
Research highlights:

• Peak demand is shaved for photovoltaic battery systems with electric vehicles.

• A central planner’s objective is applied on a decentral operator’s system.

• Uncertainties from load demand, photovoltaic, and electric vehicle are considered.

• A battery reserve capacity and the relaxation of the demand limit are implemented.

• A reduction of the daily peak by 17% to 52% is achieved.
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Abstract

Increasing use of renewable energy leads to change in load flows from predictable generation and inelastic demand

to more volatile and price-elastic patterns, especially on the distribution level. New applications such as electric

vehicles further increase the demand of electricity. Therefore, a reliable, local control of load flexibilities is a key

competence of future system operators. This paper presents a central planner – decentral operator approach to

schedule local electricity flows. The central planner conducts a two-stage optimization to derive the demand limit and

a corresponding battery schedule, while the decentral operator simply applies the battery schedule and heuristically

reacts to unforeseen deviations between the forecasted and actual loads and power generation. Privacy concerns of the

decentral planner are avoided as no private information is shared with the central planner. A relaxation factor and a

reserve capacity for the battery are derived from a Monte Carlo simulation to consider the underlying uncertainties of

load, photovoltaic generation, and electric vehicle charging. Our results show that the load of the decentral operator

can be limited reliably for six days of the considered week and a maximum reduction of 2.6 kW (52%) of peakload

has been accomplished. Furthermore, the approach is suitable for systems with limited computational resources at

the place of the decentral operator, which is the common case in this field.
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Nomenclature

Abbreviations

DCM Demand charge management

EV Electric vehicle

PV Photovoltaic

Greek Symbols

α Relaxation factor

Subscripts

f Forecasted values

n Quarter-hour timestep

t 1-minute timestep

Physical Parameters

ηbattery Charging and discharging efficiency

ξnoise
n Noise in the nth timestep

Cbattery Battery capacity [Wh]

P battery,max Max. battery power [W]

P battery,min Min. battery power [W]

P threshold,initial Initial threshold power [W]

P threshold Threshold power [W]

P battery,chargeGrid
n Battery charging power from grid in the nth

timestep [W]

P battery,chargePV
n Battery charging power from PV in the nth

timestep [W]

P battery,charge
n Battery charging power in the nth timestep [W]
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P battery,discharge
n Battery discharging power in the nth timestep

[W]

P battery
n Battery power in the nth timestep [W]

P demand,actual
n Actual demand in the nth timestep [W]

P demand,f
n Forecasted demand in the nth timestep [W]

P post−DCM
n Post demand charge management power in the nth

timestep [W]

P pre−DCM
n Pre demand charge management power in the nth

timestep [W]

P pv,actual
n Actual PV generation in the nth timestep [W]

P pv,f
n Forecasted PV generation in the nth timestep [W]

P system
n System power in the nth timestep [W]

Paverage
t Average power in the tth timestep [W]

P trigger
t Trigger power in the tth timestep [W]

RC Reserve capacity [%]

SOCmax Max. state-of-charge [%]

SOCmin Min. state-of-charge [%]

SOCn State-of-charge in the nth timestep [%]

1. Introduction

Decreasing price for photovoltaic (PV) and battery systems in combination with efforts to mitigate greenhouse gas

emissions for electricity generation is leading to a decentralization in energy systems (Alanne and Saari, 2006). This

includes electricity generation (mainly by PV) and the provision of flexibilities (e.g., by battery systems). Thus, load

flows are changing considerably from predictable and inelastic to more volatile and price-elastic patterns (Kaschub

et al., 2016), which may influence grid stability. Hence, a reliable, local control of load flexibilities is a key competence

of future system operators. If these control mechanisms are applied in real applications, they should be able to account

for important parameters (such as PV and load prognosis) including their uncertainties, and to use stable (i.e., non-

complex) control mechanisms in order to assure a reliable operation of the electricity system. These decentralized but

still highly reliable electricity systems are a cornerstone of the energy transition and, consequently, developing reliable

control algorithms for controlling these decentral systems is a core request for the scientific community.

There has already been extensive research on distributed PV-battery systems. Some research intends to develop

energy dispatch strategies based on given component sizes or PV generation profiles. The energy dispatch strategy can

be proposed from the perspectives of demand side management (Matallanas et al. (2012), Di Giorgio and Pimpinella

(2012)), battery storage scheduling (Farah et al. (2016), Chua et al. (2015)), heat device scheduling (Jochem et al.

(2015), Dengiz and Jochem (2020)), electric vehicle (EV) charging scheduling (Seddig et al., 2019), and the combination

of both active demand side and storage management (Paterakis et al., 2016) or privacy issues (Buchmann et al., 2013).

Energy dispatch can be optimized for different objectives, such as operational cost (Ranaweera and Midtg̊ard (2016),

Klingler and Teichtmann (2017), Zhong et al. (2016)), self-consumption (Castillo-Cagigal et al., 2011), self-sufficiency

(Li et al., 2018), power smoothing (Arcos-Aviles et al. (2017), Wang et al. (2020)), and peak demand shaving (Lu et al.,

2018). In addition, multiple objectives can be considered simultaneously when developing optimal energy dispatch of

PV-battery systems.

1.1. Energy Dispatch for Peak Demand Reduction

Peak demand shaving can be performed at different levels: single buildings, communities, distribution circuit levels

and even larger areas. Only peak demand reduction for a single building is reviewed below with recognition of the

existence of studies on shaving peak demand for more than a single building (Luthander et al. (2016), Lopes et al.

(2016), Reihani et al. (2016)).

Some studies simply assume the forecasts are accurately known in advance, leading to the formulation of an offline

predictive optimization problem. Riffonneau et al. (2011) use dynamic programming to minimize the operating cost of

a grid-connected PV system with energy storage. The peak demand is treated as a constraint by specifying an upper

limit for the power exchange with the grid. They conclude that the approach achieves good results under simulated

conditions, but the results under real conditions depend strongly on the forecast accuracy. Erdinc (2014) formulates
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a mixed integer linear programming model to minimize the total daily cost of electricity consumption under different

demand response strategies, one of which is peak power limiting. Ratnam et al. (2015) optimize the battery’s day-

ahead schedule via a quadratic programming-based algorithm. The problem is formulated to balance two objectives:

minimizing the impact of residential PV systems on the grid (i.e., the alleviation of peak demand and reverse power

flow) and increasing the operational savings to house owners. The two objectives are balanced through a user-specified

weighting matrix in the cost function. The approach resulted in the battery to discharge mainly during shoulder and

peak periods, leading to a peak demand reduction.

