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Abstract

Phase-�eld modelling of microstructural evolution in polycrystalline systems with phase-

associated grains has largely been con�ned to continuum-�eld models. In this study, a multiphase-

�eld approach, with a provision for introducing grain boundary and interphase di�usion, is ex-

tended to analyse concurrent grain growth and coarsening in multicomponent polycrystalline

microstructures with chemically-distinct grains. �e e�ect of the number of phases and com-

ponents on the kinetics of evolution is investigated by considering binary and ternary systems

of duplex and triplex microstructures, along with a single phase system. It is realised that the

mere increase in the number of phases minimises the rate of concurrent grain growth and coars-

ening. However, the e�ect of components is substantially dependent on the respective kinetic

coe�cients. �is work unravels that the disparity in the in�uence of phases and components is

primarily due to the corresponding change introduced in the transformation mechanism. While

the raise in number of phases convolutes the di�usion paths, the increase in number of compo-

nent e�ects the rate of evolution through the interdi�usion, which introduces interdependency

in the di�using chemical-species. Additionally, the role of phase-fractions on the transforma-

tion rate of triplex microstructure is studied, and correspondingly, the interplay of interface-

and di�usion-governed evolution is elucidated. A representative evolution of three-dimensional

triplex microstructure with equal phase-fraction is comparatively analysed with the evolution of

corresponding two-dimensional setup.
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1. Introduction

A microstructure generally comprises of phases which are chemically and (/or) structurally

di�erent from one another. O�en, in highly-applicable materials, the crystallographic orienta-

tion of these phases locally vary. Although a similar crystallographic relation prevails amongst

the phases, the overall disparity in the orientation facilitates the cognisance of grains. In other5

words, a grain represents a section of a polycrystalline microstructure wherein the phases collec-

tively exhibit an identical orientation. �e di�erence in the directional alignment of the phases

across the grains introduces grain boundaries. �e energy density of a grain boundary is dictated

by the degree of mis-orientation between the corresponding grains [1]. Since a de�nite energy

is associated with every grain boundary, under suitable thermodynamic condition, a microstruc-10

ture evolves to reduce the overall energy by minimising the boundary area. �is evolution is

commonly perceived as grain growth.

In a conventional polycrystalline material, each grain individually represents the entire mi-

crostructure by encompassing all the constituent phases in exact proportion. �erefore, despite

the di�erence in the orientation, the grains are chemically identical. Under such condition, grain15

growth primarily involves interface migration, as the phase-fraction is independently preserved

in each grains. �is seemingly direct mechanism of grain growth gets convoluted when the

grains are no longer chemically identical [2, 3]. Particularly, since a simple interface migration

would disturb the characteristic phase-fraction of the microstructure.

1.1. Multiphase polycrystalline materials20

In certain multiphase polycrystalline system, grains are chemically distinct, and are exclu-

sively associated with one of the constituent phases [4, 5]. For instance, a duplex microstruc-

ture of phase-α and -β, wherein a grain belongs to either one of the two phases [6, 7]. �ese
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phase-associated grains are increasingly reported to improve the applicability of a material by

enhancing its properties. In ceramic composites, predominantly involving alumina, it is identi�ed25

that the chemically distinct grains signi�cantly improve the mechanical properties by increas-

ing the crack resistance through localised bridging [8]. Furthermore, a desired combination of

toughness, ductility and hardness is achieved in steels for automotive applications through the

microstructure with grains exclusively associated with a constituent phase [9, 10]. Due to the

increasing prominence of the multiphase polycrystalline materials in wide range of applications,30

these systems are extensively analysed to enhance the current understanding of its microstruc-

tural evolution.

In multiphase polycrystalline system, wherein the grains are exclusively associated with in-

dividual phases, a regular grain growth dictated by grain volume, number of neighbours, and

other related factors, invariably results in a non-physical phase-change. Particularly, when a35

grain, favoured by its geometrical and topological features, grows at the expense of a neighbour-

ing grain of di�erent chemical feature (phase), the de�nite phase-fraction of the microstructures

gets altered. �erefore, the seemingly direct mechanism of grain growth signi�cantly changes to

avert any deviation from the original phase-fraction [11]. In other words, while a grain of a given

phase-α disappears in-keeping with the regular grain growth, the volume of an another preferred40

α-grain correspondingly increases to ensure the overall volume-fraction of the phase remains

conserved. �is unique evolution, therefore, re�ects grain growth and coarsening through the

decrease in the number of grains, and unchanged phase-fraction, respectively. Accordingly, in

addition to the interface migration, grain growth in the multiphase polycrystalline material is

governed by the e�cient mass transfer which ensures the time-invariant volume fractions of the45

constituent phases. In the present work, this concurrent grain growth and coarsening exhib-

ited by the duplex and triplex microstructures of binary and ternary system are comparatively

analysed.

1.2. Phase-�eld modelling

Since a microstructural evolution involves temporal change in the arrangement of the phases,50

an exhaustive investigation includes periodic observation of the evolving microstructure [12, 13].
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Moreover, owing to the complex distribution of the phases, three-dimensional projections of the

microstructures are employed to delineate the observed evolution [14, 15]. �ese conventional

experimental analyses are extremely arduous, and expensive. Particularly, rather sluggish kinet-

ics of the curvature-driven transformations, like grain growth and coarsening, compounds the55

di�culties of the experimental investigations. �erefore, theoretical treatments are o�en adopted

as an e�cient alternate for complementing and explicating the observed microstructural changes.

Numerous techniques have been postulated to model microstructural changes [16, 17, 18]. Of

these di�erent techniques, phase-�eld approach is increasingly involved in modelling complex

microstructural changes in both two- and three-dimensions [19, 20, 21].60

A microstructural evolution is theoretically realised by the temporal change in the position

of the interface. �erefore, modelling evolution of complex microstructure demands a highly

sophisticated formulation, which substantially convolutes the technique. Phase-�eld approach

averts such complications by shi�ing the focus from the position of the interface, and captur-

ing the transformation through the spatio-temporal change in the newly introduced scalar vari-65

able called phase-�eld (or order parameter). By relaxing the need for tracking the interface, this

tool adheres to a more elegant framework, which is conveniently extended to encompass dif-

ferent aspects of a given transformation [22, 23]. Due to its convincing formulation, and the

ability to recover analytical (sharp-interface) solutions and physical laws, phase-�eld approach

has widely been adopted to model microstructural changes including solidi�cation [24, 25] and70

solid-state phase transformation [26, 27]. Furthermore, since this technique coherently captures

the in�uences of curvature, grain growth [28, 29] and other morphological changes ensuing a

microstructure in chemical equilibrium are analysed through the phase-�eld approach [30, 31].

Correspondingly, the phase-�eld models have been employed to examine microstructural evolu-

tion in multiphase polycrystalline systems [32, 33, 34]. Despite the extensive analyses in these75

works, the underpinning numerical treatments follow a de�nite framework, which deviate from

technique adopted in present investigation. In order to elucidate the subtle di�erences in the

current modelling approach, existing formulations are concisely discussed.
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1.2.1. Continuum-�eld model

Initial a�empts to model microstructural evolution in multiphase polycrystalline system con-

sider a two-phase setup, wherein the individual grains are distinguished through a de�nite order

parameter [32, 35, 36, 37]. �e two-phase polycrystalline system is described by the spatially-

di�ering scalar variables {(ηα1 (x), ηα2 (x), · · · , ηαqα(x)), (ηβ1 (x), ηβ2 (x), · · · , ηβqβ(x)), c(x)}. �e

superscript of the order parameter, ηαi and ηβj , represents the phases, while the subscript is used to

distinguish the phases. A continuous variable representing the concentration, c(x), is appended

to impose the di�use-governed evolution of the phases. Based on these scalar variables, and

their corresponding spatial changes, the energy-density of the two-phase polycrystalline system

of volume V is expressed as a functional,

F (ηαi , η
β
i ,∇ηαi ,∇ηβi , c) =

∫
V

dV

[
f0(ηαi , η

β
i , c) + kc|∇c|2 +

qα∑
i=1

kαi |∇ηαi |2

+

qβ∑
i=1

kβi |∇ηβi |2
]

where i ∈ {1, 2, · · · , qα,β}.
(1)

