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Summary

In Bayesian inference, predictive distributions are typically in the form of samples generated via
Markov chain Monte Carlo or related algorithms. In this paper, we conduct a systematic analysis
of how to make and evaluate probabilistic forecasts from such simulation output. Based on proper
scoring rules, we develop a notion of consistency that allows to assess the adequacy of methods
for estimating the stationary distribution underlying the simulation output. We then provide
asymptotic results that account for the salient features of Bayesian posterior simulators and derive
conditions under which choices from the literature satisfy our notion of consistency. Importantly,
these conditions depend on the scoring rule being used, such that the choices of approximation
method and scoring rule are intertwined. While the logarithmic rule requires fairly stringent con-
ditions, the continuous ranked probability score yields consistent approximations under minimal
assumptions. These results are illustrated in a simulation study and an economic data example.
Overall, mixture-of-parameters approximations that exploit the parametric structure of Bayesian
models perform particularly well. Under the continuous ranked probability score, the empirical
distribution function is a simple and appealing alternative option.

Key words: Bayesian methods; model evaluation; probabilistic forecasting; proper scor-
ing rules.

1 Introduction

Probabilistic forecasts are predictive probability distributions over quantities or events of
interest. They implement an idea that was eloquently expressed already at the beginning of the
20th century in the context of meteorological prediction:

It seems to me that the condition of confidence or otherwise forms a very important part of the
prediction, and ought to find expression. (Cooke, 1906, pp. 23–24)

Despite this early acknowledgement of the importance of forecast uncertainty, constructing
principled and realistic measures of the latter remains challenging in practice. In this con-
text, a rapidly growing transdisciplinary literature uses Bayesian inference to produce posterior
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predictive distributions in a wide range of applications, including economic, ecological and
meteorological problems, among many others. Bayesian posterior predictive distributions natu-
rally account for sources of uncertainty–such as unknown model parameters, or latent variables
in state space models–that are not easily captured using frequentist methods; see, for example,
Clark (2005) for an ecological perspective.

Formally, posterior predictive distributions arise as mixture distributions with respect to the
posterior distribution of the parameter vector. In the following, we assume that the parameter
vector contains all quantities that are subject to Bayesian inference, including also latent state
variables, for example. For a real-valued continuous quantity of interest, the posterior predic-
tive distribution, F0, can be represented by its cumulative distribution function (CDF) or the
respective density. The posterior predictive CDF is then of the generic form

F0.x/ D

Z
‚

Fc.x j �/ dPpost.�/ (1)

for x 2 R, where Ppost is the posterior distribution of the parameter, � , over some parameter
space,‚, and Fc(� |� ) is the conditional predictive CDF when � 2‚ is the true parameter. Harris
(1989) argues that predictive distributions of this form have appeal in frequentist settings as
well. Often, the integral in (1) does not admit a solution in closed form, and so the posterior
predictive CDF must be approximated or estimated in some way, typically using some form
of Markov chain Monte Carlo (MCMC); see, for example, Gelfand & Smith (1990) and Gilks
et al. (1996).

Given a simulated sequence .�i /miD1 of parameter values from Ppost, one approach, which we

call the mixture-of-parameters (MP) technique, is to approximate F0 by

OFMP
m .x/ D

1

m

mX
iD1

Fc.x j �i /: (2)

However, this method can be used only when the conditional distributions Fc(� |� ) are avail-
able in closed form. An alternative route is to simulate a sequence .Xi /miD1 where Xi�Fc(� |� i),
and to approximate F0 based on this sample, using either nonparametric or parametric tech-
niques. The most straightforward option is to estimate F0 by the empirical CDF (ECDF),

OF ECDF
m .x/ D

1

m

mX
iD1

1fx � Xig: (3)

Alternatively, one might employ a kernel density (KD) estimate of the posterior predictive
density, namely,

Of KD
m .x/ D

1

mhm

mX
iD1

K

�
x �Xi

hm

�
; (4)

where K is a kernel function, that is, a symmetric, bounded and square-integrable prob-
ability density, such as the Gaussian or the Epanechnikov kernel, and hm is a suitable
bandwidth (Rosenblatt, 1956; Silverman, 1986). Finally, much extant work employs a Gaussian
approximation (GA) to F0, namely,

OF GA
m .x/ D ˆ

�
x � O�m

O�m

�
; (5)
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where ˆ is the CDF of the standard normal distribution and O�m and O�m are the empirical mean
and standard deviation of the sample .Xi /miD1.

Following Rubin (1984) and Little (2006), it is now widely accepted that posterior pre-
dictive inference should be evaluated using frequentist principles, without prior information
entering at the model evaluation stage. For the comparison and ranking of probabilistic fore-
casting methods, one typically uses a proper scoring rule (Gneiting & Raftery, 2007) that
assigns a numerical score or penalty based on the predictive CDF, F, or its density, f, and the
corresponding realisation, y, such as the logarithmic score (LogS; Good, 1952),

LogS. F; y/ D � logf .y/; (6)

or the continuous ranked probability score (CRPS; Matheson & Winkler, 1976),

CRPS. F; y/ D
Z
R

.F.´/ � 1f´ � yg/2d´: (7)

While the LogS and CRPS are the two most popular scoring rules in applications, they fea-
ture interesting conceptual differences, which we discuss in Section 2.2. In practice, one finds
and compares the mean score over an out-of-sample test set, and the forecasting method with
the smaller mean score is preferred. Formal tests of the null hypothesis of equal predictive per-
formance can be employed as well (Diebold & Mariano, 1995; Giacomini & White, 2006; Clark
& McCracken, 2013; DelSole & Tippett, 2014).

Table 1 of the supporting information summarises the use of evaluation techniques in recently
published comparative studies of probabilistic forecasting methods that use Bayesian inference
via MCMC. As shown in the table, the MP technique has mainly been applied in concert with
the LogS, whereas the ECDF method can be used in conjunction with the CRPS only. However,
to this date, there are few, if any, guidelines to support choices in the table, and it is not clear
how they affect practical model comparisons. The present paper provides a systematic analysis
of this topic. We focus on the following questions. First, what defines reasonable choices of the
approximation method and scoring rule? Second, under what conditions do extant choices from
the literature satisfy this definition? Third, for a given scoring rule, how accurate are alternative
approximation methods in practically relevant scenarios?

In studying these questions, our work is complementary to Gneiting & Raftery (2007) who
develop the broader theory of scoring rules and portray their rich mathematical and decision
theoretic structure. While Gneiting & Raftery (2007) mention simulated predictive distribu-
tions (see in particular their Section 4.2), the empirical literature surveyed in the supporting
information has largely evolved after 2007, giving rise to the applied techniques that motivate
the present paper.

We emphasise that the present study–and the use of scoring rules in general–concerns the
comparative assessment of two or more predictive models: the model with the smallest mean
score is considered the most appropriate. Comparative assessment is essential in order to choose
among a large number of specifications typically available in practice. This task is differ-
ent from absolute assessment, which amounts to diagnosing possible misspecification, using
the probability integral transform (Dawid, 1984; Diebold et al., 1998), posterior predictive
checks (Gelman et al., 1996; Held et al., 2010; Gelman et al., 2014a, Chapter 6) and related
methods.

The remainder of this paper is organised as follows. Section 2 introduces the notion of a con-
sistent approximation to F0. This formalises the idea that, as the size of the simulated sample
becomes larger and larger, and in terms of a given scoring rule, the approximation ought to
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perform as well as the unknown true forecast distribution. In Section 3, we provide theoretical
justifications of approximation methods encountered in the literature. Sections 4 and 5 present
simulation and empirical evidence on the performance of these methods, and Section 6 con-
cludes with a discussion. Overall, our findings support the use of the MP estimator at (2) in
order to approximate the posterior predictive distribution of interest. If this estimator is unavail-
able, the ECDF estimator at (3) is a simple and appealing alternative. Technical material and
supplementary analyses are deferred to Appendices A–E. The supporting information contains
a bibliography of the pertinent applied literature and additional figures.

