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Abstract

Cation exchange chromatography (CEX) is an essential part of most monoclonal anti-

body (mAb) purification platforms. Process characterization and root cause investiga-

tion of chromatographic unit operations are performed using scale down models

(SDM). SDM chromatography columns typically have the identical bed height as the

respective manufacturing-scale, but a significantly reduced inner diameter. While

SDMs enable process development demanding less material and time, their compara-

bility to manufacturing-scale can be affected by variability in feed composition,

mobile phase and resin properties, or dispersion effects depending on the chromatog-

raphy system at hand. Mechanistic models can help to close gaps between scales and

reduce experimental efforts compared to experimental SDM applications. In this

study, a multicomponent steric mass-action (SMA) adsorption model was applied to

the scale-up of a CEX polishing step. Based on chromatograms and elution pool data

ranging from laboratory- to manufacturing-scale, the proposed modeling workflow

enabled early identification of differences between scales, for example, system dis-

persion effects or ionic capacity variability. A multistage model qualification approach

was introduced to measure the model quality and to understand the model's limita-

tions across scales. The experimental SDM and the in silico model were qualified

against large-scale data using the identical state of the art equivalence testing proce-

dure. The mechanistic chromatography model avoided limitations of the SDM by cap-

turing effects of bed height, loading density, feed composition, and mobile phase

properties. The results demonstrate the applicability of mechanistic chromatography

models as a possible alternative to conventional SDM approaches.

Abbreviations: 0, 1, 2, Subscripts for empirical flow- or pH-dependencies of model parameters; i, j, Subscripts for protein species; c [M], Mobile phase concentration; q [M], Stationary phase

concentration; d [mm], Column diameter; Vcol [L], Column volume; LCSTR [mm], CSTR length; L [mm], Bed height; rp [μm], Bead radius; u [mm/s], Superficial velocity; Dax [mm2/s], Axial dispersion

coefficient; εt [−], Total porosity; εcol [−], Interstitial porosity; εp [−], Particle porosity; keff [mm/s], Effective mass transfer coefficient; keq [−], Equilibrium constant, keq = kads/kdes; kkin [sM
v], Kinetic

parameter, kkin = 1/kdes; v [−], Characteristic charge; σ [−], Steric shielding; Λ [−], Ionic capacity.
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1 | INTRODUCTION

Over the last decade, ever-rising numbers of monoclonal antibodies

(mAbs) in development pipelines increased the demand for novel

technologies accelerating mAb process development.1-3 Multiple pub-

lications highlighted the potentialities of in silico process models for

rapid and rationalized bioprocess development.4,5 However, there is

so far no consensus within the biopharmaceutical industry on how to

apply digital process models to real-world tasks.

Cation exchange chromatography (CEX) is a frequently employed

polishing step for the downstream processing (DSP) of mAbs. Its

selectivity towards protein charge allows the depletion of high molec-

ular weight species (HMW) and other product and process related

impurities.6,7 HMW removal is of high importance because antibody

aggregates may cause an immune response towards the monomeric

drug.8 An in-depth process understanding is crucial for robust process

performance and consistent product quality. Development of CEX

processes is typically based on a high number of small-scale experi-

ments. Resin selection and process optimization can be performed

using automated batch-binding screenings9,10 and miniaturized col-

umn processes.11-14 Automation, parallelization, and miniaturization

are of high value for early stage process development, where a large

number of process conditions are screened for numerous mAb candi-

dates. Late stage work packages, such as process characterization, rely

on bench-scale experiments using a scale-down model (SDM) column

representative for the respective manufacturing-scale unit operation.

The SDM, as a physical representation of the manufacturing process,

enables effect analysis of process parameters on critical quality attri-

butes (CQA) and key performance indicators (KPI). Hakemeyer et al.

described key elements to be considered in SDM design, ranging from

impurity levels in load material to the use of sound engineering princi-

ples for scaling.15 In order to keep key process parameters such as

residence time and separation distance constant, SDM columns typi-

cally have identical bed heights as the respective manufacturing-scale

unit operation, but a reduced inner diameter. Furthermore, miniatur-

ized columns for robotic liquid handling stations are currently

explored as SDM for chromatographic unit operations.16 Reduction of

column diameter enables a fast and resource-saving development.

However, the effectiveness of the purification is not exclusively

affected by column dimensions. Variability of input material composi-

tion and impurity levels, may impact the comparability between a

SDM and its respective large-scale unit operation. Consequently, sta-

tistical SDM qualification demands numerous bench-scale experi-

ments with varying input material. Additional effects caused by

dispersion in different chromatography systems, resin lot-to-lot vari-

ability17,18 and manual column packing procedures19,20 may further

lead to systematic differences between scales.