�is formulation includes gradient of the concentration , ∇c, and phase-associated order param-

eters, ∇ηαi and ∇ηβi . �e phenomenological constant are represented by kc, kαi and kβi . First

term of the right side of the functional in Eqn. (1) is wri�en as

f0(ηαi , η
β
i , c) = fch(c, cαeq, c

β
eq) + fα(c, cβeq, η

α
i ) (2)

+ fβ(c, cαeq, η
β
i ) + fαβ(ηαi , η

β
i ),

where fch(c, cαeq, c
β
eq) is the energy contribution based on the concentration which is wri�en as a80

Landau polynomial, and includes the equilibrium compositions of phase-α and -β, cαeq and cβeq),

respectively. �e equilibrium concentrations are constants and vary with the chemical makeup

of the system. While the terms fα(c, cβeq, η
α
i ) and fβ(c, cαeq, η

β
i ) couple the order parameters with

the continuous concentration, fαβ(ηαi , η
β
i ) in Eqn. (2) accounts for the order parameters in the

interface separating the grain-i of phase-α and -β.85

Subsequent work extends the non-gradient term f0(ηαi , η
β
i , c) in Eqn. (1) as

f0(ηαi , η
α
j , η

β
i , η

β
j , c) = fch(c, cαeq, c

β
eq) + fα(c, cαeq, c

β
eq, η

α
i ) (3)

+ fβ(c, cαeq, c
β
eq, η

β
i ) + fαα(ηαi , η

α
j ) + fββ(ηβi , η

β
j ) + fαβ(ηαi , η

β
i ),
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and include equilibrium composition of the both the phases in the terms coupling the order pa-

rameter with the concentration [33]. Furthermore, interfaces between the grains of the identical

phases are explicitly formulated through fαα(ηαi , η
α
j ) and fββ(ηβi , η

β
j ), along with the existing

treatment of the chemically dissimilar grains. �is extended formulation of f0(ηαi , η
β
i , c) obvi-

ates the need for the inclusion of concentration gradient in the functional, and consequently, the

overall energy density of the system is expressed as

F (ηαi , η
β
i ,∇ηαi ,∇ηβi , c) =

∫
V

dV

[
f0(ηαi , η

β
i , c) +

qα∑
i=1

kαi |∇ηαi |2 +

qβ∑
i=1

kβi |∇ηβi |2
]
. (4)

Despite the e�cient formulation of the energy functional, it is vital to realise that the continuous

concentration is directly coupled to the order parameter in both Eqns. (2) and (3).

Recent works report on numerical treatment of systems with more than two phases and one

independent concentration [34, 38, 39]. �e extended energy-functional, which encompasses a

system N phases and k chemical species, is wri�en as

F (ηαi , η
β
i , · · · , ηNi ,∇ηαi ,∇ηβi , · · · ,∇ηNi , c) =

∫
V

dV
[
fch(ηαi , η

β
i , · · · , ηNi , c)

+fpot(η
α
i , η

β
i , · · · , ηNi ) + fgr(∇ηαi ,∇ηβi , · · · ,∇ηNi )

]
.

(5)

Despite the similarity in the interpretation of the scalar variables, as opposed to the aforemen-

tioned techniques, this approach introduces a de�nite interpolation function to de�ne the concentration-

based contribution, fch(ηαi , η
β
i , · · · , ηNi , c), and simultaneously couple the concentration with or-90

der parameter [40]. Particularly, the Landau polynomial based on the continuous concentration is

replaced by an approximation of the free-energy density. �is formulation of the concentration-

based contribution, in relation to the present treatment, will be discussed a�er delineating the

adopted model.

Irrespective of the disparities in the description of the various energy contributions, the sys-

tem is allowed to evolve towards a phenomenological decrease in the overall energy-density.

Correspondingly, in all the aforementioned techniques, the temporal evolution of the order pa-
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rameter is expressed as

∂ηαi
∂t

= −L
[
δF

δηαi

]
, (6)

where L governs the mobility of the evolving variable. Since the concentration fundamentally

di�ers from the non-conserved order parameter, its evolution is reads

∂ci
∂t

= ∇ ·
[

N∑
α

k−1∑
i=1

Mα
i ∇

δF

δci

]
. (7)

�e combined evolution of order parameter and concentration renders a microstructural trans-95

formation which includes the aspects of both grain growth and coarsening. In other words, while

the evolution of order parameters in Eqn. (6) accounts for grain growth, the volume fractions of

the evolving phases are preserved by the concentration.

All the techniques discussed in this section, treat the order parameter as an independent

variable with limited physical a�ribution. Numerical approaches with such treatment of the100

order parameters are generally referred to as continuum-�eld models [41].

1.3. Plausible multiphase-�eld approach

Multiphase-�eld model, as opposed to continuum-�eld approach, consider its corresponding

scalar variable, called phase-�eld, to represent local volume-fraction of a grain (phase) [42]. �is

consideration imposes a constraint that, in a given position, the sum of all phase-�eld should105

be equal to one. �e interpretation of the associated scalar variables is the primary di�erence

between the continuum-�eld and multiphase-�eld model [43]. �e consequence of the physical

a�ributes to phase-�eld will be elucidated once the model is introduced.

Phase-�eld techniques hitherto adopted to analyse microstructural evolution of multiphase

polycrystalline systems have predominantly been con�ned continuum-�eld model. However,110

based on the existing works wherein multiphase-�eld approach has been adopted to address

similar microstructural changes, a formulation to model microstructural changes in a system

of N phases can be conceived [44, 45, 46]. �is possible multiphase-�eld treatment is brie�y

discussed in this section in order to explicate its di�erence from the present framework.
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A system of N phases, in a multiphase-�eld approach, is de�ned by appropriate scalar vari-

ables, which are conventionally wri�en as a tuple,

φ = {φ1, φ2, . . . , φN} . (8)

Such representation is deemed permissible due to the interdependency between phase-�elds im-

posed by the physical a�ribution. �e N -tuple representation, as in Eqn. (8), is however in suf-

�cient to describe a system wherein numerous grains are associated with each of the phases.

Accordingly, the general consideration of phase-�eld should be extended as

φ =
{
{φ1

α, φ
2
α . . . φ

qα
α }︸ ︷︷ ︸

φα

, {φ1
β, φ

2
β . . . φ

qβ
β }︸ ︷︷ ︸

φβ

. . . {φ1
N , φ

2
N . . . φ

qN
N }︸ ︷︷ ︸

φN

}
, (9)

where number of grains in each phase is denoted by qΘ with Θ ∈ {α, β · · ·N}. �e coarsening

aspect of the microstructural transformation which ensures the volume-fraction of the phases

are unchanged is incorporated by introducing an additional non-conserved scalar variable, ρΘ.

While φiα represents the volume fraction of grain-i of phase-α, the volume fraction of the entire

phase in the microstructure is assumed to be accounted by ρα. �e newly introduced variable,

akin to phase-�eld, is expressed as

ρ =
{
ρα, ρβ · · · ρN

}
, (10)

where ρΘ assumes a de�nite value in a phase irrespective of the di�erences in grains.115

�e overall energy functional of the system, in this multiphase-�eld framework, is expressed

as

F (φ,ρ,∇φ,∇ρ) =

∫
V

dV
[
f0(φ,ρ) + fφ(∇φ) + fρ(∇ρ)

]
, (11)

wherein along with phase-�eld, the gradient in the coarsening variable, ρ, is appended. Owing

to the nature of these scalar variables, their corresponding temporal evolution is formulated as

τ
∂φiα
∂t

= −
[
δF

δφiα
+ λ

]
, (12)

and

∂ρα

∂t
= ∇.

[
M∇ δF

δρα

]
, (13)

8



where τ and λ correspond to the relaxation parameter and Lagrange multiplier, which ensures

that
∑

α

∑
i φ

i
α = 1 at any location in the system. Moreover, M dictates the mobility of the

conserved variable. �e combination of the evolution, in accordance to Eqn. (12) ad (13) render

a unique grain growth wherein the volume-fraction of the phases are preserved all-through the

transformation. Although this approach might capture the overall transformation mechanism,120

the lack of a distinct consideration for concentration will restrict its applicability and e�ect the

resulting transformation kinetics. �erefore, the present model adopts a di�erent framework to

model concurrent grain growth and coarsening in multiphase-multicomponent system.