2 Formal Setting

In this section, we discuss the posterior predictive distribution in Bayesian forecasting, give
a brief review of proper scoring rules and score divergences and introduce the concept of a
consistent approximation method based on MCMC output.

As discussed earlier, the posterior predictive CDF of a Bayesian forecasting model is
given by

F0.x/ D

Z
‚

Fc.xj �/ dPpost.�/

where � 2‚ is the parameter, Ppost is the posterior distribution of the parameter and Fc(� |� )
is the predictive distribution conditional on a parameter value � ; see, for example, Greenberg
(2013, p. 33) or Gelman et al. (2014a, p. 7). A generic MCMC algorithm designed to sample
from F0 can be sketched as follows.

� Fix �0 2‚ at some arbitrary value.
� For iD 1,2, : : : iterate as follows:

– Draw �i � K.�i j �i�1/, where K is a transition kernel that specifies the conditional
distribution of � i given � i� 1.

– Draw Xi�Fc(� |� i).

We assume throughout that the transition kernel K is such that the sequence (� i)iD 1,2, : : : is
stationary and ergodic in the sense of Geweke (2005, Definition 4.5.5) with invariant distribu-
tion Ppost, as holds widely in practice (Craiu & Rosenthal, 2014). Importantly, stationarity and
ergodicity of (� i)iD 1,2, : : : with invariant distribution Ppost imply that (Xi)iD 1,2, : : : is stationary
and ergodic with invariant distribution F0 (Genon-Catalot et al., 2000, Proposition 3.1).

This generic MCMC algorithm allows for two general options for estimating the posterior
predictive distribution F0 in (1), namely,

� Option A: Based on parameter draws .�i /miD1,
� Option B: Based on a sample .Xi /miD1,

where m typically is on the order of a few thousands or ten thousands. Alternatively,
some authors, such as Krüger et al. (2017), generate, for each iD 1, : : : , m, independent
draws Xij�Fc(� |� i), where jD 1, : : : , J; see also Waggoner & Zha (1999, Section III.B). The
considerations in the succeeding text apply in this more general setting as well.
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2.1 Approximation Methods

In the case of Option A, the sequence .�i /miD1 of parameter draws is used to approximate the
posterior predictive distribution, F0, by the MP estimator OFMP

m in (2). Under the assumption of
ergodicity,

OFMP
m .x/ D

1

m

mX
iD1

Fc.x j �i /!

Z
‚

Fc.x j �/ dPpost.�/ D F0.x/

for x 2 R. This estimator was popularised by Gelfand & Smith (1990, Section 2.2.), based on
earlier work by Tanner & Wong (1987), and is often called a conditional or Rao-Blackwellised
estimator. The latter term hints at variance reduction that may result from conditioning on the
parameter draws (see Theorem 4). We refer to OFMP

m as the MP estimator.
In the case of Option B, the sample .Xi /miD1 is employed to approximate the posterior predic-

tive distribution F0. Various methods for doing this have been proposed and used, including the
ECDF of the sample, denoted OF ECDF

m in (3), the KD estimator Of KD
m in (4) and the GA method

OF GA
m in (5). Approaches of this type incur ‘more randomness than necessary’, in that the simu-

lation step to draw .Xi /miD1 can be avoided if Option A is used. That said, Option A requires full
knowledge of the model specification, as the conditional distributions must be known in closed
form in order to compute OFMP

m . There are situations where this is restrictive, for example, when
the task is to predict a non-linear transformation of the original, possibly vector-valued predic-
tand (see the set-up in Feldmann et al. 2015, Section 6d, for an example from meteorology). We
emphasise, however, that the MP estimator is readily available in the clear majority of applied
examples that we encounter in our work.

The implementation of the approximation methods (based on either Option A or B)
is typically straightforward, except for the case of KD estimation, for which we discuss
implementation choices in Section 3.3.

2.2 Proper Scoring Rules and Score Divergences

Let � � R denote the set of possible values of the quantity of interest, and let F denote a
convex class of probability distributions on �. A scoring rule is a function

S W F ��! R [ f1g

that assigns numerical values to pairs of forecasts F 2 F and observations y2�. We typically
set � D R but will occasionally restrict attention to compact subsets.

Throughout this paper, we define scoring rules to be negatively oriented; that is, a lower score
indicates a better forecast. A scoring rule is proper relative to F if the expected score

S. F;G/ D
Z
�

S. F; y/ dG.y/

is minimised for FDG, that is, if

S.G;G/ 	 S. F;G/

for all probability distributions F;G 2 F. It is strictly proper relative to the class F if, further-
more, equality implies that FDG. The score divergence associated with the scoring rule S is
given by

dS. F;G/ D S. F;G/ � S.G;G/:
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Table 1. Examples of proper scoring rules, along with the associated score divergence and natural
domain, F.

Scoring rule S(F,y) dS(F,G) F
Logarithmic score � logf .y/

R
g.´/ log g.´/

f.´/
d´ L1

CRPS
R
.F .´/�1f´ � yg/2 d´

R
.F .´/�G.´//2 d´ M1

Dawid–Sebastiani score log� 2
F C

.y��F /
2

�2
F

�2
G

�2
F

� log
�2
G

�2
F

C .�F��G/
2

�2
F

� 1 M2

For a probability distribution with CDF F, we write �F for its mean, �F for its standard deviation and f
for its density.

Clearly, dS(F,G)� 0 for all F;G 2 F is equivalent to propriety of the scoring rule S, which is
a critically important property in practice.1

Table 1 shows frequently used proper scoring rules, along with the associated score diver-
gences and the natural domain. For any given scoring rule S, the associated natural domain is
the largest convex class of probability distributions F such that S(F,y) is well defined and finite
almost surely under F. Specifically, the natural domain for the popular LogS [Equation (6)] is
the class L1 of the probability distribution with densities, and the respective score divergence
is the Kullback–Leibler divergence. The LogS is local (Bernardo, 1979); that is, it evaluates a
predictive model based only on the density value at the realising outcome. Conceptually, this
means that the LogS ignores the model's predicted probabilities of events that could have hap-
pened but did not. For the CRPS [Equation (7)], the natural domain is the class M1 of the
probability distributions with finite mean. The LogS and CRPS are both strictly proper relative
to their respective natural domains. In contrast to the LogS, the CRPS rewards predictive distri-
butions that place mass close to the realising outcome, a feature that is often called ‘sensitivity
to distance’ (e.g. Matheson & Winkler, 1976, Section 2). While various authors have argued in
favour of either locality or sensitivity to distance, the choice between these two contrasting fea-
tures appears ultimately subjective. Finally, the natural domain for the Dawid–Sebastiani score
(DSS; Dawid & Sebastiani, 1999) is the class M2 of the probability distributions with strictly
positive, finite variance. This score is proper, but not strictly proper, relative to M2.

2.3 Consistent Approximations

To study the combined effects of the choices of approximation method and scoring rule
in the evaluation of Bayesian predictive distributions, we introduce the notion of a consistent
approximation procedure.

Specifically, let (� i)iD 1,2, : : : or (Xi)iD 1,2, : : : , where Xi�Fc(� |� i), be output from a generic
MCMC algorithm with the following property.

(A) The process (� i)iD 1,2, : : : is stationary and ergodic with invariant distribution Ppost.
As noted, assumption (A) implies that (Xi)iD 1,2, : : : is stationary and ergodic with invari-

ant distribution F0. Consider an approximation method that produces, for all sufficiently large
positive integers m, an estimate OFm that is based on .�i /miD1 or .Xi /miD1, respectively. Let S
be a proper scoring rule, and let F be the associated natural domain. Then the approximation
method is consistent relative to the scoring rule S at the distribution F0 2 F if OFm 2 F for all
sufficiently large m, and

dS. OFm; F0/! 0

or, equivalently, S. OFm; F0/! S.F0; F0/ almost surely as m!1. This formalises the idea that
under continued MCMC sampling, the approximation ought to perform as well as the unknown
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Predictive Inference Based on Markov Chain Monte Carlo Output 7

true posterior predictive distribution. We contend that this is a highly desirable property in
practical work.