Due to the intrinsic volatility of PV power generation and electric loads, the optimal control of PV-battery systems

needs to consider the deviation between predicted and actual power profiles in empirical applications. In this regard,

many studies have adopted a hierarchical control strategy. At the upper level, a predictive optimization is made based

on the forecasted load profile, PV generation profile, and electricity prices. This predictive optimization generates

the schedule of power management for a fixed time window (e.g., 24 hours). At the lower level, the dispatch schedule

from the upper level is adjusted online to accommodate the prediction error. As the time window used for the lower

level control recedes, the upper level control is updated. Along this thread of thought, Wang et al. (2014) propose

a two-stage control strategy to minimize the household owner’s utility cost, including both energy cost and peak

demand cost. The two-stage control consists of a global control tier and a local control tier. The global control tier

conducts a convex optimization to plan the future charging/discharging schedule for a billing period of one month.

The local control tier refines the storage control policy determined from the global tier dynamically in response to

the difference between predicted and actual power generation and consumption profiles. Compared to three heuristic-

based operation strategies, the two-stage approach reduces the owner’s electricity bill while indirectly reducing peak

demand. A similar approach is used by Hanna et al. (2014) and serves as the basis of our approach. In their work, a

linear optimization model is used at midnight to set the initial daily peak demand, called “load demand target”. The

inputs to the linear optimization include the day-ahead load and PV forecasts, the initial battery charge state, and

the physical constraints of the PV-battery system. To cope with the forecast error, Hanna et al. adopt two measures.

First, the linear optimization model is rerun hourly by replacing forecasted load and PV power with known data for

past hours, which may lead to an updated load target. Second, a real-time operation algorithm, termed “trigger”,

is used within every 15-min interval to maintain the load demand target by responding to load and PV fluctuations

at 1-minute resolution. When the original load target is jeopardized, the trigger resorts to battery discharge if the

battery has available capacity and the discharging power satisfies the battery operational constraint. Based on the

simulation for a university building in California, Hanna et al. have shown that with their proposed approach, the

battery storage reduces peak demand by about 6% in summer and about 9.3% in winter. However, over forecasting

PV power generation or under forecasting load may severely compromise the peak demand reduction capability.

As discussed above, the real-time operation applied at the lower level of the hierarchical control is one possible

approach to deal with imperfect forecasting when developing optimal energy dispatch in PV-battery systems. Another

approach is to quantify the forecasting uncertainty and then apply stochastic optimization for energy dispatch. How-

ever, because research papers focusing on real-time peak demand shaving while accounting for uncertainties are rarely

found in literature, an overview of studies considering the uncertainty of PV-battery system components in general

are provided in next subsection.

1.2. PV-Battery Systems Considering Uncertainties

The uncertainties are sourced from different components of PV-battery systems. Weather factors (e.g., clouds

and ambient air temperature) contribute to uncertainties of PV power generation. In addition to weather factors,

occupancy behavior is another important source of electric load uncertainty. The uncertainties associated with EVs

come from vehicle availability for charging (i.e., plug-in times) and their charging needs (i.e., energy demand). If

real-time pricing is used, the supply and demand fluctuations based on these (uncertain) price changes cause another

uncertainty.
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Hemmati and Saboori (2017) combine a stochastic mixed-integer non-linear programming and Monte Carlo sim-

ulation to address the uncertain PV generation of a residential PV-battery system. The PV power uncertainty is

captured by using Gaussian probability density functions for solar radiation and ambient temperature. The stochastic

programming aims to determine an optimal battery capacity and a charge/discharge regime through annualized total

cost optimization. Correa-Florez et al. (2018) minimize the expected day-ahead operation cost, which includes energy

procurement cost and battery cycling cost, of a home energy management system through optimal scheduling the bat-

tery unit with a two-stage mixed integer non-linear programming. They consider both load and PV uncertainties using

probabilistic forecasts and the resulted generation of nine scenarios. Appino et al. (2018) also rely on probabilistic

forecasts for the aggregated PV power generation and loads to compute a dispatch schedule. Their objective is to min-

imize the residential building electricity cost, using time-varying cost coefficients in a quadratic cost function. Schwarz

et al. (2018) use Markov Chains to consider the uncertainties of load demand, PV generation and electricity price.

Load demand, PV generation, and electricity price profiles are generated by considering the transition probabilities of

weather occurrences (e.g., cloudiness and ambient temperature) and their interactions.

Uncertainties from EV loads are typically modeled with probability distribution functions or Markov processes.

When maximizing the utilization of PV generation through smart charging strategies of EV fleets in a parking garage,

Seddig et al. (2019) consider the EV charging uncertainty from three aspects: arrival time, departure time, and trip

distance, the stochastics of all of which are described with probability distribution functions. Thomas et al. (2018)

present a stochastic mixed-integer linear programming model for a commercial PV-battery system with an EV fleet.

The EV stochastics are due to the arrival time, the detention time for EV charging, and the initial state of charge of

EV battery, all of which are described with different probability distribution functions. Thomas et al. conclude that

the stochastic approach performs better in terms of the total expected daily cost of the system than the deterministic

approach. Wang et al. (2020) aim to schedule EV charging connected to one charging infrastructure in a centralized

way. A stochastic linear programming model is used to address the problem of charging management. The approach

includes a Markov Chain to handle the EV uncertainty of the arriving time, the departure time, and the energy

demand. The approach leads to a peak demand reduction and a more equally distributed charging of the EV during

the day, compared to a non-controlled charging.

The literature review has identified many studies on optimal energy dispatch of grid-connected PV battery sys-

tems. However, the work considering uncertainty towards peak demand limitation is missing, especially for residential

households with PV, battery storage, and an EV. Consequently, our contribution to the literature is to develop a re-

liable, privacy-compliant, and real-time ready control algorithm, which can cope with fluctuating decentral electricity

generation (e.g., PV) and load flexibilities (provided by a battery) as well as the underlying uncertainties from PV,

load, and EV. In this vein, we are answering the following three research questions in our contribution:

• Is our approach a convincing tool in terms of allowing a central planner (i.e., grid operator) to make use of the

load flexibilities of decentral customers without knowing private information and without neglecting uncertainties

from PV, load, and EV?

• Is it possible for a decentral operator to follow the battery schedule proposed by the central planner without

requiring high calculation capacities, allowing a reliable, empirical application?

