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Abstract

Influence of energetically-preferred quadrijunctions on the kinetics of grain growth in tex-
tured two-dimensional duplex-microstructure is investigated in this work. A multiphase-field
approach, wherein individual grains are associated with the constituent phases of the microstruc-
ture through appropriate initialisation, is adopted for the present study. Different forms of
anisotropy, phase-dependent and -independent, established by appropriately varying grain bound-
ary energies are considered. While being consistent with the analytical predictions, and existing
studies, the present investigation unravels that, irrespective of the nature of anisotropy, the ki-
netics of the microstructural evolution in duplex polycrystalline system linearly decreases with
increase in the density of quadrijunctions.
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Polycrystalline microstructures are generally characterised by grain boundaries, the inter-
face separating two grains, and by triple junctions, wherein three grain boundaries meet. While
the misorientation between the adjoining grains dictates the corresponding grain boundary en-
ergy [1l], the local configuration of the triple junction, particularly, the angle between grain

s boundaries is governed by their energies [2]. The ability of the system to reduce its interfa-

cial energy-density (per unit volume), under appropriate thermodynamical condition, results in
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grain growth. Evolution of a grain, locally, is influenced by numerous geometrical and topological
factors including size and face-class [3|4]]. However, differences in grain boundary energy effect
both the overall evolution of the microstructure, often leading to an abnormal growth [5], and the
local arrangement of grains at the triple junctions [6]. In order to introduce anisotropy in grain
boundary energies, theoretical treatments broadly consider several ‘classes’ of grains, and assign
different energies to the boundaries separating grains of the similar and dissimilar classes [[7, [8]].
Although such approach is adopted for the ease of incorporating different grain boundary en-
ergies, multiphase polycrystalline systems with chemically-distinct grains inherently render a
suitable setup for incorporating anisotropy in grain boundary energies [9].

As opposed to a conventional polycrystalline system, wherein grains are chemically iden-
tical, each grain is exclusively associated with one of the constituent phases in a multiphase
microstructure [10} [1T]]. Therefore, grain growth in a multiphase system is implicitly constrained
to preserve the characteristic phase-fractions. Moreover, while the kinetics of evolution is dic-
tated by the rate of interface migration in regular polycrystalline systems, the diffusion of mass
governs the grain growth rate in multiphase microstructures [12} [13]]. Despite these complexi-
ties, multiphase polycrystalline system offers an ideal setup for understanding the influence of
anisotropy in grain boundary energies on energy-minimising evolution. Particularly, in a tex-
tured microstructure, wherein the energies of boundary separating grains of a given phase are
almost equal, the anisotropy is primarily associated with the boundaries of chemically-distinct
grains [[14].

Effect of anisotropy in grain boundary energies is distinct in multiphase systems when com-
pared to regular polycrystalline microstructures. The constraint pertaining to the phase-fraction
averts the abnormal growth of energetically-favoured grains. However, the differences in grain
boundary energies dictate the distribution of grains, and correspondingly, influence the over-
all microstructural evolution. One interesting effect of this anisotropy is the formation of the
stable quadruple-junctions or quadrijunctions, where four grains interact [15]. The stability of
quadrijunctions, its introduction in multiphase polycrystalline system, and its effect of mecha-
nism of evolution have been analytically and numerically analysed in microstructures with con-

served [[16, [12] and non-conserved phase-fractions [17, [18, 19]. Despite the expanse of these
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investigations, the influence of quadrijunctions on the kinetics of microstructural evolution in
multiphase systems, though experimentally observed [20], is yet to be reported. Therefore, in
this work, multiphase-field approach is employed to investigate the effect of grain boundary
anisotropy, through the formation of stable quadrijunctions, on the transformation rate of tex-
tured two-dimensional duplex microstructure [21} 22].

In addition to phase transformation including solid-state evolution [23] 24} [25]], phase-field
treatment has been involved in analysing energy-minimising curvature-driven morphological
transformations [26, 27]. An efficient alternate of preserving volume through a bulk contribu-
tion [28,[29], instead of treating phase-field as conserved variable [30], is increasingly adopted to
understand volume-preserved microstructural changes. Similar approach in a multiphase-field
framework, which has asymptotically been proven to recover sharp-interface solutions [31]], is
employed in the present study [32]]. For a comprehensive understanding of the multiphase-field
treatment, the readers are directed to Ref [33] 34} 35]].