Note that OFm is a random quantity that depends on the sample .�i /miD1 or .Xi /miD1. The
specific form of the divergence stems from the scoring rule, which mandates convergence of a
certain functional of the estimator or approximation, OFm, and the theoretical posterior predictive
distribution, F0. As we will argue, this aspect has important implications for the choice of
scoring rule and approximation method.

Our concept of a consistent approximation procedure is independent of the question of how
well a forecast model represents the ‘true’ uncertainty. The definition thus allows to separate
the problem of interest, namely, to find a good approximation OFm to F0, from the distinct task
of finding a good probabilistic forecast F0.2 We further emphasise that we study convergence
in the sample size, m, of MCMC output, given a fixed number of observations, say, T, used to
fit the model. Our analysis is thus distinct from traditional Bayesian asymptotic analyses that
study convergence of the posterior distribution as T becomes larger and larger (see, e.g. Gelman
et al., 2014a, Section 4), thereby calling for markedly different technical tools.

2.4 Relation to Total Variation and Wasserstein Distances

Our focus on score divergences (in particular, on dLogS and dCRPS) is motivated by their
natural relation to scoring rules, which in turn are popular tools in the applied literature on
probabilistic forecasting. As reviewed by Gibbs & Su (2002), many other distance metrics for
comparing two probability distributions have been proposed in the literature. Among these
metrics, the total variation distance (dTV) has received much attention in theoretical work on
MCMC (e.g. Tierney, 1994; Rosenthal, 1995) and is thus particularly relevant in our con-
text. The total variation distance between two absolutely continuous probability measures with
densities f and g is defined as

dTV. F;G/ D
1

2

Z 1
�1

jf .´/ � g.´/j d´:

As 2dTV(F,G)2	 dLogS(F,G) (e.g. Barron et al., 1992), convergence in terms of dLogS implies
convergence in terms of dTV.

The Wasserstein distance is a divergence function motivated by optimal transport problems
(Villani, 2009) and has received much attention in statistics and machine learning (Panaretos
& Zemel, 2019). Here, we limit our discussion to the Wasserstein distance of order 1, which is
most common in practice, and denote the corresponding metric by

dW. F;G/ D

Z 1

0
jF �1.˛/ �G�1.˛/j d˛ D

Z 1
�1

jF.´/ �G.´/j d´;

where F�1 and G�1 are the quantile functions of F and G, respectively. Bellemare et al. (2017)
discuss shortcomings of Wasserstein distances in estimation with stochastic gradient descent
methods and suggest dCRPS as a superior alternative. This recommendation relates to the obser-
vation that there is no proper scoring rule with dW as score divergence (Thorarinsdottir et al.,
2013, Theorem 2).

As dCRPS(F,G)	 dW(F,G), convergence in terms of dW implies convergence in terms of
dCRPS. If F and G have densities with support in a common interval of length l, dW. F;G/ 	
l � dTV. F;G/ 	 l �

p
dLogS. F;G/=2, so in this case, consistency relative to the LogS implies

consistency relative to the CRPS. For further relations to the Kolmororov, Lévy, Prohorov and
bounded Lipschitz distances, see Section 2.4 of Huber & Ronchetti (2009).
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Table 2. Upper bounds on the computational complexity of approximation meth-
ods in terms of the size m of the Markov chain Monte Carlo sample .�i /miD1 or
.Xi /

m
iD1, respectively, for pre-processing and for the exact computation of the

CRPS, Dawid–Sebastiani score (DSS) and logarithmic score (LogS).

Approximation method Pre-processing CRPS DSS LogS

MP O.1/ O.m2/ O.m2/ O.m/
ECDF O.1/ O.m logm/ O.m/
KD O.m/ O.m2/ O.m/ O.m/
Gaussian O.m/ O.1/ O.1/ O.1/

CRPS, continuous ranked probability score; ECDF, empirical cumulative distri-
bution function; KD, kernel density; MP, mixture-of-parameters.

3 Consistency Results and Computational Complexity

We now investigate sufficient conditions for consistency of the aforementioned approxima-
tion methods, namely, the MP estimator OFMP

m in (2), the ECDF method OF ECDF
m in (3), the KD

estimate Of KD
m in (4) and the GA OF GA

m in (5). Table 2 summarises upper bounds on the compu-
tational cost of pre-processing and computing the CRPS, DSS and LogS under these methods
in terms of the size m of the MCMC sample .�i /miD1 or .Xi /miD1, respectively.

Consistency requires the convergence of some functional of the approximation, OFm, and the
true posterior predictive distribution, F0. The conditions to be placed on the Bayesian model
F0, the estimator OFm and the dependence structure of the MCMC output depend on the scoring
rule at hand.

3.1 Mixture-of-Parameters Estimator

We now establish consistency of the MP estimator OFMP
m in (2) relative to the CRPS, DSS and

LogS. The proofs are deferred to Appendix B.

Theorem 1. (Consistency of MP approximations relative to the CRPS and DSS). Under
assumption (A), the MP approximation is consistent relative to the CRPS at every distribution
F0 with finite mean, and consistent relative to the DSS at every distribution F0 with strictly
positive, finite variance.

Theorem 1 is the best possible result of its kind: it applies to every distribution in the natural
domain and does not invoke any assumptions on the Bayesian model. In contrast, Theorem 2
hinges on rather stringent further conditions on the distribution F0 and the Bayesian model (1),
as follows.

(B) The distribution F0 is supported on some bounded interval�. It admits a density, f0, that
is continuous and strictly positive on�. Furthermore, the density fc(� |� ) is continuous for every
� 2‚.

Theorem 2. (Consistency of MP approximations relative to the LogS). Under assumptions
(A) and (B), the MP approximation is consistent relative to the LogS at the distribution F0.

While we believe that the MP technique is consistent under weaker assumptions, this is the
strongest result that we have been able to prove. In particular, condition (B) does not allow for
the case � D R. However, practical applications often involve a truncation of the support for
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Predictive Inference Based on Markov Chain Monte Carlo Output 9

numerical reasons, as exemplified in Section 4, and in this sense, the assumption may not be
overly restrictive.

Computing the LogS and the DSS for a predictive distribution OFMP
m of the form (2) is straight-

forward. To compute the CRPS, we note from equation (21) of Gneiting & Raftery (2007) that

CRPS
�
OFMP
m ; y

�
D

1

m

mX
iD1

EjZi � yj �
1

2m2

mX
iD1

mX
jD1

EjZi �Zj j; (8)

where Zi and Zj are independent random variables with distribution Fc(� |� i) and Fc(� |� j), respec-
tively. The expectations on the right-hand side of (8) often admit closed-form expressions
that can be derived with techniques described by Jordan (2016) and Taillardat et al. (2016),
including but not limited to the ubiquitous case of Gaussian variables. Then the evaluation
requires O.m2/ operations, as reported in Table 2. In Appendix A, we provide details and inves-
tigate the use of numerical integration in (7), which provides an attractive, computationally
efficient alternative.

3.2 Empirical Cumulative Distribution Function-Based Approximation

The ECDF-based approximation OF ECDF
m in (3), which builds on a simulated sample .Xi /miD1,

is consistent relative to the CRPS and DSS under minimal assumptions. We prove the following
result in Appendix C, which is the best possible of its kind, as it applies to every distribution in
the natural domain and does not invoke any assumptions on the Bayesian model.

Theorem 3. (Consistency of ECDF-based approximations relative to the CRPS and DSS).
Under assumption (A), the ECDF technique is consistent relative to the CRPS at every distribu-
tion F0 with finite mean, and consistent relative to the DSS at every distribution F0 with strictly
positive, finite variance.

As stated in Table 2, the computation of the CRPS under OF ECDF
m requires O.m logm/ oper-

ations only. Specifically, let X(1)	 : : : 	X(m) denote the order statistics of X1, : : : , Xm, which
can be obtained in O.m logm/ operations. Then

CRPS
�
OF ECDF
m ; y

�
D

2

m2

mX
iD1

.X.i/ � y/

�
m1fy < X.i/g � i C

1

2

�
I (9)

see Jordan (2016, Section 6) for details. A special case of Equation (8) suggests another way of
computing the CRPS, in that

CRPS
�
OF ECDF
m ; y

�
D

1

m

mX
iD1

jXi � yj �
1

2m2

mX
iD1

mX
jD1

jXi �Xj j: (10)

The representations in (9) and (10) are algebraically equivalent, but the latter requires O.m2/
operations and thus is inefficient.

