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We report here the first synthesis of mixed oxide Uq_,PuxOy(,y) nanoparticles. The obtained nanopowders
were characterized by X-ray diffraction, thermal ionization mass spectrometry, transmission electron
microscopy, Raman spectroscopy, and U My edge high-energy-resolution X-ray absorption near edge
structure (HR-XANES). The HR-XANES spectra give evidence for the partial oxidation of U" to U. This
novel route toward the formation of actinide—actinide solid solution opens research opportunities that

are not accessible using bulk materials. We give details on the X-ray diffraction study on plutonium
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oxalate hexahydrate, as a reagent for the synthesis of such nanoparticles.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Among the different nuclear fuels considered for fast reactors
(oxides, carbides, nitrides, and metals), U;xPuyO, mixed oxide
(MOX) with a plutonium content ‘x’ over 0.2, is currently the
reference fuel. Moreover, in the existing fleet of reactors, MOX fuels
are already used but at a lower ‘X’ concentration of around 0.07 [1].
Currently, the light water reactor (LWR) MOX fuel is produced by
the MIMAS process (‘MIcronized MASter blend’) [2,3], involving
several steps and producing a heterogeneous microstructure [4].
The plutonium dioxide is fabricated by the thermal decomposition
of the oxalate (500—800 °C) [5]. However, the products obtained
are plate-like agglomerated, which is an issue during the sintering
step because of the aggregation and preferential orientation [6].

Recently, Walter et al. [7] developed a method for the synthesis
of AnO, (An = Th, U, Np, Pu) nanocrystals and solid solutions
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between different tetravalent actinide ions [8,9]. In this method,
the conversion of the actinide oxalates is done not thermally, but
under hot compressed water (95—250 °C). This technique is fast,
close to quantitative and reproducible, suited for the preparation of
materials with high purity, homogeneity, and crystallinity. More-
over, it is using only water as reaction and transport medium. This
synthesis route gives spheroid-shaped soft agglomerates of nano-
materials, which have a better behavior during sintering [9]. Using
this method, Manaud et al. [10] performed a multiparametric study
on the UO, production and discuss on the uranium oxidation state.
To our best knowledge, no nanosized Uj_xPuyO, are reported to
date, independent on the applied method.

Therefore, in this work, the synthesis of the Uj_xPuyO(y) solid
solution with different U-to-Pu ratio has been performed using the
hot compressed water decomposition process. The different pow-
ders produced were first analyzed by X-ray diffraction (XRD) at
room temperature to (i) check their crystallographic purity; (ii)
assess the U-to-Pu ratio derived from the Vegard's law; and (iii)
evaluate the diameter of the nanocrystals. The uranium-to-
plutonium ratio was precisely assessed by thermal ionization
mass spectrometry (TIMS). Then, to characterize the structural
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properties of the prepared mixed oxide fuels, the nanocrystals were
analyzed by U M4 high-energy-resolution X-ray absorption near
edge spectroscopy (HR-XANES), transmission electron microscopy
(TEM), and Raman spectroscopy. In addition, we report the XRD
study on plutonium oxalate hexahydrate, which is an intermediate
compound in the synthesis of plutonium dioxide nanopowder.

2. Experimental
2.1. Synthesis

2381 is an a-emitter (half-life: 4.47 billion years), which is only
weakly radioactive. However, we used a plutonium batch (**°Pu
main isotope) containing about 2% of >*Am, which is a highly
radioactive material. Because of the potential health risk, we
handled the material in a properly regulated and controlled
radiological facility.

2.1.1. Plutonium oxalate hexahydrate

Plutonium oxalate has been synthesized and characterized
along this study as a model for the (U;_xPuy) (C204)2-nH,0 solid
solutions. Even if the production of this compound is trivial and
known since many decades, its structure was not determined
because of technical difficulties (partial dehydration during mea-
surements). Thus, a Pu'V solution (0.2 M in 4 M HNO3 and 0.04 M
HF) was precipitated with an excess of C;04H> solution (0.8 M in
1 M HNOs3) at room temperature under continuous stirring. The
precipitate was filtered under vacuum and washed several times
with deionized water.