In order to follow the quality by design (QbD) concept,21 biophar-

maceutical companies are working on process models to generate an

in-depth process understanding.16,22-25 Mechanistic chromatography

models are mathematical representations of the physical effects

occurring in the chromatographic system.26,27 They consist of partial

differential equations, describing macroscopic transport through the

column, mass transport within the stationary phase, and adsorption of

protein to the resin. For mechanistic modeling of mAbs and other pro-

teins in ion exchange chromatography, the SMA adsorption isotherm

is frequently used in academic and industrial case studies.16,28-33 The

SMA isotherm describes the multipoint binding of proteins to the

resin under consideration of a protein's characteristic charge, the ther-

modynamic equilibrium of the adsorption process, and steric shielding

effects. Multiple studies have demonstrated successful application of

mechanistic models for the scale-up of chromatography pro-

cesses.14,34,35 Benner et al.16 used mechanistic modeling to explain

systematic offsets between large-scale processes and an experimental

SDM based on miniaturized columns for robotic liquid handling sta-

tions. The scientific explanation for scaling effects enabled them to

utilize the miniaturized system for a parallelized and material saving

process characterization study.16 Ladwig et al.23 published a mecha-

nistic model describing pH and excipient concentrations for an ultrafil-

tration and diafiltration (UF/DF) unit operation of a mAb purification

process. Similar to the experimental SDM approach, the mechanistic

UF/DF model was qualified against large-scale data validating the

model's capability to reduce experimental efforts during process

development.23 Beside the capability of explaining scaling effects, the

physical principles of mechanistic chromatography models allow the

reduction of experimental effort by in silico experimentation at

manufacturing-scale.

Successful application of mechanistic models in bioprocess devel-

opment and manufacturing requires clear guidelines for model devel-

opment, qualification, and application. As a first building block, we

recently introduced a standardized workflow for model calibration to

build the quality into the model by applying both, engineering and sta-

tistic principles.36 The subsequent model validation at calibration-

scale included 12 experiments with operating conditions beyond the

calibration space and the final unit operation. The present study aims

to propose the other part of the model quality system with respect to

qualifying the mechanistic chromatography model from laboratory- to

manufacturing-scale. A multistage evaluation using statistical criteria

and engineering knowledge was introduced and applied to measure

the quality of model prediction and to understand the model's limita-

tions. Six CQAs and KPIs were derived from the predicted chromato-

grams and corresponding cutting criteria and compared to the wet-lab

purification outcomes. Comparable to the experimental SDM, qualifi-

cation of the mechanistic model against manufacturing-scale enabled
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rational evaluation of model predictions for CQAs and KPIs. Direct

benchmarking of the mechanistic model against the experimental

SDM showed the benefits and perils of both techniques.

2 | MODELING

This section gives an overview on the mechanistic model and comple-

mentation necessary for model-guided scale-up. Additional details

about model discrimination, model parameters and the model calibra-

tion strategy can be found in our previous publication.36 Protein-

specific model parameters were kept constant for all simulations and

are listed in Table 1. Simulation and inverse parameter estimation was

performed using the ChromX software (GoSilico, Karlsruhe, Germany).

Depending on the large-scale chromatography system, pre-column

dispersion was approximated by simulating a continuous stirred-tank

reactor (CSTR) at the column inlet. Assuming ideal mixing within the

CSTR, the change of concentration ci(t) of component i in Equation (1)

is a function of residence time defined by the reactor length LCSTR and

superficial velocity u.

∂ci tð Þ
∂t

= −
u

LCSTR
cin,i tð Þ−ci tð Þð Þ ð1Þ

The transport dispersive model was selected as column model, due to

multiple successful case studies for the simulation of ion exchange chro-

matography systems.37-41 Equation (2) describes the macroscopic trans-

port of component i through the chromatography column. The change of

the concentration ci(x, t) is a function of convective mass transport in the

interstitial volume, peak broadening caused by axial dispersion Dax, and

mass transfer from the interstitial volume into the pore phase of the parti-

cle with the radius rP. Further, mass transfer between the interstitial vol-

ume and the particle pores is effected by the interstitial porosity εcol and

the effective mass transfer coefficient keff,i. The accumulation of mass in

the pore phase ci and the stationary phase qi is described in Equation (3).

The Danckwerts' boundary conditions are given in Equations (4) and (5).

