
Action-Conditional Recurrent Kalman Networks For
Forward and Inverse Dynamics Learning

Vaisakh Shaj1,2, Philipp Becker1, Dieter Büchler3, Harit Pandya2, Niels van Duijkeren4,
C. James Taylor5, Marc Hanheide2, and Gerhard Neumann1

1Autonomous Learning Robots, KIT, Germany
2LCAS, University Of Lincoln, UK

3Max Planck Institute for Intelligent Systems, Tübingen, Germany
4Bosch Corporate Research, Renningen, Germany

5Lancaster University, UK

Abstract: Estimating accurate forward and inverse dynamics models is a cru-
cial component of model-based control for sophisticated robots such as robots
driven by hydraulics, artificial muscles, or robots dealing with different contact
situations. Analytic models to such processes are often unavailable or inaccurate
due to complex hysteresis effects, unmodelled friction and stiction phenomena,
and unknown effects during contact situations. A promising approach is to ob-
tain spatio-temporal models in a data-driven way using recurrent neural networks,
as they can overcome those issues. However, such models often do not meet
accuracy demands sufficiently, degenerate in performance for the required high
sampling frequencies and cannot provide uncertainty estimates.
We adopt a recent probabilistic recurrent neural network architecture, called Re-
current Kalman Networks (RKNs), to model learning by conditioning its transition
dynamics on the control actions. RKNs outperform standard recurrent networks
such as LSTMs on many state estimation tasks. Inspired by Kalman filters, the
RKN provides an elegant way to achieve action conditioning within its recurrent
cell by leveraging additive interactions between the current latent state and the ac-
tion variables. We present two architectures, one for forward model learning and
one for inverse model learning. Both architectures significantly outperform exist-
ing model learning frameworks as well as analytical models in terms of prediction
performance on a variety of real robot dynamics models.

Keywords: Recurrent Networks, Forward Dynamics Learning, Inverse Dynamics
Learning, Action-Conditioning, Soft Robots

1 Introduction

Dynamics models are an integral part of many control architectures. Depending on the control
approach, the control law relies either on a forward model, mapping from control input to the change
of system state, or on an inverse model, mapping from the change of the system state to control
signals. However, analytical dynamics models are either not available or often too inaccurate in
situations such as robots driven by hydraulics, artificial muscles, or robots dealing with unknown
contact situations. Hence, there is a significant need for data-driven approaches that can deal with
such complex systems. Yet, modelling dynamics is a challenging task due to the inherent hysteresis
effects, unmodelled friction and stiction phenomena, and unknown properties of the interacting
objects. Additional challenges for modelling are given by the high data frequency, often up to
1kHz. Furthermore, many modern model-based architectures [1][2] for learning controllers rely on
uncertainty estimates of the prediction. Hence, such probabilistic modelling ability is another point
on the desiderata for model learning algorithms.

Correspondence to Vaisakh Shaj <v.shaj@kit.edu>

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

ar
X

iv
:2

01
0.

10
20

1v
1 

 [
cs

.R
O

] 
 2

0 
O

ct
 2

02
0



In this paper, we extend a recent recurrent neural network architecture [3], called Recurrent Kalman
Networks (RKN), for learning forward and inverse dynamics models. The RKN provides probabilis-
tic predictions of future states, can deal with noisy, high dimensional and missing inputs, and has
been shown to outperform Long-Short Term-Memory Networks (LSTMs)[4] and Gated Recurrent
Units (GRUs) [5] on many state estimation tasks. The authors [3] focussed on estimating the state
of the system from images. We adapt the RKN architecture for prediction instead of filtering and
employ it for learning robot forward and inverse dynamics. In this scenario, the observations are
typically low dimensional, i.e., positions and velocities of the joints of the robot, but occur with a
much higher frequency. Unlike original RKN, we explicitly model the control actions in our archi-
tecture. We modify the model of the latent transition dynamics using an action dependent non-linear
additive factor in order to condition them with action variables. We call this architecture action-
conditional RKN (ac-RKN) and show that our approach is more accurate than competing learning
methods and even analytical models where they are available. Moreover, we extend the ac-RKN to
learning inverse dynamics by adding an action decoder network. Also our learned inverse dynamics
models outperform analytical models and competitive learning methods.

2 Related Works

Robot Dynamics Learning. Due to the increasing complexity of robot systems, analytical models
are more difficult to obtain. This problem leads to a variety of model estimation techniques which
allow the roboticist to acquire models from data. When learning the model, mostly standard re-
gression techniques with Markov assumptions on the states and actions are applied to fit either the
forward or inverse dynamics model to the training data. Authors used Linear Regression [6][7],
Gaussian Mixture Regression [8][9], Gaussian Process Regression [10][11], Support Vector Regres-
sion [12], and feed forward neural networks [13]. However the Markov assumptions are violated in
many cases, e.g., for learning the dynamics of complex robots like hydraulically and pneumatically
actuated robots or soft robots. Here, the Markov assumptions for states and actions no longer hold
due to hysteresis effects and unobserved dependencies. Similarly, learning the dynamics of robots in
frictional contacts with unknown objects also violates the Markov assumption and requires reliance
on recurrent models which can take into account the temporal dynamic behavior of input sequences
while making predictions. Recently, using RNNs such as LSTMs or GRUs has been attempted.
Those scale easily to big data, available due to the high data frequencies, and allow learning inO(n)
time [14]. However, the lack of a principled probabilistic modelling and action conditioning makes
them less reliable to be applied for robotic control applications.

Action-Conditional Probabilistic Models. In model based control and reinforcement learning
(RL) problems, learning to predict future states and observations conditioned on actions is a key
component. Approaches such as [1], [15], [16], [17], [18] try to achieve this by using traditional
models like GPs, feed forward neural networks, or LSTMs. The action conditioning is realized by
concatenating the input observations and action signals [15][1] or via factored conditional units [19],
where features from some number of inputs modulate multiplicatively and are then weighted to form
network outputs. In each of these approaches action conditioning happens outside of the recurrent
neural network cell which leads to sub-optimal performance as observations and actions are treated
similarly. We propose an action-conditional RNN cell inspired by Kalman filter operations [3] which
provide an elegant way to learn not just forward but regularized inverse models as well, giving
significantly better performance compared to the current state of the art. Also, opposed to previous
approaches for dynamics learning we evaluate not only on relatively simple electrically actuated
robotic systems but on a wide variety of complex robotic systems, including large hydraulically
actuated robots and pneumatically actuated soft robots for one-step-ahead and long term prediction
tasks.

