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ABSTRACT:

Classification of urban materials using remote sensing data, in particular hyperspectral data, is common practice. Spectral libraries can
be utilized to train a classifier since they provide spectral features about selected urban materials. However, urban materials can have
similar spectral characteristic features due to high inter-class correlation which can lead to misclassification. Spectral libraries rarely
provide imagery of their samples, which disables the possibility of classifying urban materials with additional textural information.
Thus, this paper conducts material classification comparing the benefits of using close-range acquired spectral and textural features. The
spectral features consist of either the original spectra, a PCA-based encoding or the compressed spectral representation of the original
spectra retrieved using a deep autoencoder. The textural features are generated using a deep denoising convolutional autoencoder. The
spectral and textural features are gathered from the recently published spectral library KLUM. Three classifiers are used, the two well-
established Random Forest and Support Vector Machine classifiers in addition to a Histogram-based Gradient Boosting Classification
Tree. The achieved overall accuracy was within the range of 70 - 80% with a standard deviation between 2 - 10% across all classification
approaches. This indicates that the amount of samples still is insufficient for some of the material classes for this classification task.
Nonetheless, the classification results indicate that the spectral features are more important for assigning material labels than the textural
features.

1. INTRODUCTION

Assessing the materials in the urban environment has in recent
times increased in importance for several reasons and applica-
tions. For example, this information is useful for researchers and
city planners who deal with city simulations or models where
knowledge about the existing materials is important. This can
include three-dimensional building models as given in CityGML
(Kolbe et al., 2005) and the extended dataset called Buildings
from OpenStreetMap (OpenStreetMap contributors, 2017). Fur-
thermore, knowledge about the material of a cultural heritage ob-
ject contributes to preservation and conservation of either build-
ings (Sánchez and Quirós, 2017; Yuan et al., 2020) or statues
(Grilli and Remondino, 2019). Further knowledge about urban
materials can be an indicator on how to tackle and handle the ur-
ban heat island effect which has an increasing occurrence in cities
(Ward et al., 2016; Santamouris et al., 2011).

Observed in previous studies regarding urban material classifica-
tion, the characteristic spectral features of different urban mate-
rial classes can be similar which makes it challenging to distin-
guish them from each other (Ilehag et al., 2017b; Ouerghemmi
et al., 2017; Deshpande et al., 2019). This is partly due to the
high inter-class correlation which leads to misclassification. Fur-
thermore, when different spectral libraries only provide the spec-
tra and no imagery of their samples, it can be challenging to as-
sure that the different spectral libraries contain materials that have
been labeled in a consistent manner (Fairbarn Jr, 2013; Ilehag et
al., 2019). Likewise, this can again lead to misclassification as
the different materials might have the same labels. Few spectral
libraries contain imagery of the samples (Kotthaus et al., 2014;
Kokaly et al., 2017; Ilehag et al., 2019) which can provide addi-
tional information for material classification.
∗Corresponding author

Combining spectral and textural features from satellite images for
classification of e.g. tree species (Ferreira et al., 2019), agricul-
ture (Mirzapour and Ghassemian, 2015; Ding et al., 2019) and
urban areas (Yuan et al., 2013) has shown great potential. Thus,
as urban materials are challenging to separate on a spectral level
due to the similarity of the spectral characteristic features, added
textural information could be beneficial. Assessment of materi-
als for close-ranged approaches, such as scene analysis via un-
manned aerial vehicles (UAV), could likewise benefit from com-
bining spectral and textural features (Ilehag et al., 2017a). Im-
agery of material samples acquired from a close distance, where
distinct textural features of the material can be detected, could
contribute to improved material distinction. One way to extract
textural features can be through the usage of an autoencoder (AE)
(Kramer, 1991). An AE is an unsupervised machine learning
method for compressing and decompressing data to retrieve im-
portant dimensionality-reduced features, which can include tex-
tural features (Das and Walia, 2019). The retrieved features can
be used as input for classification tasks and have shown great po-
tential (Geng et al., 2015; Li et al., 2016).

