KIT | KIT-Bibliothek | Impressum | Datenschutz

Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds

Hippler, Marc; Weißenbruch, Kai; Richler, Kai; Lemma, Enrico D.; Nakahata, Masaki; Richter, Benjamin; Barner-Kowollik, Christopher; Takashima, Yoshinori; Harada, Akira; Blasco, Eva; Wegener, Martin; Tanaka, Motomu; Bastmeyer, Martin

Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/IR/1000125343
Veröffentlicht am 27.10.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Technische Chemie und Polymerchemie (ITCP)
Zoologisches Institut (ZOO)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2375-2548
KITopen-ID: 1000125343
HGF-Programm 47.02.06 (POF III, LK 01)
Zellpopul.auf Biofunk.Oberflächen IFG
Erschienen in Science advances
Band 6
Heft 39
Seiten Art. Nr.: eabc2648
Vorab online veröffentlicht am 23.09.2020
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page