3 Recurrent Kalman Networks

Recurrent Kalman Networks (RKN) [3] integrate uncertainty estimates into deep time-series mod-
elling by combining Kalman Filters [20] with deep neural networks. To efficiently address highly
nonlinear dynamics the RKN employs a Kalman filter in a high dimensional, factorized latent space
where the dynamics can be modelled using locally linear models. This space is learned by an
encoder-decoder structure mapping from and back to the latent representation. Both encoder and

2



decoder is in practice realized as deep neural networks. However, the encoder does not only map
the observation to the latent space but also emits an estimate of the uncertainty in the observation.
This uncertainty estimate is used, together with latent state uncertainties inherently present in the
Kalman filter, to control the update of the state/memory of the recurrent cell. This update procedure
for the memory is in contrast to traditional deep recurrent approaches, such as LSTMs [4], where
input and forget gates have a similar purpose but do not offer a probabilistic interpretation.

Formally, the RKN first uses a locally linear dynamics model, At−1, to advance the last posterior
beliefN (z+t−1,Σ

+
t−1) in time and obtain a prior beliefN (z−t ,Σ

−
t ) for the current time step t. Here,

At−1 depends on the posteriors mean, z+t−1, i.e,At−1 := A(z+t−1), and the transition noise is mod-
elled by N (0, I · σtrans), with a learned, vector value σtrans. This prior belief is then updated using
a probabilistic representation of the observation N (wt,σ

obs
t ), provided by the encoder. Classical

Kalman update equations then infer the Kalman gain Qt and, subsequently, the current posterior
N (z+t ,Σ

+
t ). Ultimately, the decoder maps from the posterior to the desired output, where we can

learn separate decoders for the mean and the variance estimates. The network is trained end to end
via backpropagation through time.

A detailed description of the RKN, the exact factorization assumptions and parameterization of the
locally linear transition model is given in [3] and is also summarized in the appendix.

4 Robot Dynamics Learning with Action-Conditional RKNs

In this paper, we are interested in learning accurate forward or inverse dynamics models of complex
robots with non-Markovian dynamics. Learning such models requires action-dependent prediction
models of high accuracy in order to be useful for robot control. Moreover, we deal with systems
with high sample frequencies, up to 1kHz. We extend the RKN approach to robot dynamics learning
with the following innovations: (i) We use an action-conditional prediction update which provides
a natural way to incorporate control inputs into the latent dynamical system. (ii) We modify the ar-
chitecture to perform prediction instead of filtering and learn accurate forward dynamics models
for multiple robots with complex actuator dynamics. (iii) We incorporate an inverse dynamics de-
coder in the RKN architecture, allowing us to learn jointly forward and inverse dynamics models.
We refer to the resulting approach as action-conditional RKN (ac-RKN).

4.1 Action Conditioning

To achieve action conditioning within the recurrent cell, we modify the transition model pro-
posed in [3] to include a control model b(at) in addition to the locally linear transition model
At. The control model b(at) is added to the locally linear state transition, i.e., z−t+1 =

Atz
+
t + b(at). As illustrated in Figure 1, this formulation of latent dynamics captures the

causal effect of the actions variables at on the state transitions in a more principled manner
than including the action as an observation, which is the common approach for action con-
ditioning in RNNs [3]. The control model b(at) can be represented in several ways, i.e.:

zt zt+1

wt wt+1

ot ot+1at at+1

zt zt+1

wt wt+1

ot ot+1

at at+1

Figure 1: Graphical models for actions treated as fake
observations as in [3] (left) and ac-RKN (right) which
treats actions in a principled manner by capturing its
causal effect on the state transition via additive inter-
actions with the latent state. The hollow arrows denote
deterministic transformation leading to implicit distri-
butions.

(i) Linear: bl(at) = Bat, where B is a
linear transformation matrix.

(ii) Locally-Linear: bm(at) = Btat,
where Bt =

∑K
k=0 β

(k)(zt)B
(k) is a

linear combination of k linear control
models B(k). A small neural network
with softmax output is used to learn
β(k).

(iii) Non-Linear: bn(at) = f(at), where
f(.) can be any non-linear function ap-
proximator. We use a multi-layer neu-
ral network regressor with ReLU acti-
vations.

3



Note that the prediction step for the variance is not affected by this choice of action conditioning,
i.e., Σ−

t+1 = AtΣ
+
t A

T
t + I · σtrans as the action is known and not uncertain. Thus, unlike the

state transition modelAt, we do not need to constrain the model b to be linear or locally-linear as it
neither affects the Kalman gain nor how the covariances are updated. Hence, we use the non-linear
approach, bn(at), as it provides the most flexibility and achieved the best performance as shown
in section 5.1. The Kalman update step is also unaffected by the new action-conditioned prediction
step and therefore remains as presented in [3].

Our principled treatment of control signals is crucial for learning accurate forward dynamics models,
as seen in section 4.2. Moreover, the disentangled representation of actions in the latent space gives
us more flexibility in manipulating the control actions for different applications including inverse
dynamics learning (section 4.3), extensions to model-based reinforcement learning and planning.
For long-term prediction using different action sequences, we can still apply the latent transition
dynamics without using observations for future time steps.

4.2 Forward Dynamics Learning

We want to learn a forward dynamics model f : o1:t,a1:t 7→ ot+1 that predicts the next observation
ot+1 given histories of observation o1:t and actions a1:t. We explicitly focus on non-Markovian sys-
tems, where the observations are typically joint angles and, if available, joint velocities of all degrees
of freedom of the robot. In our experiments, we aim to predict the joint angles at the next time step
given a sequence of joint angles and control actions. Due to unmodelled effects such as hysteresis
or unknown contacts, the state transitions are non-Markovian even if joint angles and velocities are
known. We can assume that the observations are almost noise-free since the measurement errors for
our observations (joint angles) are minimal. Nevertheless, as the observations do not contain the full
state information of the system, we still have to model uncertainty in our latent state using the RKN.

Encoder

wt σ
obs
t

ot

at

RKN Cell

PredictUpdate
z−t , Σ−

t

Latent State

z+t , Σ+
t z−t+1, Σ−

t+1

Decoder

ôt+1

Figure 2: Schematic diagram of ac-RKN for
forward dynamics learning. Action condi-
tioning is implemented by adding a latent
control vector b(at) to the dynamics model
of the RKN. The output of the predict stage,
which forms the prior for the next time step(
z−t+1,Σ

−
t+1

)
is decoded to get the predic-

tion of the next observation.

