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Introduction

“Imagine you want to transport oil from Vyborg in Russia to Greifswald in Germany over the Baltic sea.
The oil can be transported by the means of tankers which require a relatively long shipping time, and
moreover the tankers are prone to all the turbulences on the water surface: delays, detours and accidents
are natural consequences thereof. In terms of transport efficiency, we would call it standard, but it is
clearly far from perfect. Now, we assume there is a remarkable installation between the two cities: an
underwater pipeline named North stream inside which the oil funnels constantly and undisturbed from
the water surface complications, providing in that sense a perfect means for oil transportation. In the
superconducting context we replace the oil by electric charge, and we imagine that the pipeline emerges
spontaneously if a metal is cooled below a certain transition temperature.”
In a science slam, a person aims to explain the phenomenon of superconductivity to the audience in
layman‘s terms, sparking curiosity and, at the same time, a certain amazement... regardless of the fact
that superconductivity has been around for over a century.

With the year of its discovery in 1911 by Heike Kamerlingh Onnes [1] the interest in superconduc-
tivity has been immense and has never receded. The phenomenon has kept the scientific community
captivated, mostly due to its ever growing variety in superconducting materials exhibiting increasingly
more fascinating physics—but also due to the enormous potential a room temperature superconductor
would have for the electrical industry.
The first discovered superconductors were elemental materials like mercury or aluminum with tran-

sition temperatures of just a few Kelvin. Nowadays, these materials are called conventional super-
conductors—not because they have been around for so long or their critical temperature is fairly low,
but because of the microscopic structure of the involved pairing state. With the development of the
BCS theory [2, 3] in 1957, the emerging superconducting state could be attributed to the formation of
bound pairs of electrons (Cooper pairs) and the underlying broken symmetry was identified as the U(1)
symmetry. The broken U(1) symmetry is the origin of characteristic observations like the vanishing
resistance or the transition into a perfect diamagnetic phase (Meissner phase) [4].
While conventional superconductors only break the U(1) symmetry, unconventional superconduc-

tors develop a more complex pairing structure which—apart from the U(1)—also breaks some lattice
symmetries. Interestingly, the most widespread superconductors to date fall into this category: the
high-temperature superconductors. In 1986 the research interest has been boosted by the observation
of a transition temperature which reached around 30 K in cuprate materials [5]. This led to an intense
follow-up research effort and to the discovery of the whole family of copper-based superconductors with
transition temperatures reaching as high as ∼ 140 K [6]. The iron-based superconductors discovered
in 2008 [7] mark another family of high-temperature superconductors. These two families are just
two examples of the whole class of unconventional superconductors whose physical properties are not
yet fully understood. Nagging questions reach from the respective microscopic driving mechanism,
over the relevance of close-by instabilities, to the role of fluctuations. Conventional superconductors
are usually well characterized by a mean-field description; that is, the ground state is described by a
uniform field. In contrast, unconventional superconductors are more susceptible to field variations in
space and time. In the extreme cases those fluctuations can cause the collapse of the superconducting
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phase-coherent state [8–10]. In this context, a central concept is the rigidity of the phase-coherent
state which is quantified by the superfluid phase stiffness.

Another topic in condensed matter systems that has enjoyed a great deal of interest during the last
40 years revolves around the concept of topology. While it is often reduced to the comparison between
donuts and mugs or brezels, the underlying principle is more subtle. The topological non-trivial state
is equally shared between the bulk and boundary of a material - one being described by a topological
index, the other hosting topologically protected gapless edge states. In 1980 the first manifestation
of a topological state has been observed by van Klitzing in the form of the integer quantum Hall
effect [11]. This observation sparked an intense research effort which, during the last decades, has
led to the discovery of many topological materials; particularly, topological insulators [12]. Yet, the
topological concept equally applies to superconducting systems. Due to the reality constraint the
superconducting topological edge states have to be Majorana modes which offer, owed to their non-
Abelian nature, a promising platform for quantum information applications. It has been shown that
topological superconductivity can be realized on the basis of a proximitized topological insulator [13];
yet, bulk topological superconductors are scarce.
The discovery of the emergent superconducting state in the doped topological insulator Bi2Se3 with

a Tc ∼ 3 − 4 K in 2009 [14] has attracted much attention with regard to its possible topological
character. A few years later, the pairing state has been reported to break the C3z rotational symmetry
and thereby, cause a nematic distortion [15]. Follow-up experiments have consistently confirmed the
finding and pointed towards the two-dimensional odd-parity pairing state. Accordingly, doped Bi2Se3
is a nematic superconductor. On top of that, the odd-parity pairing state is likely to be topological
[16], where some experimental indications for Majorana modes have been provided [17].
It seems evident that a multitude of interesting physical aspects come together in the doped topo-

logical insulator Bi2Se3. As if that was not enough, its low carrier density n ∼ 1020 cm−3 along with a
small ratio of coherence length over Fermi wavelength ξ0/λF = 2..4 make superconducting fluctuations
increasingly important [14, 18, 19].
The central topic of this dissertation revolves around the concept of a fluctuation-induced nematic

phase that precedes the superconducting state in the doped topological insulator Bi2Se3. In this
scenario, the rotational C3z and the superconducting U(1) symmetry are separately broken at different
temperatures. Using a large-N theory, we predict the existence of such a vestigial nematic phase. We
study various implications thereof, and we present evidence for its existence, based on a collaboration
with an experimental group [20]. This thesis is structured as follows.
The first introductory Chapter 1 splits into three parts. First, we provide a brief overview on the

historical development of the prevailing superconducting descriptions and thereby, we introduce both,
the BCS theory and the language of a Ginzburg-Landau approach. Additionally, some chosen topics
including the role of the superfluid phase stiffness are discussed which are of direct relevance for the
work in chapter 4. Second, the idea of a large-N theory is introduced which is the framework for the
study in chapter 3. Third, we discuss the role of symmetries in condensed matter system. Thereby, we
demonstrate how symmetries are imposed on a Hamiltonian, how the pairing state is classified, and
how the symmetries are implemented in a free energy expansion. In various passages throughout the
work, symmetry classifications are employed.
In Chapter 2 we introduce the concept of topology, followed by a presentation of the material, doped

and undoped Bi2Se3. Thereby, we revisit the experimental situation, and we present the prevailing
theoretical models. We derive the low-energy Hamiltonian from symmetry grounds, and we discuss
the involved helical edge states. Thereafter, the emergent superconducting state in doped Bi2Se3 is
considered. We derive the pairing state candidates, discuss their topological character and contrast
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them with the experimental findings. Lastly, we study the mean-field Ginzburg-Landau theory of the
two-dimensional odd-parity state and compute the relevant parameter which discriminate between the
possible ground state phases.

In Chapter 3 we employ a vestigial nematic analysis which is designed to capture the physics in
doped Bi2Se3. Here, the chapter splits into two large parts. In the first part, we provide an introduction
on the concept of vestigial phases. Then, on the basis of a large-N theory we conduct a mean-field anal-
ysis where both, superconducting fluctuations and interactions are consistently included. The analysis
is discussed on equal footing for a possible vestigial nematic or a possible vestigial chiral scenario.
Then, we choose the parameters compatible with doped Bi2Se3, and find—depending on the z-
anisotropy
—either a vestigial nematic phase where the fluctuation-induced nematic phase preempts the super-
conducting state, or a joint transition where both phases appear simultaneously. In the second part,
the implications of a vestigial nematic phase are studied with respect to various aspects. First, we
demonstrate the onset of in-plane anisotropy in the magnetic susceptibility and the conductivity to-
gether with a strong enhancement of superconducting fluctuations upon the phase transit. Then, we
study the response of the underlying lattice, where the renormalization of the elastic constants due to
nematic fluctuations is addressed as well as the induced lattice distortion inside the vestigial nematic
phase. Lastly, we study the implications of an applied magnetic field from the viewpoint of a vestigial
nematic scenario.
In Chapter 4 we study the role of superconducting fluctuations in a different context. The super-

fluid phase stiffness quantifies the strength of phase fluctuations, and its large value ensures a robust
phase-coherent state. While the value has to be large in Galilean invariant systems due to the Leggett’s
theorem [21], the same does not hold in a Galilean non-invariant environment, like the periodic crystal
lattice. In particular, the presence of a periodic lattice leads to a suppression of the phase stiffness,
and in this work, we aim to quantify the magnitude of this effect. Our work has been inspired by ex-
periments in the over-doped regime of certain cuprate superconductors [22, 23], where an unexpected
suppression of the phase stiffness has been detected. Our calculations demonstrate that the suppres-
sion—mediated by superconducting fluctuations—can already for a moderate BCS coupling strength
become significant. This provides a qualitative insight which may be relevant for the interpretation of
some of the aforementioned data.
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1 Chapter 1

Fundamentals: symmetry and
spontaneous symmetry breaking

The concept of symmetries and spontaneous symmetry breaking is essential for the understanding of
phase transitions. This chapter is designed to introduce the concept on the example of superconduc-
tivity.
In the first part we illustrate the historical development in the field of superconductivity. Thereby,

we introduce the Ginzburg-Landau approach to phase transitions and we summarize the microscopic
BCS theory. Attached is a discussion on the role of superconducting fluctuations where the relevance
of the superfluid phase stiffness is emphasized. Owed to the direct relevance for the thesis at hands, in
the second part we outline the general idea of the large-N approach. In the third part, we shed light
on the relevant symmetries in condensed matter systems, and we derive the formalism how symmetries
can be imposed on a Hamiltonian and implemented into the free energy. Additionally, we demonstrate
how the superconducting pairing states can be symmetry classified.