While the consistency results support the use of both OFMP
m and OF ECDF

m , Rao-Blackwellisation
arguments indicate superiority of OFMP

m .

Theorem 4. (Comparison of OFMP
m and OF ECDF

m ). Under assumption (A), E OFMP
m .´/ D

E OF ECDF
m .´/ and Var OFMP

m .´/ 	 Var OF ECDF
m .´/ for any z2� andm 2 N. If furthermore F0 has

finite mean, then E dCRPS

�
OFMP
m ; F0

�
	 E dCRPS

�
OF ECDF
m ; F0

�
for any m 2 N.
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Theorem 4 demonstrates that OFMP
m outperforms OF ECDF

m in terms of expected divergence, for
every given sample size m. Proposition 5 of Bolin & Wallin (2020) shows that if F0 is a normal
location-scale mixture, then the CRPS under the MP estimator additionally has smaller variance
than under the ECDF-based approximation.

Despite the theoretical superiority of OFMP
m , OF ECDF

m may be attractive in practice, especially if
the conditional distributions Fc(� |� ) underlying OFMP

m are difficult to compute analytically. For
example, this may occur if the predictand Y is modelled only indirectly (such as when Y is the
maximal element of a vector-valued random variable).

3.3 Kernel Density Estimator

We now discuss conditions for the consistency of the KD estimator Of KD
m . In the present case

of dependent samples .Xi /miD1, judicious choices of the bandwidth hm in (4) require knowledge
of dependence properties of the sample, and the respective conditions are difficult to verify in
practice.

The score divergence associated with the LogS is the Kullback–Leibler divergence, which is
highly sensitive to tail behaviour. Therefore, consistency of Of KD

m requires that the tail proper-
ties of the kernel K in (4) and the true posterior predictive density f0 be carefully matched, and
any results tend to be technical (cf. Hall, 1987). Roussas (1988), Györfi et al. (1989), Yu (1993)
and Liebscher (1996), among others, establish almost sure strong uniform consistency of Of KD

m

under ˛- or ˇ-mixing and other conditions. As noted in Appendix B, almost sure strong uni-
form consistency then implies consistency relative to the LogS under assumption (B). Based
on Hansen (2008) who proves general results, we give conditions for consistency of the kernel
density estimator Of KD

m and summarise the relevant assumptions in the following condition.
(H) For the kernel function K, the bandwidth hm and the dependence properties of

(Xi)iD 1,2, : : : assumptions 1–3 and the conditions of Theorem 7 of Hansen (2008) are satisfied.

Theorem 5. (Consistency of KD estimator-based approximations relative to the LogS). Under
assumptions (A), (B) and (H), the KD estimator-based approximation technique is consistent
relative to the LogS at the distribution F0.

The result is a direct consequence of Hansen (2008, Theorem 7) who further provides
optimal convergence rates. However, the respective conditions are stringent and difficult to
check in practice. Indeed, Wasserman (2006, p. 57) opines that ‘Despite the natural role of
Kullback–Leibler distance in parametric statistics, it is usually not an appropriate loss function
in smoothing problems’.

Under the conditions of Theorem 5, consistency of OF KD
m relative to the CRPS follows directly;

see Section 2.4. KD estimation approximations are generally not consistent relative to the DSS
due to the variance inflation induced by typical choices of the bandwidth. However, adaptations
based on rescaling or weighting allow for KD estimation under moment constraints; see, for
example, Jones (1991) and Hall & Presnell (1999).

As this brief review suggests, the theoretical properties of kernel density estimators depend
on the specifics of both the MCMC sample and the estimator. However, under the CRPS and
DSS, a natural alternative is readily available: the ECDF approach is simpler and computation-
ally cheaper than KD estimation and is consistent under weak assumptions (Theorem 3).

In our simulation and data examples, we use a simple implementation of KD estimator-
based approximations based on the Gaussian kernel and the Silverman (1986) plug-in rule for
bandwidth selection. This leads to the specific form
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OF KD
m .x/ D

1

m

mX
iD1

ˆ

�
x �Xi

hm

�
; (11)

where ˆ denotes the CDF of the standard normal distribution, and

hm D 1:06 OAm m
�1=5; (12)

where OAm D min
�
O�m;

IQRm
1:34

�
is the minimum of the standard deviation and the (scaled)

interquartile range IQRm of .Xi /miD1. The pre-processing costs of the procedure are O.m/, as
shown in Table 2. This choice of hm, which is implemented in the R function bw.nrd (R Core
Team, 2019), is motivated by simulation evidence in Hall et al. (1995). Using the Sheather
& Jones (1991) rule or cross-validation-based methods yields slightly inferior results in
our experience.3

3.4 Gaussian Approximation

A parametric approximation method fits a member of a fixed parametric family, say F� ,
of probability distributions to the MCMC sample .Xi /miD1. The problem of estimating the
unknown distribution F0 is thus reduced to a finite-dimensional parameter estimation prob-
lem. The most important case is the quadratic approximation or GA, which takes F� to be the
Gaussian family, so that

OF GA
m .x/ D ˆ

�
x � O�m

O�m

�
;

where O�m and O�m are the empirical mean and standard deviation of .Xi /miD1. If F0 has a den-
sity f0 that is unimodal and symmetric, the approximation can be motivated by a Taylor series
expansion of the log predictive density at the mode, similar to GAs of posterior distributions in
large-sample Bayesian inference (e.g. Kass & Raftery, 1995; Gelman et al., 2014a, Chapter 4).

If F0 is not Gaussian, OF GA
m fails to be consistent relative to the LogS and CRPS. However,

the Ergodic Theorem implies that the GA is consistent relative to the DSS under minimal
conditions.

Theorem 6. (Consistency of GAs relative to the DSS). Under assumption (A), the GA tech-
nique is consistent relative to the DSS at every distribution F0 with strictly positive, finite
variance.

We also note that the LogS for the GA OF GA
m corresponds to the DSS for the ECDF-based

approximation OF ECDF
m , in that

LogS
�
OF GA
m ; y

�
D

1

2

�
log 2� C DSS

�
OF ECDF
m ; y

��

for y 2 R. Therefore, the GA under the LogS yields model rankings that are identical to those
for the ECDF technique under the DSS. From an applied perspective, this equivalence suggests
that the inconsistency of the GA may not be overly problematic when the approximation is used
in concert with the LogS, an assessment that is in line with empirical findings by Warne et al.
(2016). However, researchers should be aware of the fact that they are effectively using a proper,
but not strictly proper, scoring rule (viz. the DSS) that focuses on the first two moments of the
predictive distribution only.
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4 Simulation Study

We now investigate the various approximation methods in a simulation study that is designed
to emulate MCMC behaviour with dependent samples. Here, the posterior predictive distribu-
tion F0 is known by construction, and so we can compare the different approximations to the
true forecast distribution. For simplicity, our choice of F0 is fixed and does not correspond to a
particular Bayesian model.4

In order to judge the quality of an approximation OFm of F0, we consider the score divergence
dS. OFm; F0/. Note that dS. OFm; F0/ is a random variable, because OFm depends on the particular
MCMC sample .�i /miD1 or .Xi /miD1. In our results in the succeeding text, we therefore consider
the distribution of dS. OFm; F0/ across repeated simulation runs. For a generic approximation
method producing an estimate OFm, we proceed as follows:

� For simulation run kD 1, : : : , K:

– Draw MCMC samples .� .k/i /miD1 and .X .k/i /miD1.

– Compute the approximation OF .k/m and the divergence dS. OF
.k/
m ; F0/ for the approximation

methods and scoring rules under consideration.

� For each approximation method and scoring rule, summarise the distribution of
dS. OF

.1/
m ; F0/; : : : ; dS. OF

.K/
m ; F0/.