In this paper, we aim to classify urban materials based on spec-
tral and textural features using the close-range acquired spectral
library KLUM (Ilehag et al., 2019). In particular, we intend to de-
termine the benefits of using either spectral or textural features,
or the combination of both. The spectral features are either ex-
pressed as the original spectra, the encodings based on the first
few principal components or the compressed spectral features ac-
quired from a deep AE (DAE) (Vincent et al., 2010). The textural
features are retrieved from a deep denoising convolutional AE
(CAE) (Masci et al., 2011).

This paper is structured as follows. We briefly summarize the
related literature about AEs and the approaches for urban ma-
terial classification in Section 2. The used dataset, the spectral
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library KLUM, is presented in Section 3. The proposed method-
ology is presented in Section 4, which consists of creating AEs
for extraction of the compressed representation and classification.
The classification results and further analyzes of the usefulness of
AEs are presented in Section 5. Lastly, final remarks and sugges-
tions for future work are provided in Section 6.

2. RELATED WORK

To provide an overview of related work, the architecture of an AE
and its applications are presented in Subsection 2.1. Spectral and
textural approaches to urban material classification are presented
in Subsection 2.2.

2.1 Autoencoders

An AE is a data compression method that can be used to learn and
extract important features in an unsupervised manner (Kramer,
1991). An AE consists of a compression function, an encoder,
that reduces the dimensionality of the dataset and of a decom-
pression function, a decoder, that restores the compressed dataset
into its original form. The architecture of a typical AE can be
seen in Figure 1. As visualized, the input layer is compressed us-
ing a number of hidden layers which the user has chosen for the
particular task in mind. The outcome of the encoder is the com-
pressed representation, which is a dimensionality-reduced repre-
sentation of the original input. To restore the original input into
the reconstructed input, that is, the output layer, the compressed
representation is decompressed using the decoder.

Figure 1. The general architecture of an AE.

An AE is built for specific sets of data, that is, it is only able
to compress and decompress datasets comparable to what it was
trained for. For example, if being trained on images of animals,
it would perform poorly on images of cars. An AE requires both
training and testing data to assess the quality of the encoder and
the decoder, and can perform well on smaller datasets (Feng et
al., 2019).

Depending on the dataset and the purpose in mind, different au-
toencoding architecture are available. We will here present those
relevant for this paper. A DAE (Vincent et al., 2010) is an AE

that contains several hidden layers connected with each other. It
means that the output from one hidden layer is the input of the
next consecutive hidden layer. A CAE (Masci et al., 2011) uti-
lizes convolutional layers to extract features, which is most com-
monly applied to imagery as it discovers localized repeated fea-
tures over the input domain.

AEs can be used for different kinds of tasks, one being denoising
of corrupted data, such as signals (Vincent et al., 2008; Vincent
et al., 2010). A denoising AE is trained on both the corrupted
and uncorrupted data. The uncorrupted data receives intention-
ally randomly added noise to corrupt the dataset. By adding noise
to the uncorrupted dataset, it forces the AE to extract the most
important features (Vincent et al., 2010) which makes it more
robust. The compressed representation can be used as an input
for classification tasks, such as land-cover classification (Li et al.,
2016) or classification of a SAR image (Geng et al., 2015). As the
compressed representation is a dimensionality-reduced represen-
tation, it can be a useful approach for high-dimensional data e.g.
given when dealing with hyperspectral data (Zhou et al., 2019;
Lan et al., 2019; Lin et al., 2013) or for extracting important fea-
tures from images (Das and Walia, 2019).

2.2 Urban material datasets and classification approaches

The utilization of spectral libraries is a common procedure while
dealing with material classification based on purely spectral fea-
tures. They contain a large variation of material samples which
can be used for training a classifier due to their unique spec-
tral characteristic features. As libraries are compiled in different
countries across the world, the provided samples can vary due to
the regional differences. Spectral libraries are therefore gener-
ated to represent a particular region. Publicly available spectral
libraries such as the Santa Barbara spectral library (Herold et al.,
2004), ASTER (Baldridge et al., 2009), SLUM (Kotthaus et al.,
2014), USGS spectral library version 7 (Kokaly et al., 2017) and
KLUM (Ilehag et al., 2019) enable the possibility to extract spec-
tral features for further studies. Since spectral libraries aim to
provide only spectra of a variation of materials, imagery corre-
sponding to the given samples is usually not provided.