∂ci x,tð Þ
∂t

= −
u
εcol

∂ci x,tð Þ
∂x

+Dax
∂2ci x,tð Þ

∂x2
−

1−εcolð Þ
εcol

3
rp
keff,i ci x,tð Þ−cp,i x,tð Þ� �� �

ð2Þ

∂cp,i x,tð Þ
∂t

=
3
rp

keff,i
εp

ci x,tð Þ−cp,i x,tð Þ� �
−
1−εp
εp

∂qi x,tð Þ
∂t

ð3Þ

∂ci
∂x

0,tð Þ= u tð Þ
εcolDax

ci 0,tð Þ−cin,i tð Þð Þ ð4Þ

∂ci
∂x

L,tð Þ=0 ð5Þ

Linear flow rates ranged from 155 cm/h to 360 cm/h between

investigated scales, demanding the introduction of flow dependencies

for the axial dispersion coefficient Dax
42 and effective mass transfer

parameter keff,i. The penetration correlation allowed the direct calcula-

tion keff,i for monomer and HMW species at relevant flow rates under

consideration of their hydrodynamic radii.43,44 Within the investigated

range, flow dependencies for Dax and keff,i could be approximated

using linear regression, Equation (6) and (7). Experimental validation of

Dax and keff parameters was performed via pulse injections at low

loading conditions with dextran and protein, respectively.36

Dax uð Þ=Dax0 + uDax1 ð6Þ

keff,i uð Þ= keff0,i + ukeff1,i ð7Þ

Protein adsorption is simulated using the semimechanistic SMA

adsorption model.31 The SMA model formulates the equilibrium bind-

ing behavior of the protein in consideration of the salt concentration

in the pore phase cs, the ionic capacity of the resin Λ and the proteins

characteristic charge νi. Equation (8) shows the kinetic form of the

SMA isotherm modified by Hahn et al.39, where keq,i = kads,i/kdes,i and

kkin,i = 1/kdes,i describe adsorption and desorption rates of component i,

respectively. In addition, the steric shielding parameter σi denotes the

number of functional groups on the resin surface blocked by the protein.

νi and keq,i, the SMA parameters defining the linear region of the adsorp-

tion isotherm, were estimated using the Yamamoto method at differing

pH values.45,46 Inverse estimation37 of the remaining isotherm parame-

ters kkin,i and σi was facilitated by designing two experiments representa-

tive for the final unit operation. Firstly, a linear gradient elution

experiment at 45 g/L loading density contained distinct information on

steric shielding and competitive binding effects of the four protein spe-

cies. Secondly, a step elution experiment at 10 g/L loading density and a

counter ion concentration below the set point condition increased the

sensitivity for estimating the desorption rate defining kkin,i parameter.