The function f can be challenging to learn when the
observations, i.e., joint positions and velocities, of
two subsequent time-steps are too similar. In this
case, the action has seemingly little effect on the
output and the learned strategy is often to copy the
previous state for the next state prediction. This dif-
ficulty becomes more pronounced as the time step
between states becomes smaller ,e.g., 1ms, as minor
errors in absolute states estimates can already cre-
ate unrealistic dynamics. Hence, a standard method
for model learning is to predict the normalized dif-
ferences between subsequent observations or states
instead of the absolute values [1], i.e., during train-
ing, the predicted next observation is ôt+1 = ot +
dec
(
z−t+1

)
, where ot is the true observation at t and

dec
(
z−t+1

)
is the output of the actual decoder net-

work. During inference, we introduce an additional
memorymt which stores the last prediction and uses
it as observation in case of a missing observation,
i.e., ôt+1 =mt + dec

(
z−t+1

)
where we use the true

observation,mt = ot if available and the predicted observation,mt = ôt, otherwise. The architec-
ture of the ac-RKN is summarized in Figure 2.

The RKN cell is well equipped to handle missing observations, as the update step can just be omitted
in this case, i.e., the posterior is equal to the prior if no observation is available. Thus, we can also
use the presented architecture to predict several time steps into the future. In this case, we repeatedly
apply the RKN prediction step and update the memorymt with the corresponding prediction while
omitting the Kalman update.

Loss And Training. For training forward dynamic models, we optimize the root mean square
error (RMSE) between the decoded output and normalized differences to the the next true state

4



(ot+1 − ot) as in [15],

Lfwd =

√√√√ 1

T

T∑
t=1

‖ (ot+1 − ot) + dec
(
z−t+1

)
‖2.

Note that we decode the prior mean z−t+1 for predicting ot+1. The prior mean z−t+1 integrates all
information up to time step t, including at, but already denotes the belief for the next time step.
Hence, as we are interested in prediction, we work with this prior. In contrast, [3] used the posterior
belief since their goal was filtering rather than prediction.

Further, in [3], the Gaussian log-likelihood is used instead of the RMSE. While this is in principle
also possible here, it is only necessary if uncertainty estimates in the outputs are required. If this
is not the case, training on RMSE yields slightly better predictions and allows for a fair compari-
son with deterministic baselines like feed-forward neural networks, LSTMs and analytical models.
Thus, in this work, we chose to work with the RMSE loss.

4.3 Inverse Dynamics Learning

For the inverse dynamics case we want to learn a model f−1 : o1:t,a1:t−1,ot+1 7→ ât where
ot+1 is the desired next observation for time step t + 1 and ât is the predicted action,
i.e., the one to be applied. We introduce an action decoder which decodes the latent pos-
terior

(
z+t ,Σ

+
t

)
and estimates the action required to move to the desired next observa-

tion. The action decoder also gets information regarding the next observation as an in-
put. During training this corresponds to the next observation in the data. For control a de-
sired next observation is used to obtain the action required to reach that observation. The
joint angles and velocities are treated as observations in our inverse dynamics experiments.

Encoder

wt σ
obs
t

ot

Executed
Action

at

RKN Cell

PredictUpdate
z−t , Σ−

t

Latent State

z+t , Σ+
t z−t+1, Σ−

t+1

DecoderAction
Decoder

ât

(Desired) Next
Observation

ôt+1

Figure 3: Schematic diagram of the inverse
dynamics learning architecture. Here the
posterior

(
z+t ,Σ

+
t

)
, at the current time step

is fed to an action decoder along with the de-
sired target. In the next time-step, the exe-
cuted action at is fed to the predict stage of
RKN cell. Further, the next predicted prior(
z−t+1,Σ

−
t+1

)
is decoded to get the next state

ôt+1.

As seen in Figure 3, instead of merely learning the
inverse dynamics, our approach learns inverse and
forward dynamics simultaneously by feeding back
the executed action to the action-conditional predict
stage, which predicts forward in latent space. Note
that the action decoder also gets the same action
as the target during training. However, the model
sees the true action only after the prediction since
the action decoder works with the posterior estimate(
z+t ,Σ

+
t

)
. Hence, the prediction of the inverse dy-

namics model for the current time step is made in-
dependent of this feedback. We found that enforcing
this causal feedback, a necessary structural compo-
nent of the Bayesian network of the underlying latent
dynamical system, improves the performance of the
inverse model, as seen in Figure 6c.

Loss And Training. The dual output architec-
ture for our inverse model leads to two different
loss functions for the action and observation de-
coders which are optimized jointly. Our experiments
showed that the loss of the forward model is an ex-
cellent auxiliary loss function for the inverse model and learning this implicit forward model jointly
with the inverse model results in much better performance for the inverse model. We assume the
reasons for this effect is that the forward model loss is providing crucial gradient information to
form an informative latent state representation that is also useful for the inverse model. In order to
deal with high frequency data we again chose to predict the normalized differences to the previously
executed action, i.e. ât = at−1 + decaction(z

+
t ). Here at−1 is the executed action at t − 1 and

decaction(z
+
t ) the output of the actual action decoder network. The combined loss function for the

inverse dynamic case is given by

5



RMSE NLL
ac-RKN 0.0144 6.247
RKN 0.0282 4.930
LSTM 0.2067 0.952
GRU 0.2015 1.186

(a) Hydraulic Brokk 40

1 Step 3 Step 5 Step 7 Step 10 Step
Number Of Steps

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 (r
ad

ia
ns

)

1e 3
LSTM
ac_RKN
RKN
RBD
GRU

(b) Franka Emika Panda

1 Step 3 Step 5 Step 7 Step 10 Step
Number Of Steps

0.02

0.04

0.06

0.08

0.10

0.12

RM
SE

 (r
ad

ia
ns

)

LSTM
ac_RKN
RKN
previous_state
FFNN

(c) Pneumatic Arm

Figure 4: (a) Performance comparison of various recurrent models for the BROKK-40 hydraulically
actuated robot arm. (b) and (c) Comparison of multi-step ahead prediction for different algorithms
for Franka Emika and the pneumatically actuated muscular robot arm. The shaded region shows
standard deviations. The dashed line in (b) denotes the prediction performance of the rigid body
dynamics model and in (c) it denotes the prediction performance if we just predict the previous
state. The results show that all learning approaches outperform the rigid body dynamics model or
the previous state prediction, while our ac-RKN architecture outperformed other learning methods.

