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Abstract

In�uence of energetically-preferred quadrijunctions on the kinetics of grain growth in tex-

tured two-dimensional duplex-microstructure is investigated in this work. A multiphase-�eld

approach, wherein individual grains are associated with the constituent phases of the microstruc-

ture through appropriate initialisation, is adopted for the present study. Di�erent forms of

anisotropy, phase-dependent and -independent, established by appropriately varying grain bound-

ary energies are considered. While being consistent with the analytical predictions, and existing

studies, the present investigation unravels that, irrespective of the nature of anisotropy, the ki-

netics of the microstructural evolution in duplex polycrystalline system linearly decreases with

increase in the density of quadrijunctions.

Keywords: �adrijunctions, quadruple-junctions, stunted grain growth, concurrent grain
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Polycrystalline microstructures are generally characterised by grain boundaries, the inter-

face separating two grains, and by triple junctions, wherein three grain boundaries meet. While

the misorientation between the adjoining grains dictates the corresponding grain boundary en-

ergy [1], the local con�guration of the triple junction, particularly, the angle between grain

boundaries is governed by their energies [2]. �e ability of the system to reduce its interfa-5

cial energy-density (per unit volume), under appropriate thermodynamical condition, results in
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grain growth. Evolution of a grain, locally, is in�uenced by numerous geometrical and topological

factors including size and face-class [3, 4]. However, di�erences in grain boundary energy e�ect

both the overall evolution of the microstructure, o�en leading to an abnormal growth [5], and the

local arrangement of grains at the triple junctions [6]. In order to introduce anisotropy in grain10

boundary energies, theoretical treatments broadly consider several ‘classes’ of grains, and assign

di�erent energies to the boundaries separating grains of the similar and dissimilar classes [7, 8].

Although such approach is adopted for the ease of incorporating di�erent grain boundary en-

ergies, multiphase polycrystalline systems with chemically-distinct grains inherently render a

suitable setup for incorporating anisotropy in grain boundary energies [9].15

As opposed to a conventional polycrystalline system, wherein grains are chemically iden-

tical, each grain is exclusively associated with one of the constituent phases in a multiphase

microstructure [10, 11]. �erefore, grain growth in a multiphase system is implicitly constrained

to preserve the characteristic phase-fractions. Moreover, while the kinetics of evolution is dic-

tated by the rate of interface migration in regular polycrystalline systems, the di�usion of mass20

governs the grain growth rate in multiphase microstructures [12, 13]. Despite these complexi-

ties, multiphase polycrystalline system o�ers an ideal setup for understanding the in�uence of

anisotropy in grain boundary energies on energy-minimising evolution. Particularly, in a tex-

tured microstructure, wherein the energies of boundary separating grains of a given phase are

almost equal, the anisotropy is primarily associated with the boundaries of chemically-distinct25

grains [14].

E�ect of anisotropy in grain boundary energies is distinct in multiphase systems when com-

pared to regular polycrystalline microstructures. �e constraint pertaining to the phase-fraction

averts the abnormal growth of energetically-favoured grains. However, the di�erences in grain

boundary energies dictate the distribution of grains, and correspondingly, in�uence the over-30

all microstructural evolution. One interesting e�ect of this anisotropy is the formation of the

stable quadruple-junctions or quadrijunctions, where four grains interact [15]. �e stability of

quadrijunctions, its introduction in multiphase polycrystalline system, and its e�ect of mecha-

nism of evolution have been analytically and numerically analysed in microstructures with con-

served [16, 12] and non-conserved phase-fractions [17, 18, 19]. Despite the expanse of these35
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investigations, the in�uence of quadrijunctions on the kinetics of microstructural evolution in

multiphase systems, though experimentally observed [20], is yet to be reported. �erefore, in

this work, multiphase-�eld approach is employed to investigate the e�ect of grain boundary

anisotropy, through the formation of stable quadrijunctions, on the transformation rate of tex-

tured two-dimensional duplex microstructure [21, 22].40

In addition to phase transformation including solid-state evolution [23, 24, 25], phase-�eld

treatment has been involved in analysing energy-minimising curvature-driven morphological

transformations [26, 27]. An e�cient alternate of preserving volume through a bulk contribu-

tion [28, 29], instead of treating phase-�eld as conserved variable [30], is increasingly adopted to

understand volume-preserved microstructural changes. Similar approach in a multiphase-�eld45

framework, which has asymptotically been proven to recover sharp-interface solutions [31], is

employed in the present study [32]. For a comprehensive understanding of the multiphase-�eld

treatment, the readers are directed to Ref [33, 34, 35].