In order to simplify notation, we typically suppress the superscript that identifies the Monte
Carlo iteration. The results in the succeeding text are based on KD 1 000 replicates.

4.1 Data Generating Process

We generate sequences .�i /miD1 and .Xi /miD1 in such a way that the invariant distribution,

F0.x/ D

Z
.0;1/

ˆ
�x
�

�
dH0.�

2/;

whereˆ denotes the standard normal CDF, is a compound Gaussian distribution or normal scale
mixture. Depending on the measure H0, which assumes the role of the posterior distribution
Ppost in the general Bayesian model (1), F0 can be modelled flexibly, including many well-
known parametric distributions (Gneiting, 1997). As detailed in the succeeding text, our choice
of H0 implies that

F0.x/ D T

�
x

ˇ̌
ˇ̌ 0;

ns

nC 2
; nC 2

�
; (13)

where T(� |a,b,c) denotes the CDF of a variable Z with the property that .Z�a/=
p
b is standard

Student's t distributed with c degrees of freedom. To mimic a realistic MCMC scenario with
dependent draws, we proceed as proposed by Fox & West (2011). Given parameter values n> 0,
s> 0 and ˛ 2 (� 1,1), let

 i � IG

�
1

2
.nC 3/;

1

2
ns.1 � ˛2/

�
; (14)

�i j  i � N
�
˛;
 i

ns

�
; (15)
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Table 3. Hyper-parameters for the data generating process in the
simulation setting of Equations (14) to (17).

Parameter Main role Value(s) considered

˛ Persistence of � 2
i {0.1, 0.5, 0.9}

s Unconditional mean of � 2
i 2

n Unconditional variance of � 2
i {12, 20}

Figure 1. Score divergences in the simulation study with (˛,s,n)D (0.5,2,12). For a given method and Markov chain Monte
Carlo (MCMC) sample size, the bars range from the 10th to the 90th percentile of the score divergences across 1 000 repli-
cates. The squares mark the respective medians. CDF, cumulative distribution function; CRPS, continuous ranked probability
score. [Colour figure can be viewed at wileyonlinelibrary.com]

�2
i D  i C �

2
i �

2
i�1; (16)

Xi j �
2
i � N.0; �2

i /; (17)

where IG is the inverse Gamma distribution, parametrised such that Z� IG(a,b) when
1/Z�G(a,b), with G being the Gamma distribution with shape a� 0 and rate b> 0.

Table 3 summarises our choices for the parameter configurations of the data generating
process. The parameter ˛ determines the persistence of the chain, in that the unconditional
mean of �2

i , which can be viewed as an average autoregressive coefficient (Fox & West 2011,
Section 2.3), is given by (n˛2 + 1)/(n + 1). We consider three values, aiming to mimic MCMC
chains with different persistence properties. The parameter s represents a scale effect, and n
governs the tail thickness of the unconditional Student's t distribution in (13). We consider val-
ues of 12 and 20 that seem realistic for macroeconomic variables, such as the growth rate of the
gross domestic product, that feature prominently in the empirical literature.

4.2 Approximation Methods

We consider the following approximation methods, which have been discussed in detail in
Section 3. The first approximation uses a sequence .�i /miD1 of parameter draws, and the other
three employ an MCMC sample .Xi /miD1.
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� Mixture-of-parameters estimator OFMP
m in (2), which here is of the form

OFMP
m .x/ D

1

m

mX
iD1

ˆ

�
x

�i

�
;

where � i is the predictive standard deviation drawn in MCMC iteration i.
� Empirical CDF-based approximation OF ECDF

m in (3).
� The nonparametric KD estimator Of KD

m using a Gaussian kernel and the Silverman rule for
bandwidth selection, with predictive CDF OF KD

m of the form (11).
� Gaussian approximation OF GA

m in (5).

It is interesting to observe that here OFMP
m is a scale mixture of centred Gaussian distributions

and OF KD
m is a location mixture of normal distributions, whereas the quadratic approximation

OF GA
m is a single Gaussian.
The conditions for consistency of the MP and ECDF approximations relative to the CRPS in

Theorems 1 and 3 are satisfied. Furthermore, one might argue that numerically the support of
F0 and OFMP

m is bounded (cf. succeeding text), and then the assumptions of Theorem 2 are also
satisfied. Clearly, the GA fails to be consistent relative to the CRPS or the LogS, as F0 is not
Gaussian.

For each approximation method, scoring rule S, sample size m and replicate k, we evalu-
ate the score divergence dS. OF

.k/
m ; F0/. The divergence takes the form of a univariate integral

(cf. Table 1) that is not available in closed form. Therefore, we compute dS. OF
.k/
m ; F0/ by numer-

ical integration as implemented in the R function integrate. This is unproblematic if the scoring
rule is the CRPS. For the LogS, the integration is numerically challenging, as the logarithm of
the densities needs to be evaluated in their tails. We therefore truncate the support of the integral
to the minimal and maximal values that yield numerically finite values of the integrand.

4.3 Main Results

In the interest of brevity, we restrict attention to results for a single set of parameters of the
data generating process, namely, (˛,s,n)D (0.5,2,12). This implies an unconditional Student's t
distribution with 14 degrees of freedom, and intermediate autocorrelation of the MCMC draws.
The results for the other parameter constellations in Table 3 are similar and available in the
supporting information.

Figure 1 illustrates the performance of the approximation methods under the LogS and the
CRPS, by showing the distribution of the score divergence dS. OFm; F0/ as the sample size m
grows. The MP estimator dominates the other methods by a wide margin: its divergences are
very close to zero and show little variation across replicates. Under the LogS, the performance
of the KD estimator is highly variable across the replicates, even for large sample sizes. The
variability is less under the CRPS, where the KD approach using the Silverman (1986) rule
of thumb for bandwidth selection performs similar to the ECDF-based approximation. Other
bandwidth selection rules we have experimented with tend to be inferior, as indicated by slower
convergence and higher variability across replicates. Finally, we observe the lack of consistency
of the GA.

Figure 2 provides insight into the performance of the MP approximation for small MCMC
samples. Using as few as 150 draws, the method attains a lower median CRPS divergence than
the KD estimator based on 20 000 draws. The superiority of the MP estimator is even more
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Figure 2. Performance of the mixture-of-parameters estimator. The design is as in Figure 1, but for smaller sample sizes.
For comparison, the blue horizontal line marks the median divergence of the kernel density estimator based on 20 000
draws. CRPS, continuous ranked probability score; MCMC, Markov chain Monte Carlo. [Colour figure can be viewed at
wileyonlinelibrary.com]

pronounced under the LogS, where only 50 draws are required to outperform the KD estimator
based on 20 000 draws.

4.4 Thinning the Markov Chain Monte Carlo Sample

In Appendix D, we present simulation analyses of the effects of thinning an MCMC sample
(i.e. keeping only every � th draw, where � 2 N is the thinning factor), which is often performed
in practice with the goal of reducing autocorrelation in the MCMC draws. From a practical
perspective, the analysis in Appendix D suggests that thinning is justified if, and only if, a small
MCMC sample is desired and the MP estimator is applied. Two arguments in favour of a small
sample appear particularly relevant even today. First, storing large amounts of data on public
servers (as is often performed for replication purposes) may be costly or inconvenient. Second,
post-processing procedures such as score computations applied to the MCMC sample may be
computationally demanding (cf. Table 2) and therefore may encourage thinning.

5 Economic Data Example

In real-world uses of Bayesian forecasting methods, the posterior predictive distribution F0

is typically not available in closed form. Therefore, computing or estimating the object of inter-
est for assessing consistency, that is, the score divergence dS. OFm; F0/, is not feasible. In the
subsequent data example, we thus compare the approximation methods via their out-of-sample
predictive performance and examine the variation of the mean scores across chains obtained by
replicates with distinct random seeds. While studying the predictive performance does not allow
to assess consistency of the approximation methods, it does allow us to assess the variability
and applicability of the approximations in a practical setting.