Linv =

√√√√ 1

T

T∑
i=1

‖ (at+1 − at) + decaction
(
z+t
)
‖2 + λLfwd

where λ chooses the trade-off between the inverse model loss and the forward model loss. The value
of λ is chosen via hyperparameter optimization using GPyOpt [21]. Note that for the inverse model,
the actions are decoded based on the posterior mean of the current time step while for the forward
model the observations are decoded from the prior mean of the next time step.

5 Experimental Results

In this section, we discuss the experimental evaluation of ac-RKN on learning the forward and in-
verse dynamics models on robots with different actuator dynamics. A full listing of hyperparameters
can be found in the supplementary material. We compare ac-RKN to both standard deep recurrent
neural network baselines (LSTMs, GRUs and standard RKN), analytical baselines based on classi-
cal rigid body dynamics and non-recurrent baselines like FFNN. For RKN and LSTM baselines, we
replaced the ac-RKN transition layer with generic LSTM and RKN layers. For recurrent models,
the recurrent cell parameters are tuned via hyperparameter optimization using GPyOpt [21], but the
encoder and decoder sizes are similar. The observations and actions are concatenated as in [15]
and [1] for all baseline experiments during the forward dynamics learning, i.e., we treat actions as
extended observations. The data, i.e., the states or observations, actions and targets are normalized
(zero mean and unit variance) before training. We denormalize the predicted values during inference
and evaluate their performance on the test set. We evaluate the model using RMSE to ensure a fair
comparison with the deterministic models such as FFNNs and LSTMs.

5.1 Forward Dynamics Learning

We evaluate the ac-RKN on three robotic systems with different actuator dynamics each of which
poses unique learning challenges: (i) Hydraulically Actuated BROKK-40 Robot Arm. The data
consists of measured joint positions and the input current to the controller sampled at 100Hz from
a hydraulic BROKK-40 demolition robot [22]. The position angle sensors are rotary linear poten-
tiometers. We chose a similar experimental setup and metrics as in [3] to ensure a fair comparison.
We trained the model to predict the joint position 2 seconds, i.e. 200 time-steps, into the future,
given only control inputs. Afterwards, the model receives the next observation and the prediction
process repeated. Learning the forward model here is difficult due to inherent hysteresis associated
with hydraulic control. (ii) Pneumatically Actuated Musculoskeletal Robot Arm. This four DoF
robotic arm is actuated by Pneumatic Artificial Muscles (PAMs) [23]. Each DoF is actuated by an
antagonistic pair of PAMs, yielding a total of eight actuators. The robot arm reaches high joint angle

6



Franka Pneumatic Hydraulic

0.6

0.7

0.8

0.9

1.0

1.1

1.2

RM
SE

Linear
Locally Linear
Non Linear

(a) Impact of control input models

si
ne

 (j
oi

nt
 a

ng
le

)

(b) Hydraulic Arm Predictions

ra
di
an
s

ra
di
an
s

ba
r

(c) Pneumatic Arm Predictions

Figure 5: (a) Comparison of different action-conditioning models discussed in 4.1. (b) Visualization
of the predicted trajectories of the hydraulic arm for 200 step ahead predictions. (c) Visualization
of the predicted trajectories of the pneumatic arm for 5 (top) and 10 (bottom) step ahead predictions
for one of the joints. (b) and (c) clearly show that the predictions given by our approach are by far
the most accurate.

accelerations of up to 28,000 deg/s2 while avoiding dangerous joint limits thanks to the antagonistic
actuation and limits on the air pressure ranges. The data consists of trajectories of hitting movements
with varying speeds while playing table tennis [24] and is recorded at 100Hz. The fast motions with
high accelerations of this robot are complicated to model due to hysteresis. (iii) Franka Emika
Panda Arm. We collected the data from a 7 DoF Franka Emika Panda manipulator during free mo-
tion at a sampling frequency of 1kHz. It involved a mix of movements of different velocities from
slow to swift motions. The high frequency, together with the abruptly changing movements results
in complex dynamics which are interesting to analyze.

Multi Step Ahead Prediction. Figure 4 summarizes the test set performance for each of these
robots. We benchmarked the performance of ac-RKN with state of the art deterministic deep recur-
rent models (LSTM and GRU) and non-recurrent models like feed-forward neural network (FFNN).
In all three robots, the ac-RKN gave much better multi-step ahead prediction performance than these
deterministic deep models. The performance improvement was more significant for robots with hy-
draulic and pneumatic actuator dynamics due to explicit non-markovian dynamics and hysteresis,
which is often difficult to model via analytical models. We also validated the performance im-
provement due to our principled action-conditioning in the latent transition dynamics by comparing
it with RKN [3], which treats actions as part of the observations by ‘concatenation’. In all three
robots, our principled treatment brought significant improvement in performance. Figure 5 (b,c)
shows the predicted trajectories for the BROKK and the pneumatically actuated robot arm.

Comparison with Analytical Model. We were also interested in making a comparison with ana-
lytical models of Franka. For the analytical model, aside from the inertia properties of the links, the
Coulomb friction was also identified for every joint. A detailed description for the same can be found
in Appendix C. As seen in Figure 4 (b), the performance of the analytical model outperformed ac-
RKN for one step ahead predictions, but for multi-step forward predictions, the data-driven models
had a clear advantage with ac-RKN giving the most accurate results.

Ablation Study for Action-Conditioning. We evaluated different models for action conditioning
as discussed in Section 4.2. The resulting evaluation can be seen in Figure 5(a) and shows the
advantage of using non-linear models for the additive action-conditioning of the latent dynamics.

5.2 Inverse Dynamics Learning

We evaluated the performance of the proposed method for inverse dynamics learning on two real
robots, Franka Emika Panda and Barrett WAM. Barret WAM is a robot with direct cable drives.
The direct cable drives produce high torques, generating fast and dexterous movements but yield
complex dynamics. Rigid-body dynamics cannot model this complex dynamics accurately due to
the variable stiffness and lengths of the cables [25].