• Which impact has this approach on the residual load of the decentral application and how do the developed

mechanisms tackle the uncertainty from PV generation, electric load, and EV demand?

For answering these research questions, we propose the following structure of the paper: Section 2 outlines the

central planner – decentral operator approach and the PV battery system, which is followed by Section 3 on the

discussion of the optimization framework and the underlying procedure. Section 4 provides input data, forecasting

uncertainty modeling and the Monte Carlo simulation for the derivation of reserve capacity and relaxation factor.
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Section 5 dwells on the results of the approach by analyzing the peak demand reduction and the impact of the

uncertainty consideration. The last section provides a short conclusion and further outlook on future research.

2. Research Design

Our research design focuses on a central planner – decentral operator approach to cope with privacy (cf. Section

2.1). The decentral planer disposes a residential household endowed with PV, a battery, and an EV (cf. Section 2.2).

Our unit commitment approach, extended from Hanna et al. (2014), is outlined in Section 2.3.

2.1. Central Planner and Decentral Operator

In the central planner - decentral operator approach, the task of the central planner is to support the decentral

operator to limit its daily peak demand. On a daily basis, the central planner derives an optimal operating reserve

using the battery energy, called reserve capacity, and an optimal peak demand limit, called threshold power, and

provides this information to the decentral operator. Furthermore, the central planner provides a battery schedule to

the decentral operator, which is optimized to support the peak demand limitation. On the other hand, the decentral

operator’s task is to apply the battery schedule of the central planner.

The reserve capacity, the threshold power, and the battery schedule are based on information of the decentral

operator. Therefore, the decentral operator provides the necessary information to the central planner. The information

including the total annual electricity demand, the PV generation capacity, the EV, and the EV charging station is used

by the central planner to forecast the load, PV generation, and EV demand of the decentral operator. The information

regarding battery capacity and the current state-of-charge (SOC) of the battery is used to schedule battery operation.

In order to adjust the battery schedule regarding deviations between forecasted profiles and occurred profiles, the

highest residual peak demand of the past hours of the day is tracked. For privacy reasons, the detailed information of

the load profile is not shared. The schematic central planner – decentral operator approach is depicted in Figure 1.

Figure 1: Scheme of the tasks and the exchanged data of the central planner and decentral operator.

2.2. System’s Characteristics of the Decentral Operator

In this work, the central planner is assumed to be a grid operator whereas the decentral operator is assumed to be

a residential homeowner. The PV-battery system is a grid-connected and AC-coupled system, which consists of PV

modules, inverters, a Lithium-ion battery, a single EV, an EV charging station, and other electrical accessories.

The battery is assumed to have an equal charging and discharging efficiency, which includes the losses of power

conditioning equipment associated with the battery. Battery capacity degradation due to time and charging cycles is

not considered. Although with the simplifications mentioned above, the battery is operated in a component-friendly

manner, taking into account appropriate charging and discharging power limits and SOC boundaries. For this grid-

connected system, battery charging from the grid is allowed, but discharging into the grid is not allowed. Figure 2

shows the schematic of the considered PV-battery system.
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Figure 2: Schematic of the decentral operator’s residential PV-battery system with EV.

2.3. An Outline of our Unit Commitment Approach

The approach is based on a running window approach and involves the central planner’s and decentral operator’s

tasks. Every day, at midnight, the central planner conducts the first stage of a two-stage optimization to derive the

demand limit, called threshold power, which sets the upper limit of the residual load of the decentral operator. This

threshold power is used directly in the second stage of the two-stage optimization. The aim of this optimization is

to derive a 24-hour battery schedule for the decentral operator’s battery, which satisfies the threshold power derived

in the first-stage optimization. The forecasts, the battery schedule, and the threshold power are transferred to the

decentral operator’s system. Here, the decentral operator system applies the battery schedule for the upcoming hour.

In addition, the decentral operator’s task is to react on deviations between the forecasts and measured data from the

system. If these deviations jeopardize the threshold power, the system reschedules the battery to avoid exceeding

the threshold power using the trigger function (similar to Hanna et al. (2014)). The trigger function is a mechanism,

which measures the data in real-time and implements additional discharge of the battery, if the demand limit adherence

is jeopardized. After the hour is covered by the unit commitment on the decentral operator level, the information

regarding the occurred peak of the past hour and the SOC of the battery at the end of the hour is exchanged with

the central planner. The central planner conducts the second-stage optimization again to schedule the battery for

the next remaining hours of the day. This continues until midnight of the next day. The central planner conducts

the first-stage optimization again and continues the process until the week is covered. A simplified depiction of the

process is shown in Figure 3. The following Section 3 will present the used methodology in detail.
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Figure 3: Implemented running window approach. At 12 AM, the central planner (CP) conducts the two-stage optimization (orange block)
and transfers the derived threshold power and the battery schedule to the decentral operator (DO). Though the DO has the schedule for
24 hours (full blue block), it only applies it for the first hour (solid blue block). After the application, the DO sends the occurred residual
peak load and the updated SOC to the CP, who conducts the second-stage of the two stage optimization again (green block) and sends the
battery schedule to the DO. This continues until the last hour of the day was covered. Afterwards, at 12 AM of the next day, the process
starts again on the CP level with the two-stage optimization.

3. Methodology

The methodology starts with a two-stage optimization by the central planner and continues with the battery

dispatch schedule application by the decentral operator.

3.1. Two-stage Optimization by the Central Planner

The central planner uses a two-stage optimization to derive the optimal battery schedule for the decentral operator.

The first stage computes the minimal reduction level, which is further relaxed to consider the underlying uncertainties,

because actual profiles may deviate from forecasts. The relaxed reduction level is the threshold power, which is treated

as the residual load limit in the second-stage optimization to obtain the battery schedule. The process is depicted in

Figure 4 and explained further in the following two subsections.
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Figure 4: Approach from the central planner point of view.

3.1.1. First-stage Optimization: Threshold Power Determination

Equation 1 represents the objective function, which takes a quadratic programming form to minimize the square

of the difference between the forecasted demand P demand,f
n and the system’s output P system

n during critical quarter-

hour steps. Critical quarter-hour steps are those timesteps, when the forecasted demand P demand,f
n is larger than the

forecasted PV generation P pv,f
n and, therefore, resulting in a positive residual load (Hanna et al., 2014).

min f
(
P demand,f
n , P system

n

)
=

N∑
n=1

(
P demand,f
n − P system

n

)2
with P demand,f

n > P pv,f
n

(1)

for all n ∈ N.