1.1 Superconductivity

Historically, the discovery of the phenomenon of superconductivity goes back to Heike Kamerlingh
Onnes [1, 24, 25], who in 1911 measured a sudden resistance drop of pure mercury at a temperature
Tc = 4.183 K. Reaching down to those cold temperatures was a difficult task at that time. It shall
be acknowledged that it was Onnes himself in 1908 who first produced liquified Helium which was
essential to reach temperatures as cold as 1.5 K. At the time he published his discovery in 1911, the
theory of quantum mechanics was still in its infancy, and the scientific community simply did not have
the tools to understand its origin. As we know of now, superconductivity is a quantum mechanical
many-body phenomenon. From that point of view it is less surprising that it took almost half a
century until theorists found a satisfying microscopical description. In 1933 Meissner and Ochsenfeld
discovered a further experimental manifestation of the superconducting phenomenon, namely that
a superconductor is not only a perfect electrical conductor, but also a perfect diamagnet [4]. The
underlying effect became known as the Meissner effect and it is characterized by an induced current
that perfectly expels external magnetic fields from its interior. The first microscopic (BCS) theory,
named after its developers Bardeen, Cooper and Schrieffer, was published in 1957 [2, 3]. The BCS
theory will be reviewed extensively in section 1.1.2. Here, we want to first discuss the theoretical
advances made in the years prior to the development of the microscopic BCS theory. During those years
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1 Fundamentals: symmetry and spontaneous symmetry breaking

the phenomenon of superconductivity posed a core theoretical challenge. While some of the inspiring
theories were disproved, others turned out to be very useful. An interesting overview on the failed
theories of superconductivity can be found in Ref. [26]. Only a few years after the discovery of Meissner
and Ochsenfeld, the London brothers postulated on phenomenological grounds that the superconductor
should host an electrical current j ∝ A [27]. This current, also called the supercurrent counteracts
the external fields and enforces an exponential magnetic field decay upon entering a superconductor.
Thereby, they introduced one of the two characteristic length scales in superconductors: the London
penetration depth λL. Another major advance towards the understanding of superconductivity, or more
generally, towards the understanding of phase transitions, was initiated by Landau [28]. Together with
Ginzburg, the two of them presented the well-known Ginzburg-Landau theory in 1950 [29, 30]. This
theory provided fruitful insights and predictions, and it has an appeal in its conceptional simplicity.
Moreover, its applicability reaching far beyond the realm of superconductivity. Let us pause with the
history and shed some light on the ideas of this phenomenological approach.

1.1.1 Phenomenological theory

The Ginzburg-Landau theory is a phenomenological theory well-suited for the description of phase
transitions. Its framework evolves around the concept of an order parameter, a quantity that is
designed to be zero in the high-temperature ‘disordered’ phase and non-zero in the low-temperature
‘ordered’ phase. The phase transition is characterized through the onset of this order parameter. In
a second-order phase transition the order parameter evolves continuously at the transition, whereas it
jumps for a first-order transition. Implicitly, the theory assumes that the free energy is an analytical
function in the vicinity of the phase transition, such that it can be expanded in terms of the order
parameter to describe the behavior of the system. In the case of superconductivity, Ginzburg and
Landau postulated that the order parameter is a complex number ∆ = ∆0e

iϕ ∈ C where ∆2
0 ∼ ns ∈ R

measures the density of superconducting electrons, and the phase ϕ ∈ R should be of no physical
significance. In other words, the free energy should be invariant under a global U(1) rotation ∆→ ∆eiϕ.
Then, for a homogeneous superconductor the free energy expansion in terms of ∆ and ∆∗ reads

F∆
[
∆∗,∆

]
= FN + a(T ) |∆|2 + b |∆|4 +O(|∆|6) , (1.1)

with FN describing the normal ‘disordered’ part of the system. A positive parameter b ensures the
stability of the system for ∆→∞. If it barely varies with temperature b 6= b(T )—as is commonly em-
ployed–the dominant temperature dependence comes from the quadratic coefficient a(T ) ≈ a0(T −Tc)
with a0 > 0 and the transition temperature Tc. An explicit derivation of a0 (and b) is found in the
appendix B.1. The key logic of the Ginzburg-Landau approach (1.1) is demonstrated in figure 1.1(a).
For T > Tc, a(T ) is positive, and the expectation value ∆ remains zero. Only if a(T ) becomes negative
the system acquires a non-zero order parameter value ∆0 =

√
−a(T )/2b θ(−a(T )).1 Hence, the sys-

tem undergoes a phase transition at a(T ) = 0 where it spontaneously breaks a symmetry by picking a
certain value of the phase φ0 in the valley of the ‘Mexican hat’ potential. To be more precise, the new
ground state of the system does not share the U(1) symmetry of the Hamiltonian. This is known as a
spontaneous symmetry breaking and will be covered in more detail in section 1.1.2. The simple form
of the free energy (1.1) directly allows for a prediction of the temperature behavior of thermodynamic
quantities such as the entropy S(T ) or the heat capacity Cv(T ). Indeed, the heat capacity prediction
has been confirmed by an experiment in 1959 [31].

1We use the Heaviside step function θ(x) for a compact notation.
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1 Fundamentals: symmetry and spontaneous symmetry breaking

(a)

T≫Tc
ϕ

T>Tc
ϕ

T<Tc
ϕ

F[ϕ]

ϕ

(b)

Figure 1.1: (a) shows the free energy landscape (1.1) for a temperature above (a(T ) > 0) and
below (a(T ) < 0) the transition temperature. The accompanying massless phase excitation is
indicated along the valley of the Mexican hat. (b) shows a typical free energy evolution of a first-
order phase transition. The phase transition happens before the quadratic expansion coefficient
becomes negative.

While the initial Ginzburg-Landau version (1.1) allows for a description of a homogeneous supercon-
ductor, it can be extended to include spatial and time variations of the order parameter. To this end,
one has to replace the order parameter ∆→ ∆(r) by a field, and the free energy F →

∫
r F(r) by a free

energy density. Then, minimizations have to be carried out as functional derivatives. Focusing only
on long-wavelength spatial variations, the first non-vanishing term that penalizes spatial fluctuations
is of the form (∇r∆∗)∇r∆ which upon inclusion of a magnetic field becomes

Fgrad(r) + FB(r) = 1
2m∆∗(r)

(
−i∇r − e∗A(r)

)2 ∆(r) + B(r)2

2µ0
, (1.2)

with the mass m > 0 and the charge e∗ of the field ∆(r).2 The second term represents the kinetic
energy of the magnetic field with the vacuum permeability µ0. The free energy (1.2) introduces two
characteristic length scales: the correlation length ξ and the aforementioned London penetration depth
λL. The former arises from the non-magnetic part in Eq. (1.2) and reads ξ(T ) = 1/

√
2m|a(T )|.3 It

determines the range within which one expects a homogeneous order parameter solution. At a second-
order phase transition the correlation length diverges and a homogeneous order parameter can be
established over the entire sample. The remaining terms in Eq. (1.2) result from the minimal coupling
of a magnetic field B(r) = ∇r ×A(r) with A(r) being the vector potential. The penetration depth

2In case of superconductivity the field ∆(r) describes a so-called Cooper pair with a charge e∗ = 2e and mass m = 2me,
as will be shown in the next paragraph.

3The correlation length has to be distinguished from the coherence length ξ0 = ξ(T = 0). Far from the phase transition
they become comparable, but at Tc only the correlation length diverges.

3



1 Fundamentals: symmetry and spontaneous symmetry breaking

can be most conveniently deduced from the London equation

1
V µ0
∇r ×B(r) = j ≈ − 1

V m
(e∗)2|∆(r)|2A(r) , (1.3)

which is the result of the variation of the free energy density with respect to the vector potential
A(r). The characteristic London penetration depth λL =

√
m/µ0(e∗)2∆2

0 determines how deep a
magnetic perturbation can penetrate into the superconductor. Below the transition temperature, the
ratio between the two characteristic length scales, known as the Ginzburg-Landau parameter κ = λL/ξ,
becomes a characteristic of the superconductor on its own. It serves as a discriminator between type
I and type II superconductors, and we refer to standard textbooks for more details [32, 33]. Let us
remark a few more things on the Ginzburg-Landau theory.
First, the applicability of the Ginzburg-Landau theory is not limited to superconductivity, but can
be used to study any phase transition that involves an order parameter. Popular examples involve
magnetic or structural transitions which will be discussed later in section 3.4.
Second, the applicability of the Ginzburg-Landau theory is restricted to the vicinity of the phase
transition as emphasized in section 3.1.
Third, although the assumption of a small order parameter around the phase transition is only justified
for second-order phase transitions, the Ginzburg-Landau theory can also provide crucial insights into
first-order transitions. Importantly, weak first-order transitions are still well covered. With regards
to Eq. (1.1), a first order phase transition can be identified if the quartic coefficient b happens to
be negative. Then, a sixth-order term F6 = g|∆|6 guarantees the stability of the system. A similar
situation would arise for an order parameter φ that allows for a cubic term F

(3)
φ = gφφ

3 in the
free energy. In both examples the free energy exhibits a global minimum with a non-zero order
parameter even before the quadratic coefficient a(T ) turns negative, as illustrated in Fig. 1.1(b).
Characteristically for a first-order transition, the order parameter jumps at the transition temperature.
The extent of the jump could be that pronounced such that the entire series of expansion terms would
have to be included. In principle, higher-order contributions can push the additional minima above
zero and thus, turn the transition back into a second-order transition. However, for a weak first-order
transition, i.e. a small order parameter jump, the expanded free energy (1.1) remains its validity.
Fourth, the Ginzburg-Landau theory is a phenomenological theory in the sense that it is blind towards
the microscopic origin of the order parameter and its symmetry properties. In section (1.3), we
demonstrate in detail how a Ginzburg-Landau expansion can be derived on symmetry grounds. If,
however, a microscopic Hamiltonian is at hands, the Ginzburg-Landau expansion parameters can be
rigorously computed. Such a deduction has first been shown in the context of superconductivity by
Gorkov in 1959 [34], shortly after the publication of the BCS theory.