5.1 Data

We consider quarterly growth rates of US real gross domestic product, as illustrated in the
supporting information. The training sample used for model estimation is recursively expanded
as forecasting moves forward in time. We use the real-time data set provided by the Federal
Reserve Bank of Philadelphia,5 which provides historical snapshots of the data vintages avail-
able at any given date in the past, and consider forecasts for the period from the second quarter

International Statistical Review (2020)
© 2020 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

wileyonlinelibrary.com


16 KRÜGER ET AL.

of 1996 to the third quarter of 2014, for a total of TD 74 forecast cases. For brevity, we present
results for a prediction horizon of one quarter only. The supporting information contains results
for longer horizons, which are qualitatively similar to the ones presented here.

5.2 Probabilistic Forecasts

To construct density forecasts, we consider an autoregressive model with a single lag and
state-dependent error term variance, in that

Yt D 	 C ˛Yt�1 C "t ; (18)

where "t � N.0; 
2
st
/ and st 2 {1,2} is a discrete state variable that switches according to a first-

order Markov chain. The model, which is a variant of the Markov switching model proposed by
Hamilton (1989), provides a simple description of time-varying heteroscedasticity. The latter
is an important stylised feature of macroeconomic time series (see, e.g. Clark & Ravazzolo,
2015).

We conduct Bayesian inference via a Gibbs sampler, for which we give details in Appendix
E. Let � i denote the complete set of latent states and model parameters at iteration i of the Gibbs
sampler. Conditional on � i, the predictive distribution under the model in (18) is Gaussian
with mean �iD�(� i) and standard deviation � iD � (� i), where we suppress time and forecast
horizon for simplicity. At each forecast origin date tD 1, : : : , TD 74, we produce 10 000 burn-
in draws and use 40 000 draws post burn-in. We construct 16 parallel chains in this way. The
(time-averaged) mean score of a given approximation method, based on m MCMC draws within
chain cD 1, : : : ,16, is

NSm;c D
1

T

TX
tD1

S. OFm;c;t ; yt /;

where OFm;c;t is the probabilistic forecast at time t. The variation of NSm;c across chains c is due
to differences in random seeds. From a pragmatic perspective, a good approximation method
should be such that the values . NSm;c/16

cD1 are small and display little variation.

Figure 3. Mean score in the data example against sample size. The dots represent 16 parallel Markov chain Monte Carlo
(MCMC) chains, and the lines connect averages across chains. CDF, cumulative distribution function; CRPS, continuous
ranked probability score. [Colour figure can be viewed at wileyonlinelibrary.com]
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5.3 Results

In Figure 3, the mean score is plotted against the size of the MCMC sample. The MP approx-
imation outperforms its competitors: its scores display the smallest variation across chains, for
both the CRPS and the LogS, and for all sample sizes. The scores of the MP estimator also
tend to be lower (i.e. better) than the scores for the other methods. The KD estimator performs
poorly for small sample sizes, with the scores varying substantially across chains. Under the
CRPS, the KD estimator is dominated by the ECDF technique, which can be interpreted as KD
estimation with a bandwidth of zero.

6 Discussion

We have investigated how to make and evaluate probabilistic forecasts based on MCMC out-
put. The formal notion of consistency allows us to assess the appropriateness of approximation
methods within the framework of proper scoring rules. Despite their popularity in the literature,
GAs generally fail to be consistent. Conditions for consistency depend on the scoring rule of
interest, and we have demonstrated that the MP and ECDF-based approximations are consis-
tent relative to the CRPS under minimal conditions. Proofs of consistency relative to the LogS
generally rely on stringent assumptions.

In view of these theoretical considerations as well as the practical perspective taken in our
simulation and data examples, we generally recommend the use of the MP estimator, which pro-
vides an efficient approximation method and outperforms all alternatives. This can be explained
by the fact that it efficiently exploits the parametric structure of the Bayesian model. The
ECDF-based approximation provides a good alternative if the conditional distributions fail to
be available in closed form, or if for some reason the draws are to be made directly from
the posterior predictive distribution, as opposed to using parameter draws. The ECDF-based
approximation is available under the CRPS and DSS but not under the LogS, where a density
is required. Under the LogS, the case for the MP estimator is thus particularly strong. In par-
ticular, the score's sensitivity to the tails of the distribution renders KD estimators unattractive
from both theoretical and applied perspectives.

Our recommendations have been implemented in the scoringRules package for R (R Core
Team, 2019); see Jordan et al. (2019) for details. The functions and default choices aim to pro-
vide readily applicable and efficient approximations. The MP estimator depends on the specific
structure of the Bayesian model and can therefore not be covered in full generality. However, the
implemented analytical solutions of the CRPS and LogS allow for straightforward and efficient
computation. The scoringRules package further contains functions and data for replicating the
simulation and case study, with details provided at https://github.com/FK83/scoringRules/blob/
master/KLTG2020_replication.pdf.

Ferro (2014) studies the notion of a fair scoring rule in the context of ensemble weather fore-
casts. A scoring rule is called fair if the expected score is optimal for samples with members that
behave as though they and the verifying observation were sampled from the same distribution.
While certainly relevant in the context of meteorological forecast ensembles, where the sample
size m is typically between 10 and 50, these considerations seem less helpful in the context of
MCMC output, where m is on the order of thousands and can be increased at low cost. Further-
more, the proposed small sample adjustments and the characterisation of fair scores hold for
independent samples only, an assumption that is thoroughly violated in the case of MCMC.

We are interested in evaluating probabilistic forecasts produced via MCMC, so that the pre-
dictive performance of a model during an out-of-sample, test or evaluation period can be used to
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estimate its forecast performance on future occasions. In contrast, information criteria suggest
a different route towards estimating forecast performance (Spiegelhalter et al., 2002; Watanabe,
2010; Hooten & Hobbs, 2015). They consider a method's in-sample performance and account
for model complexity via penalty terms. Preferred ways of doing so have been the issue of
methodological debate, and a consensus has not been reached; see, for example, the comments
in Gelman et al. (2014b) and Spiegelhalter et al. (2014). This present analysis does not con-
cern in-sample comparisons and does not address the question of whether these are more or
less effective than out-of-sample comparisons. However, our results and observations indicate
that out-of-sample comparisons of the type considered here yield robust results across a range
of implementation choices.

Necessarily, the scope of this paper is restricted along several dimensions. First, our theo-
retical results focus on consistency but do not cover rates of convergence. Results on the latter
tend to rely on theoretical conditions that are hard to verify empirically, and the plausibil-
ity of which is likely to depend on the specifics of the MCMC algorithm. In contrast, many
of our consistency results require only minimal conditions that hold across a wide range of
sampling algorithms in the interdisciplinary applied literature. Second, we have focused on
univariate continuous forecast distributions. The corresponding applied literature is large and
features a rich variety of implementation variants (cf. Table 1 of the supporting information).
Nevertheless, there are other empirically relevant set-ups, notably simple functionals of a pre-
dictive distribution, discrete univariate distributions and continuous multivariate distributions.
We briefly discuss each set-up in turn.

Functionals such as quantiles summarise a predictive distribution, thus allowing for simpler
interpretation and communication (Raftery, 2016). If the forecast user requires only a specific
quantile of the predictive distribution, it seems natural to focus on this quantile for evaluation.
Interestingly, the CRPS can be represented as the integral over (twice) the asymmetric piece-
wise linear scoring function, which is commonly used to evaluate quantile forecasts [Gneiting
& Ranjan, 2011, Equations (11) to (13)]. Consequently, the CRPS divergence is the integral
over the quantile score divergence. In this sense, results for quantiles are covered by our results
in terms of the CRPS. The same argument applies if the functional sought is the exceedance
probability at any given threshold value, as an immediate consequence of the standard repre-
sentation of the CRPS [Equation (7)]. In order to illustrate the argument numerically, Section
S3 of the supporting information applies our simulation design to quantiles at two different lev-
els, yielding results that are qualitatively very similar to our CRPS results for full predictive
distributions.