Identical two-dimensional domains with uniform grids of size ∆x=∆y=1.0 and dimension

2048× 2048 is considered for all microstructures in the current analysis. A polycrystalline setup50

is established by Voronoi tessellation, which for given size of the domain renders approximately

10000 grains. Individual grains are associated with the constituent phases by assigning an appro-

priate conserved variable (concentration) and energy-density. Since this study primarily focuses

on understanding the e�ect of anisotropy in grain boundary energy, di�usivity is treated as a

constant (D = 1.0). Moreover, all duplex microstructures considered in the present work com-55

prise of equal volume-fraction of the phases.

In textured duplex-microstructure, the anisotropy in grain boundary energy can be quanti�ed

by two parameters,Eα andEβ , whereEα = γαα

γαβ
andEβ =

γββ
γαβ

[15, 13]. Considering the textured

nature of the system, the energies of boundary separating chemically-similar and -dissimilar

grains are denoted, without complexities, by γαα (or γββ) and γαβ , respectively [14]. �e number60

density of quadrijunctions,Q, formed during the evolution of microstructures with di�erent Eα

(= Eβ) is shown in Fig 1. Duplex microstructures associated with eachE{α,β}, a�er the evolution

reaches a self-similar state, is included in the illustration. �e anisotropy parameters E{α,β} are

varied by �xing the boundary energy of dissimilar grains, and changing γαα and γββ .
3
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Figure 1: Number fraction quadruple-junction,Q, calculated as the ratio of the number of quadri- and total-junctions,

for di�erent anisotropic condition at various non-dimensional timesteps. Microstructures illustrating the distribu-

tion of phase-associated grains for varied anisotropy is included.
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In complete agreement with existing studies [19, 16], Fig. 1 shows that quadrijunctions are65

almost non-existent in isotropic condition characterised by γαα = γββ = γαβ = 1. However, no-

ticeable amount of Q is formed in system with E{α,β} = 1.22 and 1.32, which seemingly contra-

dicts the analytical claim that stable quadrijunctions are formed only when E{α,β} ≥
√

2 [15].

A previous study, wherein quadruple-junctions were observed in polycrystalline system with

E{α,β} <
√

2, a�ributes the deviation from the criterion to the limitation of the analytical70

treatment [14]. Although this argument is apparently convincing, it should be noted that ex-

perimental observations [20, 36, 37], and theoretical studies [38, 16], unravel the formation of

quadrijunctions during disappearance of four face-class grains, irrespective of E{α,β}. Despite

their dissociation into two triple points, the rate of the dissociation is in�uenced by several fac-

tors, and o�en sluggish in multiphase anisotropic systems [39, 40]. �erefore, in a given timestep,75

these ‘transitory’ , and more importantly, unstable quadrijunctions appear as stable. Owing to

the lack of a clear distinction between the transitory and stable quadrijunctions, it is inaccurate

to claim that all the observed quadrijunctions are stable at any moment of grain growth. Fur-

thermore, based on the progressive decrease in Q for E{α,β} = 1.32 in Fig. 1, it can be suggested

that the corresponding quadrijunctions are largely transitory in nature.80

In�uence of grain-boundary energy anisotropy on the distribution of the phase-associated

grains is evident in Fig. 1. Since grain boundary energies, irrespective of the chemical make-up

of grains, are equal in isotropic condition, the distribution is apparently random. However, as

the anisotropy is introduced by relatively increasing γαα and γββ in relation to γαβ , clusters of

chemically-similar grains are averted, and boundaries of dissimilar grains are preferred. More-85

over, with increase in number-density of quadrijunctions, the dominant face-class shi� from

6 to 4 in accordance with Euler-Poincare rule, and ‘checker-board’ like distribution is estab-

lished [19, 38].

�e kinetics of the microstructural evolution in the duplex microstructures is analysed by

monitoring the temporal change in average grain size, R(t). Fig. 2 shows the progressive in-90

crease in average grain size of di�erent two-phase microstructures distinguished by the degree

of phase-independent grain-boundary energy anisotropy, Eα (= Eβ). Evidently, with increase

in the anisotropy E{α,β}, the kinetics of evolution decreases. Despite the lowering of the growth
5
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Figure 2: Change in the average grain size of duplex microstructures with time, under various degree of phase-

independent anisotropy in grain boundary energy (Eα = Eβ).

rate, as shown in Fig. 2, all microstructural transformations adhere to the growth law with ex-

ponent m ≈ 3. �is similarity in the exponent, irrespective of the di�erences in the anisotropy,95

indicates the dominant mechanism of di�usion governed grain-growth [12].