2. Simulation setup

2.1. Multiphase-�eld framework125

Adopting the description of phase-�eld in Eqn. (9), and following the existing works, which

were adopted for modelling phase transformations and two-phase curvature-driven evolutions,

the overall energy density of a k-component system withN -phase dissociated into N̄(=
∑N

α qα)

grains is wri�en as a combination of bulk and interface contribution [47, 26, 48]. Correspond-

ingly, energy-density functional of a system of volume V is expressed as

F(φ,∇φ, c) = Fint(φ,∇φ) + Fbulk(φ, c) (14)

=

∫
V

fint(φ,∇φ) + fbulk(φ, c)dV,

where Fbulk(φ, c) and Fint(φ,∇φ) respectively denote the contributions of the bulk region, and

interface separating the di�erent phase-associated grains.

2.2. Interface contribution

�e contribution of the di�use region separating the phase-associated grains is wri�en as

fint(φ,∇φ) = εa(φ,∇φ) +
1

ε
w(φ), (15)

where εa(φ,∇φ) and 1
ε
w(φ) represent the gradient-energy term and the penalising obstacle-

type potential [47]. In Eqn. (15), ε is a length-scale parameter which dictates the width of the130

di�use interface.
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�e gradient-energy contribution, in the present multiphase model, is wri�en as the summa-

tion of all possible pairwise interaction between the grains with similar and dissimilar phase as-

sociation [49]. Accordingly, the gradient-energy density, for the complex multiphase microstruc-

ture is formulated as

εa(φ,∇φ) =
N∑
α≤β

qα∑
m≤n

γmnαβ
∣∣Qmn

αβ

∣∣2 , (16)

where γmnαβ is the interfacial energy of the grain boundary separating grains m and n of α− and

β−phase, respectively. �e gradient vector Qmn
αβ , in above Eqn. (16), is ascertained by

Qmn
αβ = φmα∇φnβ − φnβ∇φmα . (17)

�e gradient-energy formulation in Eqn. (16) is restricted to the isotropic condition. However,

by augmenting a pre-factor, c̄(Qmn
αβ ), which is a function of the gradient vector, anisotropy in the

interfacial energy can be introduced [50].

In the current multiphase-�eld technique, the penalising potential is e�ciently adopted by

imposing the constraint through the Gibbs simplex. �e penalising criterion in the Gibbs simplex

is expressed as

G =

{
φ ∈ RN̄ :

N∑
α

qα∑
m

φmα = 1, φmα ≥ 0

}
, (18)

where N̄ is the total number of phase-associated grains in the system. �e constraint
∑N

α

∑qα
m φmα =

1 renders the primary distinction between the multiphase-�eld and continuum �eld treatments [43].

By imposing this condition through the Gibbs simplex, the obstacle-type potential is wri�en as

1

ε
ω(φ) =


1
ε

(
16
π2

∑
α≤β

∑
m≤n

γmnαβ φ
m
α φ

n
β +

∑
α≤β≤δ

∑
m≤n≤p

γmnpαβδ φ
m
α φ

n
βφ

p
δ

)
, φ ∈ G

∞ φ /∈ G.
(19)

While the �rst term in the obstacle-type potential includes all interfaces, the second higher-

order terms prevent the formation of the spurious third-phases. Moreover, by introducing the

constraint

γmmαα = γmmmααα = 0 ∀ {α ∈ [N ] : m ∈ [qα]}. (20)

in Eqns. (16) and (19), any non-physical contributions is dismissed.135
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2.3. Volume preservation by bulk contribution

During the concurrent grain growth and coarsening of complex multiphase microstructure,

the volume fractions of the phases are preserved. However, analogous to the regular grain

growth, number of grains associated with each phase decreases with time. In other words, in

a multiphase-�eld framework, assuming that the evolution is devoid of any phase-change, the

individual phase-�elds (φmα ) are non-conserved, while φα which represents the overall volume-

fraction of phase−α is conserved all through the transformation. �e volume of the phases, in

the current technique, is preserved by introducing a bulk energy-density contribution [19, 30].

�e total contribution of the grains constituting the multiphase microstructure is expressed as

f(φ, c) =
N∑
α

qα∑
m

fαm(cαm)h(φmα ), (21)

where fαm(cαm) is the free-energy density of an individual α−grain. �ese individual contri-

butions are interpolated using the function h(φmα ), which satis�es the condition h(0) = 0,

h(1) = 1 and ∂h(φmα )/(∂φmα ) = 0 in {φmα /∈ (0, 1)}. �erefore, interpolation function of the

form h(φmα ) =
∑qα
m |φmα |2∑N

α

∑qα
m |φmα |2

is adopted [40].140

�e free-energy density of individual grains are described based on its corresponding con-

centration. Owing to the multicomponent nature of the system, the concentration, akin to phase-

�eld, is expressed as a tuple vector

cαm =
{
cαm:i, c

α
m:j, . . . , c

α
m:k

}
, (22)

with k representing the number of chemical species including matrix (solvent) and cαm:i, the mole-

fraction of component i in grain m of phase−α. Since the grains of a given phase, have identical

chemical make-up and, are distinguished only by the respective non-conserved scalar variable,

the concentration can be generalised as

cα1 = · · · = cαm = · · · = cαqα ≡ c
α =

{
cαi , c

α
j , . . . , c

α
k

}
. (23)

Accordingly, the free-energy contribution of the bulk phases now reads

f(φ, c) =
N∑
α

qα∑
m

fαm(cα)h(φmα ), (24)

11



wherein the concentration is solely phase-dependent. Conventionally, the free-energy densi-

ties of the individual phase-associated grains are in�uenced by temperature as well. Since this

analysis predominantly focuses on isothermal transformations, the e�ect of temperature on free-

energy density is not included in Eqn. (24).

In the di�use region separating the bulk phases, it is assumed that the grains, with spatially

varying volume-fractions, co-exist and are in chemical equilibrium with each other [51, 52]. �is

equilibrium is characterised by the equivalence in the chemical potential. �erefore, the local

equilibrium between the grains of same and di�erent phases is wri�en as

∂fαm
∂cαi

=
∂fαn
∂cαi

= · · · = ∂fβm

∂cβi
=
∂fβn

∂cβi
= · · · = ∂fNm

∂cNi
=
∂fNn
∂cNi

(25)

µαi = µβi = · · · = µNi = µi,

where µi represent the chemical potential of component i. Owing to its local-equivalence, the

chemical potential is treated as the continuous variable across the interface. Moreover, based on

the equilibrated condition in Eqn. (25), the concentration is interpolated as

c =
N∑
α

qα∑
m

cαh(φmα ), (26)

wherein, due to the identical interpolation function, the concentration varies smoothly across145

the interface similar to the free-energy density of the individual grains.

2.4. Phase-�eld evolution

As opposed to the conventional theoretical technique, the spatio-temporal evolution of the

phase-�eld translates into the microstructural transformation in the phase-�eld approach. �is

obviates the need for the interface-tracking and thereby, signi�cantly reduces the ensuing com-

plexity. �e evolution of the phase-�eld is dictated by the phenomenological decrease in the

overall energy-density of the system. Accordingly, for the current formulation, the evolution of

the phase-�eld is expressed as

τε
∂φmα
∂t

= −∂F(φ,∇φ, c)
∂φmα

(27)

= ε

[
∇ · ∂a(φ,∇φ)

∂∇φmα
− ∂a(φ,∇φ)

∂φmα

]
− 1

ε

[
∂w(φ)

∂φmα

]
−
[
fαm(cα, φmα )

∂φmα

]
− Λ,

12



where Λ is the Lagrange multiplier which ensures
∑

α φα(x|x ∈ [V ]) = 1. �e Lagrange multi-

plier is expressed as

Λ =
1

N̄

N∑
β

qα∑
m

ε

[
∇ · ∂a(φ,∇φ)

∂∇φmβ
− ∂a(φ,∇φ)

∂φmβ

]
− 1

ε

[
∂w(φ)

∂φmβ

]
−

[
fβm(cβ, φmβ )

∂φmβ

]
. (28)

In Eqn. (27), τ is the relaxation constant which sustains the stability of the interface during the

temporal evolution [53].