kkin,i
∂qi
∂t

= keq,i pHð Þ Λ−
Xk
j=1

v pHð Þj + σj
� �

qj

 !v pHð Þi
cp,i−qics

v pHð Þi ð8Þ

TABLE 1 Protein specific model parameters for the pH-dependent
SMA model

Parameter APG Main BPG HMW

keff0,i [mm/s] 1.4E-3 1.4E-3 1.4E-3 1.2E-3

keff1,i [−] 4.7E-05 4.7E-05 4.7E-05 3.3E-05

νpH5.8,i [−] 7.38 7.50 7.70 10.97

ν1,i [−] −1.44 −1.44 −1.44 −6.77

keq,pH 5.8,i [−] 1.45 1.41 1.69 1.86

keq,1,i [−] −4.26 −4.26 −4.26 −5.39

keq,2,i [−] 2.19 2.19 2.19 5.59

kkin,i [sM
ν] 8.08E-06 1.00E-04 5.00E-04 3.4E-05

σi [−] 128.6 56.3 107.1 0

Note: Details regarding the model calibration procedure are described in

our previous publication.36 For a clear representation of model parameters

at pH 5.8, the pH was normalized to zero. pH 5.5 = −0.3, pH 5.8 = 0,

pH 6.1 = 0.3.
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qsalt =Λ−
Xk

j=1
vjqj ð9Þ

The introduction of pH-dependent isotherm parameters is crucial

for industrial applications. For the identical mAb polishing step, our

previous work showed significant effects on the purification outcome

when varying the mobile phase pH between pH 5.5 and pH 6.1.36

Equations (10) and (11) show the empirical pH dependencies of the

characteristic charge νi and the equilibrium constant keq,i developed by

Hunt et al.47 This model was found to be sufficient for the process rel-

evant pH range of pH 5.8 ± 0.3 used in this study.36

keq,i pHð Þ= keq0,iekeq1,ipH+ keq2,ipH
2 ð10Þ

νi pHð Þ= ν0,i + pHν1,i ð11Þ

3 | MATERIAL AND METHODS

3.1 | CEX unit operation

The mAb used in this study is an IgG1 monoclonal antibody expressed

in stably transfected Chinese hamster ovary (CHO) cells (Boehringer

Ingelheim GmbH & Co. KG, Biberach, Germany). The mAb was captured

via Protein A affinity chromatography and further polished using anion

exchange chromatography in flow-through mode. The presented mech-

anistic model describes the subsequent CEX unit operation using the

strong CEX resin POROS 50 HS (Thermo Fisher Scientific, Waltham,

USA). The process was performed at constant pH 5.8 in bind-elute

mode and at a maximal loading density of 45 g/L. The column was equil-

ibrated at a counter-ion concentration of 87 mM Na+, with the same

buffer applied to the wash phase after column loading. Subsequently,

elution was induced at a counter-ion concentration of 247 mM Na+. For

column regeneration and storage, 1 M and 0.1 M NaOH were applied.

Charge variant and HMW concentrations in the elution pool were

quantified using analytical CEX chromatography and analytical size

exclusion chromatography, respectively. In order to stay consistent

with the mass balance for all simulated protein species, the relative

percentage of the charge isoforms was calculated based on the mono-

mer concentration obtained from HPSEC analysis. Acidic (APG), neu-

tral (Main) and basic charge variants (BPG), as well as HMW species

were considered as CQAs. Process step yield and elution volume were

defined as KPIs and quantified using protein concentration deter-

mined via absorbance at 280 nm and gravimetric volume measure-

ment. Details about the model calibration strategy and model

F IGURE 1 Summary of column scales for the CEX unit operation.
The mechanistic model was calibrated at bench-scale and applied
200 L, 2000 L and 12,000 L scales. For a clear representation of
results, the shown purification scales are named according to the
bioreactor volume of preceding cell culture processes. CV, column
volume; SDM, scale down model

TABLE 2 System and column specific
parameters applied for the simulation of
200 L, 2000 L and 12,000 L scales

Parameter Symbol Calibration 200 L 2000 L 12,000 L Unit

Bed height L 157 300 200 295 mm

Diameter d 10 140 6,000 13,800 mm

Column volume Vcol 0.0123 4.62 56.6 441 L

Bead radius rp 25 25 25 25 μm

Interstitial porositya εcol 0.41 0.41 0.41 0.41 —

Total porositya εt 0.73 0.73 0.73 0.73 —

Particle porositya εp 0.53 0.53 0.53 0.53 —

Ionic capacity Λ 0.292 0.310 0.310 0.292 M

Flow rate u 188 360 240 206 cm/h

Flow rate during elution uelution 188 360 240 155 cm/h

Axial dispersion y-intercept Dax0 0.0501 0.0501 0.0501 0.0501 mm2/s

Axial dispersion slope Dax1 0.2499 0.2499 0.2499 0.2499 mm

CSTR length LCSTR — 79 — — mm

aPorosities were determined at calibration-scale and kept constant across scales.

4 of 13 SALEH ET AL.



validation, as well as analytical chromatography methods, are pres-

ented in the previous publication of our group.36

3.2 | In silico scale-up and model qualification

Figure 1 summarizes scales investigated in this study, ranging from

the 12.3 ml column used for model calibration to the 441 L

manufacturing-scale column. Additional information about system and

column specific properties is listed in Table 2. Model-guided scale-up

started with the technical investigation and model development for

large-scale chromatography systems. If necessary, system dispersion

was simulated by adding a CSTR at column-inlet. Details about system

specific effects considered for simulations of each scale are given in

section 4.1. For model qualification, the predictive power of the

mechanistic model was evaluated across scales. The model was

applied to multiple chromatography runs at 200 L, 2000 L and

12,000 L scale. Simulations considered relevant input parameters,

such as bed height, flow rate, load material composition, loading den-

sity, buffer and resin variability. In the present work, simulations cap-

tured the effects of real variances during large-scale experimentation.

In contrast, model validation in our previous publication included

experiments at challenging operating conditions far beyond the

intended set-point condition.36

Model qualification consisted of three consecutive stages:

• Investigation of the correlation between predicted and measured

CQAs and KPIs across scales: Calculate linear correlation coeffi-

cients (R2) and normalized root-mean-square error of predictions

(NRMSEP)

• Testing the statistical significance of the linear correlation: Perform

t-test on the slope and intercept of linear regression

• Qualification against manufacturing-scale data using a two one-

sided t-tests (TOST)

For scale-independent qualification of the mechanistic model,

correlations between predicted and measured values for CQAs and

KPIs were evaluated using linear regression and statistical hypothesis

testing. t-tests were performed on both, slope and intercept of the lin-

ear regression. The tested hypothesis for slope and intercept were

one and null, respectively. The NRMSEP given in Equation (11) and

(12) was calculated for quantification of the models' predictive power

across scales.