Joint Torque Prediction Task. We benchmark the representational capability of the latent state
posterior, z+t , of ac-RKN in accurately modelling the inverse dynamics of these robots in compar-
ison to deterministic models like LSTMs and FFNN. It is clear from 6a and 6b that ac-RKN learns
highly accurate models of these in contrast with other data-driven methods. This highly precise
modelling is often a requirement for high fidelity and compliant robotic control.

7



RBD FFNN LSTM ac_RKN

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

RM
SE

(a) Franka Panda

FFNN LSTM ac_RKN

10 1

100

(b) Barret WAM

Panda Barrett WAM

0.04

0.06

0.08

0.10

0.12 No Feedback
Action Feedback

(c) Action Feedback

Figure 6: (a) and (b) Joint torque prediction RMSE values in NM of Action-Conditional RKN,
LSTM and FFNN for Panda and Barret WAM. A comparison is also provided with the analytical
(RBD) model of Panda. (c) Comparison of ac-RKN for inverse dynamics learning with and without
the action feedback as discussed in Section 4.3.

0 20 40 60 80 100
0.36

0.35

0.34

0.33

0.32

0.31

0.30

0.29
Joint: 1

ac_rkn
Groud Truth
Analytical Model

0 20 40 60 80 100

0.44

0.42

0.40

0.38

0.36

Joint: 2
ac_rkn
Groud Truth
Analytical Model

0 20 40 60 80 100

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

Joint: 3
ac_rkn
Groud Truth
Analytical Model

Figure 7: Predicted joint torques(normalized) for first 3 joints of the Panda robot arm. The learned
inverse dynamics model by ac-RKN match closely with the ground truth data while the rigid body
dynamics model can not capture the high-frequency variations in the data.

Impact of Action Feedback. We also perform an ablation study with and without the action feed-
back for the prediction step in the latent dynamics. As seen in the Figure 6c, the action feedback
always results in better representational capability as this helps the implicit forward model in making
better predictions by taking into account its causal effect on the state transitions.

Comparison to Analytical Models. Finally, we make a comparison with the analytical model of
the Panda robot for inverse dynamics. Please refer to Appendix C for more details on the analytical
model. As evident from Figure 7 analytical models gave predictions with much lesser accuracy in
comparison to ac-RKN, as it does not consider unmodelled effects such as joint and link flexibili-
ties, backlash, stiction and actuator dynamics. In such cases, the robot would continuously have to
track its current position and compensate the errors with high-gain feedback control thus making it
dangerous to interact with the real world and impossible to work in human-centred environments.

6 CONCLUSION

We introduced a probabilistic recurrent neural network architecture, called action-conditional Re-
current Kalman Networks (ac-RKN), capable of action conditioning within the recurrent cell in a
principled manner. This formulation allows us to learn highly accurate forward dynamics models
of sophisticated robots and scenarios for which analytical models do not exist. We demonstrated
the effectiveness of the proposed approach on robots with hydraulic, pneumatic and electric actu-
ators. Besides, we leveraged the action-conditional recurrent cell to propose a regularized inverse
dynamics model which significantly outperformed the current state of the art on two benchmarks.
We believe the disentangled representation of the control signal in the ac-RKN recurrent cell has the
potential to be exploited for several other robot learning problems. Also, since our architecture is
domain-independent, we expect that they will generalize to several other robot dynamics learning
tasks. As future work, we will employ these models for real-time control on some of the robotic sys-
tems, and we will learn models that predict future reward in addition to future states or observations
and evaluate the performance of our approach in model-based reinforcement learning. Addition-
ally, we will explore the incremental learning of Kalman Filter parameters to adapt to changing
workspace configurations and tasks.

8



Acknowledgments

This work was supported by the EPSRC UK (project NCNR, National Centre for Nuclear Robotics,
EP/R02572X/1). We thank Aravinda Ramakrishnan Srinivasan for his support with the robots.

References
[1] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-

icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[2] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems, pages 4754–4765, 2018.

[3] P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor, and G. Neumann. Recurrent kalman
networks: Factorized inference in high-dimensional deep feature spaces. In International Con-
ference on Machine Learning, pages 544–552, 2019.

[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, Nov. 1997. ISSN 0899-7667.

[5] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, pages 103–111. Association for
Computational Linguistics, Oct. 2014.

[6] S. Schaal, C. G. Atkeson, and S. Vijayakumar. Scalable techniques from nonparametric statis-
tics for real time robot learning. Applied Intelligence, 17(1):49–60, 2002.

[7] M. Haruno, D. M. Wolpert, and M. Kawato. Mosaic model for sensorimotor learning and
control. Neural computation, 13(10):2201–2220, 2001.

[8] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard. Learning and re-
production of gestures by imitation. IEEE Robotics & Automation Magazine, 17(2):44–54,
2010.

[9] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaus-
sian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[10] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learning with local gaussian process re-
gression. Advanced Robotics, 23(15):2015–2034, 2009.

[11] D. Nguyen-Tuong and J. Peters. Using model knowledge for learning inverse dynamics. In
2010 IEEE International Conference on Robotics and Automation, pages 2677–2682. IEEE,
2010.

[12] J. P. Ferreira, M. Crisostomo, A. P. Coimbra, and B. Ribeiro. Simulation control of a biped
robot with support vector regression. In 2007 IEEE International Symposium on Intelligent
Signal Processing, pages 1–6. IEEE, 2007.

[13] A. S. Polydoros, L. Nalpantidis, and V. Krüger. Real-time deep learning of robotic manipula-
tor inverse dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3442–3448. IEEE.

[14] E. Rueckert, M. Nakatenus, S. Tosatto, and J. Peters. Learning inverse dynamics models in o
(n) time with lstm networks. In 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids), pages 811–816. IEEE, 2017.

[15] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

9



[16] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems. Rome, Italy, 2015.

[17] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction using
deep networks in atari games. In Advances in neural information processing systems, pages
2863–2871, 2015.

[18] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pages 64–72, 2016.

[19] G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann machines for mod-
eling motion style. In Proceedings of the 26th annual international conference on machine
learning, pages 1025–1032. ACM, 2009.

[20] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35–45, 1960.

[21] T. G. authors. GPyOpt: A bayesian optimization framework in python. http://github.
com/SheffieldML/GPyOpt, 2016.

[22] C. J. Taylor and D. Robertson. State-dependent control of a hydraulically actuated nuclear
decommissioning robot. Control Engineering Practice, 21(12):1716–1725, 2013.

[23] D. Büchler, H. Ott, and J. Peters. A lightweight robotic arm with pneumatic muscles for robot
learning. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
4086–4092. IEEE, 2016.