The quadratic program is solved at the beginning of each day and reduces the residual load to a common level

over the whole 24-hour period. As the quadratic programming does not differ between positive and negative residual

peaks due to the squaring, it would also try to tackle the negative peaks, created from the PV generation feed-in,

and adjust them to the same level. This is prevented by the separation into critical and uncritical quarter-hour steps.

Hence, these negative peaks are not tackled in this work.

Power balance and the component operation limits are taken into account with the following constraints:

P system
n = P pv,f

n − P battery
n (2)

P battery
n = P battery,charge

n + P battery,discharge
n (3)
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P battery,min ≤ P battery
n ≤ P battery,max (4)

SOCn = SOCn−1 +
P battery,charge
n−1 · ηbattery ·∆t

Cbattery
+
P battery,discharge
n−1 ·∆t
ηbattery · Cbattery

(5)

SOCmin ≤ SOCn ≤ SOCmax (6)

P battery,charge
n = P battery,chargePV

n + P battery,chargeGrid
n (7)

P battery,chargeGrid
n ≥ 0 (8)

0 ≤ P battery,chargePV
n ≤ P pv,f

n (9)

0 ≥ P battery,discharge
n

≥ −P demand,f
n + P pv,f

n , if P demand,f
n > P pv,f

n

= 0, else
(10)

for all n ∈ N.

Eq. 2 specifies that the system output is the balance between the forecasted PV power generation (P pv,f
n ) and

the battery power (P battery
n ). The battery power is divided into the charging power P battery,charge

n (positive), and the

discharge power P battery,discharge
n (negative), as indicated in Eq. 3. Battery charging and discharging are subject to

power limits (Eq. 4). Eq. 5 tracks the battery SOC, which must fall into its boundary values as shown in Eq. 6. Eq. 7

specifies the power for battery charging, which is possible from the grid (Eq. 8) and from the available PV generation

P pv,f
n (Eq. 9). Discharging into the grid is restrained by Eq. 10, as the discharge power is limited to the residual load

(i.e., the difference between the forecasted load P demand,f
n and the PV generation P pv,f

n ).

The battery power is divided into charging and discharging power (Eq. 3). It is physically impossible to charge and

discharge the battery simultaneously, but this circumstance might occur in mathematical models. In the literature,

binary variables are used to avoid simultaneous charging and discharging in the same timestep, but are often accom-

panied by increased computational expenses. The first-stage optimization is implemented without such a strategy,

because an optimal solution, which includes simultaneous charging and discharging, can always be rescheduled to avoid

simultaneous charging and discharging, even without losing optimality. If the battery is charged at P battery,charge
n and

discharged at P battery,discharge
n in the same nth timestep, the contribution of this timestep to the objective function

equals the case of having the battery charged at P battery,charge
n +P battery,discharge

n if P battery,charge
n ≥ −P battery,discharge

n

or discharged at P battery,discharge
n +P battery,charge

n if P battery,charge
n < −P battery,discharge

n . Both cases, with and without

simultaneous charging and discharging, result in the same objective function value in the nth timestep. In addition,

the case without simultaneous charging and discharging activities, would have a higher SOC at the end of the nth
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timestep compared to the case with simultaneous charging and discharging, which might help to further support the

objective in subsequent timesteps. The equivalent objective function value in the nth timestep and the higher SOC

in the end of the nth timestep explain that without simultaneous charging and discharging, the solution will perform

at least as well as with simultaneous charging and discharging.

3.1.2. Threshold Relaxation

The residual load profiles before and after the first-stage optimization are now the basis to derive the threshold

power, which is applied in the second-stage optimization and the real-time battery dispatch later on. The residual

load profile after optimization is analyzed regarding its highest peak demand during critical quarter-hour steps (cf.

Section 3.1.1). This peak demand, further referred to as P threshold,minimal, is the lowest achievable peak demand

with the optimization. Setting a demand limit lower than P threshold,minimal would result in the infeasibility of the

optimization. The residual load profile before the optimization is analyzed the same way to derive the upper bound

of the demand limit P threshold,maximal, as a higher value than P threshold,maximal would not be useful.

The first-stage optimization does not include the uncertainties of the system, which mainly come from deviations

between the forecasted and actual profiles. Therefore, the lower bound P threshold,minimal is very optimistic. To adjust

the demand limit, a relaxation factor (α) is used, which sets the demand limit between the upper and lower bound

based on Eq. 11.

P threshold,initial = P threshold,minimal + α ·
(
P threshold,maximal − P threshold,minimal

)
(11)

Figure 5 illustrates the concept of threshold power relaxation. In this figure, the blue solid line represents the

residual load profile before optimization while the red solid line represents the residual load profile after the opti-

mization. Several values of the threshold power are marked as the dashed line with different relaxation factors (α=0,

0.2, 0.5, and 1). As α increases from 0 to 1, the threshold power P threshold,initial increases from P threshold,minimal to

P threshold,maximal. It can be seen in Figure 5 that higher peaks than P threshold,minimal may occur during uncritical

quarter-hour steps (gray highlighted). These peaks in uncritical quarter-hour steps can be neglected, as they originate

from grid charging, which will be addressed in the second-stage optimization to avoid higher loads than the threshold.

During uncritical quarter-hour steps, the objective function value is not affected immediately regardless the PV-battery

system’s power flows. Due to the battery’s ability to shift energy between the periods, these uncritical timesteps are

still used to charge the battery, but the charging and discharging activities are less controlled compared to critical

timesteps. Therefore, some of these activities may be deemed unnecessary from the perspective of prolonging the

battery life, but this circumstance is not investigated further because it has no impact on the overall objective of the

approach.
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Figure 5: The threshold can be relaxed between the forecasted residual peak demand and residual peak demand after optimization (non-
critical quarter-hour steps (gray highlighted) not considered). The dashed lines show different threshold powers depending on the relaxation
factor of α= 0, 0.2, 0.5, and 1.

3.1.3. Second-stage Optimization: Battery Scheduling

The second-stage optimization intends to determine the battery dispatch schedule. The threshold P threshold,initial

from the first-stage optimization is used as the demand limit and is implemented into the optimization as a constraint

(Eq. 12).