Putt + 2C204H; + 6H20 — Pu(Cy04)2-6H20 + 4H™

As the obtained hydrated oxalate is unstable and rapidly de-
hydrates partially at room temperature, a sample of the obtained
oxalate still slightly wet after filtration has been taken for XRD
analysis. About 10 mg of the wet powder was embedded in an
epoxy resin to slow down the dehydration process. The mixture
was then fixed on the XRD sample holder.

2.1.2. Preparation of mixed dioxides

For the synthesis of the Uj_xPuyOy(4y) nanocrystals, we used a
method based on hydrothermal decomposition of mixed oxalates
at low temperature, as described elsewhere [7]. In short, solutions
of UV (0.5 M, obtained by electroreduction of UOy(NOs), solution in
8 M HNOs;, depleted uranium) and Pu" (0.8 M in 4 M HNOs3,
plutonium vector of 2>°Pu main isotope, containing 2% 2*'Am) were
mixed in the 94:6, 88:12, 75:25, and 60:40 U:Pu (mol%) ratio. The
mixed oxalate (UjxPuy) (C204)2-nH,0 was obtained by direct
coprecipitation of the U and Pu'V solutions in nitric acid adding an
excess of 1 M solution of oxalic acid [11—14]. The obtained pre-
cipitate was washed several times with distilled water to remove
any trace of nitrate, which induces the oxidation of U" to soluble
UV under the working temperature conditions.

The decomposition of the oxalates has been performed in a 25-
mL Teflon-lined hydrothermal synthesis autoclave reactor. The
thermal treatments were performed using a heating mantel pre-
heated at the required temperature while the temperature was
controlled by thermocouples. Compared to the usual oxalates
decomposition by calcination, this method uses temperature and
pressure to achieve the conversion into oxide. A small amount of
water (5 mL) is added to the powder and the obtained suspension is
mixed by stirring. Hence, by heating above the boiling point of
water (200 °C for MOX-6, MOX-13, and MOX-29; 220 °C for MOX-
46), the water vaporizes and the pressure increases in the auto-
clave (also due to the gaseous CO and CO, formed by

decomposition). After a reaction time of 4 h, under autogenic
pressure (calculated to be of 25—30 bar), the resulting nanocrystals
were washed with water, ethanol, and acetone, to gradually
decrease the polarity of the solution. The work was performed
under nitrogen and using minute amounts of hydrazine, in order to
limit the oxidation of U'.

2.2. Powder X-ray diffraction

Room temperature XRD analyses were performed on a Bruker
D8 diffractometer mounted in a Bragg—Brentano configuration
with a curved Ge (1,1,1) monochromator and a ceramic copper tube
(40 kv, 40 mA) and supplied with a LinxEye position sensitive
detector. The data were collected by step scanning in the angle
range 10°< 26 < 120°, with a step size of 0.008° (26); total
measuring time was about 8 h.

2.3. Transmission electron microscopy

The samples were analyzed by TEM using a TecnaiG2 (FEI™)
200 kV microscope equipped with a field emission gun, modified
during its construction to enable the examination of radioactive
samples. They were prepared by dropping suspended samples on a
TEM grid and evaporating the solvent. TEM images have been
recorded using a Gatan US1000 slowscan CCD camera. Electron
energy loss spectroscopy (EELS) has been used to estimate the
uranium-to-plutonium ratio of the samples.

2.4. Isotope dilution thermal ionization mass spectrometry

A sample of 20 mg for each composition was dissolved in nitric
acid. The elemental content of uranium and plutonium was
measured by thermal ionization mass spectroscopy, adding a
known amount of a solution containing the element to be inves-
tigated. Certified isotope standards are used as reference materials
provided from accredited institutes such as EC-JRC (Belgium) or
CETAMA (France) [15].