In contrast to such spectral libraries, other material libraries have
been presented where the focus is set on material classification
based on textural properties. Respective material libraries in-
clude the CUReT Database (Dana et al., 1999) and the KTH-
TIPS Database (Hayman et al., 2004) that contain RGB images
of a single representative per material class captured under differ-
ent conditions (e.g. with respect to scale, illumination and view-
point) in a controlled setting. Since these databases only contain
a single material sample per class and thus do not take into ac-
count intra-class variations, an extension has been presented with
the KTH-TIPS2 Database (Caputo et al., 2005). It contains fur-
ther material classes and different samples of the same material
class that have been acquired under different viewing and illumi-
nation conditions. A similar concept for data acquisition has been
applied for acquiring the UBO2014 Database (Weinmann et al.,
2014). However, one of the main limitations of such databases
is the fact that they have been acquired in a lab environment in
a controlled setting, thus not appropriately taking into account
the complexity of real-world environment conditions, as e.g. il-
lumination conditions strongly influence the appearance of mate-
rials. This has for instance been addressed with the Flickr Ma-
terial Database (Sharan et al., 2009), the OpenSurfaces dataset
(Bell et al., 2013) or the Materials in Context (MINC) Database
(Bell et al., 2015). These contain images of materials acquired
under uncontrolled viewing and illumination conditions beyond
lab environments, thus accounting for a large intra-class variation
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of material samples regarding their appearance in complex real-
world scenarios. Further work is focused on the use of material
representations digitized in lab environments to synthesize the re-
spective material appearance variations as seen in real-world en-
vironments under different viewing and illumination conditions
(Weinmann et al., 2014).

The combination of textural and spectral features for material
classification is not as well-established as only using spectral fea-
tures. However, due to hyperspectral data having a high dimen-
sion, classification can be challenging, especially if there is a
lack of training data available. Thus, texture can provide ad-
ditional information for classification of agricultural land using
three-dimensional wavelet texture features (Qian et al., 2012), or
with a Gray-Level Co-Occurrence Matrix to assess either build-
ing materials (Lerma et al., 2000) and meat quality (Yang et al.,
2018). The texture can be described using different approaches
and the algorithm is chosen to suit the needs.

3. DATASET

For this paper, we used the publicly available spectral library
KLUM (Ilehag et al., 2019) that was acquired in-situ in 2018
in the city of Karlsruhe, Germany. The spectral samples were
acquired with the high-resolution spectroradiometer ASD Field-
Spec – 4 Hi – Res1 in the spectral range of 350 – 2500 nm. The
spectroradiometer has three sensors which cover the ranges of
350 – 1000 nm, 1001–1800 nm and 1801 – 2500 nm respectively.
A spectral sampling of 1.4 nm and a spectral resolution of 3 nm
are used in the spectral range of 350 – 1000 nm, while the spectral
sampling of 1.1 nm and a spectral resolution of 8 nm are used in
the remaining spectral range. The spectroradiometer has in total
2151 channels and a wavelength accuracy of 0.5 nm.

KLUM mainly contains building facade materials, consisting of
181 spectral samples. KLUM is split into 13 material classes
and 33 material subclasses. The subclasses are split based on the
color, the surface attributes (coating, structure and texture) and
the state of the sample (e.g. new or old). The spectral library also
provides images of the acquired samples.

For this paper, we choose a total of 61 samples from the six ma-
terial classes Asphalt, Ceramic, Conglomerate, Limestone, Plas-
ter and Sandstone (see Figure 2 for selected examples). These
samples provide us with 606 spectra, each sample being repre-
sented by eight to ten continuously acquired spectra. The six
chosen classes are selected to firstly focus on material classes
with similar spectral features but with different textural features,
such as Asphalt and Conglomerate. Secondly, we wanted to limit
the amount of contaminated samples (e.g. painted surface) as
these features can be observed in this spectral range (Ilehag et
al., 2019). Lastly, we include material classes which have distin-
guished visible textural features, such as Sandstone, to investigate
the impact of the textural information.