RMSEP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t=1 ŷt−ytð Þ2

T

s
ð11Þ

NRMSEP=
RMSEP

ymax−ymin
100% ð12Þ

In the final step, the predictive capability of the in silico model

was compared to the experimental SDM. Following state of the art

practices in DSP development, the experimental SDM column had the

identical bed height as the respective manufacturing process and an

inner diameter of 1 cm. To evaluate the comparability between SDM

and large-scale, SDM experiments were performed in triplicate with

multiple load materials obtained from different large-scale runs. In

contrast, mechanistic model simulations considered the variability in

the input material, loading density and mobile phase properties for

F IGURE 2 Step elution run on the 200 L scale column. Dashed
lines show measurement data and solid lines are mechanistic model
predictions. (a) Dispersive effects outside the column were neglected
during the step elution and ligand density was equal to calibration

scale, Λ = 0.292 M. (b) CSTR in front of the column simulates
dispersion caused by the bubble trap, Λ = 0.292 M. (c) Precolumn
CSTR and estimated ligand density, Λ = 0.310 M
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each of the chromatographic cycles. Experimental SDM and mecha-

nistic model were qualified against large-scale data using the identical

equivalence testing procedure.15,23

• Step 1- Calculation of the equivalence acceptance criteria (EAC)

based on the sample mean ± 3 standard deviations (SD) of histori-

cal large-scale runs.

• Step 2- Equivalence test: A TOST was performed according to

Schuirmann48 using Python 3.8.2. For both, SDM and in silico

model, the 90% confidence interval (CI) for the difference in means

to large-scale data was compared to the EAC limits. The model was

defined as equivalent to the large-scale unit-operation if p-values

were below the significance level of α = .05.

• Step 3- Visualization and qualification: The 90% CIs of SDM and in

silico model difference in means were visualized and compared to

the EAC. Model and large-scale unit operation were considered

“equivalent”, if the 90% CI on the difference in means fell entirely

within the EAC. The model was “equivalent in sample mean only”,

if the 90% CI overlapped with one or both EAC. The model “failed

to be equivalent”, if the difference in means was located outside

the EAC and the 90% CI on overlapped with EAC. When the 90%

CI on the difference fell entirely outside the EAC, the model was

ranked “not equivalent”.15

4 | RESULTS AND DISCUSSION

In this work, a mechanistic cation exchange chromatography model

calibrated at bench-scale, was applied to chromatography runs of mul-

tiple large-scales, including 2000 L pilot and 12,000 L manufacturing-

scale. The following chapters describe the approach for the simulation

of large-scale systems. Consideration of system dispersion and

variations in ionic capacity between scales enabled the successful

qualification of the mechanistic model across scales. For 12,000 L

manufacturing-scale, mechanistic model predictions and experimental

SDM results were compared considering the most relevant CQAs

and KPIs.

4.1 | Simulation of system specific effects

Table 2 shows system and column specific parameters and consider-

ations for simulation of the investigated large-scale chromatography

processes. The mechanistic model presented in this study was cali-

brated at a column bed height of 157 mm. Protein specific mass trans-

fer parameters and SMA adsorption model parameters estimated in

our previous publication were applied to simulations of large-scale

experiments (Table 1).36 200 L, 2000 L, and 12,000 L scale experi-

ments were conducted at differing linear flow rates compared to

calibration-scale, demanding the introduction of flow dependent mass

transfer parameters. Details about flow dependencies and parameters

are given in Section 2, Table 1.

Visual inspection of the conductivity signal at column outlet was

the first step of in silico scale-up. This procedure allowed identifica-

tion and correction of dead volumes and system dispersion effects

before simulating protein elution at a new scale. When the salt simula-

tion followed the trend of the conductivity signal, the simulated elu-

tion peak was compared to UV measurement data. If further

systematic offsets in peak width and retention time were observed,

additional evaluation of the elution peak discrepancy was necessary.