2.5. Raman spectroscopy

Raman measurements were carried out on the polycrystalline
samples at room temperature using a Horiba Jobin-Yvon T64000
spectrometer with a 647 nm Kr+ laser excitation source. A 50x
objective was used to irradiate the sample and collect the back-
scattered light. Measurements were carried out at 4—10 mW inci-
dent power. However, to drop the fluorescence of the samples, they
were shortly irradiated at higher laser power just before
measurement.

2.6. U M4 HR-XANES

U My absorption edge HR-XANES spectroscopy technique was
conducted at the ACT station of the CAT-ACT-Beamline for catalysis
and actinide research of the KIT synchrotron light source facility,
Karlsruhe, Germany. A detailed description of the beamline is re-
ported by Zimina et al. [16] The incident beam was vertically
collimated by a bare Si mirror and monochromatized by a double
crystal monochromator (DCM) equipped with Si(111) crystals and
focused to 500 x 500 pm? onto the sample by a toroidal, double-
focusing Si-mirror. The DCM was calibrated by assigning
3,725.5 eV to the maximum of the most intensive absorption
resonance (white line, WL) of the U M4 edge HR-XANES spectrum of
the UO; reference sample. The uncertainty in the energy positions
of the spectral features is estimated to be about +0.05 eV, corre-
sponding to half of the energy step size.
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The HR-XANES spectra were obtained using a Johann-type
multianalyzer crystal X-ray emission spectrometer. The sample,
crystals, and a single diode VITUS silicon drift detector (KETEK,
Germany) were arranged in a vertical Rowland circle geometry. The
U M4 HR-XANES spectra were obtained by recording the U Mg
emitted fluorescence as a function of the incident energy. The
emission energy was selected using the 220 reflection of four
spherically bent Si(110) analyzer crystals (Saint-Gobain, France)
with a bending radius of 1 m, aligned at a Bragg angle of 75.36°. The
crystals were covered with masks with 50 mm diameter, which
improved the experimental resolution. The size of the incident
beam on the sample was defined by a slit with 500 x 500 pm? size,
which additionally improved the experimental energy resolution.
The U My HR-XANES spectra were measured within
3,710—3,900 eV energy region. The step size was 0.1 eV within
3,720—3,740 eV and 0.5 eV in all other parts of the spectra; two
spectra were averaged for each sample. The sample, crystals, and
detector were enclosed in a box filled with He to minimize intensity
losses due to scattering and absorption of photons in air. Constant
He flow was maintained to keep the O level <0.1%. No radiation
damage was observed during the measurements. The UO, refer-
ence is a quarter of a ceramic 238U0 pellet with thickness of 1 mm
and mass of 50 mg. The pellet was heated for 6 h at 1,150 °C in Hy/
Ar-flow (8% H3) and enclosed in two containments with windows
consisting Kapton foil with thickness 8 and 13 pm. As the sample is
stored under air some oxidation to UOz.y on the surface is
expected.

The U;.xPuxOy(;y) samples were placed in a multiposition
plexiglass sample holder with 8 pm thickness of the Kapton win-
dows, thereby double containment (inner and outer) of the samples
was achieved. About 100 pg of sample was mixed with 10 mg
bicomponent glue and placed in the inner cells.

3. Results and discussion
3.1. Plutonium oxalate hexahydrate

Structural refinement could not be performed in the given
experimental condition, but a Rietveld refinement of the data was
done by fixing atomic position (Table 1) to the ones determined for
U(C,04)2-6H,0 compound [17]. The plutonium oxalate shows a
monoclinic symmetry, in space group C2/m. The refined cell pa-
rameters are reported on Fig. 1. The good correlation obtained be-
tween experimental and calculated data confirmed the formation
of a pure Pu"Y oxalate hexahydrate having the same structure of the
uranium analogue.