Due to this paper focusing on both spectral and textural informa-
tion for material classification, we extend the imagery of KLUM
by acquiring further high-resolution images of each sample. The
images are acquired with a Nikon D810, a single-lens digital
camera with 36.6 megapixels and a sensor size of 35.9 mm x 24
mm. The acquired images have a pixel-resolution of 6144 x 4080
pixels. For each sample, three to four images from different dis-
tances were acquired, ranging between 0.2 – 1.2 m. The extended
image library consists of 185 images in total and is available on-
line 2.

1www.malvernpanalytical.com
2https://github.com/rebeccailehag/KLUM_extended_

imagery

(a) Asphalt (b) Conglomerate (c) Sandstone

(d) Average spectra of (a)-(c)

Figure 2. Imagery from the extended KLUM library; (a) Asphalt,
(b) Conglomerate and (c) Sandstone, and the corresponding av-
erage spectra (d).

4. PROPOSED METHOD

To classify the given samples, a framework consisting of two
major steps is utilized. We firstly address the feature extraction
by separately deriving the compressed representation of both the
spectral information and the textural information using a DAE
and a CAE respectively (visualized as the workflow in Figure 3).
Secondly, we perform the material classification using all ex-
tracted textural and spectral features as input to the supervised
classifiers. For the assessment of the DAE, we perform a compar-
ison with the alternative spectral representations by firstly using
the original spectra and secondly employing the Principal Com-
ponent Analysis (PCA) (Tipping and Bishop, 1999) on the origi-
nal spectra.

Section

DAE

Compressed
representation

Image
patch

Spectral features Textural features

Original spectra Image

1 2 3 4

1 2 3 4

1 2 3 4

Merge of spectral features

Merge of spectral and
textural features

Input to classifierInput to classifier Input to classifier

1 ... n 6

n CAE

n
Compressed
representation

Figure 3. Data processing flow for one material sample, either
for the spectral features, the textural features or the combination
using the original spectra.

4.1 Compressed feature representation with autoencoders

To assess the performance of the encoder, a decoder, which de-
codes the compressed representation, and a loss function, that
measures the information loss between the compressed and de-
compressed representation, are needed. The AE structures differ
depending on the input, as it is either spectral data or imagery.
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Some precautions and procedures remain the same for both types
of AEs. Firstly, the input data and the compressed representation
are normalized to the closed interval [0, 1]. Secondly, we use 20%
of the dataset as testing data, 10% for validation and the remain-
ing 70% for training. Lastly, due to the KLUM dataset containing
a class imbalance, we assure that each class is represented in both
the training and testing datasets.

The utilized models and the necessary pre-processing procedures
are further explained in the following sections, firstly the DAE for
the spectral compression and secondly the CAE for the textural
compression.

Deep autoencoder for spectral information As the dataset
was acquired in-situ, some of the spectral channels are removed
due to atmospheric effects, resulting in spectral gaps. To counter
this, we split the spectral range into four individual sections to
reduce the impact of any undesired atmospheric feature. Thus,
four spectral bands are defined: 350 – 949 nm, 1021 – 1339 nm,
1451 – 1779 nm and 1971 – 2299 nm. The bands are not equally
sized and each individual DAE is therefore structured differently.
As the KLUM dataset contains several spectra of the same sam-
ple, we take measures to assure that the training and testing data
do not contain spectra from the same sample. That is, a sample’s
spectra are either present in the training or the testing dataset.

Four DAEs are used in this paper and they are constructed by
stacking either three or five hidden layers, depending on the size
of the input spectra (see Figure 4 for the DAE structure for the
first spectral range). We utilize densely connected layers and the
rectified linear unit (ReLU) activation, defined as y = max(0, x),
for each hidden layer except for the last output layer where we
use a linear activation, defined as y = x. Additionally, we add
a sparsity constraint of 10−5 to prevent that the hidden layers
are learning an approximation of PCA, since this is not desired
in this paper. To assemble the DAE, we use the stochastic opti-
mizer Adam (Kingma and Ba, 2014) and the mean squared error
to assess the loss. For each of the four DAEs, we retrieve a com-
pressed representation as a vector of its corresponding spectral
section. Over the complete range, we receive a compression rep-
resentation with 32 elements (each DAE retrieves a vector with
the size eight).