2.5. �ermodynamic driving-force150

�e driving force which governs the temporal evolution of the phase-�eld, as formulated in

Eqn. (27), is wri�en as

∆fmα (c,φ) =

{[
fαm(cα)−

k−1∑
i

µi(c
α)cαi

]
∂h(φmα )

∂φmα

}
(29)

−
(

1

N̄ − qα

){ N∑
β

qβ∑
m

[
fβm(cβ)−

k−1∑
i

µi(c
β)cβi

]
∂h(φmβ )

∂φmβ

}

−
(

1

qα

){ qα∑
n

[
fαn (cα)−

k−1∑
i

µi(c
α)cαi

]
∂h(φnα)

∂φnα

}
.

While the contribution of the chemically-dissimilar grains to the driving force is included in the

second term on the right-hand side of Eqn. (29), the interactions between the grains of the same

phase is appended as the third term. Interestingly, the contribution of an individual grain to the

driving force can be viewed as the Legendre transform of the free-energy density. �erefore, by

treating the driving force as the di�erence in the grand chemical-potential,

fαm(cα)−
k−1∑
i

µi(c
α)cαi ≡ ψmα (cα), (30)

phase-�eld models have been formulated [54, 48, 55].

Without losing the generality, the free-energy contribution of an individual grain, using the

appropriate thermodynamic conjugate-pairs [56], can be expressed as

fαm(cα) =
k∑
i

µαm:ic
α
m:i. (31)
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Since cαm:i denotes the mole-fraction of component i in the individual grain m of phase−α, the

condition
∑k

i c
α
m:i = 1 is ful�lled. By introducing this condition, the free-energy density in

Eqn. (31) is wri�en as

fαm(cα) = µαm:o +
k−1∑
i

˜µαm:ic
α
i , (32)

where µαo is the chemical potential of the matrix component. Moreover, in Eqn. (32), µ̃αi = µαm:i−

µαm:o represents the di�usion potential. �e driving-force contribution of the individual grain

can be wri�en based on this free-energy formulation and adopting the appropriate Legendre

transform. Correspondingly, in the present framework, the contribution of a grain to the phase-

�eld evolution is expressed

ψmα (cα) = µo(c
α) +

k−1∑
i

µ̃i(c
α)cαi −

k−1∑
i

µ̃i(c
α)cαi︸ ︷︷ ︸

:=0

. (33)

�e overall driving-force in Eqn. (29) now reads

∆fmα (c,φ) =

[
µo(c

α)
∂h(φmα )

∂φmα

]
−
(

1

N̄ − qα

){ N∑
β

qβ∑
m

[
µo(c

β)
∂h(φmβ )

∂φmβ

]}
(34)

−
(

1

qα

){ qα∑
n

[
µo(c

α)
∂h(φnα)

∂φnα

]}
.

According to the above formulation, the di�erence in the matrix chemical-potential, which is

dictated by the respective concentration, governs the evolution of the phase-�eld. However, dur-

ing the concurrent grain growth and coarsening, the transformations are solely directed by the

curvature (K). Moreover, owing to the equilibrated condition in the di�use interface, Eqn. (25),

the deviation introduced by the curvature to the equilibrium chemical-potential is identical for

all components [51, 52]. �is equivalent change in the chemical potential, due to the curvature,

is wri�en as

µo(K) ≡ µi(K) ∀ i. (35)

�erefore, the curvature-dependent driving force which dictates the grain growth and Ostwald
14



ripening in a complex microstructure is expressed as

∆fmα (c,φ) =

[
µi(K)

∂h(φmα )

∂φmα

]
−
(

1

N̄ − qα

){ N∑
β

qβ∑
m

[
µi(K)

∂h(φmβ )

∂φmβ

]}
(36)

−
(

1

qα

){ qα∑
n

[
µi(K)

∂h(φnα)

∂φnα

]}
.

Analogous to the sharp-interface solutions, the microstructural evolution is governed, as indi-

cated in the above Eqn. (36), by the disparity in the chemical potential introduced by the curva-

ture.

2.6. Evolution of governing chemical-potential155

�e temporal change in the curvature-dependent chemical potential, which correspondingly

drives the microstructural transformation, is formulated by considering the evolution of the re-

spective concentration. �e temporal evolution of a component−i, based on its in�uencing-

factors, is expressed as

∂ci(µi(K),φ)

∂t
=

(
∂ci

∂µi(K)

)
φmα

∂µi(K)

∂t
+

(
∂ci
∂φα

)
µi

∂φmα
∂t

. (37)

However, the evolution of the component−i can be independently described depending on its

�ux which is induced by the in�uence of curvature on the chemical potential. In other words, cur-

vature introduces a disparity in the equilibrium chemical-potential, which consequently actuates

an atomic migration from the region of high potential to the low-potential sink. �e concentra-

tion evolution can be formulated based on this �ux. However, owing to the complexity of the160

microstructure, certain reasonable assumptions, largely pertaining to the di�usion coe�cients,

are made before formulating the concentration evolution.

Since the composition of the grains of a given phase is identical, the bulk di�usivity within

the chemically-similar grains are considered equal,

Dm
α:i = Dn

α:i = · · · = Dqα
α:i = Dα:i ∀ {α ∈ [N ]}, (38)

where Dm
α:i is the di�usion coe�cient of component−i in grain m of phase−α. In addition to

the volume or bulk di�usion, the model is formulated to include grain boundary di�usion. It is
15



assumed that the di�usion coe�cients of the �uxes along the interface separating the grains of

a given phase are equal. �is assumption is expressed as

Dmn
αα:i = Dmp

αα:i = · · · = Dnp
αα:i = · · · = Dqp

αα:i = Dαα:i ∀ {n ∈ [q] : α ∈ [N ]}, (39)

where Dmn
αα:i represents the di�usivity of component−i along the interface between the grains

m and n of phase−α. In Eqn. (39) alone, grains m, n, p and q all pertain to phase-α.

�e concentration evolution of component−i, based on the atomic �ux induced by the cur-

vature, is expressed as

∂ci(µi(K)

∂t
= ∇ ·

k−1∑
j=1

[
N∑
α=1

Dα:i

(
∂cαi
∂µj

) q∑
m

h(φmα )∇µj(K)

]
(40)

+ ∇ ·
k−1∑
j=1

{(
N∑
α

Dαα:i

q,q∑
m<n

[(
∂cαi
∂µj

)
h(φmα ) +

(
∂cβi
∂µj

)
h(φnα)

]
φmα φ

n
α

)
∇µj(K)

}

+ ∇ ·
k−1∑
j=1

{(
N∑
α

N∑
α<β

Dαβ:i

q,q∑
m≤n

[(
∂cαi
∂µj

)
h(φmα ) +

(
∂cβi
∂µj

)
h(φnβ)

]
φmα φ

n
β

)
∇µj(K)

}
,

where the second and third terms on the right-hand side of the Eqn. (40) correspond to the mi-

gration along the boundaries of the grains of similar and the dissimilar phases. �e interface

di�usivities which govern the atomic �uxes along the grain boundaries are incorporated as a

N ×N symmetric matrix, which reads

Dαβ:i =


Dαα:i Dαβ:i · · · DαNi

Dββ:i · · · DβN :i

sym.
. . . ...

DNN :i

 . (41)

�is representation is enabled by the assumption in Eqn. (39). In other words, the interface dif-165

fusivity along the boundaries of the chemically-identical grains are represented by the diagonal

entities of the matrixDαα:i, while the non-diagonal elements include di�usion coe�cients along

all the other grain boundaries. �e proportionality constant, ∂cαi /∂µj , which is the inverse of

the second-derivative of the individual free-energy density, relates the di�usivity to the mobility

of the component−i in response to the chemical-potential gradient.170
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By substituting Eqn. (40) in Eqn. (37), and re-arranging the terms, the temporal evolution of

the curvature-dependent chemical potential which drives the phase-�eld evolution is wri�en as

∂µi(K)

∂t
=

{
∇ ·

[
k−1∑
j=1

M (φ)∇µj(K)

]
−

N∑
α

q∑
m

cαi
∂φmα
∂t

}[
N∑
α

q∑
m

h(φmα )
∂cαi
∂µj

]−1

ij

. (42)

�e mobilityM (φ) of the migrating chemical-species, included in the above evolution Eqn. (42)

reads

M(φ) =
N∑
α=1

Dα:i

(
∂cαi
∂µj

) q∑
m

h(φmα ) (43)

+
N∑
α

Dαα:i

q,q∑
m<n

[(
∂cαi
∂µj

)
h(φmα ) +

(
∂cβi
∂µj

)
h(φnα)

]
φmα φ

n
α

+
N∑
α

N∑
α<β

Dαβ:i

q,q∑
m≤n

[(
∂cαi
∂µj

)
h(φmα ) +

(
∂cβi
∂µj

)
h(φnβ)

]
φmα φ

n
β,

where the kinetic coe�cients of �ux along all possible grain boundaries are included through

di�usivity and susceptibility (∂cαi /∂µj) matrix.