[24] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play
table tennis from scratch using muscular robots. arXiv preprint arXiv:2006.05935, 2020.

[25] D. Nguyen-Tuong and J. Peters. Incremental online sparsification for model learning in real-
time robot control. Neurocomputing, 74(11):1859–1867, 2011.

[26] W. Khalil, M. Gautier, and C. Enguehard. Identifiable parameters and optimum configurations
for robots calibration. Robotica, 9(1), 1991. doi:10.1017/S0263574700015575.

[27] C. D. Sousa and R. CortesÃ£o. Inertia tensor properties in robot dynamics identification: A
linear matrix inequality approach. IEEE/ASME Transactions on Mechatronics, 24(1):406–411,
2019.

10

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://dx.doi.org/10.1017/S0263574700015575


Supplimentary Materials

Vaisakh Shaj1,2, Philipp Becker1, Dieter Büchler3, Harit Pandya2, Niels van Duijkeren4,
C. James Taylor5, Marc Hanheide2, and Gerhard Neumann1

1Autonomous Learning Robots, KIT, Germany
2LCAS, University Of Lincoln, UK

3Max Planck Institute for Intelligent Systems, Tübingen, Germany
4Bosch Corporate Research, Renningen, Germany

5Lancaster University, UK

7 Appendix A: RKN - Summary and Conceptual Components

The Recurrent Kalman Network (RKN) [3] integrates uncertainty estimates into deep time-series
modelling by incorporating Kalman Filters [20] into deep recurrent models. While Kalman filter-
ing in the original state space requires approximations due to the non-linear models, the RKN uses
a learned high-dimensional latent state representation that allows for efficient inference using lo-
cally linear transition models and a factorized belief state representation. The RKN consists of the
following conceptual components.

7.1 Observation and Latent State Representation

The RKN transforms the observations at each time step ot to a high dimensional space using an
encoder network which emits high dimensional latent featureswt and an estimate of the uncertainty
in those features via a variance vector σobs

t .

The probabilistic recurrent module uses a latent state vector zt and corresponding covariance Σt

whose transitions are governed by the Kalman Filter in the RKN memory cell. The latent state
vector zt has been designed to contain two conceptual parts, a vector pt for holding information
that can directly be extracted from the observations and a vector mt to store information inferred
over time, e.g., velocities. The former is referred to as the observation or upper part and the latter as
the memory or lower part of the latent state by the authors [3]. For an ordinary dynamical system
and images as observations the former may correspond to positions while the latter corresponds to
velocities. The corresponding posterior and prior covariance matrices Σ+

t and Σ−
t have a chosen

factorized representation to yield simple Kalman updates, i.e.,

Σt =

[
Σu

t Σs
t

Σs
t Σl

t

]
,

where each of Σu
t ,Σ

s
t,Σ

l
t ∈ Rm×m is a diagonal matrix. The vectors σu

t ,σ
l
t and σs

t denote the
vectors containing the diagonal values of those matrices. This structure with Σs

t ensures that the
correlation between the memory and the observation parts are not neglected as opposed to the case
of designing Σt as a diagonal covariance matrix. This representation was exploited to avoid the
expensive and numerically problematic matrix inversions involved in the KF equations as shown
below.

7.2 Locally Linear Transition Model

The state transitions in the predict stage of the Kalman filter is governed by a locally linear
transition model. To obtain a locally linear transition model, the RKN learns K constant
transition matrices A(k) and combines them using state dependent coefficients α(k)(zt), i.e.,

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.



At =
∑K

k=0 α
(k)(zt)A

(k). A small neural network with softmax output is used to learn α(k). Each
A(k) is designed to consist of four band matrices as in [3] in order to reduce the number parameters
without affecting the performance.

7.3 Observation Model

The latent state space Z = Rn of the RKN is related to the observation spaceW by the linear latent
observation model H =

[
Im 0m×(n−m)

]
, i.e., w = Hz with w ∈ W and z ∈ Z , where Im

denotes the m×m identity matrix and 0m×(n−m) denotes a m× (n−m) matrix filled with zeros.
Typically, m is set to n/2. This corresponds to the assumption that the first half of the state can be
directly observed while the second half is unobserved and contains information inferred over time.

7.4 Kalman Update Step

The Kalman update involves computing the Kalman gain matrix Qt, which requires computation-
ally expensive matrix inversions that are difficult to backpropagate, at least for high dimensional
latent state representations. However, the choice of a locally linear transition model, the factorized
covariance Σt, and the special observation model simplify the Kalman update to scalar operations as
shown below. As the network is free to choose its own state representation, it finds a representation
where such assumptions works well in practice [3].

Similar to the state, the Kalman gain matrix Qt is split into an upper Qu
t and a lower part

Ql
t. Both Qu

t and Ql
t are squared matrices. Due to the simple latent observation model H =[

Im 0m×(n−m)

]
and the factorized covariances, all off-diagonal entries ofQu

t andQl
t are zero

and one can again work with vectors representing the diagonals, i.e., qu
t and ql

t. Those are obtained
by

qut = σu,−
t �

(
σu,−

t + σobs
t

)
qlt = σ

s,−
t �

(
σu,−

t + σobs
t

)
,

where � denotes an elementwise vector division. The update equation for the mean therefore sim-
plifies to

z+t = z−t +

[
qut
qlt

]
�
[
wt − zu,−t

wt − zu,−t

]
,

where � denotes the elementwise vector product. The update equations for the individual parts of
covariance are given by

σu,+
t = (1m − qut )� σ

u,−
t ,

σs,+
t = (1m − qut )� σ

s,−
t ,

σl,+
t = σl,−

t − qlt � σ
s,−
t ,

where 1m denotes the m dimensional vector consisting of ones.

8 Appendix B: Robots and Data

The experiments are performed on data from four different robots. The details of robots, data and
data preprocessing is explained below:

8.1 Hydraulic Brokk 40 Robot Arm

Observation and Data Set: The data was obtained from a HYDROLEK–7W 6 degree–of–freedom
manipulator with a continuous (360 degree) jaw rotation mechanism. We actuate the joints via
hydraulic pistons, which are powered via an auxiliary output from the hydraulic pump. Thus
learning the forward model is difficult due to inherent hysteresis associated with hydraulic control.