Encoder Decoder

600x1

Input layer

512x1

256x1

8x1

Compressed spectral representation

256x1

512x1

600x1

Output layer

DENSE
ReLU

DENSE
ReLU

DENSE
ReLu

DENSE
ReLU

DENSE
ReLU

DENSE
Linear

Figure 4. The structure of the DAE for the spectral range
350 – ,949 nm.

Deep denoising convolutional autoencoder for textural infor-
mation To extract the textural features from the extended im-
agery, we utilize a CAE. We perform a few image pre-processing
procedures to enhance and improve the ability to encode and de-
code the images. Firstly, as the acquired imagery has a high
pixel-resolution of 6144 x 4080 pixels, we scale down the pixel-
resolution with a factor of 2 as such a high level of detail is neither
desired nor necessary. Secondly, we extract six randomly located
patches of 256 x 256 pixels of each image to extend and increase
the variation of the dataset. Thirdly, the patches are transformed
into a grey-scale using Y ′ = 0.2125 ·R+0.7154 ·G+0.0721 ·B

as we do not require information from three color channels to re-
trieve textural features. Lastly, we add normally distributed noise
to increase robustness.

The structure used for the CAE consists firstly of the encoder
and secondly the decoder. The structure of the encoder can be
seen in Figure 5 and consists of the combination of a 2D convo-
lutional layer with a linear activation, a batch normalization and
an additional ReLU activation layer. The last layer in the encoder
consists of reshaping the final encoder output into the compressed
representation, a vector with 32 elements. The decoder consists
of the inverse stacks to decode the compressed representation into
the same shape as the encoded input but with a sigmoid activa-
tion, defined as y = 1

1+e−x to retrieve a value between 0 and 1.
We train the CAE with the stochastic optimizer Nadam (Dozat,
2016) and use the mean squared error to assess the loss. Fig-
ure 6 displays the distribution of extracted compressed textural
features for two samples. As the compressed textural representa-
tions differ between the two examples, it indicates that we have
retrieved distinct textural features which can be used for material
class assignment.

4.2 Classification

To assess the material classes, we perform supervised classifi-
cation using three different classifiers which are available in the
Python toolbox scikit-learn (Pedregosa et al., 2011): Random
Forest (RF) (Breiman, 2001), Histogram-based Gradient Boost-
ing Classification Tree (HGB) (Pedregosa et al., 2011) and Sup-
port Vector Machine (SVM) (Wu et al., 2004). The RF classi-
fier consists of an ensemble of randomly trained decision trees,
where each decision tree uses a random subset of the training
data for training, which results in a set of decision trees that are
different from each other. The parameters of the RF are set to
100 decision-trees and a maximum tree depth of 100. The HGB
classifier, which is available as an experimental approach in the
toolbox scikit-learn, is implemented based on the classifier Light-
GBM (Ke et al., 2017), a gradient boosting framework that uses
a tree-based approach. HGB bases the tree splits on the potential
gain and splits the samples into integer-valued bins (histogram
bins), which reduces the amount of splitting points. Here, we set
the maximum number of iterations to 100, a maximum depth of
10, a loss function based on categorical cross-entropy and a learn-
ing rate of 0.5. The SVM classifier bases its classification on the
scheme one-vs-one, that is, it separates two classes of interest at
a time in a high-dimensional space and considers the distance be-
tween the nearest feature of the two classes (Wu et al., 2004).
We use a radial basis function kernel for the separation between
the classes as a simple linear separation would not be enough for
high-dimensional data. Furthermore, the regularization parame-
ter is set to 100, the kernel coefficient for the radial basis function
to 1/(num(samples) · var(dataset)) and the regularization
parameter for each class as num(samples)/(num(classes) ·
bincount(classes)) to account for class imbalances.

The material classification is carried out for three kinds of in-
put data: either only spectral features, only textural features that
describe the image patches or a combination of both. We use
the CAE features to represent the image patches while the spec-
tral features are represented as either the compressed representa-
tion that we received from the DAE, the original spectra or the
PCA-based encodings of the original spectra. All in all, we de-
fine seven different scenarios of input features. We can therefore
assess both the contribution of combining spectral and textural
features, and the usefulness of the DAE.