1.1.2 Microscopic theory

While the theory by Ginzburg and Landau has provided a convincing qualitative understanding for
phase transitions, it did not help to understand the mechanism of superconductivity and to unravel
the question about its microscopic origin. A key advancement was achieved through the observation
of the so-called isotope effect in 1950 by the groups of E. Maxwell [35] and C.A. Reynolds [36]. The
experiments on different isotopes of mercury have tied the transition temperature to the mass of the
nuclei, and hence, demonstrated a connection between superconductivity and the underlying lattice.
Shortly before, H. Fröhlich had already predicted such a dependence [37]. He and independently, J.
Bardeen [38] came to the same conclusion that the interaction between electrons and lattice vibrations
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1 Fundamentals: symmetry and spontaneous symmetry breaking

can lead to a net attraction between electrons. Later, L. Cooper has shown in 1956 [39] that the
Fermi surface is unstable against the formation of a bound electron pair (now called Cooper pair) of
opposite momenta and spin. In particular, he has shown that an infinitesimal attraction—such as the
net attraction caused by the lattice—is sufficient to bind two such electrons in the states

(
k, ↑
)
and(

−k, ↓
)
. As it happens, these two constituents are exactly time-reversed partner of one another, i.e.

T |k, ↑〉 = | − k, ↓〉 with the time-reversal operation T . Thus, in a time-reversal invariant system,
i.e. without any internal or external magnetic fields, the two Cooper pair constituents are guaranteed
to be present at the Fermi surface. The last intellectual step has been taken by the three namesakes
J. Bardeen, L. Cooper and Schrieffer of the BCS theory. They extended Cooper‘s instability into
the environment of a many-body system where the interaction term gets decoupled in the particle-
particle channel. For details on the derivations and implications we refer to standard condensed matter
textbooks, such as [40]. The decoupled Hamiltonian is known as the BCS Hamiltonian

ĤBCS =
∑
k,s

εkĉ
†
ksĉks +

∑
k

(
∆ĉ†k↑ĉ

†
−k↓ +H.c.

)
, (1.4)

with the electronic dispersion εk and the fermionic annihilation (creation) operators ĉks(ĉ†ks) in the
states of momentum k and spin s =

(
↑, ↓
)
. The central object ∆ ∼

∑
k〈ĉk↑ĉ−k↓〉 is the many-body

formulation of a Cooper pair and in the language of a Ginzburg and Landau it is the superconducting
order parameter, i.e. it acquires a non-zero expectation value in the superconducting state. As a
two-electron wave-function the superconducting order parameter carries a charge e∗ = 2e. The mean-
field BCS Hamiltonian (1.4) can be diagonalized by a Bogoliubov transformation [41] leading to the
quasi-particle energy spectrum Ek =

√
ε2k + |∆|2, and a self-consistency equation (or gap equation)

which determines the value of ∆. Let us illustrate the spontaneous U(1) symmetry breaking. The
BCS ground state wave-function can be explicitly written as

|BCS〉0 =
∏
k

(
β+
k + β−k ĉ

†
k↑ĉ
†
−k↓

)
|0〉 , (1.5)

with the notation β±k =
√

1± εk/Ek/
√

2 and the vacuum state |0〉. The action of the U(1) symmetry
operation on the fermionic and bosonic fields in (1.4) is ĉks → eiϕ/2ĉks, ĉ†ks → e−iϕ/2ĉ†ks and ∆→ eiϕ∆
and hence, the operation leaves the Hamiltonian (1.4) invariant. However, the ground state wave-
function (1.5) is no longer invariant upon such a U(1) operation as it changes according to

|BCS〉0 → Πk
(
β+
k + e−iϕβ−k ĉ

†
k↑ĉ
†
−k↓

)
|0〉 6= |BCS〉0 .

The property of the Hamiltonian and its ground state not sharing the same symmetry anymore is
known as spontaneous symmetry breaking.

Limits of the BCS theory The BCS theory of superconductivity has become one of the most suc-
cessful theories in the second half of the 20th century. Despite its success, it does not account for
effects that arise from e.g. the repulsive electron-electron interaction or the actual phonon spectrum.
In certain materials such as lead or mercury, known for their strong electron-phonon coupling, exper-
imental findings (e.g. the ratio ∆0(T = 0)/Tc , or with the upper critical field) have deviated from
the BCS predictions. In 1960 G.M. Eliashberg has been the first to formulate a theoretical framework
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1 Fundamentals: symmetry and spontaneous symmetry breaking

that rigorously included the electron-phonon coupling and thus, generalizes the BCS theory beyond
the weak-coupling limit [42, 43]. His work has been supported by A.B. Migdals’s insights [44]. The
role of the repulsive Coulomb interaction has equally called for thorough investigations. It was real-
ized that the emergence of superconductivity is more robust than initially expected. While a strong
Coulomb repulsion is certainly bad for the Cooper pair formation, it was realized that the problem has
to be approached through the different symmetry channels, dictated by the underlying lattice. Indeed,
if the projection of the Coulomb interaction leads to at least one attractive channel, a corresponding
Cooper pair will form, despite the fact that all the other channels are repulsive. Superconductivity that
emerges from a non-trivial symmetry channel is commonly called unconventional superconductivity.

While many unconventional superconductors have been discovered during the last decades, the
pairing states and in particular, the pairing mechanism are often not yet fully understood. Among
the class of unconventional superconductors are the heavy-fermion compounds like CeCu2Si2 [45]
or UPt3 [46], organic materials like (TMTSF)2PF6 [47], or the high-temperature iron-based [7] and
cuprate superconductors [5]. The feature all of them have in common is breaking of at least one
additional symmetry other than the U(1) symmetry. As will be shown in Sec.1.3, this requires then
unconventional pairing state to transform according to a non-trivial irreducible representation. A
particularly interesting superconductor for the present work is doped Bi2Se3 which is topic of chapter
2.

1.1.3 Electrical conductivity and superconducting phase rigidity

In this section we briefly discuss selected topics in the realm of superconductivity and condensed matter
theory, which will be of direct relevance for the following thesis work. The first part is about the
robustness of the superconducting phase coherence against fluctuations which is quantified by the so-
called superfluid phase stiffness. Large values of the phase rigidity (stiffness) protect the superconductor
from a collapse caused by phase fluctuations. Then, we will proceed with a brief discussion of collective
excitations that exist beside the quasi-particle excitations and hence, they affect the response of a
superconductor. Next, we review the electrical conductivity where we contrast the superconducting
and the metallic behavior. Thereby, we demonstrate the intimate relation between the zero resistance
characteristic of a superconductor and the strength of the phase stiffness. Finally, we will briefly
analyze the optical response of superconductors by studying the f-sum rule.

Phase rigidity The role of the phase rigidity is best illustrated within a Ginzburg-Landau approach.
To this end, we decompose the order parameter ∆(x) = |∆(x)|eiϕ(x) with both, amplitude and phase
depending on space and imaginary time x =

(
r, τ
)
. The insertion into the Ginzburg-Landau expansion

(1.1) and (1.2) yields

F∆
[
∆∗,∆

]
= FN + 1

2ρs
(
∇rϕ− e∗A

)2︸ ︷︷ ︸
phase sector

+ a(T ) |∆|2 + 1
2m(∇r|∆|)2 + b |∆|4︸ ︷︷ ︸

amplitude sector

+B
2

2µ0
. (1.6)

Here, the phase stiffness ρs = |∆|2/m ≡ ns/m with the superfluid density ns has been introduced
as the parameter that energetically penalizes spatial variations in the phase. For brevity, the explicit
x-dependencies are suppressed. We note that the expansion separates into a phase and an amplitude
sector. The amplitude part describes the energy cost of fluctuations in |∆| where the characteristic
length scale is set by the correlation length ξ(T ) = 1/

√
2m|a(T )|. On length scales larger than the
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1 Fundamentals: symmetry and spontaneous symmetry breaking

correlation length, amplitude fluctuations play a negligible role and the entire physics is dominated by
the phase degrees of freedom. It is the large value of the phase stiffness that protects the superconductor
from a collapse caused by strong phase fluctuations. Dictated by the Leggett‘s theorem [21], the
superfluid phase stiffness acquires its maximum possible value ρs = n/m in a Galilean invariant
system at zero temperature where n denotes the entire electronic density. For many conventional
superconductors Leggett’s theorem is applicable. As a consequence, phase fluctuations play a negligible
role in these compounds and the mean-field theory provides a sufficiently good description. We refer
to chapter 4 for more details on the Leggett‘s theorem and its limitations.
Since the vector potential A in (1.6) only couples to the phase sector, the superconducting phase has
to be responsible for the supercurrent—and with it, the phase stiffness becomes the defining quantity.
From Eq. (1.6) we can directly compute the induced current j = e∗ρs(∇rϕ − e∗A)/V and extract
the relation between the phase stiffness and the penetration depth λL =

√
1/µ0(e∗)2ρs in the London

limit (1.3). Being directly related to the penetration depth, the phase stiffness is experimentally
easily accessible. The derivative of the current with respect to the vector potential is also known as
the London response kernel Q = −ρs(e∗)2, see Eq. (1.7). The finite value of the response kernel,
synonymous to a finite phase stiffness, is the decisive property that causes a vanishing resistivity in
the superconducting state, as shown below.