P demand,f
n − P system

n ≤ P threshold (12)

The initial objective function becomes redundant with the threshold. Therefore, Eq. 13 is set as the new

objective function. This objective function keeps the battery SOC at a high level and further reduces discharg-

ing activities to a minimum. To avoid charging and discharging at the same time, the battery discharging power

P battery,discharge
k is included in the second-stage objective function. Minimizing the discharging activities (by max-

imizing P battery,discharge
k ≤ 0) avoids all unnecessary discharges, which includes those discharging activities, which

would take place when charging and discharging occurred simultaneously with battery charging.

max f
(
SOCn, P

battery,discharge
n

)
=

N∑
n=1

(
SOCn +

P battery,discharge
n ·∆t
ηbattery · Cbattery

)
(13)

Though the charging from the grid is now limited to P threshold,initial with Eq. 12 (compare to Eq. 8), using it

as the upper limit for grid charging might provide more leeway than in the first-stage optimization, as on one hand,

the new objective function does not aim for the minimal demand limit and, on the other hand, the relaxed threshold

could be higher than the lower bound of the demand limit (P threshold,initial ≥ P threshold,minimal). This additional

leeway could result in high fluctuations, as the battery could be charged up to the limit of P threshold,initial at all time.

Therefore, Eq. 14 is implemented. In the beginning of the day, P occurred
1 is set as P occurred

1 = 0.5 · P threshold,initial.

Over the day, P occurred
n is increased, if a higher peak occurred, but is limited to P threshold,initial. This constraint has

one more advantage: If the actual residual peak load of a day is below P threshold,initial before optimization, that peak

is not increased to P threshold,initial because of the grid charging option.
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0 ≤ P battery,chargeGrid
n ≤

P occurred
n , if P occurred

n < P threshold,initial

P threshold,initial, else
(14)

3.2. Real-time Battery Dispatch by the Decentral Operator

Figure 6: Approach from the decentral operator point of view.

The decentral operator implements the battery dispatch schedule sent by the central planner. The implementation

process evolves on an hourly basis, depicted in Figure 6. The decentral operator manages battery charging and

discharging in a 1-min time resolution, while the battery dispatch schedule specified by the central planner has a

15-min time resolution. Thus, within each 15-minute interval of the coming hour, the decentral operator starts with

following the central planner’s battery schedule first. However, actual PV generation and electric loads (i.e., building

load and EV charging) may deviate from their forecasts. In cases of overestimated PV power or underestimated

electric loads, strictly following the central planner’s battery dispatch will unlikely maintain the predefined power

limit P threshold. Therefore, the trigger function from Hanna et al. (2014) is employed here. At the end of every

minute, the residual load P average
t is calculated from the actual load and the PV generation over the elapsed period

T, which includes the past and current minute steps. For example, after 3 minutes of the quarter-hour step, T = {1,

2, 3}. P average
t is calculated as:
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P average
t =

1

t

T∑
t=1

(
P load
t + PEV

t − PPV generation
t + P battery

t

)
, ∀ t ∈ T (15)

The trigger function is then used to calculate the trigger power P trigger
t (Eq. 16).

P trigger
t =

(
P threshold − P average

t

)
· 15

15− t
(16)

Two possible cases can occur:

• P average
t ≤ P threshold: The trigger power is positive and the threshold is not jeopardized. In this case, the

battery is charged and discharged according to the original dispatch schedule from the central planner.

• P average
t > P threshold: The trigger power is negative and the threshold is jeopardized. In this case, the battery

is discharged with P trigger
t in the next minute.

In Eq. 16, the denominator considers the elapsed time of the quarter-hour step. Thus, for the same magnitude of

deviation, a later occurrence of having the average power exceeding the threshold power implies a higher value of the

trigger power. During the application, the reduction of the peak can fail due to following reasons:

• The battery is empty (SOCn = SOCmin) and no energy is available to meet the required discharge.

• P trigger
t < P battery,min, means that the trigger power is higher than the battery discharge power limit (|P trigger

t | >
|P battery,min|), even though the battery has sufficient energy.

To support the real-time battery dispatch, reserve capacity (RC) is introduced as another mechanism to tackle the

forecasting uncertainties of electric load, PV power generation and EV charging. The RC can be understood as an

analogy for operating reserve in power grid. Therefore, part of the battery capacity is reserved for emergency conditions

when the power limit is jeopardized and unplanned battery discharge is needed. These emergency situations occur

when the trigger power is negative and the free energy (energy not reserved) is not sufficient to cover the additional

discharge.

The RC is only implemented in the real-time battery dispatch, not in the two-stage optimization. Recall that the

first-stage optimization finds P threshold,minimal. A constraint including the RC (i.e., SOCmin +SOCreserved ≤ SOCn

≤ SOCmax instead of Eq. 6) would significantly narrow the bounds of the battery SOC and thereby generate a high

threshold power. In addition, such a constraint would always cause infeasibility of the second-stage optimization as

soon as the battery was discharged to a SOC level lower than SOCmin + SOCreserved, which could occur frequently

due to unexpected peaks. Therefore, it has been decided to remove the RC from the two-stage optimization, but

consider it only in the real-time battery dispatch.

3.3. Update Battery Scheduling

After the decentral operator completes the real-time implementation of the battery dispatch for an entire hour

with its four quarter-hour steps, the second-stage optimization is repeated by the central planner for the remaining

hours of the 24-hour window. During this repetitive process, the second-stage optimization problem is updated from

the following three aspects: First, the time horizon shrinks gradually from 24 hours to 1 hour. Second, the initial

SOC (SOCn−1 in Eq. 5) is updated to the SOC level at the end of the preceding hour. And third, the threshold

power (Pthreshold in Eq. 11) may be updated if the battery dispatch fails in the preceding hour, as discussed earlier.
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With the exception of the above-mentioned updates, all other inputs to the second-stage optimization keep unchanged.

Rerunning the second-stage optimization is necessary because of the deviation between the forecasted and actual data.

If all 24 hours are covered, the central planner repeats the first-stage optimization again with the corresponding α

and RC. This process of staged optimization by the central planner and the real-time battery dispatch by the decentral

operator is continued until the last hour of the considered time period is covered. The approach generates two main

profiles, which are the basis of result analysis (cf. Hanna et al. (2014)). The first profile is the residual load profile of

the actual load data before the battery operation, which is referred to as pre-Demand Charge Management (pre-DCM)

profile (Eq. 17) and is calculated as following.

P pre−DCM
n = P demand,actual

n − P pv,actual
n , ∀ n ∈ N (17)

The second profile, which includes the battery operation, is referred to as post-Demand Charge Management

(post-DCM) profile (Eq. 18).