Some precautions and procedures are the same for all classifi-
cation tasks. Firstly, we assure once again that the training and
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Figure 5. The encoder structure of the CAE for an image patch.

Figure 6. Examples for the two material classes Conglomerate
and Asphalt. Upper row: the down-scaled image patches. Lower
row: The corresponding compressed textural representation visu-
alizing the intensity distribution.

testing data do not contain spectra and image patches from the
same sample. Secondly, we take care that each class is present in
both the training and the testing datasets due to the class imbal-
ance. We utilize a stratified k-fold cross-validation approach to
preserve the class distribution for training and testing the classi-
fiers. A k-fold cross-validation approach allows us to perform the
classification several times using different splits, which reduces
the chance of overfitting during training. We use k = 4, which
is based on the number of samples in the smallest class to make
sure that each split contains enough samples.

Lastly, to evaluate the performance of the classifiers, we con-
sider different measures. We determine the overall accuracy OA,
which indicates the overall performance of the classifier, and the
κ-value, which indicates how good classes can be separated from
each other, in addition to the average recall-score R̄, the average
precision-score P̄ and the average F1-score across all classes. As
we use a k-fold cross-validation, we provide the mean evaluation
measures in addition to the standard deviation σ.

Classification based on spectral features Hyperspectral data
contains redundant information due to their broad spectral range.
We apply therefore the PCA algorithm (Tipping and Bishop, 1999)
from the Python toolbox scikit-learn (Pedregosa et al., 2011) on
the original spectra to reduce the spectral dimensionality and re-
trieve the few first principal components that cover 99.99% of the

variability of the given data.

For the spectral classification, we either use the original spectra,
the PCA-based encoding or the compressed representation of the
original spectra from the four DAEs. As the compressed repre-
sentations of the original spectra were split into four, we merge
those in the corresponding spectral order. The number of spectral
features is 1577 for the original spectra, 10 for the PCA-based
encoding and 32 for the merged DAEs.

Classification based on textural features 32 textural features
are retrieved from the compressed representations of the image
patches and are used as input for the textural classification. The
imagery database contains images acquired from different acqui-
sition distances (0.2 – 1.2 m) and the extracted features represent
information from different detail levels. To retrieve uniform tex-
tural features, only the images acquired from 0.2 m are further
used for the classification task.

Classification based on spectral and textural features To com-
bine the spectral and textural features for each sample, we assign
each image patch a corresponding set of spectral features ran-
domly chosen from the available spectra for the same sample. We
create three different spectral and textural combinations. They
consist of the compressed textural features from an image patch
combined with either the original spectra, the first few principal
components or the compressed spectral representation, from the
same sample.

5. RESULTS AND DISCUSSION

In comparison to the PCA method, a DAE requires both train-
ing and testing data to retrieve a compressed spectral represen-
tation. Depending on the size of the dataset and the structure
of the DAE, the compressed spectral representation requires sig-
nificantly more computing time and resource than the standard
PCA computation. In Figure 7, we can observe the ability of the
DAE to encode and decode the original spectra in the spectral
range of 350 – 949 nm. A difference can be noted while compar-
ing the original spectra with their decompressed correspondence
since AEs are lossy. The general spectral characteristics remain
the same but smaller deviations can be observed. Furthermore,
the compressed spectral representations of the two samples are
significantly distinct, which indicates that they can be utilized for
material distinction.

The material classification results using the three classifiers re-
veal, in general, an OA within the range of 70 – 80% as seen in
Table 1. However, as spectral characteristic features are similar
for urban materials and an inter-class correlation exists, the OA
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Figure 7. Two examples of the original spectra and their corre-
sponding decompression in addition to the compressed represen-
tation visualized as a vector in the spectral range of 350 – 949 nm
for the two material classes Asphalt and Limestone.

around this range is expected. Furthermore, the compressed spec-
tral representation received from the DAEs does not contribute to
substantially better classification results than the standard PCA
approach. In general, we receive a rather large σ across all clas-
sification approaches, which could indicate that we have a small
dataset for this challenging classification task.