Variability of resin lot and manual column packing were identified as

the most probable root causes for the observed differences between

scales causing small variations that were lumped into the ionic capac-

ity. Alternatively, an increased mass transfer resistance resulting in a

F IGURE 3 Prediction of elution profiles of 2000 L pilot and 12,000 L manufacturing-scale. Dashed lines show measurement data and solid
lines are mechanistic model predictions. (a) 2000 L pilot-scale, (b) 12000 L manufacturing-scale
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F IGURE 4 Cross-scale analysis of mechanistic model predictions for CQAs and KPI of the CEX unit operation at 200 L, 2000 L and 12,000 L
full manufacturing-scale. Solid lines show linear regression for the respective CQA/KPI across scales. CEX, cation exchange chromatography;
CQA, critical quality attributes; KPI, key performance indicators
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decreased value for keff could also describe the broadened peak shape.

However, a scale-dependent change of keff is considered less likely

compared to variations in ionic capacity, which is a well-known phe-

nomenon in industrial protein chromatography. The direct measure-

ment of ionic capacity using acid–base titration is frequently used for

model calibration.37 However, this potentially harmful procedure is

inapplicable to large-scale chromatography columns that are used in

compliance with good manufacturing practice (GMP). Further, ionic

capacity is normalized to resin backbone volume. Hence, ionic

capacity is correlated to column packing density, which complicates

the reproduction of acid–base titration of different resin lots in

small-scale. Therefore, ionic capacity had to be estimated by apply-

ing the inverse method developed by Hahn et al. using a single chro-

matogram of one scale.37 The inverse method enabled prediction of

all further chromatography runs and all other process outputs at the

respective scales. The estimated increase in ionic capacity for 200 L

and 2000 L scale was in the range of 6% compared to the

calibration-scale. The observed variance in ionic capacity is consid-

ered plausible, as the manufacturer specifies the dynamic binding

capacity of lysozyme on POROS 50 HS in a range between 57.0 g/L

and 75.3 g/L.49

Figure 2 depicts simulations of an exemplary 200 L scale chro-

matogram with and without the final corrections necessary for predic-

tion of conductivity and UV signal. The 200 L scale conductivity signal

at column outlet showed a distinctive curvature caused by an

increased system dispersion. Compared to other scales, the 200 L

scale system was not flushed with high salt buffer before starting step

elution. Mixing of wash and elution buffer within the bubble trap led

to a comparably slow increase of the conductivity signal. Backmixing

within the bubble trap of the 200 L scale system was approximated

by simulating a CSTR at the column inlet. As a result, the simulation of

the conductivity signal followed the trend of the measured conductiv-

ity signal at column-outlet. Further, the slowly increasing salt concen-

tration during step elution and the estimated ligand density corrected

retention time and width of the simulated protein peak. System dis-

persion in 2000 L and 12,000 L scale chromatography systems could

be neglected, because the large-scale systems were pre-flushed with

elution buffer. The pre-flush led to a steep increase of the conductiv-

ity signal and the corresponding salt simulation (Figure 3). Conse-

quently, simulated and measured elution volumes in 2000 L and

12,000 L scale were smaller compared to 200 L scale, shown in

Figure 4.

4.2 | Cross-scale qualification of the mechanistic
model

This chapter evaluates the predictive power of the mechanistic model

across scales. Main differences between scales were column volume,

bed height, and flow rate (Table 2). It is important to notice, that all

shown chromatography runs were conducted on the set point. Conse-

quently, only small variation in process parameters occurred and their

effect on CQAs and KPIs was small compared to the previous model

validation at calibration-scale.36 The small variation of model inputs

and outputs further challenged the predictive capabilities and accu-

racy of the model. Multiple chromatographic cycles were simulated

for each scale. Simulations accounted for all variations in load compo-

sition, loading density, and mobile phase pH and salt concentrations.

In Figure 4, model predictions for CQAs and KPIs of the CEX purifica-

tion are correlated to the respective measurement data. Investigation

of correlation plots are the state of the art procedure in industrial

chromatography modeling. However, a decision purely based on these

correlation plots is considered too subjective. Hence, linear regression

and statistical criteria were introduced for further evaluation of model

quality (Table 3).