In relevant discrete settings, such as predicting probabilities of a binary or categorical out-
come, the estimation problem becomes considerably simpler than for the real-valued case. The
more complex case of integer-valued count data can be handled using methods similar to the
ones we discuss. Instead of probability density functions, the count data case involves proba-
bility mass functions to which both the LogS and the CRPS transfer naturally (Czado et al.,
2009). Furthermore, all of the approximation methods we discuss can be used in the count data
case. For example, the MP estimator can be used in concert with a Poisson or negative bino-
mial specification. Similarly, Shirota & Gelfand (2017, Section 4) consider Equation (10) in a
count data context, and kernel-type smoothing methods have been proposed for count data as
well (Rajagopalan & Lall, 1995).

The multivariate case features novel challenges. Perhaps most fundamentally, a consensus on
practically appropriate choices of the scoring rule is yet to be reached (Gneiting et al., 2008;
Scheuerer & Hamill, 2015). Held et al. (2017, Section 4.2) and White et al. (2019, Section 3.3)
propose the use of the ECDF approximation in concert with the multivariate energy score. In
this setting, analogues of our Theorem 3 hold, assuring consistency under weak conditions.
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For KD estimators, the ‘curse of dimensionality’ applies, and for the MP estimator, we expect
numerical challenges when evaluating, say, a log predictive density in a high-dimensional space.
Clearly, there is considerable scope and opportunity for future research in these directions.
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Notes
1See Brier (1950) and Shuford et al. (1966) for early references arguing that scoring rules

should be proper and Gneiting & Raftery (2007) for a review of the statistical implications.
2It is possible for an inconsistent approximation to a misspecified posterior predictive dis-

tribution F0 to yield better forecasts than a consistent approximation that approaches the
misguided F0. However, the misspecification can be detected by diagnostic tools such as
probability integral transform histograms; see Dawid (1984) and Diebold et al. (1998). The
appropriate remedy thus is to improve the model specification. Once a well-specified model has
been found, the use of a consistent approximation improves the predictive performance further.

3Sköld & Roberts (2003) and Kim et al. (2016) discuss bandwidth selection rules that are
motivated by density estimation in MCMC samples. However, both studies rely on mean inte-
grated squared error criteria that are different from the performance measures we consider
here.

4In Section S4 of the supporting information, we consider another simulation design that is
based on a concrete Bayesian model (analysis of the normal model, using normal and inverse
Gamma priors), yielding a posterior predictive distribution F0 that depends on the data but is
otherwise similar to the one considered here. While the design in the supporting information is
necessarily more complex, all results remain qualitatively the same.

5https://www.phil.frb.org/research-and-data/real-time-center/real-time-data/.
6Numerical integration could also be based on another representation of the CRPS that has

recently been derived by Taillardat et al. (2016, p. 2390, bottom right).
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Appendix A: Computing the Continuous Ranked Probability Score for Mixtures of
Gaussians

Here we discuss the computation of the CRPS in (7) when the predictive distribution is an
equally weighted mixture of normal distributions, say F D OFMP

m , where Fc(� |� i) is Gaussian
with mean �i and variance �2

i . Grimit et al. (2006) note that in this case (8) can be written as

CRPS
�
OFMP
m ; y

�
D

1

m

mX
iD1

A.y � �m; �
2
m/ �

1

2m2

mX
iD1

mX
jD1

A.�i � �j ; �
2
i C �

2
j /; (A1)

where A.�; �2/ D 2��
�
�
�

�
C �.2ˆ

�
�
�

�
� 1/, with � and ˆ denoting the standard normal

density and CDF, respectively. The scoringRules software package (Jordan et al., 2019) contains
R/C++ code for the evaluation of (A1), which requires O.m2/ operations.
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Figure A1. Continuous ranked probability score (CRPS) for the first quarter of 2011 in the data example, for 16 parallel
chains and various Markov chain Monte Carlo (MCMC) sample sizes. Left: The segments connect the CRPS value obtained
using numerical integration (left node) to the score obtained using the exact formula (right node). Right: Computation times
in seconds, for numerical integration (dots; solid line) and exact formula (crosses; dashed line)

A potentially much faster, but not exact, alternative is to evaluate the integral in (7)
numerically.6 Here, we provide some evidence on the viability of this strategy, which we imple-
ment via the R function integrate, with arguments rel.tol and abs.tol of integrate set to 10�6.
As a first experiment, we use numerical integration to recompute the CRPS scores of the
mixture-of-parameters estimator in our data example for the first quarter of 2011. Figure A1
summarises the results for 16 parallel chains. The left panel shows that the approximate scores
are visually identical to the exact ones across all sample sizes and chains. Indeed, the maxi-
mal absolute error incurred by numerical integration is 8.0� 10�8. The approximation errors
are dwarfed by the natural variation of the scores across MCMC chains. The right panel
compares the computation time for exact evaluation versus numerical integration. The latter
is much faster, especially for large samples. For a sample of size 40 000 numerical inte-
gration requires less than 1.5 s, whereas exact evaluation requires about 2 min on an Intel
i7 processor.

To obtain broad-based evidence, we next compare exact evaluation versus numerical inte-
gration for all 74 forecast dates, from the second quarter of 1996 to the third quarter of
2014, employing 16 parallel chains for each date. We focus on the two largest MCMC
sample sizes, 20 000 and 40 000, and find that across all 2 368 instances (74 dates times
2 sample sizes times 16 chains), the absolute difference of the two CRPS values never
exceeds 6.3� 10�7. Therefore, we feel that numerical integration allows for the efficient
evaluation of the CRPS for mixtures of normal distributions. The differences to the exact
values are practically irrelevant and well in line with the error bounds in R's integrate
function.

Appendix B: Consistency of Mixture-of-Parameters Approximations

B1 Proof of Theorem 1

In the case of the CRPS, we prove the stronger result that
R
R
j OFMP
m .´/ � F0.´/j d´! 0 almost

surely as m!1. Putting H(z)D 1�F0(z) + F0(� z) and OHm.´/ D 1 � OFMP
m .´/ C OFMP

m .�´/
for ´ 2 R, we find that, for every fixed N> 0,
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lim sup
m!1

Z
R

j OFMP
m .´/ � F0.´/j d´ 	 lim sup

m!1

Z N

�N

j OFMP
m .´/ � F0.´/j d´

C

Z 1
N

H.´/ d´C lim sup
m!1

Z 1
N

OHm.´/ d´:

(B1)

The Ergodic Theorem implies that the first term on the right-hand side of (B1) tends to zero
and that

Z 1
N

OHm.´/ d´ D
Z 1
N

1

m

mX
iD1

.1 � Fc.´ j �i /C Fc.�´ j �i // d´!
Z 1
N

H.´/ d´

almost surely as m!1. In view of (B1) we conclude that

lim sup
m!1

Z
R

j OFMP
m .´/ � F0.´/j d´ 	 2

Z 1
N

H.´/ d´ (B2)

almost surely as m!1. As the right-hand side of (B2) decreases to zero as N grows without
bounds, the proof of the claim is complete.

In the case of the DSS, let K(z)D 1�F0(z)�F0(� z) and OKm.´/ D 1� OFMP
m .´/� OFMP

m .�´/

for ´ 2 R. Due to the finiteness of the first moments of F0 and OFMP
m ,

R
R
´ dF0.´/ DR1

0 K.´/ d´ and
R
R
´ d OFMP

m .´/ D
R1

0
OKm.´/ d´. For the second moments, we find similarly

that
R
R
´2 dF0.´/ D 2

R1
0 ´H.´/ d´ and

R
R
´2 d OFMP

m .´/ D 2
R1

0 ´ OHm.´/ d´. Proceeding as
before, the Ergodic Theorem implies almost sure convergence of the first and second moments,
and thereby consistency relative to the DSS.