Collective excitations Apart from the Bogoliubov quasi-particles the superconducting ground state
can also be excited in the form of collective excitations. The two collective excitations in place are the
phase- and the amplitude mode. If we express the free energy density (1.6) in Fourier space, the corre-
sponding dispersion relations can be directly deduced for both sectors. The amplitude mode is ’massive’
with a minimal excitation energy |∆|, i.e., the energy gap of the Bogoliubov quasi-particles. Conse-
quently, the amplitude mode, often referred to as the Higgs mode, can always decay into quasi-particles
and is therefore overdamped. The phase mode is a massless excitation that is a direct manifestation of
the Goldstone theorem. According to the Goldstone theorem the spontaneous breaking of a continuous
symmetry—such as the U(1) symmetry—is always accompanied by a massless excitation, also named
the Goldstone boson. In the condensed matter context, various Goldstone bosons are known, such
as the acoustic phonons in the case of translational symmetry breaking, or the magnons for a broken
spin-rotation symmetry. The amplitude- and the phase mode in a superconductor can be visually
understood through the Mexican hat potential, see Fig.1.1(a). A uniform phase modifications evolves
along the valley without any energy cost, while amplitude modifications have to go uphill which re-
quires a finite energy.
Once an electromagnetic field is coupled to the superconductor, a gauge transformation can fully absorb
the phase mode into the vector potential: A circumstance known as the Anderson-Higgs mechanism.
This mechanism renders the electromagnetic field massive and accounts for the Meissner effect.

Electrical conductivity The electrical conductivity σ(ν, q) is the key response function in the pres-
ence of an electromagnetic field. It relates the electron current j(ν, q) with the applied electrical field
E(ν, q) via j(ν, q) = σ(ν, q)E(ν, q). Experimentally, the conductivity is typically accessed by means
of optical measurements that involve photons with energies ω = c |q|. Since the speed of light c is
large compared to the Fermi velocity of typical metals any reasonable photon energy ω essentially
corresponds to a response at q = 0. For that reason, the optical conductivity defined as σ(ν, q = 0)
is of particular interest. From the theoretical side, the conductivity can be extracted from the expec-
tation value of the current operator 〈ĵ(ν, q)〉A in an applied external vector potential A. In a linear
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1 Fundamentals: symmetry and spontaneous symmetry breaking

response theory, one expands the current expectation value as a function of the vector potential such
that j(ν, q) = 〈ĵ(ν, q)〉A = Q(ν, q)A(ν, q) with the so-called London response kernel Q(ν, q) describing
the current-current correlation function. Using the relation A(ν, q) = E(ν, q)/iν one obtains the Kubo
formula

σ(ν, q) = Q(ν, q)
iν .

Often, it is more convenient to work in the imaginary time representation with the Kubo formula

σ(iνm, q) = −Q(iνm, q)
νm

.

The corresponding London response kernel can be computed from the free energy F [A] via

Qαβ(q) = − 1
V

δ2F [A]
δAβq δAα−q

∣∣∣∣
A=0

= V

T
〈jαq j

β
−q〉 −

V

T
〈jαq 〉〈j

β
−q〉 , (1.7)

with q = (iνm, q). In the course of this approach, an analytical continuation has to be performed to
arrive at the conductivity

Reσ(ν + i0, q) = ImQ(ν + i0, q)
ν

− πδ(ν) ReQ(ν + i0, q). (1.8)

One key difference between the optical responses of a superconductor and of a metal lies in the zero
momentum and zero frequency limit where ReQsc(0, 0) = −ρs(e∗)2 and ReQmetal(0, 0) = 0, see also
Eq.(1.10) below. Then, equation (1.8) shows that the superconductor has an infinite DC optical
conductivity, that leads to the observed vanishing resistivity. The weight of the delta peak, and thus
the strength of the corresponding superflow, is determined by the value of the phase stiffness ρs.

F-sum rule Under exploitation of the so-called f-sum rule, one can visualize the change in the optical
conductivity during the transition from a metal into a superconductor. According to the f-sum rule
the spectral weight of the optical conductivity is a conserved quantity which equals

2
π

∫ ∞
0

dν Reσαα(ν + i0, 0) = ne2

m
, (1.9)

for a system with quadratic dispersion [48]. The optical conductivity of a metal is typically well-
described by the Drude formula. In the Drude picture, any scattering effect that leads to a momentum
relaxation inside the conductor is captured by a single transport scattering time τtr. Then, the domi-
nant contribution to the London response kernel in the q = 0 limit becomes

QDrude
αβ (ν + i0, 0) = ne2

m

iτ−1
tr ν − ν2

τ−2
tr + ν2 δαβ , (1.10)
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1 Fundamentals: symmetry and spontaneous symmetry breaking

(a) (b)

Figure 1.2: (a) shows the Drude peak (1.11) of the optical conductivity of a metal. (b) illustrates
the spectral weight transfer as the system becomes a superconductor. Due to the f-sum rule (1.9),
the spectral weight is conserved, and the gapped part (ω < 2|∆|) is transferred into the weight of
the delta function which is responsible for the zero resistivity.

with the electron density n, the charge e and the mass m of an electron. The resulting Drude conduc-
tivity reads

ReσDrude
αβ (ν + i0, 0) = ne2

m

τ−1
tr

τ−2
tr + ν2 . (1.11)

The involved relaxation time τtr can originate from various sources such as electrons scattering off im-
purities, phonons or other electrons. Despite its appealing simplicity, the formula (1.11) has a severe
inconsistency. It causes a contradiction with the momentum conservation. Consider a gas of non-
interacting electrons with a quadratic dispersion relation. Then, the total momentum is conserved,
implying that it never decays and the momentum relaxation time τtr becomes infinite. As a conse-
quence, the Drude conductivity (1.11) would diverge, which is an obviously unphysical result. It has
to be evaded through the inclusion of the aforementioned momentum-relaxing scattering processes.
A consequence of the conserved spectral weight is illustrated in figure 1.2. As the metal transits

into the superconducting state the spectral weight within the superconducting gap 0 < ν < 2|∆| gets
transferred into the weight of the delta function, i.e. into the phase stiffness. The implications of this
issue will be further studied in chapter 4.

1.2 Saddle-point solutions and the key idea of a large-N theory

In condensed matter systems, many problems are approached within a functional field integral formal-
ism. In this language the partition function Z =

∫
Dφ exp(−βS[φ]) becomes an integral over some

bosonic (or fermionic) field variable φ. By setting kB to unity, β = 1/T is the inverse temperature and
the energy and temperature are measured in the same units. The microscopic theory is encapsulated
in the action S[φ]. The action can be expanded around a saddle-point value φ0 (given the action is
analytical and the value φ0 exists) according to

S
[
φ
]
≈ S

[
φ0
]

+ δS
δφ

∣∣∣
φ0

(
φ− φ0

)
+ 1

2
δ2S
δφ2

∣∣∣
φ0

(
φ− φ0

)2 + . . . , (1.12)
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where the condition δS
δφ

∣∣∣
φ0

= 0 determines the value φ0. If the expansion is truncated at the second
order, the partition function becomes

Z ≈ e−βS[φ0]
∫
Dφ exp

(
− β 1

2
δ2S
δφ2

∣∣∣
φ0

(φ− φ0)2
)
. (1.13)

For a large prefactor

β
1
2
δ2S
δφ2

∣∣∣
φ0
φ2

0 � 1 , (1.14)

the exponential evolves into a delta function δ(φ− φ0) that evaluates every correlation function at its
mean-field value. In the limit set by (1.14) fluctuations of φ around the saddle-point value are negligible
and the free energy (using Z = exp(−βF )) coincides with the mean-field action F

[
φ0
]
≈ S

[
φ0
]
. Due

to its simplicity, the saddle-point approach has a certain appeal. Yet, its applicability depends crucially
on the satisfaction of the condition (1.14). In numerous cases the action scales with the volume (it
has the volume as a prefactor) such that the thermodynamic limit (V → ∞) justifies the mean-field
treatment. However, in the absence of such a naturally large prefactor, one has to become more
inventive, and for example, turn towards a large-N approach.

The key idea of a large-N theory lies in the extension of a single field variable φ to a vector φ =
(φ1, φ2, . . . , φN )T with a large number of components N � 1 [49]. For an action that scales with the
value N , the parameter N becomes the large prefactor that validates the saddle-point condition (1.14).
In such an approach, one has to consistently treat the number N as the largest ‘scale’ in the problem.

In the typical textbook example, the (φ2)2 theory, the large-N action reads

S
[
φ
]

= r0φ
2 + u0

N

(
φ2
)2

. (1.15)

Commonly, the action is decoupled by means of a Hubbard-Stratonovich transformation, see e.g.
Eq.(3.6). This procedure introduces a new field λ, makes the action S[φ, λ] quadratic in φ and allows
for the subsequent integration,

S
[
φ, λ

]
=
(
r0 + λ

)
φ2 − N

u0
λ2 ,

∫
Dφ
−→ S ′

[
λ
]

= N

(
− 1
u0
λ2 + 1

2tr log
(
r0 + λ

))
. (1.16)

The resulting effective action S ′[λ] still contains the entire information of the problem, though it is
represented in a different form. The integration in (1.16) has been carried out N times, which leads
to the overall prefactor N and which would be used to justify an ensuing saddle-point analysis. This
is one example of a large-N implementation and it will used in chapter 3.
While it is straightforward to construct a theory with innumerable components, the number of com-

ponents of most realistic models is still close to one. Oftentimes, the large-N results have provided
useful insights and made correct predictions. Yet, to actually demonstrate that the approach is ap-
plicable, i.e. to prove the condition (1.14) is difficult. The single tool to establish a justification is a
numeric calculation. As an example, the large-N prediction for a classical J1 − J2 model on a square
lattice is an Ising-nematic transition which has been directly observed in a Monte Carlo study [50, 51].