The very first stage of model qualification is to evaluate R2 and

NRMSEP, since a high R2 value means the given variances are well

covered by the linear regression and a low NRMSEP means the

regression line is close to the optimal expectation. In this stage, with

R2 > .95 and NRSMEP <12%, the model's predictive power for the

charge variants (APG, Main, and BPG) and the elution volume were

confirmed and the qualification is considered as completed success-

fully. Qualification via R2 and NRSEMP is considered the case one sce-

nario. Elution volume measurements ranged from 1.4 CV to 2.7

CV. Compared to other CQAs and step yield, the elution volume

mainly depended on scale effects, as shown in Figure 4. For simula-

tions of 200 L scale experiments, a pre-column CSTR was added

resulting in a larger elution volume compared to other scales. Elution

volume of 200 L and 2000 L scale was also increased by a 6% higher

ionic capacity compared to 12,000 L manufacturing-scale. Further,

the model accounted for the effect of differing bed heights on the elu-

tion volume. The 2000 L scale was performed on a column with

200 mm bed height, leading to a higher elution volume compared to

12,000 L scale with 295 mm bed height. It should be noted that model

parameters were estimated on a small-scale column with a 157 mm

bed height. Also the model validation presented in our previous publi-

cation was performed at a bed height of 157 mm.36 Thus, the

TABLE 3 Regression and t-test
results for cross-scale model qualification

R2 NRMSEP [%] Slope Intercept ps,1 pi,0

APG .95 7% 1.04 −1.21 .54 .58

Main .95 8% 0.98 0.86 .77 .81

BPG .97 12% 0.93 0.15 .15 .56

HMW .65 49% 0.97 0.07 .89 .09

Yield .05 37% 0.13 86.12 .00 .00

Elution volume .97 8% 0.94 0.19 .07 .01
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prediction of large-scale runs with increased bed heights further con-

firmed the plausibility of the estimated model parameters.

For HMW species with both mediocre R2 = .65 and the

NRMSEP = 49%, a second case scenario is described. The distribution

of data around the regression line is explained by the very low HMW

level in the input material of approximately 0.4% and the elution pool

ranging from 0.14% to 0.28%. Furthermore, total errors of 0.07% in

HMW concentrations can originate from analytical method variability

and/or different sample handling schemes between scales. In the sec-

ond scenario, the slope and intercept of the regression line were taken

into account being both close to the expectation of being 1 and

0, respectively. The results of a t-test with an error-probability of 5%

F IGURE 5 Equivalence test comparing large-scale results to mechanistic model prediction and experimental SDM data. Visual representation
of TOST analysis. The zero line represents the mean of 20 chromatography cycles for clinical manufacturing. p-values were < .05 for all shown

CQAs and KPIs. EAC were defined as large-scale mean ± 3SD of the respective CQA or KPI. CQA, critical quality attributes; KPI, key performance
indicators; EAC, equivalence acceptance criteria; SDM, scale down model
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confirmed the slope and intercept being not significantly different

from the expectation. The trust in the model prediction is strength-

ened by these results from second stage model qualification. Addi-

tionally, a systematic shift of HMW concentrations along the y-axis in

Figure 4d indicates that the mechanistic model overestimated HMW

concentrations for all investigated scales. This over estimation is most

likely caused by differences in material and sample handling between

manufacturing and process development laboratories. Specifically, the

impact of freeze and thaw on mAb aggregate formation is a well know

phenomenon and is the most probable root cause for the observed

model offset in the <0.1% range.

The process step yield is considered a third case scenario as nei-

ther R2 and NRMSEP, nor slope and intercept of linear regression

support a belief in model prediction. The t-test for slope and inter-

cept of the regression (p < .05) rejects the hypothesis, that correla-

tions in slope and intercept are significant. Measured yields across

F IGURE 6 Control charts for CQAs and KPIs of 12,000 L scale CEX purification runs. Load composition and mobile phase properties of each
simulation were adapted according to the inputs of the respective chromatography cycle. CEX, cation exchange chromatography; CQA, critical
quality attributes; KPI, key performance indicators
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scales ranged from 97.8% to 99.7%. The observed variance is

located within method variability of protein concentration and

gravimetric volume measurements of the elution pools. For the

investigated experiments, process parameters most likely had no

measurable effect on the step yield. Therefore, the model's predic-

tive power of yield is seemingly low and required a direct compari-

son between the model prediction and the manufacturing-scale

outcomes in the final stage of model qualification as presented in

the subsequent section.

4.3 | Comparison of mechanistic model with
experimental SDM

Equivalence between a process model and its respective full-scale unit

operation is the fundamental requirement for applying the model to pro-

cess characterization studies in late stage DSP development. The TOST

is currently the state of the art equivalence testing approach for SDM

qualification.15,23 In Figure 5, the in silico model was qualified against

manufacturing-scale data using the TOST qualification scheme

described in section 3.2. SDM qualification results are presented as a

benchmark for mechanistic model performance. The data included

10 clinical manufacturing runs with two CEX cycles per harvest. The

SDM was limited to six load materials of clinical manufacturing runs,

with three lab-scale experiments per load material. Further, SDM experi-

ments were conducted with all process parameters at set point condi-

tions. In contrast, the mechanistic model can be seen as a digital twin of

the manufacturing-scale process, considering variations in feed composi-

tion, column length, as well as mobile phase pH and salt concentration.