P post−DCM
n = P demand,actual

n − P pv,actual
n + P battery

n , ∀ n ∈ N (18)

4. Input Data and Uncertainty Modeling

This section describes the implemented PV-battery system of the decentral operator, the data and the methodology

used to derive the day-ahead forecasts, and the methods to model forecasting uncertainty and to derive the relaxation

factor α as well as the RC.

4.1. Technical Parameters of the Case Study

The underlying PV-battery system is implemented as a typical small residential system with a peak load of 2 kW

for the PV system and a considerable battery size of 5 kWh. The EV can be charged at a rate of 3.5 kW and its fuel

efficiency is assumed to be 17 kWh per km (cf. Table 1).

Parameters Value

Maximal charging power of the battery P battery,max 5 kW

Maximal discharging power of the battery P battery,min -5 kW

Maximal state of charge of the battery SOCmax 90%

Minimal state of charge of the battery SOCmin 10%

Initial charge of the battery SOC0 50%

Battery capacity Cbattery 5 kWh

Charging and discharging efficiency of the battery ηbattery 93%

Charging the battery from the grid Allowed

Discharging the battery into the grid Not allowed

Installed PV capacity 2 kWp

Charging power of the charging station 3.5 kW

Energy consumption of EV 17 kWh / 100 km

Table 1: All assumptions regarding PV-battery system.
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4.2. Load and PV Data

The electric load and PV generation profiles are provided by the German distribution system operator NetzeBW.

The measured load and PV power have a one-minute resolution and cover a period of 13 months (cf. Figure 7). To

derive the load forecast profile, the measured load data is first accumulated to a 15-minute resolution. Afterwards,

the two electric load measurements observed at the same quarter-hour and same day of the week from the previous

two weeks are averaged. The forecasts of PV power generation are based on a commercial forecast by a partner of

NetzeBW but are normalized and scaled to the PV size used in this work. Both forecasts have a 15-min resolution

and are depicted in Figure 8.

Figure 7: Example of smart meter measurement data for one day of the time series.

Figure 8: Corresponding load and PV generation forecast.

4.3. EV Data

The EV charging profile is based on the German Mobility Panel (Nobis and Kuhnimhof, 2018). The data includes

all journeys of several thousand car owners over the period of one week. Every journey is characterized with the

purposes, the driven distance and the departure and arrival time. The purpose of the journeys are divided into driving

home, driving to work, driving to public places, and driving to other places. To derive the EV charging profile, one

car owner of the data set is selected and its driving pattern is assumed to be the actual driving pattern during the

week. It is further assumed that the owner charges every day when arriving at home. The energy demand is obtained

from the driven distance over the day and the energy consumption of the EV. Combined with the assumed charging

infrastructure and charging behavior of the EV, the charging profile is derived. The forecasted profile of the EV is

generated similarly, but instead of using the data of one single owner, we use the average of several owners with similar
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driving patterns. As the data covers only one week, it is assumed that the driving patterns do not change over the

year.

4.4. Uncertainty Modeling

The forecasting uncertainty is represented by probability distribution functions (PDFs), which are created for every

quarter-hour of the day, every day type (Monday–Thursday, Friday, Saturday, Sunday) and every season (winter,

summer, transition), resulting in a total of 1152 PDFs (96 quarter-hours x 3 season types x 4 day types). The

deviations between forecasts and actual measurements are calculated and these deviations are pooled together for the

same quarter-hour, the same day type, and the same season. A kernel distribution estimation is used to derive the

PDFs for each pool.

The data of load, PV generation, and EV is not sufficient enough to cover all the iterations of the Monte Carlo

simulation. Therefore, synthetic profiles are generated to model the actual measured profiles. These synthetic profiles

are derived from the day-ahead forecast and the uncertainty (noise) ξnoisen , generated from the PDFs, for each n (Eq.

19). This approach resembles the one in Seddig et al. (2019).

P simulated
n = P forecast

n − ξnoisen (19)

To model the whole season correctly, the forecast is always drawn randomly from a pool of all day-ahead forecasts

of the season with the same day type.

This approach is used to create 1000 profiles and they are applied in the Monte Carlo simulation. All generated

profiles have a 15-minute resolution.

4.5. Mechanisms to address Forecasting Uncertainty

In Section 3.1.2, the relaxation of the threshold power via α was discussed, as well as the reserve capacity in

Section 3.2. A Monte Carlo simulation is conducted to find appropriate values for both the RC and the α. For every

combination of day type (i.e., Monday–Thursday, Friday, Saturday, and Sunday) and season (i.e., winter, summer, and

transition), the Monte Carlo simulation is performed with 1000 runs of the two-stage optimization and the battery

operation (cf. Figures 4 and 6), one randomly selected day per run. Each day has its own synthetic profiles for electric

load, PV power generation, and EV charging, which are generated according to the approaches discussed earlier in

Section 4.4. Because all generated synthetic profiles have a 15-minute resolution, flat power consumption in each

quarter-hour step is assumed to meet the one-minute resolution required by the real-time operation (cf. Figure 6).

From the results by the Monte Carlo simulation, the average peak demand reduction of all runs with the same

combination of RC and relaxation factor is calculated using the following equation:

P difference,average
i,j =

∑Ki,j

k=1

(
P pre−DCM peak
i,j − P post−DCM peak

i,j

)
Ki,j

(20)

where P difference,average
i,j is the average peak demand reduction resulting from the demand charge management for

all one-day runs Ki,j with the same RC (where i is the share of the battery capacity) with i ∈ [0%, 10%, ..., 70%, 80%],

and the same relaxation factor (j ) with j ∈ [0, 0.1, ..., 0.9, 1]. Table 2 is a heat map table showing the results from one

Monte Carlo simulation, with the optimal settings of RC and relaxation factor being 80% of the battery capacity and

0.2, respectively. Certainly, the optimal setting may vary with different combinations of day type and season.
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α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RC

0% 742 623 585 678 702 654 644 672 643 392 500

10% 682 665 924 954 883 859 741 725 477 464 486

20% 579 938 889 884 959 824 640 751 632 602 598

30% 929 886 902 1097 1147 917 701 852 738 590 650

40% 1032 958 1315 1230 1121 1080 838 934 748 593 576

50% 1263 998 1061 1297 1182 1156 1086 913 679 569 425

60% 1020 1245 1353 1352 1077 1330 935 1085 809 707 558

70% 1037 1183 1397 1381 1126 927 971 889 813 624 451

80% 913 1251 1423 1222 1164 917 933 726 702 597 693

Table 2: Average difference between pre-DCM and post-DCM peak demand for every combination of relaxation factor and reserve capacity
for the weekday samples.