10



1 Fundamentals: symmetry and spontaneous symmetry breaking

1.3 Symmetry constraints

Symmetries play a central role in the description of phase transitions. In this section, we introduce the
symmetries that are relevant to solid state systems and derive a formalism on how they are implemented
on the generalized BCS Hamiltonian, as well as on a Ginzburg-Landau expansion. For this, we have
a picture in mind where a high-temperature phase has all the relevant symmetries intact, and at least
one of the symmetries gets broken as the system transits into the ordered state. We specifically restrict
the derivation to the temperature as the tuning parameter that causes the phase transition. One could
equally formulate a similar theory with external tuning parameters like pressure, chemical doping or
magnetic field that drive the transitions. The symmetries that play a role in condensed matter are the
real space lattice symmetries, spin rotation symmetries, the U(1) gauge symmetry and time-reversal
symmetry. We comprise the unitary operations into the symmetry group G = G0 × U(1), where G0
contains all the lattice symmetries including spin rotations. The time-reversal symmetry is described
by an anti-unitary operator and will be treated separately. On a fundamental level, a system possesses a
certain symmetry if the system Hamiltonian Ĥ commutes with the corresponding symmetry operation
Ô, i.e. [

Ĥ, Ô
]

= 0 ↔ Ĥ = ÔĤÔ† ≡ ĤO , (1.17)

with the transformed Hamiltonian ĤO. We have used Ô−1 = Ô†.4 In the following, we provide an
introduction into the theory of lattice and spin-space symmetries. For further reading we refer to the
textbooks [52–54].

1.3.1 Rotations, inversion and translations

Point group elements Every physical lattice has a given set of symmetry operation that leaves a
single lattice point and its environment invariant. We denote this set as Gp, the set of point group
symmetry elements, and we note that there is a total of 32 possible point groups. Point group sym-
metry elements comprise real-space rotations, the inversion operation, and combinations thereof. The
framework of group theory has clear rules that dictate how the group elements can be arranged into
classes and how a character table can be formed from those. In table 1.1 we show exemplary the char-
acter tables of the point groups D3, C3 and D3d. It is worth pointing out that every lattice rotation has
its origin in the fully-rotational invariant SO(3) representation which is characterized by the operator

RSO(3)(ϑ, n̂) = exp
(
−iϑJ · n̂

)
, (1.18)

with the angle ϑ, the unit rotation axis n̂, and J = (J1, J2, J3) being the |J | = 1 angular momentum,
where (Jk)ij = −iεijk. The rotation operator R∗SO(3)(ϑ, n̂) = RSO(3)(ϑ, n̂) is real. As an example,
the point group D3 consists of a set of six distinct rotation. These six rotation elements arrange
into three classes, and according to basic group theory rules, this leads to three so-called irreducible
representations (IRs), namely {A1, A2, E}. The IRs play an essential role in the symmetry classification
as they form a basis into which every function f in the space operated on by the group elements g can

4Only the particle-hole and the chiral symmetry are defined through an anti-commutation with the Hamiltonian, see
section 2.1.
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be decomposed,

f =
∑
n

dim(n)∑
µ=1

fn,µ . (1.19)

Throughout this work we use the notation where n denotes an IR and µ = 1...dim(n) counts the re-
spective components. The basis (1.19) is a reasonable choice since different IRs, i.e. different symmetry
channels, decouple from each other on a quadratic level, as shown in section (1.3.5). The transforma-
tion matrix for a group element g ∈ G of a certain IR n is denoted by Rn(g). (For one-dimensional
IRs, the ‘matrix’ Rn(g) is simply a scalar and equal to the character of the element g.) The character
χn(g) of a group element g within an IR n is defined as χn(g) = trRn(g) and appears as an entry in
the character table. The dimension of an IR n is identical to χn(E) with E being the identity element.
The vector representation in the last column of the character table denotes the IRs according to which
the coordinates transform. The corresponding matrices read Rv(g).

Irreducible representations can be complex if the so-called Frobenius-Schur test yields zero.5 In
that case, they occur in conjugated pairs, n and n̄, and the corresponding transformation matrices are
complex conjugates of one another Rn̄(g) = R∗n(g), see e.g. the C3 point group.6
Apart from the pure rotation elements, lattice symmetry elements also involve any combination of

a rotation and the inversion operation. The inversion element is distinct because it commutes with
every other point group element. Depending on whether a system possesses the inversion symmetry
or not, the system is classified as centro- or non-centro-symmetric. A centro-symmetric point group
can always be written as a direct product between the inversion group {E, I} and the corresponding
proper subgroup, e.g. D3d = D3 × {E, I}. Accordingly, the character table is doubled and the IRs
are classified as even (g for ‘gerade’) and odd (u for ‘ungerade’) depending on their behavior upon
inversion.

Spin rotations Let us consider symmetries related to spins, in particular to spin 1/2 systems suited
for electrons. An isolated spin has a full rotational invariance that is described by the SU(2) repre-
sentation. The corresponding spin rotation operator reads

RSU(2)(ϑ, n̂) = exp
(
−iϑ2 s · n̂

)
, (1.20)

with the rotation angle ϑ and the unit rotation axis n̂. In a lattice systems one would expect that
the spin rotational invariance has to be broken due to the interaction with neighboring atoms. While
strictly speaking, the statement is always true, the magnitude of the effect crucially depends on the
strength of the spin-orbit coupling (SOC). There are many materials where the role of the spin-orbit
coupling is negligible such that there is effectively no communication between the ‘spin world’ and the
‘real world’ and the spin technically retains its full SU(2) invariance. Such a system is then described
within the symmetry group G0 = Gp×SU(2). Spin-orbit coupling is a relativistic effect that originates
from the motion of electrons. It can be viewed as a current loop that generates a magnetic field

5The Frobenius-Schur test evaluates
∑
g χn(g2).

6There is a subtlety as to why the IRs are denoted by E—usually used for two-dimensional IRs—even though they
transform according to a one-dimensional IR upon the point group symmetry operations. It is the time-reversal
symmetry that transforms one into the other, and hence, lumps the two into a two-dimesional IR.
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D3 E 2C3z 3C2x r

A1 1 1 1

A2 1 1 -1 z

E 2 -1 0 (x, y)

C3 E C3 C2
3 r

A 1 1 1 z

E 1 ε ε∗ x+ iy

Ē 1 ε∗ ε x− iy

D3d E 2C3z 3C2x I 2IC3z 3IC2x r

A1g 1 1 1 1 1 1

A2g 1 1 -1 1 1 -1

Eg 2 -1 0 2 -1 0

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2 1 0 (x, y)

Table 1.1: Character tables of the points groups D3, C3 and D3d, where ε = exp
(
i2π/3

)
.

which interacts with the immanent magnetic moments of the electrons (the spins). Thus, there is a
net coupling between the orbital motion in real space and the spin. The corresponding microscopic
spin-orbit coupling Hamiltonian can be cast in the form

HSOC = e

4m2c2p ·
(
s×∇V

)
,

with mass m, charge e and momentum p of the electron, the electric potential V caused by the
electrons, the speed of light c and the Pauli matrix vector s = (sx, sy, sz).
In a system where spin-orbit coupling is relevant, the spin is locked to the lattice degrees of freedom
and they transform jointly. Then, the 4π periodicity of the spinor has to be accounted for in order
to be implemented into the body of group theory. This leads to the so-called double group G′p where
rotations about the angle ϑ and ϑ + 2π are distinct. As a consequence, the amount of symmetry
elements is doubled explaining its name-giving. As an example, let us generate the double group
D′3 from the point group D3. Then, the six elements {Ē, C̄3z, C̄

−1
3z , C̄2x, C̄2A, C̄2B}7 are added to the

group D3 where the bar denotes that the rotation winds by the angle ϕ + 2π. To determine the
new multiplication table one can use the spinor representation and express the elements as C2x =
RSU(2)(π, êx), C̄2x = RSU(2)(3π, êx), and so forth. Similar to the ordinary point group, the character
table of the double group (see table 2.2) follows from the multiplication table. Double groups always
contain the original point group, i.e. the original IRs with the trivial ϕ+ 2π rotations are always part
of it (in the D′3 case A1, A2,E1) [53]. Additionally, three IRs (E2, Ē2 and E3) have been added to the
character table 2.2 where all of them transform odd upon the 2π rotation Ē, i.e. they are qualified as
possible electronic representations. Since the inversion operation also commutes with all the elements
of D′3, the double group D′3d can be directly constructed as the direct product D′3d = D′3 × {E, I}.

7The A and B axes read n̂A,B = (±1,−
√

3, 0)/2.

13



1 Fundamentals: symmetry and spontaneous symmetry breaking

D′3 E 2C3z 3C2x Ē 2C̄3z 3C̄2x r

A1 1 1 1 1 1 1

A2 1 1 -1 1 1 -1 z

E1 2 -1 0 2 -1 0 (x, y)

E2 1 -1 i -1 1 -i

Ē2 1 -1 -i -1 1 i

E3 2 1 0 -2 -1 0

Table 1.2: Character table of the double group D′3. The elements group into the classes like
2C3z = {C3z, C

−1
3z }, 2C̄3z = {C̄3z, C̄

−1
3z }, 3C2x = {C2x, C̄2A, C̄2B} and 3C̄2x = {C̄2x, C2A, C2B}.