Identical two-dimensional domains with uniform grids of size Ax=Ay=1.0 and dimension
2048 x 2048 is considered for all microstructures in the current analysis. A polycrystalline setup
is established by Voronoi tessellation, which for given size of the domain renders approximately
10000 grains. Individual grains are associated with the constituent phases by assigning an appro-
priate conserved variable (concentration) and energy-density. Since this study primarily focuses
on understanding the effect of anisotropy in grain boundary energy, diffusivity is treated as a
constant (D = 1.0). Moreover, all duplex microstructures considered in the present work com-
prise of equal volume-fraction of the phases.

In textured duplex-microstructure, the anisotropy in grain boundary energy can be quantified

by two parameters, F, and E3, where F, = Y/LZ and By = zi [15,[13]]. Considering the textured

ap
nature of the system, the energies of boundary separating chemically-similar and -dissimilar
grains are denoted, without complexities, by 7, (or 7s3) and .z, respectively [14]. The number
density of quadrijunctions, Q, formed during the evolution of microstructures with different £,
(= Ej) is shown in Fig[1] Duplex microstructures associated with each E, s;, after the evolution

reaches a self-similar state, is included in the illustration. The anisotropy parameters Fy, 3} are

varied by fixing the boundary energy of dissimilar grains, and changing 7., and 3.
3
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Figure 1: Number fraction quadruple-junction, Q, calculated as the ratio of the number of quadri- and total-junctions,

for different anisotropic condition at various non-dimensional timesteps. Microstructures illustrating the distribu-

associated grains for varied anisotropy is included.

tion of phase-
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In complete agreement with existing studies [19, 16], Fig. |1/ shows that quadrijunctions are
almost non-existent in isotropic condition characterised by 7, = Vg3 = 7as = 1. However, no-
ticeable amount of Q is formed in system with E, g, = 1.22 and 1.32, which seemingly contra-
dicts the analytical claim that stable quadrijunctions are formed only when Ey, 5 > V2 [15].
A previous study, wherein quadruple-junctions were observed in polycrystalline system with
FErapy < V2, attributes the deviation from the criterion to the limitation of the analytical
treatment [[14]. Although this argument is apparently convincing, it should be noted that ex-
perimental observations [20, 36, [37], and theoretical studies [38, [16]], unravel the formation of
quadrijunctions during disappearance of four face-class grains, irrespective of I, . Despite
their dissociation into two triple points, the rate of the dissociation is influenced by several fac-
tors, and often sluggish in multiphase anisotropic systems [39,/40]. Therefore, in a given timestep,
these ‘transitory’, and more importantly, unstable quadrijunctions appear as stable. Owing to
the lack of a clear distinction between the transitory and stable quadrijunctions, it is inaccurate
to claim that all the observed quadrijunctions are stable at any moment of grain growth. Fur-
thermore, based on the progressive decrease in Q for Iy, gy = 1.32 in Fig. |1} it can be suggested
that the corresponding quadrijunctions are largely transitory in nature.

Influence of grain-boundary energy anisotropy on the distribution of the phase-associated
grains is evident in Fig. 1| Since grain boundary energies, irrespective of the chemical make-up
of grains, are equal in isotropic condition, the distribution is apparently random. However, as
the anisotropy is introduced by relatively increasing v,, and 3z in relation to 7,3, clusters of
chemically-similar grains are averted, and boundaries of dissimilar grains are preferred. More-
over, with increase in number-density of quadrijunctions, the dominant face-class shift from
6 to 4 in accordance with Euler-Poincare rule, and ‘checker-board’like distribution is estab-
lished [[19} 38]].

The kinetics of the microstructural evolution in the duplex microstructures is analysed by
monitoring the temporal change in average grain size, R(t). Fig.[2| shows the progressive in-
crease in average grain size of different two-phase microstructures distinguished by the degree
of phase-independent grain-boundary energy anisotropy, E, (= Ej). Evidently, with increase

in the anisotropy FEy, g}, the kinetics of evolution decreases. Despite the lowering of the growth
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Figure 2: Change in the average grain size of duplex microstructures with time, under various degree of phase-

independent anisotropy in grain boundary energy (E, = Ej).

rate, as shown in Fig. [2| all microstructural transformations adhere to the growth law with ex-
ponent m ~ 3. This similarity in the exponent, irrespective of the differences in the anisotropy,
indicates the dominant mechanism of diffusion governed grain-growth [12].