2.7. Comparing continuum- and multiphase-�eld model

As introduced earlier, a fundamental di�erence between the continuum- and multiphase-

�eld approach stems from the treatment of the corresponding scalar variables. While a physical175

a�ribution in the form of local volume-fraction is imposed on phase-�eld, the order parameter is

treated as an independent variable in continuum-�eld model. �is di�erence in the consideration

of the scalar variables consequently leads to other notable disparities between the two treatments.

One such di�erence is the minimas of the grains (i.e, phase-�eld/order parameter).

�e coupling terms involved in Eqn. (3) of the continuum-�eld approach, that relate concen-

tration and the order parameter, are wri�en as

fα(c, cαeq, c
β
eq, η

α
i ) = −m

α

2

[
(c− cβeq)

2 − (c− cαeq)
2
]
|ηαi |2 +

nα

4
|ηαi |4 (44)

fβ(c, cαeq, c
β
eq, η

β
i ) = −m

β

2

[
(c− cαeq)

2 − (c− cβeq)
2
]
|ηβi |2 +

nβ

4
|ηβi |4,

where mα and nα are phenomenological constants [33]. Adopting the terms in Eqn. (44) for

de�ning the overall energy-density of the system, the resulting degenerate minimas, following
17



Ref. [57], can be wri�en as{
ηα1 , η

α
2 , · · · , ηαqα

}
,
{
ηβ1 , η

β
2 , · · · , ηβqβ

}
= (45){(

±Λα(cαeq − cβeq), 0, 0, · · · , 0
)
,
(
0,±Λα(cαeq − cβeq), 0, · · · , 0

)
, · · ·

(
0, 0, · · · ,±Λα(cαeq − cβeq)

)}
,{(

±Λα(cαeq − cβeq), 0, 0, · · · , 0
)
,
(
0,±Λα(cαeq − cβeq), 0, · · · , 0

)
, · · ·

(
0, 0, · · · ,±Λα(cαeq − cβeq)

)}
where Λα =

√
mα

nα
. However, in the multiphase-�eld approach, the constraint

∑
α

∑
i φ

i
α =180

1, along with the characteristic property of the interpolation function, ∂h(φmα )/(∂φmα ) = 0 ,

invariably renders a single minima at 0.

Preliminary a�empts to model multiphase microstructural evolution through continuum-

�eld approach treat concentration as a continuous variable [32, 33]. �is consideration is evident

in Eqns. (2) and (3). In contrast, recent continuum-�eld models de�ne their bulk contributions

through phase-dependent concentrations [34, 38, 39], and adopt local equilibrium condition in

the di�use interface region [51, 52], as expressed in Eqn. (25), through appropriate interpolation

function [40]. �is treatment of the concentration e�ciently decouples the bulk and interface

contributions, and furthermore, results in the minimas{
ηα1 , η

α
2 , · · · , ηαqα

}
,
{
ηβ1 , η

β
2 , · · · , ηβqβ

}
= (46)

{(±1, 0, 0, · · · , 0) , (0,±1, 0, · · · , 0) , · · · (0, 0, · · · ,±1)} ,

{(±1, 0, 0, · · · , 0) , (0,±1, 0, · · · , 0) , · · · (0, 0, · · · ,±1)} ,

which are independent of any phenomenological and material constants [57]. Despite the sim-

pli�cation of the minimas, this continuum-�eld model yields numerous degenerate minimas, in

contrast to the multiphase-�eld model.185

As opposed to the seemingly conventional Landau-type polynomial, the concentration-based

energy density in continuum-�eld treatment, which encompasses k-component [34], is expressed

following a numerical approach originally intended to circumvent the formation of spurious

phases in multiphase-�eld model [58]. Accordingly, this bulk contribution reads

fch =
Ā

2

k−1∑
i=1

[
ci −

N∑
α

cαi:eqHα(ηα)

]2

+
N∑
α

B̄αHα(ηα), (47)
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where Ā, B̄α and Hα pertain to the ��ing constants and interpolation function of the multi-

component continuum-�eld model, respectively. Although the energy density in Eqn. (47) fa-

cilitates in preserving phase-fractions, given the phase- and component-independent nature of

the prefactor Ā, it is arguable that this formulation can be adopted to incorporate quantitative

CALPHAD-based data. Moreover, since the curvature-driven transformation kinetics in higher-190

order systems, ternary and above, is in�uenced by the second-derivative of the free-energy func-

tion [59, 60], an independent prefactor can unfavourably in�uence the kinetics. While following

similar polynomial approximation, in the current multiphase-�eld treatment, the bulk contri-

bution is made conducive for incorporating quantitative data through phase- and component-

dependent ��ing parameters [61]. For an elaborate discussion on the free-energy density for-195

mulation for multicomponent systems, and the introduction of CALPHAD data, the readers are

directed to Refs. [62, 27] (previous works of the authors).

Additionally, when compared to the present approach, the pro�le of the scalar variable across

the interface is signi�cantly di�erent from the existing continuum models. �is is primarily due

to the nature of the energy-density formulation.200

2.8. Domain con�guration

Concurrent grain growth and coarsening exhibited by duplex and triplex microstructures of

binary and ternary systems in two- and three-dimensional setup is comparatively analysed in

the present work. Irrespective of the dimension, the domain is discretised into cells of unit di-

mensions, ∆x = ∆y (=∆z) = 1.0 (non-dimensionalised). �e temporal evolution of phase-�eld205

and chemical-potential, in Eqns. (27) and (42), are solved over the homogeneous cells through

forward-marching Eulers scheme. A de�nite width is assigned to the di�use interface by a�xing

the length scale parameter at ε = 4∆x. Furthermore, periodic boundary condition is imposed

along all the terminations of the two- and three-dimensional domains. �e computational re-

source is e�ciently consumed by Locally Reduced Order Parameter (LROP) optimization, which210

ensures that only required phase-�elds are solved locally, and Message Passing Interface (MPI).

For all two-dimensional simulations, a domain of size 2048 × 2048 cells is adopted, which

renders around 10000 grains. Almost similar number of grains in three-dimension are devised in

19



Table 1: List of simulation parameters

Parameter symbol value

Grid size ∆x = ∆y (= ∆z) 1.0

Time-step width ∆t 0.02

Interface-width parameter ε 4 ×∆x

Relaxation parameter τ 1.0

a domain of 300× 300× 300. Owing to the comparative nature of the present analysis, dimen-

sionless time and time step (t and ∆t, respectively) is considered for monitoring and discussing215

the evolution.

Independent of the ultimate nature of the microstructure, single phase or otherwise, Voronoi

tesselation is adopted to establish a polycrystalline system in the domain, two- or three-dimension.

Subsequently, the randomly distributed grains are distinguished into phases by assigning equi-

librium concentrations, and imposing corresponding energy-density. In order to ensure that the220

desired phase-fraction is achieved, appropriate number of grains for each phase are conscien-

tiously selected. �e bulk contribution which accompanies the equilibrium composition ensures

that the overall volume-fraction of the phases are preserved during the microstructural transfor-

mation. �e parameters involved in this initialisation of the domain is listed in Table 1.

3. Results and discussions225

3.1. In�uence of number of phases and components

3.1.1. Microstructural evolution

Regular grain-growth in a chemically-homogeneous system can be modelled by exclusively

considering the interface contribution. �erefore, in the present approach, the regular grain-

growth is simulated by overlooking the role of the bulk energy-densities. �e microstructural230

evolution of the chemically-identical grains is shown in Fig. 1.