Lattice parameter variation of the oxalate hexahydrate in the C2/
m monoclinic structure is presented in the Table 2. One can observe
as expected the contraction of the structure as a function of actinide
ionic radii reduction. The contraction is specially marked for the a
and b parameter, i.e., within the oxalate layer, and more moderately

Table 1
Atomic positions used for Pu(C;04),-6H,0 Rietveld refinement, based on
Duvieubourg-Garela et al. [17] structural determination.

Atom Wyck. Site xla y/b zlc U [A?)]
Pul 2a 2/m 0 0 0 0.01
C1 8j 1 0.255 0.247 0.099 0.01
01 8j 1 0.174 0.162 0.171 0.01
02 8j 1 0.352 0.333 0.163 0.01
03 4h 2 172 0217 172 001
04 4i M 0.716 0 0.486 0.01
05 2b 2/m 0 12 0 0.01
06 2 2/m 112 12 112 001

‘ Pu(C,0,),"6H,0
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C2/m | Bragg Positions
a=8.989(2) A
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Fig. 1. Rietveld refinement of Pu(C,04),-6H,0. Atomic positions were fixed to the
values presented in Table 2. The high background is due to the sample preparation
method (powder embedded in epoxy resin), done to prevent oxalate dehydration.

affected on the ¢ parameter, i.e., on the oxalate interlayer
separation.

3.2. U;.xPuxO; nanocrystals

3.2.1. XRD, TEM, and TIMS

After the hot-compressed water decomposition treatment of the
oxalates, the formed nanocrystals of Uq_yPuyO3(,y) show a fluorite-
type cubic structure, crystalizing in the Fm-3m (225) space group.
The collected XRD patterns are reported in Fig. S1, and no additional
peaks were found. The refined cell parameters obtained from the
Rietveld refinement of the XRD data are reported in Table 3. In the
same table, we report the crystallite sizes of each composition,
calculated using the full width at half maximum of at least six
selected peaks in the 26 range between 25° and 100° and measured
with TEM.

To determine the ratio U to Pu of the different theoretical
compositions, we carried out a TIMS measurement, also reported in
Table 3 (details in Table S1).

The plutonium content for each sample measured by ID-TIMS is
in good agreement with the expected values. The cell parameters
refined for each sample are also in good agreement with Vegard's
law. It is apparent in Fig. 2 that for the MOX-13 and MOX-29, there is
a slight deviation from the ideal lattice constant, indicating a partial
oxidation of the samples.

The TEM analysis reported in Fig. 3 shows that the nanocrystals
are attached to each other forming agglomerates as it has been
observed by Popa et al. [8] and Balice et al. [9] for other systems. For
the mixed oxide with MOX-29, the sizes of the agglomerates are
between 175 and 350 nm. Moreover, the diameter of the particles
was determined and reported in Table 3. For the MOX-13, MOX-29,
and MOX-46, the samples seemed to be formed from only one size
of particles, whereas for the MOX-6 two families of particles have
been observed. One has an average size of 11 + 3 nm that fits well
with the crystallite size derived from the XRD pattern analysis. The
other one has a larger diameter of an average of 55 + 18 nm
(Fig. 3a). For the three other compositions, there is a good agree-
ment between the two techniques. The ratios U:Pu observed in the
different-sized nanocrystals did not change substantially to suggest
heterogeneity. Due to limitations on the spot size of our setup in
scanning transmission electron microscopy (STEM) mode, EELS has
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Table 2

Lattice parameter comparison between, U(C204),-6H,0, Np(C204),-6H,0, and Pu(C;04),-6H,0.