In Fig. [2, except for isotropic systems (Ey, g = 1.0), all other duplex microstructures, as
indicated in Fig. |1} comprise of considerable amount of quadrijunctions. Moreover, in the poly-
crystalline setup with Fy, g = 2.1, all junctions are almost exclusively quadruple-points [13]].
Initial works investigating the influence of quadrijunctions on grain growth suggested that these
junctions are sessile, and consequently, freeze the evolution [19]. However, subsequent theo-
retical [[18] 13] and experimental studies [20} 41]] have contradicted this claim, and shown that
microstructures continue to evolve despite the predominant presence of quadrijunctions. Con-
sistent with these observations, Fig. [2| shows that the duplex microstructures actively transform
despite the presence of significant amount of quadruple-junctions.

Based on Fig.[2| which suggests that the transformation kinetics is influenced by the number-

density of quadrijunctions, Q, effect of degree of anisotropy on Q and the rate of microstructural
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Figure 3: a) Increase in the fraction of quadrijunctions, and consequent decrease in the kinetics of grain growth,
with raise in the degree of anisotropy E, (= Ejg). The slope of the fitting lines are denoted by p{1,2,3} and
¢{1,2, 3}. b) Influence of unequal degree of anisotropy E,, # E3 on the quadrijunction number-density and kinetics

of microstructural evolution.

evolution is cumulatively plotted in Fig. [3a. Since grain growth in all duplex microstructures
exhibit a constant exponent, the disparity in the kinetics is explicated by the coefficient k. The
illustration in Fig. [3a is distinguished into three section in accordance with the analytical rela-
tions [15]. First section, characterised by Ey, g < V2, pertains to the anisotropic condition
wherein quadrijunctions are supposedly unstable, and in third section, which is demarcated by
Eiap > \/3, triple junctions of chemically-identical grains are not energetically favoured.
When Ey, 5 < V/2, although a noticeable density of quadrijunctions is only observed for
anisotropy close to v/2, the kinetics visibly decreases [14]. The reduction in the transformation
rate is more pronounced in second section sandwich between V2 > Eiap > /3, wherein
the number-density of quadrijunctions proportionately increase with the anisotropy. Moreover,
Fig.|3a shows that the diminishing of the growth rate beyond the second section, Fy, 3 > V3,
does not correspond to the considerable increase in quadrijunctions. In other words, when the
duplex microstructure consists of a combination of triple- and quadruple-junctions, the transfor-
mation kinetics is highly sensitive to Q. While the evolution is predominantly dictated by stable
quadrijunctions, the effect of Q on the growth rate is reduced. This behaviour can primarily be

attributed to the varying stability of the junctions under different anisotropic conditions [15}[13]].
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Figure 4: Change in the kinetic coefficient of evolving duplex microstructures with increase in the number-density

of quadruple-junctions.
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In order to investigate the effect of phase-dependent anisotropic condition, temporal evolu-
tion of duplex microstructures with £, # Ejs is a analysed. The inequality in the energy-ratios
is achieved by fixing £, = 1.0, while correspondingly varying Ej. Similar to Fig.[3p, the change
in the transformation rate and number-density of quadruple-junction with increase in unequal
energy-ratios (E, # Ep) is plotted in Fig. Bp. The overall influence of the unequal energy-
ratios on the evolution of duplex microstructure is comparable to the effect of phase-independent
anisotropy £, (= Ej). In other words, Fig. [3p unravels three sections with each exhibiting a
characteristic change in Q and kinetic coefficient, £&. While there is only a marginal change in
kinetics and number-density of quadrijunctions in first section, the effect of anisotropy is highly
significant in second section. In third section, analogous to Fig. [3a, the influence of anisotropic
grain-boundary energy is rather minimised.

In conclusion, the effect of quadruple-junction on grain growth rate of duplex microstructures
is directly examined by plotting its number-density against the kinetic coefficient £ in Fig.[4] The
influence of phase-dependent and -independent anisotropic conditions, though distinguished,
are collectively illustrated. Fig.[4{shows that, irrespective of the nature of grain-boundary energy
anisotropy, E, = Eg or E, # Ejs, with increase in the density of quadrijunctions, the kinetics
of evolution in duplex microstructure decreases proportionately in a linear fashion.

Attempts are currently being made to extend the present analysis to three-dimensional mul-
tiphase microstructures with particular aim to understand the distribution and kinetics of evo-

lution.
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