaches that are also related to this work are about building
language models for code. In context of code completion and suggestion, we
can find approaches that apply statistical and neural language models such
as recurrent neural networks (RNNs) and N-gram (cf. [21,29]). In addition to
that, further approaches also use transfer learning with code by learning on one
programming language and transfer to another language, e.g., in the context of
detecting code smells (cf. [30]). However, these approaches are bound to a certain
application, thus not as applicable here.

3 Our Approach

We use the BERT language model fine-tuned for multi-class classification to detect
architectural tactics in code. This is based on two assumptions: programmers
tend to program similar functionality similarly and we can treat code like text.
These assumptions are also used in other approaches (cf. [3,10]).

We train the BERT model to classify given input code into architectural
tactics, including a Unrelated class. The inputs are classes and code snippets
that should be classified for architectural tactics. Inputs are pre-processed first
to omit irrelevant or not processable parts, including removal of stop-words as
well as separating compound words that are written in camel case or similar.
Additionally, as BERT only supports a maximum input length of 512 tokens, we
truncate the input. We employ two methods for truncation: The first method is
to simply truncate after the first 512 tokens; the second method removes method
bodies before truncating if there are still more than 512 tokens.

We use the pre-trained uncased base model of BERT and fine-tune it. We
use the the standard procedure (cf. [15]): We feed the pooled output of BERT
into the classification head that consists of a single layers of linear neurons
in a feedforward neural network. The softmax function gives us a probability
distribution for the different outputs.

During training, we use the cross-entropy loss-function to assess the predicted
distribution. Instead of a stochastic gradient descent, we use the so-called AdamW -
optimizer [22]. AdamW usually gives better results in settings like ours.

We configure the parameters in the following way: We choose commonly
used (default) parameters because of promising first empirical evidence. We
use a weight decay of 0.01 and for the exponential decay rates we use a beta1
(first-moment estimates) of 0.9 for beta1 and a beta2 (second-moment estimates)
of 0.999. Additionally we use a training rate of 2e-5 and a batch size of 2 to train



the classification head for our fine-tuning, based on empirical selection as well as
tested parameters for text classification [31]. We perform training for ten epochs.

Our approach currently uses a multi-class, but no multi-label classifier. There-
fore, we can only attach one label for each input. We do not see this as a major
drawback as the case study by Mirakhorli et al. [23] shows that less than 1%
of classes contain more than one architectural tactic. In the future, we plan to
extend our approach to support multiple labels as well.

After fine-tuning, the trained model can be used for classification. Here, we
also propose the usage of a threshold to increase the precision of our approach:
If the highest confidence value of a classification is below the given threshold,
the class is classified as unrelated.

4 Evaluation

One goal of our evaluation is to compare our results with previous results,
especially the results in [23]. We are using the common evaluation metrics
precision, recall, and F1-Score to enable comparisons to the other approaches.
Additionally, we reuse the data set of Mirakhorli et al. [23]. As a results, we are
aiming to detect the following five architectural tactics that are represented in
the available data set (cf. [23]): Audit trail, Authentication, Heartbeat, Resource
Pooling, and Scheduling. For each of these tactics, Mirakhorli et al. identified
open-source projects that implement that tactic and collected tactic-related and
non-tactic-related source files. The data set consists of 50 examples for related
classes and 50 examples for unrelated classes for each architectural tactic. The
data sets are publicly available [26].

We first look at multiple 10-fold cross-validation experiments. We performed
multiple experiments to evaluate different characteristics, all results along with
our code can be found on Zenodo [18].

For the different parameter settings we can conclude the following: Increasing
the amount of epochs or the batch size as well as the threshold is likely to
increase precision but decrease recall. A learning rate of 2e-05 performs best in
our experiments, which confirms the empirical evidence by Sun et al. [31]. We
can also confirm the observation of Keskar et al. [20] that larger batches result
in an inferior ability of the model to generalize. The best configuration with an
F1-Score of 90% in our case is with a learning rate of 2e-05, a batch size of two,
ten epochs of training and a threshold of 0.9 during classification.