The combination of spectral and textural features contributes to
unexpected results, as the OA does not significantly increase in
comparison to only using spectral features. Contrary, it remains
around the same interval. This hints that the spectral features are
more important for material classification. This is further sup-
ported by observing the most important according to the RF clas-
sifier for these combinations. We receive an indication that about
75% of the most important features are spectral features.

The difference between the seven scenarios is minor as the eval-
uation scores are close to each other. The noticeable difference is
however, in general, a larger variation across all scenarios. This
implies either that the spectral and textural features are not com-
parable or that the assignment of spectral and textural feature
pairs is not suitable since they contradict themselves. Nonethe-
less, this does indicate that adding the textural features to a spec-
tral dataset does not improve the distinction of classes with simi-
lar spectral features, such as Asphalt and Conglomerate.

As we perform a stratified k-fold cross-validation approach, we
retrieve several confusion matrices for each classifier. The con-
fusion matrices for one cross-validation cycle for SVM can be
seen in Figure 8. Here, the cycle with the highest average overall
accuracy OA was chosen for comparison of the confusion ma-
trices between the scenarios relying on original spectra, textural
features and the combination of the two. The class distributions
across these scenarios are similar, except for the scenario with
textural features (which is likewise explained by the evaluation
scores in Table 1). There is some confusion between the classes

Asphalt and Conglomerate in addition to Ceramic, Sandstone and
Plaster. The textural and spectral features of Limestone appear
more distinct as the class has fewer wrongly predicated samples.

In general, the occasionally occurring large σ, the lower eval-
uation scores and an overall accuracy OA within the range of
70 – 80% across all classification approaches may be attributed to
the limited size of dataset. Furthermore, the dataset contains a
certain class imbalance which is further prominent during train-
ing of either an AE or a classifier. If the class itself contains a
distinct spectral or textural variation, this cannot be trained with
the splits containing few samples. A rigorous balancing of all
classes would either further decrease the number of samples or
the number of considered classes. The conclusions drawn from
this paper are specific to this setup. Future work should address
the acquisition of a larger dataset including more variation of both
spectral and textural features. Nonetheless, this paper can imply
that the combination of spectral and textural features does not sig-
nificantly improve the possibility of distinguishing materials with
similar spectral features.

6. CONCLUSION AND OUTLOOK

In this paper, we have classified urban materials by utilizing a
close-ranged acquired spectral library by using either spectral
features, textural features or a combination of both. We have
used two types of AEs to retrieve a compressed spectral repre-
sentation of the original spectra and a compressed textural rep-
resentation of the imagery. To assess the compressed spectral
representation and its ability as input for classification, we also
used the original spectra and a PCA-based encoding. The sum-
mary in Table 1 does not show a clear trend whether PCA-based
or DAE-based features provide better classification results. While
for the RF case the DAE features perform better than those from
PCA, there are no consistent results for the HGB and SVM clas-
sifiers. Additionally, more steps are required to retrieve the com-
pressed spectral features, which are more time and resource con-
suming than to retrieve the principal components. Three classi-
fication approaches were used: RF, HGB and SVM. The clas-
sification approaches perform similar and a clear ranking is not
evident. In general, the achieved OA implies that material classi-
fication is heavily based on the spectral features as the retrieved
results were worse when using only textural features. By an-
alyzing the most important RF features for the combination of
spectral and textural features, we receive a hint that implies that
the spectral features are more important. The acquired images
that were used for the textural study can be downloaded from
the dataset ’KLUM extended imagery’ (https://github.com/
rebeccailehag/KLUM_extended_imagery) for further analy-
sis studies.

The combination of spectral and textural features needs to be fur-
ther explored. On the one hand, a larger dataset needs to be ac-
quired which includes more spectral samples and corresponding
imagery. Such a dataset should likewise cover a larger variation
of both spectral and textural features to account for variance and
thus more representatively cover a wide range of urban materials.
On the other hand, a comparison between CAEs and classical tex-
ture analysis approaches could be of interest to retrieve different
kinds of textural features and to see if the combined approach
provides improved classification results.
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