Translations The lattice translation symmetry accounts for the equality of every lattice point. It is
described by the set of translation vectors

T l = l1t1 + l2t2 + l3t3 , l =
(
l1, l2, l3

)
, li ∈ Z ,

that cover every lattice point and form the group of translations T. Here, t1,t2,t3 denote the prim-
itive lattice vectors. Together, rotation and translation elements form the so-called space group Gs
which contains the whole set of coordinate transformations that map the lattice onto itself. In three
dimensions there is a total of 230 different space groups. Yet, for many application one does not need
the entire space group information. For example, if one wants to study a quantity that is expected
to be identical at every lattice point, the necessary symmetry information is already contained in the
underlying point group. In the remaining work we deal with homogeneous mean-field solutions where
the point group picture suffices.
Lastly, we mention the concept of extended point groups. The extended point group allows for a

handy symmetry description of an inhomogeneous, but commensurate state. In such a state, e.g. an
anti-ferromagnet, the actual unit cell is larger than the crystal unit cell. Moreover, the larger unit cell
requires larger primitive vectors and the commensurate state identifies a set of translations, the group
Tf , which do not leave the state invariant. Then, this translational group Tf is incorporated into the
point group Gp by means of an induced representation [53] leading to the extended point group. The
resulting character table contains IRs according to which the commensurate state transforms.

1.3.2 Time-reversal symmetry

This section is devoted to a particular symmetry operation acting on time: The time-reversal operation
T̂ reverses the arrow of time t→ −t, and the corresponding symmetry evaluates whether the evolution
backwards in time mimics the forward evolution. Let us illustrate the meaning on the classical example
of a dissipative system where a particle comes to rest due to friction. The evolution backwards in time
accelerates the particle spontaneously from rest, a circumstance that clearly contradicts our physical
intuition. Another example of a system without time-reversal symmetry is a charged particle that
spirals around a fixed magnetic field. Upon a reversal of the direction of time, the particle still
spirals around the magnetic field, but its orientation towards the magnetic field lines has changed. An
important observation in this context is that magnetic fields break the time-reversal symmetry.

14



1 Fundamentals: symmetry and spontaneous symmetry breaking

In the quantum mechanical world, it is the Hamiltonian Ĥ that governs the time evolution from a
state |ψi〉 to a state |ψf 〉 = exp(−iδt Ĥ)|ψi〉. The application of the time-reversal operation leads to
the time-reversed state T̂ |ψi〉 = exp(−iδt ĤT )T̂ |ψf 〉 that evolves with the time-reversed Hamiltonian
ĤT = T̂ ĤT̂ † from state T̂ |ψf 〉 to T̂ |ψi〉. The system is said to obey the time-reversal symmetry if the
time-reversed and the original Hamiltonian ĤT = Ĥ are identical, i.e. if the Hamiltonian commutes
with the time-reversal operation [Ĥ, T̂ ] = 0. Formally, the time-reversal operator is an anti-unitary
operator8 T̂ = ÛT K with T̂ −1 = T̂ †. An anti-unitary operator can always be written as a product
of a unitary operation ÛT and the complex conjugation operation K. The time-reversal operation
squares to T̂ 2 = ±1, where the plus and minus sign applies to integer and half-integer spin particles,
respectively. In the remainder of this work we will only deal with electronic theories such that the minus
sign applies and the unitary matrix has to be anti-symmetric ÛTT = −ÛT . Let us examine the action of
the time-reversal operation on the eigenstate |k, sα〉 of the system Hamiltonian with momentum k and
spin s ∈ {↑, ↓}. Here, the time-reversal operation inverses the momentum and flips the spin leading
to the state T̂ |k, sα〉 = | − k, iτyαβsβ〉 where the relative minus sign (iτy) accounts for T̂ 2 = −1. The
action of the time-reversal operation can be conveniently generalized to T = exp(−iπSy)K with the
Sy-component of the total spin S [55].

Kramer‘s theorem The role of the time-reversal symmetry in the context of superconductivity is
immense. As introduced in Sec. 1.1.2, the two constituents of the Cooper pair are time-reversed
partners, and their mutual existence at the Fermi energy is owed to the Kramer’s degeneracy as a
consequence of the time-reversal symmetry. The Kramer’s theorem says that an energy level is at least
two-fold degenerate in case of a time-reversal invariant Hamiltonian that describes an odd number of
half-integer spin particles. The proof is simple and goes as follows: From the commutation relation
[Ĥ, T̂ ] = 0 follows that |ψ〉 and T̂ |ψ〉 are two eigenstates of the Hamiltonian with the same eigenvalue.
The question is whether both states represent the same state or if they are linearly independent
solutions. For ÛTT = −ÛT it is easily shown that it holds 〈ψ|T̂ ψ〉 = −〈ψ|T̂ ψ〉 = 0. Thus, the two
states are not only linearly independent but even orthogonal. The preceding condition only holds for
a half-integer total spin S =

∑
Nisi, i.e. for an odd number Ni of half-integer particles.

1.3.3 Constraints on the generalized mean-field Hamiltonian

In this section, we impose the U(1), the time-reversal and the lattice symmetries on a generalized BCS
Hamiltonian and we deduce the resultant constraints on its constituents: the single-particle Hamilto-
nian and the pairing field. The following formalism could similarly be imposed on any Hamiltonian but
for the purpose of this work, it is most convenient to study the implications on the superconducting
Hamiltonian. The generalized mean-field BCS Hamiltonian reads

Ĥ =
∑
k

ĉ†k,αhαβ(k)ĉk,β +
∑
k,q

(
ĉ†
k+ q

2 ,α
∆αβ(k, q)ĉ†−k+ q

2 ,β
+H.c.

)
, (1.21)

where ĉk,α and ĉ†k,α denote fermionic annihilation and creation operators for the quasi-particle state(
k, α

)
. The Hamiltonian (1.21) generalizes the BCS Hamiltonian (1.4) in the sense, that the pairing

field ∆αβ(k, q) is a matrix in the space of the microscopic degrees of freedom α, β = 1, .., N0 which
comprise spin, orbitals, layers in stacked system and so forth. In comparison to the original BCS

8An operator T̂ is anti-unitary if and only if it fulfils T̂ †T̂ = T̂ T̂ † = 1, and it is anti-linear, i.e. T̂ c = c∗T̂ for any c ∈ C.
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1 Fundamentals: symmetry and spontaneous symmetry breaking

theory where only singlet pairing—between a spin up and a spin down electron—was considered, the
generalized pairing field ∆αβ(k, q) allows for pairing between any of the above degrees of freedom. The
dependence on the center-of-mass momentum q genuinely entails an inhomogeneous pairing state that
varies in amplitude from unit cell to unit cell. In the present derivation, the momentum q is included
to eventually study ‘small’ fluctuations on top of the homogeneous ground state. For that matter, it
suffices to satisfy the point group symmetries instead of the entire space group. The function h(k) is
referred to as the single-particle Hamiltonian, as it contains all the band structure information of the
non-interacting part.
In what follows it is important to properly distinguish between first and second quantized operators.
We use hats to denote the latter, i.e. T and T̂ are the time-reversal operators acting in single-particle
and in Fock space, respectively.

U(1) symmetry Upon the action of the U(1) gauge symmetry the fermionic operators transform as
ĉ†k,α → ĉ†k,αe

−iϕ/2 and ĉk,α → ĉk,αe
iϕ/2. Therefore, the enforced invariance of the Hamiltonian (1.21)

under this symmetry operation requires the pairing function to transforms as

∆αβ(k, q) U(1)→ ∆αβ(k, q)eiϕ . (1.22)

One arrives at the same conclusion arguing from the two-particle wave-function perspective ∆ ∼ 〈ĉĉ〉.

Time-reversal symmetry In the present electronic theory, the particles have half-integer spins.
Then, the time-reversal operator T̂ = ÛT K with T̂ −1 = T̂ † has to satisfy T̂ 2 = −1 and as a con-
sequence thereof, it holds ÛTT = −ÛT . For the sake of generality, we leave the unitary matrix ÛT
unspecified. The action on the fermionic operators is defined by

T̂ ĉ†k,αT̂
† = ĉ†−k,α′

(
UT
)
α′α

, T̂ ĉk,αT̂ † =
(
U†T
)
αα′
ĉ−k,α′ , (1.23)

with the inverted crystal momentum k → −k. Note that the matrix UT does not act in Fock space.
Time-reversal invariance implies ĤT ≡ T̂ ĤT̂ † = Ĥ (cf. 1.17) and thus, we compute the time-reversed
Hamiltonian9

ĤT =
∑
k

T̂
(
ĉ†k

)T
T̂ †︸ ︷︷ ︸

(ĉ†−k)TUT

Kh(k)K T̂ ĉkT̂ †︸ ︷︷ ︸
U†T ĉ−k

+
∑
k,q

(
T̂
(
ĉ†
k+ q

2

)T
T̂ †︸ ︷︷ ︸

(ĉ†
−k− q

2
)TUT

K∆(k, q)K T̂ ĉ†−k+ q
2
T̂ †︸ ︷︷ ︸

UTT ĉ
†
k− q

2

+H.c.
)

=
∑
k

(
ĉ†k

)T
T h(−k) T † ĉk +

∑
k,q

((
ĉ†
k+ q

2

)T
T ∆(−k,−q) T T ĉ†−k+ q

2
+H.c.