Additionally, we also observe that more data, as expected, increases the
performance. However, oversampling and undersampling both do not improve
results. Lastly, the two truncation methods performed similarly, with the simple
truncation (F1: 90%) slightly outperforming the method body truncation (F1:
89%) as the recall drops when truncating method bodies.

Table 1 presents the comparison of our results with the previously reported
results for the approaches (cf. [23]). Overall, our approach performs similar to
others but yields relatively stable results between the different tactics, meaning
the results do not vary as much between tactics compared to the other approaches.



Table 1. 10-fold cross-validation of our approach (BERT) and comparison to approaches
by Mirakhorli et al. [23] using Precision (P), Recall (R), and F1-Score. Reported F1-
Scores with asterisks do not fit to their values for precision and recall.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .96 .46 .62 .85 .78 .81 .85 .85 .85 .88 .88 .88 .85 .85 .85 .94 .91 .92 .84 .92 .88 .89 .89 .89
Authentication .91 .58 .71 .96 .94 .95 .98 .98 .92* 1.0 .92 .96 .98 .98 .94* 1.0 .80 .89 .96 .98 .97 .89 .87 .88

Heartbeat .91 .62 .74 .84 .84 .84 .77 .88 .82 .89 .84 .87 .91 .86 .89 .92 .70 .80 .77 .92 .84 .92 .87 .89
Pooling .97 .66 .79 .94 .96 .95 .94 .96 .95 .94 .94 .94 .98 .96 .97 .94 .96 .95 .92 .98 .95 .97 .93 .95

Scheduler .98 .88 .93 .88 .92 .90 1.0 .98 .99 1.0 .98 .99 1.0 .98 .99 .96 .98 .97 .86 .88 .87 .94 .87 .90

Averages .95 .64 .76 .89 .89 .89 .91 .93 .92 .94 .91 .93 .94 .93 .93 .95 .87 .91 .87 .94 .90 .92 .89 .90

A Friedman non-parametric statistical test indicates (disregarding the non-
competitive SVM) that the difference between the results is not statistically
significant. Therefore, we conclude that these classifiers perform mostly equiva-
lently for the task of tactic detection in our 10-fold cross-validation.

We further apply our trained classifier to a case study to evaluate the perfor-
mance on a large-scale project and to test how well the approach generalizes. We
replicate the case study of Mirakhorli et al. [23] and detect architectural tactics
in the Hadoop Distributed File System (HDFS).

Table 2. Comparative evaluation of previous approaches (cf. [23]) and our approach
(BERT) for detecting architectural tactics in Hadoop using Precision (P), Recall (R),
and F1-Score.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .08 .29 .13 .02 .29 .04 .03 .29 .06 1.0 .29 .44 .03 .29 .06 .04 .50 .07 1.0 .71 .83 .50 .50 .50
Authentication .14 .52 .22 .16 .61 .26 .57 .59 .58 .58 .56 .57 .17 1.0 .30 .15 .37 .21 .61 .70 .66 .29 .71 .41

Heartbeat .07 .11 .09 .31 .59 .41 .22 1.0 .36 .50 1.0 .67 .35 .96 .51 .07 .04 .05 .66 1.0 .79 .45 .73 .56
Pooling .71 .11 .19 .13 .44 .20 .89 .97 .93 .88 1.0 .93 .87 .87 .87 .16 .33 .22 .88 1.0 .93 .89 .39 .54

Scheduler .36 .63 .46 .65 .20 .30 .64 .87 .74 .65 .89 .75 .66 .77 .71 .32 .78 .46 .65 .94 .77 .62 .69 .65

Averages .27 .33 .22 .25 .43 .24 .47 .74 .53 .72 .75 .67 .42 .78 .49 .15 .40 .20 .76 .87 .80 .55 .60 .53

The results are displayed in Table 2 and compared against the results reported
by Mirakhorli et al. [23]. The promising results in the 10-fold cross-validation do
not transfer to this case study and the state-of-the-art outperforms our approach.
However, compared to most other approaches within the paper by Mirakhorli et
al., apart from Bagging and the Tactic Detection approach, our approach still
performs similar or better. In this setting, we come to the conclusion that our
approach is promising, but needs further work to compete with state-of-the-art.