Reference a[A] b [A] c[A] B1°] VA3 An** radii CN8
Duvieubourg-Garela et al. [17] U 9.0953 8.9896 7.9046 92.212 645.82 1.00
Grigoriev et al. [18] Np 9.028 8.952 7.867 92.61 635.14 0.98
This study Pu 8.989 8913 7.888 92.41 631.42 0.96
Table 3
Cell parameters and crystallite sizes obtained from the XRD and TEM results for the different compositions of mixed oxide fuel nanocrystals synthesized.
Composition a(A) d (nm) XRD d (nm) TEM Reference Notation
U0, 5.470 (1) 55+ 0.5 - 171
Uo.942PU0.05502 5.463 (2) 14 +2 11 +3/55 + 18 This work MOX-6
Uo.874PU0.12602 5.452 (3) 9+18 12+3 This work MOX-13
U0_707PUO_29302 5.442 (2) 7+14 7+2 This work MOX-29
Uo.54PUg.4602 5.436 (1) 19+3 33+ 12 This work MOX-46
PuO, 5.397 (1) 36+03 - [7,19]
548 - one before annealing (see Fig. S3), with increased crystallinity anﬂd
55405 nm with a slight increase of the lattice parameter up to 5.444 (1) A.
(170° After annealing, we obtained a diameter of 33 + 10 nm, which is in
L 545 ras2tm . good agreement with the TEM measurements (Fig. S4). Moreover, it
‘C'D: (200°0) o follows the trend observed by Popa et al. [8] for the end members,
° T a who obtained for UO; at 800 °C, a crystallite size around 50 nm and
(200 °C) .
£ 5444 7+1.4nm . for PuO; of circa 20 nm.
E (200°C) 19£3 nm
3 @20°) 3.2.2. HR-XANES
8 Sy ] The actinide (An) My 5 edge HR-XANES technique probes mainly
= (392‘06? nm ] the An unoccupied f-density of states in presence of a core-hole in
&8 . ) the intermediate (3d°4f'45f"*1) and final state (3d'%4f35f"*1) of
@ - the absorption process [20—22]. At the An My absorption edge, the
s .8 e s - 3 predominant electronic transitions are 3d3 — 5fs5); followed by
' ' ' ' ' ' 4fs;; — 3dsj emission of Mg characteristic fluorescence (dipole
U1_XPUX02(+y) selection rule A] = 0, +1). Since the 5f valence electrons of U

Fig. 2. Evolution of the lattice parameter of Uy.xPuxOy(.y) solid solutions as a function
of the substitution degree. The lattice parameter values are taken from Refs. [7,19],
respectively.

been used to calculate these ratios locally; again, the observations
did not yield to a determination of inhomogeneity on the sample.

To assess the stability of the nanopowder at 800 °C, an annealing
of 20 h under argon atmosphere has been done for the MOX-29
sample. The XRD pattern after thermal treatment is similar to the

(a) (b)

Fig. 3. Transmission electron micrographs of nanocrystalline MOX-29 sample. In (a),
an agglomerate of nanocrystals has been observed; (b) shows a zoom on an agglom-
erate where nanocrystals can be better observed.

participate in the chemical bonding, changes of electronic structure
due to variation of oxidation states and/or atomic environments of
the U atoms will be reflected in the U M4 edge HR-XANES spectrum.
The U M4 HR-XANES method mainly probes the bulk of the material
and can detect a small amount of one actinide oxidation state in
mixtures. One prominent example for An-speciation analyses is the
ability to clearly resolve UV when it is mixed with U" [21,23,24].
Fig. 4 depicts the U M4 edge HR-XANES spectra of the three
MOX-X (X = 6, 13, 29) compounds synthesized following the same

Al F—MOX-6
10 - ; ——MOX-13| A
s —— MOX-29
7 s : —uvo, | |
E ——BiU(V)0,
o
5 &
[ =
ie]
e
g 4
el
<
2
ol .