�e progressive decrease in the overall number of grains with the gradual increase in the size

is evident from this illustration. Temporal change in the duplex and triplex microstructures of
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Figure 1: Microstructural evolution of single-, two- and three-phase polycrystalline structures indicated as ‘Pure’ ,

‘C2P2’ , and ‘C3P’ , respectively. Two duplex microstructures of binary (C2P2) and ternary (C3P2) systems are con-

sidered for analysing the e�ect of number of components.
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Table 2: List of material parameters

Parameter symbol value

Grain boundary energy γΘΘ Θ ∈ {α, β, γ} 1.0

Interphase energy γΘδ Θ, δ ∈ {α, β, γ} 1.0

Bulk di�usivity Dα = Dβ (=Dγ) ≡ D 1.0

respective two- and three-components system are included in Fig. 1. Moreover, to understand the

disparity induced by the increase in the number of components, curvature-driven transformation235

of two-phase microstructure of ternary system, is considered. �erefore, in Fig. 1, the evolution

of the duplex grain-distribution pertaining to the ternary system is also shown.

Despite the increase in the number of phases and components, the atomic di�usivities along

with the grain boundary and interphase energy are assumed to be constant. �us, any change

in the transformation kinetics is, in its entirely, dictated by the number of components and/or240

phases. In Tables 2 and 3, material parameters involved in the present analysis are listed.

In Fig. 1, it is interesting to note that the phase-distribution in the two-phase and three-phase

microstructure, irrespective of the number of components, stays continuous during the evolution.

In other words, the phase-associated grains are randomly distributed completely devoid of any

clusters pertaining to the chemically-similar grains. �is continuous distribution of grains in the245

multiphase system is primarily due to the equal and constant grain boundary (γαα) and interphase

energy (γαβ).

In Fig. 1, the temporal change in the volume fraction of the individual phases of the du-

plex and triplex microstructures during the transformation is included as a subset. Although

the illustrated microstructural changes seemingly indicates that the phase-fractions remain un-250

changed all-through the evolution, owing to its importance, the volume-fractions of the impor-

tance phases are monitored and plo�ed. �e time-invariant behaviour of the volume-fraction

curve in Fig. 1, de�nitively a�ests to the preservation of phase-fraction, despite the noticeable

change in the distribution.
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Table 3: Equilibrium concentration of binary and ternary systems

Phase Independent component-i Independent component-j

(Binary)

Phase-α 0.1 -

Phase-β 0.9 -

(Ternary)

Phase-α 0.05 0.05

Phase-β 0.05 0.9

Phase-γ 0.9 0.05

3.1.2. Decrease in number of grains255

�e incremental change in the number of grains, in all the di�erence microstructures con-

sidered, is tracked and plo�ed in Fig. 2. Rate of change in the total number of grains can be

considered as a parameter to realise the kinetics of grain growth. Accordingly, Fig. 2 indicates

that the rate of evolution is noticeably high single-phase homogeneous, followed by duplex mi-

crostructure, with three-phase system exhibiting relatively low-rate of evolution.260

Moreover, in all systems, including single-phase, the change in total number of grains with

time adheres to a similar trend, re�ecting the aspect of grain growth which prevails in multiphase

microstructures as well. �is behaviour is primarily a�ributed to the geometrical and topolog-

ical factors that dictate the evolution of a grain. In Fig. 2, it is interesting to note that duplex

microstructures of binary and ternary system transform at a comparable rate. In other words,265

while increasing the number of phases visibly decreases the grain-growth kinetics, the increase

in the number of components does not render an analogous e�ect. However, a marginal disparity

is noticeable in Fig. 2, which indicates that grains in ternary duplex-system disappear in a rel-

atively lower rate than the corresponding binary system. �e in�uence of the number of phases

and chemical components on the kinetics of evolution is de�nitively assessed by considering the270

change in average grain-size.
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Figure 2: Monotonic decrease in the total number of grains during the evolution of single-phase, duplex and triplex

microstructures of binary and ternary systems.

3.1.3. Transformation kinetics

�e progressive increase in the average grain-size with time for single- and multiphase mi-

crostructures are collectively plo�ed in Fig. 3. While the exponent term m is equal to 2 in the

chemically homogeneous system, the microstructural changes in duplex and triplex microstruc-275

ture yieldsm ≈ 3. �is di�erence in the exponent value is due to the disparity in the mechanism

governing the grain growth. In the single-phase system, the microstructural changes are dic-

tated by the migration of the interface, which correspondingly yields a exponent value ofm ≈ 2.

However, the exponent value of 3, in two- and three-phase system indicates a di�usion-governed

grain growth. �ese di�erences in the exponent terms are consistent with the existing experi-280

mental [63, 64] and theoretical results [32, 33, 38].

In compliance with the temporal change in total grain, Fig. 1, the average grain-size plot in

Fig. 3 indicates that with increase in number of phases, the transformation kinetics signi�cantly

decreases. Moreover, the duplex microstructures of binary and ternary system show a marginal

di�erence, with two-component system exhibiting a slightly higher growth rate. �e trend in285

Fig. 3, which shows that grain growth is faster in single-microstructure, respectively followed

by duplex and triplex system, assert that the transformation is noticeably stunted due to the
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Figure 3: Temporal increase in the average grain size of the polycrystalline systems with chemically-identical and

phase-associated grains during the microstructural transformations.

increase in the number of phases. However, similar in�uence is not rendered by the number of

chemical species.

�e inverse relation between the number of phases and growth kinetics can be a�ributed290

to the phase distribution. From Fig. 3, it is evident that the transformation in multiphase mi-

crostructure is dictated by di�usion. While this di�erence in the transformation mechanism is

responsible for disparity in the single- and multiphase system, a similar argument can be made for

the lower growth rate triplex microstructure. Di�usion-governed microstructural transformation

in multiphase polycrystalline system depends on the distribution of the phases. In other words,295

the transformation rate of two isolated chemically-identical grains proportionately varies with

the distance separating them. �e introduction of a new phase substantially convolutes the ar-

rangement of the phases, and consequently, the di�usion path gets increasingly complex, thereby

decreasing the overall kinetics of grain growth. �e e�ect of components is not as straightfor-

ward as the number of phases, therefore, the growth rate in duplex microstructures of binary300

and ternary system are separately analysed.
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Figure 4: Change in the average grain size of duplex microstructure with equal and unequal phase-fraction pertaining

to binary and ternary systems with time. �e binary and ternary duplex microstructures with equal phase-fractions

are correspondingly represented by ‘C2-S2’ and ‘C3-S2’ , while ‘C2-S1’ and ‘C3-S1’ respectively denotes the duplex

systems with unequal volume-fractions of phases.

3.1.4. Duplex microstructures of binary and ternary system

Increase in the average grain-size with time during the microstructural evolution of two-

phase system with two and three components are presented in Fig. 4. As opposed to the cumu-

lative depiction with single and three-phase microstructures in Fig. 3, the di�erence in the grain305

growth kinetics introduced by an additional component is evident in Fig. 4.

Although this separate illustration unravels a perceivable disparity in the rate of change in

average grain-size between binary and ternary system with duplex microstructure, the e�ect

is relatively less de�nite when compared to the number of phases. In order to ensure that the

minimal decrease in the transformation kinetics is not due to the equal volume-fractions of the310

phases, another setup with a minor and major phase distribution is considered.

A microstructure with unequal phase-fraction, characterised by 33% phase-α, is devised to

substantiate the understanding on the e�ect of number of components. �e equilibrium con-

centrations, and the bulk contributions, are appropriately assigned to con�gure a binary and
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Figure 5: Concurrent grain growth and coarsening of binary and ternary duplex microstructures with unequal

phase-fractions.

ternary system based on this microstructure. �e two- and three-component duplex microstruc-315

tures with minor phase-α is allowed to evolve towards a decrease in the overall energy-density

of the system. Change in the average grain-size with time, which accompanies the evolution of

the binary and ternary two-phase microstructures, is collectively plo�ed in Fig. 5.

�e concurrent grain-growth and coarsening exhibited by these systems of unequal phase-

fractions is included as a subset. Analogous to the other evolutions illustrated in Fig. 1, mi-320

crostructures with di�erent volume-fraction of the phases adheres to a continuous distribution

all-through the transformation. More importantly, the growth kinetics in the ternary system is

relatively lower than the corresponding two-component microstructure. �is di�erence intro-

duced by the additional components is comparable to its in�uence on the microstructure with

equal phase-fraction (4), and is not signi�cant. Before delineating the reason for the minimal325

change in the transformation kinetics with increase in number of components, the growth rate

exhibited by individual phases in binary and ternary duplex microstructures of unequal phase-

fraction is studied.