4.6. Computing Environment and Time Complexity

The two-stage optimization model, battery real-time dispatch, and uncertainty modeling are all implemented in

Matlab, a numerical computing environment and programming language. To assure that the global minimum is

achieved, the global search algorithm of Ugray et al. (2007), which uses several starting points and the corresponding

results to estimate the basin radius and thresholds to find the global minimum, is applied.

The computational expense is largely caused by the Monte Carlo simulation, which simulates the two-stage opti-

mization and the unit commitment of the battery schedule. The application of the quadratic optimization is NP-hard

(Pardalos and Vavasis, 1991), but the time complexity is mainly driven by the number of samples in the Monte Carlo

simulation and increases linear with these. Therefore, the time complexity of the approach is assumed to be O(n).

This computation expenses are borne by the central planner, who applies the Monte Carlo simulation and the two-

stage optimization. The application of the battery schedule, the power measurements, the calculations of the trigger

function and the rescheduling of the battery due to the RC limitation on the side of the decentral operator for one

hour are conducted in the simulation in less than one second. Hence, the computational effort seems to be applicable

for limited calculation capacities of the decentral operator.

5. Results and Discussion

5.1. Post-DCM Residual Electric Load

The pre- and post-DCM residual load profiles are compared in Figure 9. The daily peak demands (pre- and post-

DCM) and their differences are summarized in Table 3, which shows that the peak demand has been reduced for all

seven days. The daily peak demand reduction ranges from 557 W on Day 7 (Saturday) to 2685 W on Day 2 (Monday).

Percentage-wise, the post-DCM peak demand is reduced from the pre-DCM peak by 17% on Day 7 and 52% on Day

2. For the purpose of reference, Table 4 provides the values of RC and α derived from the Monte Carlo simulation and

the initial threshold power obtained from the first-stage optimization at the beginning of each day. By comparing the

post-DCM peak in Table 3 and the initial threshold power in Table 4, we can see that the initial threshold power has

been successfully maintained for most days (Days 2, 3, 4, 5 and 7). Day 1 and day 6 show slight deviations between

initial threshold and achieved reduction.
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Figure 9: Pre-DCM residual load (blue dashed) and post-DCM residual load (red) over the whole simulation period.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Pre-DCM peak [W] 1780 5212 3547 2898 3773 3901 3355

Post-DCM peak [W] 1140 2527 1936 2247 2014 2962 2798

Difference [W] 640 2685 1611 651 1719 939 557

Reduction [%] 36% 52% 45% 22% 46% 24% 17%

Table 3: Pre-DCM peak, post-DCM peak and difference for every day of the simulation in Watt starting with day 1 (Sunday).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Reserve Capacity [%] 40 80 80 80 80 0 60

Relaxation Factor 1 0.2 0.2 0.2 0.2 0.8 0.8

Initial Threshold [W] 1170 2527 1936 2248 2049 2876 2798

Table 4: Reserve capacity, relaxation factor and initial threshold for the simulated period.

5.2. Comparison of Different Approach Settings

The advantages of considering forecasting uncertainties for peak demand reduction are demonstrated further by

comparing the approach presented in this paper with other approaches or different approach settings (scenarios). The

different scenarios are:

• Scenario 1: The approach exactly as presented in this paper (yellow solid line in Figure 10).

• Scenario 2: The approach presented in this paper, but not using the α and RC, i.e. α = 0 and RC = 0 (purple

solid line in Figure 10).

• Scenario 3: The approach exactly as presented in this paper, but assuming a perfect forecast (red solid line in

Figure 10). In this scenario, α and RC are not needed, as no uncertainties exist.

• Scenario 4: A simple battery management approach, which charges the battery whenever the PV power is more

than the total electric loads (building and EV) and discharges the battery whenever the PV power is less than

the total electric loads (green dotted line in Figure 10).
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Figure 10: Comparison of the highest daily post-DCM residual load peak of the different scenarios. It is visible that the perfect forecast
Scenario (red) performs best, followed be the approach presented in this work (yellow). Without using the RC and α (Scenario 2 (purple)),
the approach does not perform well and consistently. Simpler battery management approaches (Scenario 4 (green dotted)) are not suited
for peak shaving applications.

These different scenarios are simulated for the same week as presented in Section 5.1 and the post-DCM daily

peak for all scenarios are depicted in Figure 10. It is visible, that Scenario 3 has the lowest daily peak demand

and therefore, performs best. This is anticipated, as the approach uses perfect forecast and the demand limit in the

first-stage optimization can be hold during the battery dispatch. Without the mechanisms to tackle the uncertainty,

Scenario 2 does not perform well and consistently. The peaks are close to or almost as high as to the pre-DCM daily

peaks for most days. The relaxation factor α on this day could be lower to further reduce the peak demand. The

simple charging and discharging management (Scenario 4) does not reduce the peak demand at all and, therefore,

seems to be unsuitable for such an application.

5.3. Impact of Relaxation Factor and Reserve Capacity on the post-DCM Profile

To investigate the impact of α and RC on peak demand reduction, Scenario 1 and Scenario 2 from Section 5.2 are

compared to each other with respect to the threshold power, the SOC profile, and the residual load profile. The pre-

DCM residual load profile is seen in Figure 11a. In addition, the initial threshold power is depicted for both scenarios.

As Scenario 2 has α of 0 during all days, the threshold is also lower than in Scenario 1. Based on these thresholds,

the battery schedule is planned and operated. Figure 11b shows the impact on the SOC level of both scenarios during

the considered period. Scenario 1 has a RC of 40% on the first day, which keeps the SOC level in the beginning of the

period on a constant level, as no discharge without peak is allowed below this level. A discharge of the battery is only

conducted for the single peak during this day. In comparison, the SOC profile of Scenario 2 shows an immediate drop

in the beginning of the period even without a peak demand because the threshold power is set to almost 0 W (such a

low threshold is only possible as the battery was implemented with SOC = 50% in the beginning). This way, even the

low loads will be reduced, depleting the battery fast. Over the whole period, the battery in Scenario 2 is discharged

to SOCmin ten times, in contrast with three times in Scenario 1. Every time the battery is discharged, the post-DCM

residual load jumps back to the pre-DCM residual load, which is visible in Figure 11c. This is especially the case for

Scenario 2 on day 2, 3, 5 and 6.
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(a) Pre-DCM electric load and thresholds based on the relaxation factors for Scenario 1 (red) and Scenario 2 (green).

