KIT | KIT-Bibliothek | Impressum | Datenschutz

From LiNiO₂ to Li₂NiO₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides

Bianchini, Matteo; Schiele, Alexander; Schweidler, Simon ORCID iD icon; Sicolo, Sabrina; Fauth, François; Suard, Emmanuelle; Indris, Sylvio ORCID iD icon; Mazilkin, Andrey; Nagel, Peter; Schuppler, Stefan; Merz, Michael; Hartmann, Pascal; Brezesinski, Torsten ORCID iD icon; Janek, Jürgen

Abstract:

The Li−Ni−O phase diagram contains a variety of compounds, most of which are electrochemically active in Li-ion batteries. Other than the well-known LiNiO2, here we report a facile solid-state method to prepare Li2NiO3 and other Li-rich Ni oxides of composition Li1+xNi1−xO2 (0 ≤ x ≤ 0.33). We characterize their crystal and electronic structure, exhibiting a highly oxidized Ni state and defects of various nature (Li−Ni disorder, stacking faults, oxygen vacancies). We then investigate the use of Li2NiO3 as a cathode active material and show its remarkably high specific capacity, which however fades quickly. While we demonstrate that the initial capacity is due to irreversible O2 release, such process stops quickly in favor of more classical reversible redox mechanisms that allow cycling the material for >100 cycles. After the severe oxygen loss (∼15−20%) and prolonged cycling, the Bragg reflections of Li2NiO3 disappear. Analysis of the diffracted intensities suggests the resulting phase is a disordered rock salt-type material with high Li content, close to Li0.5Ni0.5O, never reported to date and capable of Li diffusion. Our findings demonstrate that the Li−Ni−O phase diagram has not been fully investigated yet, especially concerning the preparation of new promising materials by out-of-equilibrium methods.


Postprint §
DOI: 10.5445/IR/1000125282
Veröffentlicht am 08.11.2022
Originalveröffentlichung
DOI: 10.1021/acs.chemmater.0c02880
Dimensions
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 0897-4756, 1520-5002
KITopen-ID: 1000125282
HGF-Programm 43.21.01 (POF III, LK 01) Quantum Correlations in Condensed Matter
Weitere HGF-Programme 37.01.01 (POF III, LK 01) Fundamentals and Materials
Erschienen in Chemistry of materials
Verlag American Chemical Society (ACS)
Band 32
Heft 21
Seiten 9211–9227
Vorab online veröffentlicht am 22.10.2020
Schlagwörter 2017-019-020610, TEM, FIB, KNMF 2018-021-024449 WERA
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page