)
, (1.24)

using the vector notation (ĉ†k)T = (ĉ†k,1, ĉ
†
k,2, . . . ). From (1.24) we derive the constraints on the single-

particle Hamiltonian h(k) and the pairing function ∆(k, q) due to time-reversal invariance, reading

T h(−k) T † = h(k) ↔ UT hT (−k)U†T =h(k) , (1.25)
T ∆(−k,−q) T T = ∆(k, q) ↔ UT ∆∗(−k,−q)UTT =∆(k, q) . (1.26)

9Note that ÛT acts in Fock space while h(k) lives in the single-particle space, such that they commute. Moreover, it
holds ÛTK = KÛ∗T and KÛ†T = ÛTT K
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1 Fundamentals: symmetry and spontaneous symmetry breaking

Lattice symmetries The language and concepts necessary to describe the lattice transformation
behavior of spin 1/2 fermions were introduced in section (1.3.1). Concerning the role of spin-orbit
coupling, we have clarified that the fermionic fields/operators either transform under the crystal double
group GSOC0 = G′p or the symmetry group G���SOC

0 = Gp × SU(2) depending on whether SOC is relevant
or not. In any case, the corresponding transformation can be cast by the unitary operation Ûg whose
action on the fermionic operators is defined by

Ûg ĉ†k,αÛ
†
g = ĉ†Rv(g)k,α′

(
Ug
)
α′α

, Ûg ĉk,αÛ†g =
(
U†g
)
αα′

ĉRv(g)k,α′ ,

with g being a group element from either GSOC0 or G���SOC
0 . The coordinates transform as k′ = Rv(g)k

with the transformation matrix of the coordinates representation Rv(g). The invariance upon the
lattice symmetries implies ĤUg ≡ ÛgĤÛ

†
g = Ĥ, see Eq. (1.17). Hence, we compute the transformed

Hamiltonian

ĤUg =
∑
k

(
ĉ†k

)
Ug h(R†v(g)k)U†g ĉk +

∑
kq

((
ĉ†
k+ q

2

)T
Ug ∆(R†v(g)k,R†v(g)q)UTg ĉ

†
−k+ q

2
+H.c.

)
,

(1.27)

and obtain the constraints on the single-particle Hamiltonian and the pairing function

Ug h(R†v(g)k)U†g = h(k) , ∀g ∈{GSOC0 or G���SOC
0 } , (1.28)

Ug ∆(R†v(g)k,R†v(g)q) UTg = ∆(k, q) , ∀g ∈{GSOC0 or G���SOC
0 } . (1.29)

With the derived conditions for each type of symmetry class, the symmetry-allowed contributions to
the generalized BCS Hamiltonian (1.21) are strongly constrained.

1.3.4 Pairing field and its symmetry constraints

Apart from the previously derived constraints (1.26) and (1.29), there is one more condition on the pair-
ing function. By construction, it is a two-electron wave-function and hence, it has to be anti-symmetric
upon an electron exchange. Using the fermionic anti-commutation relations in the Hamiltonian (1.21)
therefore allows to impose the additional constraint

∆(−k, q) = −∆T (k, q) . (1.30)

In order to meet all the requirements it is convenient to express the pairing field in the basis of the
IRs n according to (1.19),

∆αβ(k, q) =
∑
n,µ

∆n,µ
q

(
χn,µk,qλ

n,µ
)†
αβ

, ∆n,µ
q , χn,µk,q ∈ C, λn,µαβ ∈ CNdof×Ndof , (1.31)

with the components µ = 1... dim(n). Here, the complex field ∆n,µ
q represents the position-dependent

order parameter in the Ginzburg-Landau theory. The function χn,µk,qλ
n,µ
αβ is called the associated partner

function, where we have detached the matrix part λn,µαβ from its overall spatial dependence χn,µk,q . In
the course of the mean-field decoupling of the BCS interaction term (see appendix A.1), the pairing
function is identified as ∆n,µ

q ∼
∑
k〈ĉ−k+ q

2 ,α
χn,µk,qλ

n,µ
αβ ĉk+ q

2 ,β
〉, which is why it couples to the Hermitian
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1 Fundamentals: symmetry and spontaneous symmetry breaking

conjugated of the associated partner function in Eq. (1.31). The benefit that comes with the basis
choice (1.31) lies in the transformation behavior upon the spatial symmetry operations, reading

Ug
(
χn,µ
R†v(g)k,R†v(g)q

λn,µ
)†
UTg = RTn (g)µµ′

(
χn,µ

′

k,q λ
n,µ′
)†

, ∀g ∈{GSOC0 or G���SOC
0 } . (1.32)

The IRs n according to which the pairing field transforms have to be part of the underlying point
group Gp. The reason is that the non-trivial 2π rotations caused by a single fermion cancel out for a
two-fermion function like ∆(k, q). As before, we study the cases with and without SOC separately.

SOC is relevant The spin and lattice degrees of freedom transform jointly under the double group
GSOC0 = G′p. By using Eq. (1.31) and exploiting Eq. (1.32), it is straightforward to check that the
condition (1.29) can be recast in terms of the order parameter relation

∆n,µ

R†v(g)q
= R†n(g)µµ′∆n,µ′

q , ∀g ∈ G′p . (1.33)

This transformation rule is very convenient when implementing the symmetry on the free energy
expansion.

SOC is irrelevant Without SOC, the spin transforms independently from the lattice, and it is useful
to detach the spin degrees of freedom from the remainder λn,µ → λn,µs̃j,η with the spin Pauli matrices
s̃j,η. Here, we use the notation of the point group IR n and the SU(2) IR j with their respective
components µ = 1, ..,dim(n) and η = 1, ..,dim(j). The corresponding symmetry elements factorize as
Ug → UgRSU(2)(ϑ, n̂) where g ∈ Gp is a point group element. Accordingly, the pairing field expansion
becomes

∆(k, q) =
∑
n,µ

∑
j,η

∆(n,j),(µ,η)
q

(
χn,µk,qλ

n,µ
)† (

s̃j,η
)†

, ∆(n,j),(µ,η)
q ∈ C. (1.34)

For the spin degree of freedom the condition (1.29) becomes

RSU(2)(ϑ, n̂)
(
s̃j,η′

)†
RTSU(2)(ϑ, n̂) = Rj(ϑ, n̂)η′η

(
s̃j,η
)†

. (1.35)

The evaluation of the equation (1.35) shows that the spin part decomposes into the two IRs j = {s, t}
for the singlet (s) and triplet (t) states. The singlet and triplet states are represented by the SO(1) and
SO(3) groups, respectively, with the corresponding group elements reading Rs(ϑ, n̂) = RSO(1)(ϑ, n̂) =
1 and Rt(ϑ, n̂) = RSO(3)(ϑ, n̂). The associated matrices become

(s̃s)† = isy , (s̃t)† =
(
sx, sy, sz

)
isy .

The implementation of the point group constraints leads to the very same relation (1.33) as in the
SOC-free case. Thus, similarly to the previous case, the condition on the pairing function (1.29) can
be recast in terms of the order parameter transformation rule

∆(n,j),(µ,η)
R†v(g)q

= R†n(g)µµ′Rj(ϑ, n̂)ηη′∆
(n,j),(µ′,η′)
q , ∀g ∈ Gp ,∀ϑ ∈ R , ∀n̂ ∈ R3, |n̂| = 1 . (1.36)

18



1 Fundamentals: symmetry and spontaneous symmetry breaking

In section (1.3.5) below we demonstrate from symmetry grounds that an order parameter will stabilize
only a single IR n0 at the transition temperature. For the present case this means that the order
parameter in the spin space is either a singlet or a triplet,

singlet: ∆(k, q) =
(
χn0,µ
k,q λ

n0,µ
)†

∆n0,µ
s,q isy , (1.37)

triplet: ∆(k, q) =
(
χn0,µ
k,q λ

n0,µ
)†

∆n0,µ
t,q ·

(
sx, sy, sz

)
isy , (1.38)

with ∆n0,µ
t,q = (∆n0,µ

t1,q ,∆
n0,µ
t2,q ,∆

n0,µ
t3,q ). Due to the anti-symmetry constraint (1.30), the corresponding

spatial functions have to satisfy χn0,µ
−k,q(λn0,µ)T = ±χn0,µ

k,q λ
n0,µ for the singlet (+) and triplet (−) state.

Finally, we write the spin- and lattice IRs in (1.36) in a compact form using ñ =
(
n, j
)
, µ̃ =

(
µ, η
)
,

g̃ = (g, ϑ, n̂) and R†ñ(g̃)µ̃µ̃′ = R†n(g)µµ′Rj(ϑ, n̂)ηη′ . Then, both cases, with and without SOC look
formally identical and can be treated on equal footing. In the remainder of this chapter, we will
therefore treat both cases as one.

Pairing field and centro-symmetry Following up on the discussion on singlet and triplet pairing,
we want to shed some light on a closely related topic. Consider a spin-orbit coupled systems with spin
1/2 electrons and both, time-reversal and inversion symmetries intact. In these so-called time-reversal
invariant and centro-symmetric systems every energy level is at least four-fold degenerate, with the
states at a given momentum k being doubly degenerate. Moreover, it has been shown in Ref. [56–58]
that regardless of the degree of entanglement between spin and orbit, it is always possible to construct
a pseudo-spin basis {|k,+〉, |k,−〉} within which the operations act as

ÛI |k,±〉 = | − k,±〉 , T̂ |k,±〉 = ±| − k,∓〉 .