In Fig. 6, the increase in the average grain-size of phase-α and -γ during the evolution of

the two- and three-component microstructures with di�erent phase-fraction is shown. �is il-330
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Figure 6: Grains of the binary and ternary duplex microstructures are distinguished based on the phases and the

increase in its average size during the transformation is plo�ed with time.

lustration unravels that, irrespective of chemical-makeup of the system (binary or ternary), the

growth rate of the minor phase-α is visibly lower than the corresponding phase-γ. �e sluggish

growth of the minor phase is consistent with the existing studies, and is primarily due to the in-

crease in the distance separating the chemically-similar α-grains, which consequently prolongs

the time taken for the di�usion of the components. Interestingly, in the microstructure of unequal335

phase-fraction, the e�ect of the additional component is more de�nite in the minor phase, when

compared to phase-γ. In other words, it is evident from Fig. 6 that the growth rate of phase-α is

reduced in ternary system, while the evolution of the major phase remains undisturbed by the

inclusion of an additional component.

Irrespective of the degree of disparity, the transformation kinetics exhibited by the ternary340

duplex-microstructure is di�erent from the corresponding binary setup. �is decrease in the

growth rate of three-component microstructure is due to the convolution of the concentration

evolution. While the increase in the number of phases disturbs the di�usion path, the addition

of a component increases the number of factors governing the migration of the chemical species.

In a binary system with one independent component, the di�usivity, and the proportionality345
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constant, which relates it to the mobility, assume a scale value. �ese kinetic-coe�cients are

no-longer scalar parameters in a ternary system, but include the contribution of interdi�usion

through appropriate matrices. �erefore, the concentration evolution in ternary setup gets in-

tricate, when compared to binary, due the inter-dependencies of the migrating chemical-species.

�is convoluted evolution of the components ultimately leads to the di�erence in the transfor-350

mation kinetics between the two- and three-component multiphase systems. However, the equal

kinetic-coe�cients considered in the current investigations minimises the di�erence introduced

by the additional component.

3.2. In�uence of di�usivity

Although increase in the number of components convolutes the concentration evolution, its355

e�ect on the growth rate is restricted by the kinetic coe�cients. To explicate the role of di�usiv-

ity in the transformation kinetics, the microstructural changes governed by di�erent di�usion

coe�cients are comparatively analysed. In Fig. 7, the temporal change in the average grain-

size accompanying the evolution of binary duplex-microstructure with independent di�usivity

Di = 0.5 and Di = 0.1 is illustrated.360

Despite the equal number of components, the disparity in the di�usion coe�cient profoundly

e�ects the kinetics of evolution. �e system with higher di�usivity evolves at a much faster rate

when compared to the microstructure associated with lower kinetic coe�cient. With time, as

shown in Fig. 7, the di�erence in the kinetics gets increasingly signi�cant. �is behaviour is

primarily due to the progressive change in the distribution of the phases.365

As the grains of the two-phase microstructure grow, owing to the prevailing continuous dis-

tribution, the distance separating the chemically-identical grains increases. Consequently, the

distance traveled by the migrating species to establish a microstructural change proportionately

increases. With the expansion of the di�usion pathways, the in�uence of the di�usion coe�cient

gets more de�ned, which in-turn renders an increasing disparity in the kinetics of evolution, as370

observed in Fig. 8.

A ternary duplex-microstructure with di�usivity of one independent component similar to

the binary system of Di = 0.5 is allowed transform. �e increase in the average grain-size with
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Figure 7: �e disparity in the rate of increase in average grain size of ternary duplex microstructure with equal

phase-fraction due to the di�erence in bulk di�usivity of the phases.

time during this evolution is included in Fig. 8.

When compared to the binary system of lower di�usivity, the growth rate in the ternary375

microstructure, with Di = 0.5, is noticeably higher. Furthermore, the transformation kinetics

of binary and ternary duplex-system with identical di�usion coe�cient exhibit only a marginal

disparity, with three-component microstructure evolving at a slightly lower rate. Accordingly,

Fig. 8 unravels that the in�uence of components is made de�nitive exclusively through the ki-

netic coe�cients, while the increase in number of chemical species alone, though convolutes the380

di�usion mechanism, o�ers a restricted disparity.

3.3. Evolution of two-dimensional triplex microstructure

3.3.1. Microstructural transformation

�e microstructural transformation of ternary three-phase microstructures is examined to

understand the in�uence of the volume-fractions of the phases on the kinetics of the evolution. In385

Tables. 1, 2 and 3, the parameters associated with the modelling three-phase system is presented.

�ree di�erent microstructural setups with varying phase-fractions are considered. In Fig. 9, the
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Figure 8: �e marginal di�erence in the transformation kinetics of binary and ternary duplex systems with an

independent component-i of identical di�usivity.

temporal evolution of these triplex microstructures with equal, 33%α - 33%β, and unequal, 25%α

- 25%β and 8%α - 8%β, phase-fraction is illustrated.

Owing to the consideration of equal grain boundary and inter-phase energy densities, the390

entire evolution is devoid of any clusters of a particular phases. In contrast, a continuous and

random arrangement of the phase-associated grains is evident in Fig. 9.

3.3.2. Transformation kinetics

�e kinetics of the microstructural transformation of the various ternary triplex-systems is

ascertained by monitoring the change in the average grain-size. Increase in the average grain-395

size of di�erent three-phase microstructures with time is collectively plo�ed in Fig. 10. �e

setup with least fraction of the minor phases, 8%α - 8%β, exhibits a higher growth rate, while

the transformation kinetics in the microstructure with equal phase-fraction is signi�cantly low.

Triplex system with unequal phase-fraction characterised by 25%α - 25%β transforms at a rate

marginally greater than equal phase-fraction setup, but noticeably lower than 8%α - 8%β mi-400

crostructure. To understand the in�uence of the phase-fractions on the transformation kinetics,
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Figure 9: Microstructural transformation of ternary three-phase polycrystalline systems with equal and unequal

phase-fractions. Two setups with varying volume fraction of the major phase-γ is considered to unravel the in�uence

of phase-fraction on evolution kinetics.
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Figure 10: Progressive increase in the average grain size of the ternary triplex microstructures of di�erent phase-

fractions with time.

the growth rate of the individual phases pertaining to these triplex microstructures are analysed.

Triplex system with unequal phase-fraction characterised by 25%α - 25%β transforms at a

rate marginally greater than equal phase-fraction setup, but noticeably lower than 8%α - 8%β

microstructure. To understand the in�uence of the phase-fractions on the transformation ki-405

netics, the growth rate of the individual phases pertaining to these triplex microstructures are

analysed.

In Fig. 11, the increase in the average grain-size of the phase-associated grains are distin-

guished based on the chemical makeup, and are collectively presented. Since the volume fraction

of the minor phases are equal, only one of the phase (α) is chosen for this illustration. For the410

triplex microstructure with equal phase-fractions, evolution rate of α-grains are plo�ed in Fig.

11.

Fig. 11 indicates that, in all the triplex microstructures, the minor phase-grains generally

exhibit a low rate of transformation when compared to their counterparts. Moreover, the growth

rate of α-grain in the microstructure with 80%γ is the least of all the phases considered. �e415

minor phase-grains of 25%α - 25%β transform at a visibly greater rate than the corresponding
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Figure 11: Temporal change in the grain sizes of the ternary triplex-microstructure with equal and unequal phase-

fractions are plo�ed by distinguishing the grains based on it chemical composition.

grains in 8%α in the triplex microstructure. In contrast to the evolution of the minor phases,

Fig. 11 shows that the highest transformation kinetics is exhibited by the phase-γ grains of 8%α

- 8%β microstructure, which is followed by the major-phase grains of 25%α - 25%β setup. �e

growth rate of the system with equal phase-fraction lies in between the major- and minor-phase420

grains of triplex microstructure with unequal volume fractions.

�e trend in Fig. 11 re�ecting the in�uence of phase-fraction on the transformation kinetics of

triplex microstructure can be realised by the considering the growth rate of major-phase grains.

In minor-phase grains, irrespective of its volume fraction, the evolution is predominantly dic-

tated by the di�usion of the chemical species. �erefore, when its volume fraction decreases, the425

minor-phase grains get distributed farther apart, ultimately prolonging the time-taken for di�u-

sion. �is delay in di�usion considerably stunts the growth of the minor-phase grains. However,

in the major-phase grains, the evolution is interplay of di�usion and interface-migration. With

considerable increase in the volume fraction of a particular phase-grains, due to the decrease

the di�usion length, the interface migration begins to play a dominant role. Correspondingly,430

the growth rate of the major-phase grains gets exceedingly high. �is behaviour of the major-
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and minor-phase grains cumulatively renders the transformation kinetics illustrated in Fig. 11.