'v-vl'.vr[.v.v,v.y.,.',vlv-.'lv--vl.'x'
3722 3724 3726 3728 3730 3732 3734 3736 3738 3740
Excitation energy (eV)

Fig. 4. U M4 HR-XANES spectra of the MOX-6, MOX-13, and MOX-29 samples and the
BiUY0,4 and UO, references. Lines A and B mark the peaks characteristic for U" and U.
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experimental conditions compared with the bulk U0, and BiUY0,4
references. The post edge regions of the U M, edge spectra are
depicted in Fig. S6. The use of an X-ray emission spectrometer al-
lows to select only the U Mg and to filter out the Pu M, character-
istic fluorescence; those emission lines overlap and are not possible
to separate when a conventional solid-state detector is applied.
However, the spectral intensity abruptly decreases at about
3,778.5 eV when the Pu M5 edge is approached (cf. Fig. S6). The
cross section for absorption of photons by Pu atoms increases at this
energy. As a result, less photons are absorbed by U resulting in the
decrease of the intensity of the emitted fluorescence. The size of
this dip in the spectra implies that the relative amount of Pu in the
samples increases as follows: MOX-6 < MOX-13 < MOX-29 as found
also by TIMS.

The bulk UO; reference contains predominantly U" and a small
amount of UV due to surface oxidation of UO; kept in air [21,25].
This is visible in Fig. 4 since the UO, spectrum has a pronounced
shoulder on the high energy side of the main absorption peak
marked with line B. The energy position of line B is characteristic of
the main absorption intensity of UV substituting U in the cubic
structure of UOy, i.e., UO,.,y [21,23]. Note that, the spectrum of a U"
compound, which does not contain UY also has a feature at this
energy position but with much lower intensity. We showed pre-
viously that BiUYO4 contains UV in a fluorite structure (Fm-3m)
similar to UY/UY in UO2/UOs.y; therefore, it is a very suitable UV
reference compound [24]. The main absorption peak of the spec-
trum of BiUY0y is also located at the energy position of line B. The U
M4 edge HR-XANES spectra of MOX-29 and MOX-13 are very
similar, whereas the spectrum of MOX-6 differs.

The spectra contain characteristic peaks for UV (line A) and U
(line B), which are about 1.1 eV apart. U¥ dominates in the MOX-29
and MOX-13 samples. UY and U" have comparable contributions in
MOX-6. The smaller particles size of MOX-29 and MOX-13 (7 and
9 nm, respectively) compared to MOX-6 (14 nm) (cf. Table 3) leads
to larger surface area; hence we assume that more U atoms oxidize
from UV to UV on the surface of the particles. This assumption is
based on the correlation between the decreases of the size of the
particles and the increase of the UY content revealed by the U My
edge HR-XANES spectra. Note that, quantitative analyses like linear
combination least squares fit analyses are not recommendable
since the areas of the spectral peaks of the U My edge HR-XANES
spectra can deviate from the absorption cross sections of the
different U oxidation states thus we do not attempt them here [26].

Another contribution to the uranium oxidation from IV to V is
given by the presence of about 2% of americium in the original
plutonium vector; thus, the MOX-46 would contain close to 1% Am
out of the total of the actinides in the sample. It has been shown
that substitution of tetravalent uranium with trivalent ions such as
americium is compensated by the oxidation of UV to UY [27].
Moreover, charge compensation in the Am/Pu system is also
possible [28] and cannot be excluded at this stage.

4. Conclusions and perspectives

We present here the synthesis of nanometric mixed oxides Uj-
xPuxO2(y) with different plutonium content as homogeneous fuels
for fast reactors. The newly developed method of oxalate decom-
position under hot compressed water at low temperature has
several advantages, allowing sintering compared with the thermal
conversion of oxalates. This preparation method provides particles
with spheroid shape and small size, in contrast to the plate-like
morphology previously achieved by thermal decomposition. The
U M4 HR-XANES spectra provide evidence for oxidation of U to UY
in the Uj_4PuxO2(y) nanocrystals.

The method is promising for low temperature production of
mixed oxides powders and opens research opportunities which are
not accessible using bulk materials. Such materials are proven to be
very reactive, hence smoothing the path for solid-state synthesis of
different compounds of interest for accident case scenario, such as
sodium uranoplutonates. There are used as standards to study the
environmental dispersion of nuclear materials [29]. Finally, the
accommodation of an important amount of americium in the
samples rich in plutonium is the first indication that the method is
suitable for production of homogeneous transmutation fuels.
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