12



Figure 8: The experiments are performed on data from robots with different actuator dynamics.
From left to right these include: Hydraulically actuated BROKK-40 [22], Pneumatically actuated
artificial muscles [23], Franka Emika Panda Robotic Arm.

For this robot, only one joint is moved at a time, so we have independent time series per joint. The
joint data consists of measured joint positions and the input current to the controller of the joint
sampled at 100Hz.

Training Procedure: During training, we work with sequences of length 500. For the first 300 time
steps those sequences consist of the full observation, i.e., the joint position and current. We give only
the current signals in the remaining 200 time steps. The models have to impute the missing joint
positions in an uninformed fashion, i.e., we only indicate the absence of a position by unrealistically
high values.

8.2 Musculoskeletal Robot Arm

Observation and Data Set: For this soft robot we have 4 dimensional observation inputs(joint
angles) and 8 dimensional action inputs(pressures). We collected the data of a four DoF robot
actuated by Pneumatic Artificial Muscles (PAMs). The robot arm has eight PAMs in total with
each DoF actuated by an antagonistic pair. The robot arm reaches high joint angle accelerations of
up to 28, 000deg/s2 while avoiding dangerous joint limits thanks to the antagonistic actuation and
limits on the air pressure ranges. The data consists of trajectories collected while training with a
model-free reinforcement learning algorithm to hit balls while playing table tennis. We sampled
the data at 100Hz. The hysteresis associated with the pneumatic actuators used in this robot is
challenging to model and is relevant to the soft robotics in general.

Training Procedure: During training, we randomly removed three-quarters of the states from the
sequences and tasked the models with imputing those missing states, only based on the knowledge
of available actions/control commands, i.e., we train the models to perform action conditional fu-
ture predictions to impute missing states. The imputation employs the model for multi-step ahead
predictions in a convenient way. One could instead go for a dedicated loss function as in approaches
like [18], [17] for long term predictions.

8.2.1 Franka Emika Panda Robot Arm

Observation and Data Set: We collected the data from a 7 DoF Franka Emika Panda manipulator
during free motion. We chose this task since the robot exhibits different dynamics behaviour due to
electric actuators and high frequencies(1kHz). The raw joint positions, velocities and torques were
recorded using Franka Interfaces while the joint accelerations were computed by finite differences
on filtered velocity data (obtained using a zero-phase 8th-order digital Butterworth filter with a
cut-off frequency of 5Hz). The observations for the forward model consist of the seven joint angles
in radians, and the corresponding actions were joint Torques in Nm. While the inverse model use
both joint angles and velocities as observations. The data was divided into train and test sets in the
ratio 4:1. We divide the data into sequences of length 300 while training the recurrent models for
forward dynamics and use sequences of length 50 for inverse dynamics.

Training Procedure Forward Dynamics: Similar to the multi-step ahead training procedure in
8.2, during training we randomly removed three-quarters of the observations(joint angles) from

13



the sequences and tasked the models with imputing those missing observations, only based on the
knowledge of available actions/control commands.

Training Procedure Inverse Dynamics: The recurrent models (LSTM, ac-RKN) uses a similar
architecture, as shown in Figure 3 of the main paper, except for the recurrent module. The hyper-
parameters including learning rate, latent state and observation dimensions, learning rate, control
model architecture, action decoder architecture and regularization parameter for the joint forward-
inverse dynamics loss function are searched via GpyOpt[21] and is mentioned in Appendix D. The
observation encoder and decoder architecture is chosen to be of the same size across the models
being compared. For all models, we use the joint positions and velocities as the observation input
and differences to the next state as desired observation. The FFNN gets the current observation and
desired observation as input and is tasked to predict the joint Torques directly(unlike differences in
recurrent models) as in previous regression approaches[11].

8.2.2 Barrett WAM Robot Arm

Observation and Data Set: The Barett task is based on a publicly available dataset comprising
joint positions, velocities, acceleration and torques of a seven degrees-of-freedom real Barett WAM
robot. The original training dataset (12, 000 data points) is split into sequences of length 98.
Twenty-four out of the total 119 episodes are utilized for testing, whereas the other 95 are used
for training. The direct cable drives which drive this robot produce high torques, generating fast
and dexterous movements but yield complex dynamics. Rigid-body dynamics cannot be model this
complex dynamics due to the variable stiffness and lengths of the cables.

Training Procedure Inverse Dynamics: The training procedure is repeated as in 8.2.1

9 Appendix C: Details Of Rigid Body Dynamics Model

The analytical model for Franka Emika Panda is a rigid-body dynamics model that was identified in
its so-called base parameters [26]. Due to the friction compensation in the joints, we observed that
the viscous friction is negligible, whereas the observed Coulomb friction is very small yet included
in our parameterization. Which results is a model with 50 parameters. The base parameterization
is computed based on provided kinematic properties of the robotic arm and provides a linear rela-
tion between the base parameters and joint torques for a given set of joint positions, velocities and
accelerations.

Due to this linearity, the regression problem can be solved using a linear least-squares method, al-
though additional linear matrix inequality constraints must be fullfilled to ensure that the resulting
parameters are physically realizable [27]. In order to perform forward simulation of the robot dy-
namics, we numerically solve an initial value problem for the implicit set of differential equations
defined by base parameterization of the rigid-body model. Note that, the model does not parameter-
ize actuator dynamics, nor does it model joint flexibilities, link flexibilities, or stiction. The focus
here is to provide a reference baseline to show which effects the acRKN captures in comparison to
a text-book robot model.

10 Appendix D: Hyperparameters

10.1 Pneumatic Musculoskeltal Robot Arm

Table 1: Forward Dynamics Hyperparameters For Pneumatic Musculoskeltal Robot.

Hyperparameter ac-RKN RKN LSTM
Learning Rate 3.1e-3 1.9e-3 6.6e-3
Latent Observation Dimension 60 60 60
Latent State Dimension 120 120 120

Encoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output (elu + 1)

14



• Fully Connected 1: 120, ReLU

Observation Decoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output:

• Fully Connected 1: 120, ReLU

Transition Model (ac-RKN,RKN): bandwidth: 3, number of basis: 15

• α(zt): No hidden layers - softmax output

Control Model (ac-RKN): 3 fully connected + linear output

• Fully Connected 1: 120, ReLU
• Fully Connected 2: 120, ReLU
• Fully Connected 3: 120, ReLU

Architecture For FFNN Baseline 2 fully connected + linear output

• Fully Connected 1: 6000, ReLU
• Fully Connected 2: 3000, ReLU

Dropout Regularization - 0.512
Learning Rate - 1.39e-2
Optimizer Used: Adam Optimizer

10.2 Hydraulic Brokk-40 Robot Arm

Table 2: Forward Dynamics Hyperparameters For Pneumatic Musculoskeltal Robot.