Although unsuccessful, we think these results provide valuable information
and lessons learned. However, we think that our approach is still a valuable
contribution for the community and that it is important to publish our experiences,



a view that we share with others (cf. [28]). The result demonstrates how important
it is to also evaluate on different data and case studies as good cross-validation
results not necessarily transfer to case studies.

5 Discussion

In this section, we want to briefly discuss our results, threats to validity, and
potential future improvements to tackle the downsides of our approach.

We applied and copied commonly used experimental designs to be able to
compare our approach to previous approaches as well as to mitigate potential
risks to construct validity. For reproducibility, we used a randomly selected fixed
(904727489) for the random number generators.

To overcome bias, we reused established data sets. This enables us comparabil-
ity and increases the internal validity. However, this might affect the performance
of our approach. Our data sets, both for training and for evaluation, come from
the same source (cf. [23]), which causes and additional risks and is a threat to
validity. The selection of training data is an important factor as well. Currently,
there seems to be a problem in generalizing from the training data.

Potential issues of our approach are our assumptions that might be wrong. For
example, we detect architectural tactics on a class level like previous approaches.
Furthermore, we assume that we have Java code and developers use expressive,
non-abbreviated variable names that are contained in BERT’s dictionary.

Our approach also needs pre-processing for BERT that can influence the
results (negatively). We tried to be conservative but the selection can still
influence the results in various ways. However, there are some new ideas like the
Longformer [7] approach that might remove input length limitations. We plan to
look into them in future work.

Another risk is that BERT might look at other characteristics of the data
set. Niven and Kao discovered that statistical cues in the (training) data can
influence BERT’s performance heavily [27]. Evaluating approaches on different
case studies might help in such cases and we will look further into this.

We draw the conclusion that code is not quite the same as a common natural
language text. BERT has proven to work well for text classification, but we
showed that code cannot simply be treated like normal text Relations between
the words in the input are different in normal text compared to code. However,
BERT mainly focuses on these relations.

However, there are potential improvements to our idea of using BERT for
code classification. One way is to try to transform code into a textual description
in the pre-processing step with approaches like code2seq [2]. However, imprecise
transformations might influence the outcome negatively (fault propagation).
Another reasonable way is to adapt BERT more to our needs. We would need to
train the language model on code instead of natural language texts. However,
this is still an open research topic, because of differences in semantics.

We still think that transfer learning approaches are useful for tasks like the
detection of architectural tactics. A clear benefit is the capability to train a



task with a rather small data set. However, the underlying approach, e.g., the
language model must be suitable for the kind of input.

6 Conclusion and Future Work

In this paper, we experimented with a transfer-learning approach using the natural
language model BERT to classify if classes implement certain architectural tactics.
We experimented with our hypothesis that BERT can understand code similarly
to text after fine-tuning. We evaluated our approach using 10-fold cross-validation
with promising results. However, the approach could not compete with state-of-
the-are approaches in a case study using Hadoop. Therefore, we discussed our
approach further as we see a lot of potential in transfer-learning approaches.

In future work, we plan to improve our approach to perform better, e.g., by
adaptations to our architecture. Additionally, we want find proper ways to either
train a new language model or fine-tune one using code, so that the language
model is already trained on code, which might boost the performance. We also
plan to experiment with different language models beside BERT. There are
reports of new language models that show better results on standard NLP tasks
as well as new language models that allow longer inputs like Longformer [7].
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8. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing
architectural design decisions. ACM SIGSOFT 31(5), 4 (2006)

9. Chihada, A., Jalili, S., Hasheminejad, S.M.H., Zangooei, M.H.: Source code and
design conformance, design pattern detection from source code by classification
approach. Applied Soft Computing 26, 357–367 (2015)

10. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best
practices for automated traceability. Computer 40(6), 27–35 (June 2007).
https://doi.org/10.1109/MC.2007.195

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: NAACL-HLT (2019).
https://doi.org/10.18653/v1/N19-1423

http://arxiv.org/abs/1904.08398
https://doi.org/10.1109/TSE.2002.1041053
http://arxiv.org/abs/1904.08398
https://doi.org/10.1109/MC.2007.195
https://doi.org/10.18653/v1/N19-1423


12. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented
taxonomy. IEEE TSE 35(4), 573–591 (2009)
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