B2 Proof of Theorem 2

By Lemma 2.1 in Chapter 4 of Kullback (1959),

sup
´2R

ˇ̌̌
ˇ̌1 � Of MP

m .´/

f0.´/

ˇ̌ˇ̌ˇ! 0

almost surely as m!1 implies the desired convergence of the Kullback–Leibler divergence.
Let Pm denote the empirical CDF of the parameter draws .�i /miD1. Under assumption (B) almost
sure strong uniform consistency,

sup
´2�

ˇ̌̌
Of MP
m .´/ � f0.´/

ˇ̌
ˇ D sup

´2�

ˇ̌̌
ˇ
Z
‚

fc.´j�/
�
dPm.�/ � dPpost.�/

	ˇ̌̌ˇ! 0

almost surely as m!1, yields Kullback's condition. Finally, we establish almost sure strong
uniform convergence under assumptions (A) and (B) by applying Theorem 19.4 and Example
19.8 of van der Vaart (2000).
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Appendix C: Consistency of Empirical Cumulative Distribution Function-Based
Approximations

C1 Proof of Theorem 3

In the case of the CRPS, we proceed in analogy to the proof of Theorem 1 and demonstrate
the stronger result that

R
R
j OF ECDF
m .´/ � F0.´/j d´ ! 0 almost surely as m!1. Putting

H(z)D 1�F0(z) + F0(� z) and OHm.´/ D 1 � OF ECDF
m .´/C OF ECDF

m .�´/ for ´ 2 R, we see that,
for every fixed N> 0,

lim sup
m!1

Z
R

j OF ECDF
m .´/ � F0.´/j d´ 	 lim sup

m!1

Z N

�N

j OF ECDF
m .´/ � F0.´/j d´

C

Z 1
N

H.´/ d´C lim sup
m!1

Z 1
N

OHm.´/ d´:

(C1)

The Generalised Glivenko–Cantelli Theorem (Dehling et al., 2002, Theorem 1.1) implies that
the first term on the right-hand side of (C1) tends to zero almost surely as m!1. If Z0 has
distribution F0, then

R1
N

H.´/ d´ D E.jZ0j �N/C, where .W /C D max.W; 0/ denotes the
positive part of W. Furthermore, by the Ergodic Theorem

Z 1
N

OHm.´/ d´ D
1

m

mX
iD1

.jXi j �N/C ! E.jZ0j �N/C

almost surely as m!1, which along with (C1) implies that

lim sup
m!1

Z
R

j OF ECDF
m .´/ � F0.´/j d´ 	 2 E.jZ0j �N/C (C2)

almost surely as m!1. As the right-hand side of (C2) gets arbitrarily close to zero as N grows
without bounds, the proof of the claim is complete.

In the case of the DSS, it suffices to note that the moments of the empirical CDF are the
sample moments of .Xi /miD1 and then to apply the Ergodic Theorem.

C2 Proof of Theorem 4

By the law of total expectation, E OF ECDF
m .´/ D E OFMP

m .´/ as

E

�
OF ECDF
m .´/j�1; : : : ; �m

�
D
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Further, the law of total variance implies
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�
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for every ´ 2 R and m 2 N. For a generic estimator OFm with finite mean,

E dCRPS. OFm; F0/ D E

Z �
OFm.´/ � F0.´/

�2
d´

D

Z
E

�
OFm.´/ � F0.´/

�2
d´

D

Z
Var OFm.´/ d´C

Z �
E OFm.´/ � F0.´/

�2
d´:

In this light, the first part of the theorem's statement implies the second part.

Appendix D: Simulation Study on Thinning a Markov Chain Monte Carlo Sample

Using the same simulation set-up as in Section 4, we further investigate the effect of thinning
the Markov chains. Thinning a chain by a factor of � means that only every � th simulated
value is retained, and the rest is discarded. Thinning is often applied routinely with the goal
of reducing autocorrelation in the draws. Of the articles listed in Table 1 of the supporting
information, about one in four explicitly reports thinning of the simulation output, with thinning
factors ranging from 2 to 100. Here, we compare three sampling approaches:

Figure D1. Performance of three sampling strategies: S1: 5 000 draws, without thinning; S2: 5 000 Markov chain Monte
Carlo draws, retaining every 10th draw from a sequence of 50 000 draws; and S3: 50 000 draws, without thinning. Bars
range from the 10th to the 90th percentile of the score divergences across 1 000 replicates. The squares mark the respective
medians. CDF, cumulative distribution function; CRPS, continuous ranked probability score. [Colour figure can be viewed
at wileyonlinelibrary.com]
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(S1) 5 000 MCMC draws, without thinning;

(S2) 5 000 MCMC draws, retaining every 10th draw from a sequence of 50 000 draws; and

(S3) 50 000 MCMC draws, without thinning.

Note that the samples in S1 and S3 have the same dynamic properties, whereas S2 will
typically produce a chain with less autocorrelation. Furthermore, S2 and S3 require the same
computing time, which exceeds that of S1 by a factor of 10. Figure D1 summarises the
corresponding simulation results, using parameter values sD 2 and nD 12, and varying values
of the persistence parameter ˛. We report results for four popular combinations of scoring rules
and approximation methods.

As expected, S2 tends to outperform S1: when the sample size is held fixed, less autocorre-
lation entails more precise estimators. While the difference in performance is modest in most
cases, S2 attains large (relative) gains over S1 when the mixture-of-parameters estimator is
applied to a very persistent sample with ˛D 0.9. This can be explained by the direct effect
of the persistence parameter ˛ on the parameter draws .�i /miD1, whereas the influence is less
immediate for the KDE and ECDF approximation methods, which are based on the sequence
.Xi /

m
iD1 obtained in an additional sampling step. Furthermore, S3 outperforms S2 in all cases

covered. While the effects of thinning have not been studied in the context of predictive distribu-
tions before, this observation is in line with extant reports of the greater precision of unthinned
chains (Geyer, 1992; MacEachern & Berliner, 1994; Link & Eaton, 2012). The performance gap
between S3 and S2 is modest for the mixture-of-parameters estimator (top row of Figure D1),
but very pronounced for the other estimators.

Appendix E: Implementation Details for the Data Example

Here, we provide additional information on the Markov switching model for the quarterly US
gross domestic product growth rate, Yt. As described in Equation (18) in Section 5, the model
is given by YtD 	 +˛Yt� 1 + "t, where "t � N.0; 
2

st
/, and st 2 {1,2} is a discrete state variable

that switches according to a Markov chain.
Our implementation follows Amisano & Giacomini (2007, Section 6.3), in that our prior

distributions have the same functional forms but possibly different parameter choices, as sum-
marised in Table E1. However, note that we use prior parameters for the residual variances in
both latent states, whereas Amisano & Giacomini (2007) assume the residual variance to be
constant across states.

Let ˇD (	,˛)0 denote the parameters for the conditional mean Equation (18), st D
.s1; : : : ; st /

0 the sequence of latent states up to time t, h D .
�2
1 ; 
�2

2 /0 the inverses of the state-
dependent residual variances and P the 2� 2 transition matrix for the latent states. Our Gibbs
sampler can then be sketched as follows:

Table E1. Prior parameters in the Markov switching model.

Symbol in Amisano & Giacomini (2007) �ı H�1
ı s � R

Parameter choice 0[2,1] 25� I2 0.3 3



8 2
2 8

�

Relation to our Equation (18) Prior mean Prior variance Prior parameters Dirichlet prior
for (�,˛)0 for (�,˛)0 for �2

st
state transitions
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� Draw ˇ j h; st from a Gaussian posterior. The mean and variance derive from a generalised
least squares problem, with observation t receiving weight 
�2

st
.

� Draw h j ˇ; st from a Gamma posterior. The Gamma distribution parameters for 
�2
s ; s 2

f1; 2g; are calculated from the observations t for which stD s. If necessary, permute the
draws such that 
2

1 > 

2
2.

� Draw st j ˇ; h;P using the algorithm described by Greenberg (2013, pp. 194–195).
� Draw P j st from a Dirichlet posterior.

Gianni Amisano kindly provides implementation details and Matlab code via his
website (https://sites.google.com/site/gianniamisanowebsite/home/teaching/istanbul-2014, last
accessed: 25 March 2019). An R implementation of his code is available within the R pack-
age scoringRules (Jordan et al., 2019); see https://github.com/FK83/scoringRules/blob/master/
KLTG2020_replication.pdf for details.
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