Moreover, the marginal di�erence in the growth rate of 25%α - 25%β and equal phase-fraction

microstructure indicate the balance in the di�usion-controlled and interface-governed evolution.

However, when the volume fraction of major phase is at 80%, the interface migration begins to435

dominate the growth rate of the transformation, thereby rendering high transformation kinetics.

3.4. �ree-dimensional evolution of triplex microstructure

3.4.1. Microstructural transformation

Understanding of the microstructural evolution in two-dimension is relevant only to a close-

range of system like thin �lms [65, 66]. In order to extend the applicability of an investigation,440

the analysis is extended to three-dimensional setups [33]. �erefore, the evolution of the ternary

triplex-microstructure is studied in three-dimension. Since the primary focus of this work is to

explicate the ability of the present multiphase-�eld approach to model the three-dimensional

multiphase transformation, a representative system of equal phase-fraction is considered.

In Fig. 12, the progressive change in the three-phase microstructure in three-dimensional445

domain is illustrated. Owing to the nature of the grain boundary and interphase energy-densities,

which are assumed to be constant and equal, the triplex microstructure evolves with a continuous

distribution of phases without any formation of identical-grain clusters.

�e volume fraction of the phases during the transformation is monitored and plo�ed as a

subset in Fig. 12. �is depiction indicates that the phase-fraction remains unaltered all-through450

the three-dimensional transformation of ternary triplex-microstructure. However, as evident in

Fig. 12, the number of phase-associated grains continue to decrease during the evolution in-

keeping with grain-growth aspect of the transformation.

3.4.2. Transformation kinetics

�e temporal increase in the average grain-size of the three-dimensional triplex microstruc-455

ture during the concurrent grain growth and coarsening is present in Fig. 13. Since a system

of equal phase-fraction is considered, the depiction illustrating the kinetics of evolution is not

dissociated for individual phases. Consistent with the mechanism governing the transforma-
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Figure 12: Concurrent grain growth and coarsening of ternary triplex-microstructure with equal volume-fraction of

the constituent phases in three-dimension. �e volume fraction of the individual during the evolution is monitored

and presented as a subplot.

tion, and the existing works [34, 39], the exponent m is realised to be close to 3 in the current

three-dimensional transformation of the ternary triplex-microstructure.460

For comparison, the change in the average grain-size of two-dimensional triplex setup of

equal phase-fraction with time is included in Fig. 13. �e growth rate of the triplex system is

signi�cantly higher in three-dimension where compared to the corresponding two-dimensional

setup. �is disparity in the transformation kinetics between the similar microstructures in dif-

ferent dimensions can be a�ributed to the increased amount of interfacial area, and additional465

degree of freedom for evolution.

3.4.3. Grain-size distribution

�e distribution of the grain size in two- and three-dimensional setup of triplex microstruc-

tures at three di�erence timesteps during the transformation is shown in Fig. 14. �e sizes of the

grains for this distribution plot are normalised through the critical grain-size. Di�erent relations470

are employed to determine the critical grain-size of the two- and three-dimensional microstruc-

ture [67]. Irrespective of the dimension, both three-phase microstructures reach a time-invariant

size as the evolution proceeds.

However, Fig. 14 unravels that the time-invariant distribution established in three-dimensional
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Figure 13: Change in the average grain size of ternary triplex-microstructure in two- and three-dimension are col-

lectively plo�ed with time for a comparison.

system is signi�cantly di�erent from the respective distribution in two-dimensional triplex mi-475

crostructure [67, 68, 69]. In other words, the grain-size distribution, in three-dimension, is con-

�ned to R
Rcr

= 2, whereas the tail of the size distribution plot pertaining to two-dimensional

three-phase system smoothly extends beyond this critical ratio. Apparently, while the ternary

triplex-microstructure adheres to Hillert distribution in three-dimension, in two-dimension, the

distribution deviate from it by extending beyond R
Rcr

= 2 [67]. In Fig. 14, the grain-size dis-480

tribution of the two-dimensional triplex microstructure follows Weibull distribution of shape

parameter, [β = 2.70].

4. Summary

�eoretical analysis of grain growth have largely been con�ned to polycrystalline systems

wherein the grains are chemically homogeneous. Such consideration lends itself to model an485

evolution which is primarily dictated by the migration of the grain boundary. However, with the

advancements in material technology, complex polycrystalline systems with chemically-distinct

grains are adopted for a wide-range of applications. In these polycrystalline systems with phase-
37



0.33α − 0.33β − 0.33γ2−D

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.5 1.0 1.5 2.0 2.5
R/Rcr

fr
eq

ue
nc

y

●

time=4000 t
time=5000 t
time=6000 t

0.33α − 0.33β − 0.33γ3−D

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.5 1.0 1.5 2.0 2.5
R/Rcr

fr
eq

ue
nc

y

●

time=4000 t
time=5000 t
time=6000 t

Figure 14: �e grain-size distribution of the ternary triplex-microstructure in two- and three-dimension are pre-

sented by normalising with critical grain-size. Hillert and Weibull ��ings are included to unravel the di�erence in

the grain-size distribution.

associated grains, the energy-minimising transformations like grain growth are no longer ex-

clusively dictated by grain-boundary migration, but is rather convoluted by the phase-fraction490

constraint. As opposed to the regular grain growth, the corresponding transformation in the

multiphase system is accompanied by the temporally unaltered phase-fraction. �is characteris-

tic feature renders a large section of the existing techniques inadequate for the investigation of

microstructural evolution in multiphase systems. �erefore, in the present works, the ability of

a multiphase-�eld approach to model the concurrent grain growth and coarsening in polycrys-495

talline systems with phase-associated grains is elucidated.

Phase-�eld techniques have increasingly been used to simulate microstructural transforma-

tions. Depending on the treatment of the characteristic scalar variable, the phase-�eld treatment

can be categorised as continuum-�eld or multiphase-�eld models. �e microstructural evolution

in multiphase-�eld systems have largely been investigated using continuum-�eld approach. In500

the current work, the multiphase-�eld technique is adopted to analyse the temporal evolution

polycrystalline systems with phase-associated grains. By comparing di�erent phase-�eld tech-

niques, a multiphase-�eld model is derived for a system of multiple chemically-distinct grains,

and a provision for incorporating grain boundary and interphase di�usion is discussed.

�e e�ect of number of phases and chemical components on the transformation kinetics is505
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investigated by employing multiphase-�eld approach. It is identi�ed that, while the in�uence

of the phases on the growth rate is direct, the e�ect of components is governed by the corre-

sponding kinetic coe�cients. �e increase in the number of phases stunts the evolution by con-

voluting the di�usion paths followed by the migrating chemical species. In contrast, the increase

in the number of components, particularly from binary to ternary system, alters the concentra-510

tion evolution through the introduction of interdi�usion. Despite the intricacies of the di�usion

mechanism owing to the increase in the number of components, its e�ects get visible only with

a signi�cant change in the di�usion coe�cients.

�e in�uence of the phase-fraction on the transformation kinetics of ternary triplex-microstructure

is analysed. Triplex microstructure exhibits an enhance kinetics when the equal phase-fraction515

is disturbed and a volume-fraction of a single phase begins to dominate. Moreover, it is realised

that, irrespective of the overall rate of transformation, the evolution of the minor phase is stunted

by the decrease in its volume fraction, while the major phase transforms at a greater rate when

its presence dominates. �is behaviour in the triplex system is a�ributed to the interplay of dif-

fusion and grain boundary migration. �e investigation on ternary three-phase microstructure520

is extended to three-dimension, in order to explicate the ability of the present model. Since the

current work is con�ned to the systems of equal grain boundary and interphase energy density,

future works will be directed to explicate the in�uence of di�erent interfacial energies. More-

over, a�empts are made to convincingly report on the numerical and computational aspects of

the present approach is comparison to the existing alternatives. Investigations of microstructural525

transformation involving interface di�usion and internal stresses are currently being pursued

and will be extensively discussed in the upcoming works.
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