(b) Corresponding SOC trajectory of Scenario 1 (red) and Scenario 2 (green).

(c) Exemplary post-DCM residual load of Scenario 1 (red) and Scenario 2 (green dashed).

Figure 11: Pre-DCM residual load with threshold of different scenarios (a), resulting SOC trajectory of scenarios (b) and residual load
post-DCM of scenarios (c).
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6. Conclusions and Outlook

Reliable, local control of load flexibilities is a key competence of future system operators due to the increasing

share of renewable energy generation and a potential high penetration of electric vehicles. The proposed approach

delivers a reliable solution to set the threshold power and to constrain the power consumption below that limit using

the flexibility of distributed electrical storage. The advantages of the approach have been demonstrated through a

case study, which achieved daily peak demand reduction by 17% to 52% for one week. The novelty of the approach

lies in the following aspects:

• Current approaches in literature often assume a perfect insight into the decentral operator’s photovoltaic-battery

system without considering privacy issues. Our approach supports the central planner’s objectives without shar-

ing load profiles. Only the decentral operator’s information on its system, the total annual energy consumption

and the process tracking information are used by the central planner to schedule the decentral operator’s battery.

• In addition, such literature does not wonder about the computational expenses and transfers these to the de-

central operators without considering the available infrastructure. The proposed approach of this work supports

the application on systems with limited calculation capacities at decentral operators, whose task is simply to

apply the battery schedule.

• The consideration of uncertainties is a recent development in the literature on photovoltaic-battery systems, but

often focuses only on load demand and photovoltaic generation. Electric vehicle uncertainties still lack consid-

eration, even though their share rapidly increases and affects decentral distribution networks. Our approach

considers these uncertainties and proposes two mechanisms, the relaxation factor and the reserve capacity, to

address the underlying uncertainty of photovoltaic-battery systems caused by the deviations between the fore-

casted and actual profiles of load demand, electric vehicle demand and power generation. The relaxation factor

implements an ambitious but realistic limit of the decentral operator’s demand. The reserve capacity restrains

the use of a certain share of the battery energy unless the power limit is jeopardized.

Though the approach is able to significantly reduce the daily peak load, there are several avenues worthwhile for

future research. First, the second-stage optimization could be used for other objectives (e.g., minimization of the utility

bill or maximization of battery life) while the threshold is implemented as a constraint. This paper focuses on peak

demand shaving for a single household, the impact of which on the distribution grid is negligible. Therefore, one major

improvement is to manage many residential households on a distribution feeder or district substation together, which

would potentially leverage the diversity of load profiles for the reduction of aggregated power demand. In addition,

further research on the impact of the electric vehicle on the photovoltaic-battery system is particularly interesting.

Intelligent or bi-directional charging management could support the peak demand shaving further.
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Leube, J., 2012. Neural network controller for active demand-side management with pv energy in the residential

sector. Applied Energy 91, 90–97. doi:10.1016/j.apenergy.2011.09.004.

Nobis, C., Kuhnimhof, T., 2018. Mobilität in deutschland – mid ergebnisbericht: Studie von infas, dlr, ivt und infas 360

im auftrag des bundesministers für verkehr und digitale infrastruktur. URL: www.mobilitaet-in-deutschland.de.

Pardalos, P.M., Vavasis, S.A., 1991. Quadratic programming with one negative eigenvalue is np-hard. Journal of

Global Optimization 1, 15–22. doi:10.1007/BF00120662.

Paterakis, N.G., Erdinc, O., Pappi, I.N., Bakirtzis, A.G., Catalao, J.P.S., 2016. Coordinated operation of a neighbor-

hood of smart households comprising electric vehicles, energy storage and distributed generation. IEEE Transactions

on Smart Grid 7, 2736–2747. doi:10.1109/TSG.2015.2512501.

Ranaweera, I., Midtg̊ard, O.M., 2016. Optimization of operational cost for a grid-supporting pv system with battery

storage. Renewable Energy 88, 262–272. doi:10.1016/j.renene.2015.11.044.

Ratnam, E.L., Weller, S.R., Kellett, C.M., 2015. An optimization-based approach to scheduling residential battery

storage with solar pv: Assessing customer benefit. Renewable Energy 75, 123–134. doi:10.1016/j.renene.2014.09.008.

Reihani, E., Motalleb, M., Ghorbani, R., Saad Saoud, L., 2016. Load peak shaving and power smooth-

ing of a distribution grid with high renewable energy penetration. Renewable Energy 86, 1372–1379.

doi:10.1016/j.renene.2015.09.050.

Riffonneau, Y., Bacha, S., Barruel, F., Ploix, S., 2011. Optimal power flow management for grid connected pv systems

with batteries. IEEE Transactions on Sustainable Energy 2, 309–320. doi:10.1109/TSTE.2011.2114901.

Schwarz, H., Schermeyer, H., Bertsch, V., Fichtner, W., 2018. Self-consumption through power-to-heat

and storage for enhanced pv integration in decentralised energy systems. Solar Energy 163, 150–161.

doi:10.1016/j.solener.2018.01.076.

Seddig, K., Jochem, P., Fichtner, W., 2019. Two-stage stochastic optimization for cost-minimal charging of electric

vehicles at public charging stations with photovoltaics. Applied energy 242, 769–781.

Thomas, D., Deblecker, O., Ioakimidis, C.S., 2018. Optimal operation of an energy management system for a grid-

connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule.

Applied Energy 210, 1188–1206. doi:10.1016/j.apenergy.2017.07.035.

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Mart́ı, R., 2007. Scatter search and local nlp solvers: A multi-

start framework for global optimization. INFORMS Journal on Computing 19, 328–340. doi:10.1287/ijoc.1060.0175.

24



Wang, Y., Lin, X., Pedram, M., 2014. Adaptive control for energy storage systems in households with photovoltaic

modules. IEEE Transactions on Smart Grid 5, 992–1001. doi:10.1109/TSG.2013.2292518.

Wang, Z., Jochem, P., Fichtner, W., 2020. A scenario-based stochastic optimization model for charging scheduling

of electric vehicles under uncertainties of vehicle availability and charging demand. Journal of Cleaner Production

254, 119886.

Zhong, Q., Khalilpour, R., Vassallo, A., Sun, Y., 2016. A logic-based geometrical model for the next day operation of

pv-battery systems. Journal of Energy Storage 7, 181–194. doi:10.1016/j.est.2016.06.008.

25