The visualization of TOST analysis in Figure 5 qualifies in silico

model and experimental SDM for all investigated CQAs and KPIs. The

90% CIs of model predictions were located within the acceptance

criteria. Therefore, in silico model and experimental SDM were equiv-

alent to the large-scale unit operation. SDM results and mechanistic

model predictions for APG, MAIN, BPG concentrations and elution

volume were located close to the mean value of large-scale runs. In

contrast, both models consistently overestimated HMW concentra-

tions. The overestimation of HMW concentration was most likely cau-

sed by differing sample handling schemes as discussed in the previous

chapter. Comparable sample handling procedures for SDM and model

calibration experiments in small-scale resulted in similar HMW values

for SDM and mechanistic model predictions. In silico predictions for

CQAs led to broader CIs compared to the experimental SDM. This

observation was caused by the consideration of load material compo-

sition in all simulations, while the experimental SDM was limited to six

load materials. For example, the percentage of APG species in clinical

manufacturing load materials varied between 30.4% and 35.5%, while

the SDM only included load materials with 32.1% to 34.1% APG con-

tent. The SDM sample mean of yield was located within the EAC, but

the error bars indicate a higher variance compared to in silico predic-

tion. This variance was caused by analytical variability of protein con-

centration and gravimetric volume measurements of the elution pool

during SDM experimentation.

The TOST equivalence test is an objective method for model

qualification. However, it is difficult to evaluate the true predictive

capabilities of the mechanistic model by comparing mean values.

Therefore, control charts in Figure 6 compare measured and predicted

results of five 12,000 L manufacturing runs with two CEX cycles per

harvest. Input data from batch records was used for modeling every

chromatographic cycle. Consideration of these input parameters

allowed the mechanistic model to predict the trend of CQAs as a

function of the run number. Additionally, the mechanistic model

enabled quantitative predictions for yield and elution volume within

the EAC.

The data shown in this section qualifies the mechanistic model as

an in silico representation of the 12,000 L scale unit operation for

charge variants, HMW species, step yield and elution volume. Thus,

the mechanistic model could be applied to process characterization

studies for late stage DSP development. Further, the mechanistic

model avoided limitations of the experimental SDM by capturing the

minimal effect of process parameter variation on the purification out-

come. With a loading density of 45 g/L and a column bed height of

300 mm, a single SDM experiment consumed more protein than the

entire model calibration process on the 157 mm column. It is impor-

tant to notice, that the presented model is limited to the six CQAs and

KPIs. Additional CQAs, such as fragments, host cell protein or leached

Protein A concentrations need to be added to the in silico model of

the CEX unit operation if required.

5 | CONCLUSION

In the presented case study, a mechanistic model calibrated at bench-

scale enabled the prediction of chromatography runs in multiple larger

scales. In silico experimentation increased process understanding and

allowed explanation of offsets between investigated scales. Consider-

ation of scale dependent effects, such as precolumn dispersion and

varying ionic capacities was found to be essential for accurate predic-

tion of large-scale CEX processes. All investigated large-scale runs

were performed at set-point conditions with only minimal variance of

input parameters. The relatively small effect of loading density, input

material composition, and mobile phase pH and salt concentration

variability on the purification outcome challenged model accuracy.

Nonetheless, the consideration of these relatively small input varia-

tions together with scale-specific features allowed accurate predic-

tions of CQAs and KPIs across all scales from laboratory to

manufacturing-scale. The predictive power across different column

dimensions confirmed the physical relevance of the previously esti-

mated model parameters.36

For manufacturing-scale, model performance was directly

benchmarked against the experimental SDM. The main purpose of

qualifying an experimental SDM is to use it in subsequent process

characterization studies. Both, SDM and mechanistic model were suc-

cessfully qualified against manufacturing-scale using well-established

equivalence testing procedures. Additionally, the mechanistic model

could describe the run-to-run trend of CQAs and KPIs. Therefore, the
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application of a thoroughly calibrated and validated mechanistic

model for process characterization purposes can be considered as a

scientifically sound and suitable complementation to experimental

approaches.

This work presents a systematic framework for qualification of mech-

anistic chromatography models prior to their applications to late stage

biopharmaceutical process development. Rules provided allow a more

objective and gradual decision-making. However, the definition of model

quality criteria is a complex task involving deep technical understanding,

statistics, and understanding of the pharmaceutical quality system.
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