Hyperparameter ac-RKN RKN LSTM GRU
Learning Rate 5e-4 5e-4 9.1e-4 2.1e-3
Latent Observation Dimension 30 30 30 30
Latent State Dimension 60 60 60 60

Encoder (ac-RKN,RKN,LSTM,GRU): 1 fully connected + linear output (elu + 1)

• Fully Connected 1: 30, ReLU

Observation Decoder (ac-RKN,RKN,LSTM,GRU): 1 fully connected + linear output:

• Fully Connected 1: 30, ReLU

Transition Model (ac-RKN,RKN): bandwidth: 3, number of basis: 32

• α(zt): No hidden layers - softmax output

Control Model (ac-RKN): 1 fully connected + linear output

• Fully Connected 1: 120, ReLU

10.3 Franka Emika Panda - Forward Dynamics Learning

Table 3: Forward Dynamics Learning Hyperparameters For Panda.

Hyperparameter ac-RKN RKN LSTM GRU
Learning Rate 3.1e-3 1.7e-3 6.6e-3 8.72e-3
Latent Observation Dimension 45 30 30 45
Latent State Dimension 90 60 60 90

15



Encoder (ac-RKN,RKN,LSTM,GRU): 1 fully connected + linear output (elu + 1)

• Fully Connected 1: 120, ReLU

Observation Decoder (ac-RKN,RKN,LSTM,GRU): 1 fully connected + linear output:

• Fully Connected 1: 240, ReLU

Transition Model (ac-RKN,RKN): bandwidth: 3, number of basis: 15

• α(zt): No hidden layers - softmax output

Control Model (ac-RKN): 3 fully connected + linear output

• Fully Connected 1: 30, ReLU
• Fully Connected 2: 30, ReLU
• Fully Connected 3: 30, ReLU

Architecture For FFNN Baseline - Forward Dynamics 3 fully connected + linear output

• Fully Connected 1: 1000, ReLU
• Fully Connected 2: 1000, ReLU
• Fully Connected 3: 1000, ReLU

Dropout Regularization - 0.1147
Learning Rate - 8.39e-3
Optimizer Used: SGD Optimizer

10.4 Franka Emika Panda - Inverse Dynamics Learning

Table 4: Inverse Dynamics Learning Hyperparameters For Panda.

Hyperparameter ac-RKN RKN (No Action Feedback) LSTM
Learning Rate 7.62e-3 3.5e-3 9.89e-3
Latent Observation Dimension 15 30 30
Latent State Dimension 30 60 60
Regularization Factor (λ) 0.158 0.179 0.196

Encoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output (elu + 1)

• Fully Connected 1: 120, ReLU

Observation Decoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output:

• Fully Connected 1: 240, ReLU

Action Decoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output:

• Fully Connected 1: 512, ReLU

Transition Model (ac-RKN,RKN): bandwidth: 3, number of basis: 15

• α(zt): No hidden layers - softmax output

Control Model (ac-RKN): 1 fully connected + linear output

• Fully Connected 1: 45, ReLU

Architecture For FFNN Baseline - Inverse Dynamics 3 fully connected + linear output

16



• Fully Connected 1: 500, ReLU
• Fully Connected 2: 500, ReLU
• Fully Connected 3: 500, ReLU

Dropout Regularization - 0.563
Learning Rate - 1.39e-2
Optimizer Used: SGD Optimizer

10.5 Barett WAM - Inverse Dynamics Learning

Table 5: Inverse Dynamics Learning Hyperparameters Barett WAM.

Hyperparameter ac-RKN RKN (No Action Feedback) LSTM
Learning Rate 7.7e-3 1.7e-3 9.33e-3
Latent Observation Dimension 15 30 45
Latent State Dimension 30 60 90
Regularization Factor (λ) 0.176 0 3.42e-3

Encoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output (elu + 1)

• Fully Connected 1: 120, ReLU

Observation Decoder (ac-RKN,RKN,LSTM): 1 fully connected + linear output:

• Fully Connected 1: 240, ReLU

Action Decoder (ac-RKN): 2 fully connected + linear output:

• Fully Connected 1: 256, ReLU
• Fully Connected 1: 256, ReLU

Action Decoder (RKN,LSTM): 1 fully connected + linear output:

• Fully Connected 1: 512, ReLU

Transition Model (ac-RKN,RKN): bandwidth: 3, number of basis: 15

• α(zt): No hidden layers - softmax output

Control Model (ac-RKN): 1 fully connected + linear output

• Fully Connected 1: 45, ReLU

Architecture For FFNN Baseline 3 fully connected + linear output

• Fully Connected 1: 500, ReLU
• Fully Connected 2: 500, ReLU
• Fully Connected 3: 500, ReLU

Dropout Regularization - 0.563
Learning Rate - 1e-5
Optimizer Used: SGD Optimizer

17


	1 Introduction
	2 Related Works
	3 Recurrent Kalman Networks
	4 Robot Dynamics Learning with Action-Conditional RKNs
	4.1 Action Conditioning
	4.2 Forward Dynamics Learning
	4.3 Inverse Dynamics Learning

	5 Experimental Results
	5.1 Forward Dynamics Learning
	5.2 Inverse Dynamics Learning

	6 CONCLUSION
	7 Appendix A: RKN - Summary and Conceptual Components
	7.1 Observation and Latent State Representation
	7.2 Locally Linear Transition Model
	7.3 Observation Model
	7.4 Kalman Update Step

	8 Appendix B: Robots and Data
	8.1 Hydraulic Brokk 40 Robot Arm
	8.2 Musculoskeletal Robot Arm
	8.2.1 Franka Emika Panda Robot Arm
	8.2.2 Barrett WAM Robot Arm


	9 Appendix C: Details Of Rigid Body Dynamics Model
	10 Appendix D: Hyperparameters
	10.1 Pneumatic Musculoskeltal Robot Arm
	10.2 Hydraulic Brokk-40 Robot Arm
	10.3 Franka Emika Panda - Forward Dynamics Learning
	10.4 Franka Emika Panda - Inverse Dynamics Learning
	10.5 Barett WAM - Inverse Dynamics Learning