In Fig. 2, except for isotropic systems (E{α,β} = 1.0), all other duplex microstructures, as

indicated in Fig. 1, comprise of considerable amount of quadrijunctions. Moreover, in the poly-

crystalline setup with E{α,β} = 2.1, all junctions are almost exclusively quadruple-points [13].

Initial works investigating the in�uence of quadrijunctions on grain growth suggested that these100

junctions are sessile, and consequently, freeze the evolution [19]. However, subsequent theo-

retical [18, 13] and experimental studies [20, 41] have contradicted this claim, and shown that

microstructures continue to evolve despite the predominant presence of quadrijunctions. Con-

sistent with these observations, Fig. 2 shows that the duplex microstructures actively transform

despite the presence of signi�cant amount of quadruple-junctions.105

Based on Fig. 2, which suggests that the transformation kinetics is in�uenced by the number-

density of quadrijunctions,Q, e�ect of degree of anisotropy onQ and the rate of microstructural
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Figure 3: a) Increase in the fraction of quadrijunctions, and consequent decrease in the kinetics of grain growth,

with raise in the degree of anisotropy Eα (= Eβ). �e slope of the ��ing lines are denoted by p{1, 2, 3} and

q{1, 2, 3}. b) In�uence of unequal degree of anisotropyEα 6= Eβ on the quadrijunction number-density and kinetics

of microstructural evolution.

evolution is cumulatively plo�ed in Fig. 3a. Since grain growth in all duplex microstructures

exhibit a constant exponent, the disparity in the kinetics is explicated by the coe�cient k. �e

illustration in Fig. 3a is distinguished into three section in accordance with the analytical rela-110

tions [15]. First section, characterised by E{α,β} <
√

2, pertains to the anisotropic condition

wherein quadrijunctions are supposedly unstable, and in third section, which is demarcated by

E{α,β} >
√

3, triple junctions of chemically-identical grains are not energetically favoured.

When E{α,β} <
√

2, although a noticeable density of quadrijunctions is only observed for

anisotropy close to
√

2, the kinetics visibly decreases [14]. �e reduction in the transformation115

rate is more pronounced in second section sandwich between
√

2 > E{α,β} >
√

3, wherein

the number-density of quadrijunctions proportionately increase with the anisotropy. Moreover,

Fig. 3a shows that the diminishing of the growth rate beyond the second section, E{α,β} >
√

3,

does not correspond to the considerable increase in quadrijunctions. In other words, when the

duplex microstructure consists of a combination of triple- and quadruple-junctions, the transfor-120

mation kinetics is highly sensitive toQ. While the evolution is predominantly dictated by stable

quadrijunctions, the e�ect of Q on the growth rate is reduced. �is behaviour can primarily be

a�ributed to the varying stability of the junctions under di�erent anisotropic conditions [15, 13].
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Figure 4: Change in the kinetic coe�cient of evolving duplex microstructures with increase in the number-density

of quadruple-junctions.
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In order to investigate the e�ect of phase-dependent anisotropic condition, temporal evolu-

tion of duplex microstructures with Eα 6= Eβ is a analysed. �e inequality in the energy-ratios125

is achieved by �xing Eα = 1.0, while correspondingly varying Eβ . Similar to Fig. 3a, the change

in the transformation rate and number-density of quadruple-junction with increase in unequal

energy-ratios (Eα 6= Eβ) is plo�ed in Fig. 3b. �e overall in�uence of the unequal energy-

ratios on the evolution of duplex microstructure is comparable to the e�ect of phase-independent

anisotropy Eα (= Eβ). In other words, Fig. 3b unravels three sections with each exhibiting a130

characteristic change in Q and kinetic coe�cient, k. While there is only a marginal change in

kinetics and number-density of quadrijunctions in �rst section, the e�ect of anisotropy is highly

signi�cant in second section. In third section, analogous to Fig. 3a, the in�uence of anisotropic

grain-boundary energy is rather minimised.

In conclusion, the e�ect of quadruple-junction on grain growth rate of duplex microstructures135

is directly examined by plo�ing its number-density against the kinetic coe�cient k in Fig. 4. �e

in�uence of phase-dependent and -independent anisotropic conditions, though distinguished,

are collectively illustrated. Fig. 4 shows that, irrespective of the nature of grain-boundary energy

anisotropy, Eα = Eβ or Eα 6= Eβ , with increase in the density of quadrijunctions, the kinetics

of evolution in duplex microstructure decreases proportionately in a linear fashion.140

A�empts are currently being made to extend the present analysis to three-dimensional mul-

tiphase microstructures with particular aim to understand the distribution and kinetics of evo-

lution.
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