Thus, the two degenerate states |k,±〉 transform just like common SU(2) spinor under the time-reversal
T̂ and the inversion ÛI operation. It should be noted that the pseudo-spin is not to be confounded
with the actual spin in the sense that physical quantities such as magnetic fields still couple to the
electron spin, not the pseudo-spin. The Pauli matrices in pseudo-spin space are denoted by s̃i and in
this basis the pairing field can be expressed in the form

∆(k, q) = d0
k,q is̃y + dk,q ·

(
s̃x, s̃y, s̃z

)
is̃y , (1.39)

reminiscent of the singlet and triplet representation (1.37-1.38). Indeed, the terminology is adapted
such that pairing states with d0

k,q and dk,q = (d(x)
k,q, d

(y)
k,q, d

(z)
k,q) are characterized as singlet and triplet

states (in pseudo-spin space), respectively. The anti-symmetry constraint (1.30) requires the d-
functions to be even d0

−k,q = d0
k,q and odd d−k,q = −dk,q, respectively. In the case of zero external

momentum q = 0, a parity even (odd) pairing channel can only have a finite d0
k,0 (dk,0) component

while the other one has to vanish.
Note that the pseudo-spin basis (1.39) has only a single microscopic degree of freedom left (pseudo-

spin). Here, it is commonly assumed that the other electronic bands are sufficiently well separated in
energy such that there is essentially no coupling to them. Then, the d-representation (1.39) has the
physical significance it is usually attributed to.
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Time-reversal symmetry constraint To meet the time-reversal symmetry constraint (1.26) it is
convenient to introduce the new matrix Λn,µ = UT λn,µ. Then, it can be shown that the time-reversal
invariance requires the associated partner functions to satisfy (see appendix A.1)(

χn,µk,qΛn,µ
)†

=
(
χn̄,µk,−qΛ

n̄,µ
)
, (1.40)

where n and n̄ denote a pair of complex conjugated IRs. According to the relation (1.40) a real IR
(n̄ = n) has to be accompanied by a Hermitian matrix Λn,µ, given it holds χn,µk,q = χn,µk,−q. For the case of
a complex conjugated pair (n̄ 6= n), the condition (1.40) requires the two IRs to transform jointly. Note
that the pure lattice and spin symmetries let them to transform independently. As a consequence of
the time-reversal constraint, pairs of complex conjugated IRs are conventionally lumped together into
a 2 dim(n) dimensional IR. As show in the appendix A.1, the time-reversal constraint (1.26) translates
into the order parameter condition

∆n,µ
q =

(
∆n̄,µ
−q

)∗
, (1.41)

which can be easily implemented in a free energy expansion. Before we proceed, let us examine what
it needs for a superconductor to break TRS on the basis of three examples:

(i) The pairing state is homogeneous (q = 0) and transforms according to a multi-dimensional real
IR (n = n̄ = n0) such that the condition (1.41) becomes

eiϕ1
(

∆n0,1
0 ,∆n0,2

0 eiϕ21 ,∆n0,3
0 eiϕ31 , . . .

)
= e−iϕ1

(
∆n0,1

0 ,∆n0,2
0 e−iϕ21 ,∆n0,3

0 e−iϕ31 , . . .
)
, ∆n0,i

0 > 0 .

Owed to the U(1) symmetry, the overall phase can always be gauged away and does not play
a role. Thus, the condition can only be violated if the order parameter has multiple compo-
nents and if the respective ground state symmetry is such that at least one relative phase is
ϕij 6=

{
0, π
}
. By implication, this excludes any time-reversal symmetry breaking in case of a

uniform single-component order parameter.

(ii) For a homogeneous (q = 0) pairing states that transforms according to a complex conjugated
pair n0,n̄0 where we assume dim(n0) = 1 for brevity. The condition (1.41) becomes

eiϕ1
(

∆n0
0 ,∆n̄0

0 eiϕ21
)

= e−iϕ1
(

∆n̄0
0 e−iϕ21 ,∆n0

0

)
, ∆n0

0 ,∆n̄0
0 > 0 .

Here, the TRS is always spontaneously broken unless the ground state happens to be of the form
ϕ21 = 0 and ∆n0

0 = ∆n̄0
0 .

(iii) For a spatially inhomogeneous pairing state such as a pair density wave with a fixed ordering vec-
tor Q. Here, the wave-function could either be single-Q dependent with ∆Q

q = eiϕ1∆0δ(q −Q),
or double-Q dependent with ∆Q

q = eiϕ1∆0[δ(q − Q) + δ(q + Q)]. The single-Q state would
necessarily break TRS as q → −q leads to a different state, while the double-Q solution would
leave the TRS intact—at least in the given representation with zero phase difference and equal
amplitudes for the oppositely propagating waves.
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1.3.5 Constraints on the free energy expansion

In this section we want to transfer the previously implemented symmetries into constraints on a free
energy expansion. Moreover, we discuss how symmetry-compliant contributions can be derived and
demonstrate that the free energy expansion diagonalizes in terms of the IRs n. With the previously
obtained transformation rules of the order parameter upon the U(1) (1.22), the point group (1.33) and
the time-reversal symmetry (1.41) operations, we can directly postulate the corresponding constraints
on the free energy density, reading

U(1) : F [(∆n,µ
q )∗,∆n,µ

q , q] = F [(∆n,µ
q )∗e−iϕ,∆n,µ

q eiϕ, q] , ∀ϕ ∈ R , (1.42)

lattice : F [(∆n,µ
q )∗,∆n,µ

q , q] = F [(∆n,µ′
q )∗Rn(g)µ′µ,R†n(g)µµ′∆n,µ′

q ,R†v(g) q] ,∀g ∈ Gp , (1.43)

TRS : F [(∆n,µ
q )∗,∆n,µ

q , q] = F [∆n̄,µ
q , (∆n̄,µ

q )∗,−q] . (1.44)

Now, let us study how these constraints effect a free energy expansion, that can be written in the form

F [(∆n,µ
q )∗,∆n,µ

q , q] ≈ F
[
0, 0,0

]
+
∑
nn′

∑
µµ′

(∆n,µ
q )∗Mµµ′

nn′ (T, q) ∆n′,µ′
q + Fint

[
(∆n,µ

q )∗,∆n,µ
q , q

]
. (1.45)

Here, we have already employed the U(1) condition (1.42) which prohibits any odd powers in ∆n,µ
q

such that the interaction contribution is at least of fourth-order in ∆n,µ
q . The zeroth-order term in

(1.45) denotes the normal state contribution.

Quadratic part The point group symmetry constraints (1.43) impose the condition

Mµµ′

nn′ (T, q) = Rn(g)µνMνν′
nn′ (T,R−1

v (g)q)R†n′(g)ν′µ′ , ∀g ∈ Gp , (1.46)

on the matrix Mµµ′

nn′ (T, q). Let us assume that the pairing state is homogeneous such that it holds
q = 0 for the mean-field transition. This allows us to sum Eq.(1.46) over all group elements g, and to
apply the grand orthogonality theorem of group theory [52]∑

g∈Gp

Rn(g)µνR∗n′(g)µ′ν′ = |Gp|
dn

δnn′δµµ′δνν′ . (1.47)

Here, |Gp| denotes the order (i.e. the number of elements) of the group Gp and dn the dimension of the
IR n. This simplifies the quadratic terms to a matrix

Mµµ′

nn′ (T,0) = Mνν′
nn′ (T,0) 1

dn
δνν′δnn′ δµµ′ ≡ an(T ) δnn′ δµµ′ , (1.48)

that is diagonal in terms of the IRs. Insertion of the matrix (4.21) into the free energy expansion (1.45)
shows that the quadratic contribution turns into an independent sum over the IRs n,

Fquad[(∆n,µ
0 )∗,∆n,µ

0 ,0] =
∑
n

an(T )
∑
µ

(∆n,µ
0 )∗∆n,µ

0 . (1.49)
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1 Fundamentals: symmetry and spontaneous symmetry breaking

Let us comment on the physical consequence of the diagonalized free energy contribution (1.49): Within
the Ginzburg-Landau formalism, the second-order phase transition occurs when the quadratic coeffi-
cient vanishes, see section 1.1.1. In Eq. (1.49) we have many quadratic coefficients, all of which are
symmetry-distinct. Consequently, all of them should vanish at a different temperature—disregarding
accidental degeneracies. Following that line of reasoning, there has to be one symmetry channel, i.e.
one IR n0, whose coefficient an0(T ) vanishes first. This first channel dictates the primary pairing state.
From here on, there could be different scenarios. In the simplest one all the remaining channels are

still far from ordering and any kind of back-channeling can be safely neglected. A more subtle situation
arises when various coefficients an(T ) become soft (=̂approach zero) around the same temperature.
This situation calls for a careful analysis of the interactions between the different channels, and falls
into the subject of competing orders. Such a scenario arises as an accidental degeneracy that can
be imposed by a fine-tuned choice of tuning parameters. In reverse, accidental degeneracies can be
removed by small system perturbations such as stress or magnetic fields. Accidental degeneracies are
not considered in the remainder of this work.
Lastly, we apply the time-reversal symmetry constraint (1.44) on (1.49) which leads to the expected

condition an(T ) = an̄(T ), according to which complex pairs transform as an effective 2 dim(n) dimen-
sional IR. In the following we treat complex IRs as multi-dimensional where we employ the notation
ñ ≡ n⊕ n̄.

Interaction part In line with the previous discussion the system is assumed to order uniformly in the
single symmetry channel n0. The most general form of the interaction term reads

Fint

[
(∆n0,µ

0 )∗,∆n0,µ
0 ,0

]
= uµ1µ2µ3µ4(∆n0,µ1

0 )∗(∆n0,µ2
0 )∗∆n0,µ3

0 ∆n0,µ4
0 +O

((
∆n0,µ

0

)6
)
, (1.50)

where the summation over doubly occurring indices is implied. Most of the parameters uµ1µ2µ3µ4 are
not independent. To demonstrate this, it is convenient to introduce the bilinear combination

Bn,i,l = (∆n0,µ
0 )∗ λn,i,lµµ′ ∆n0,µ′

0 , (1.51)

and classify the matrices λn,i,l such that they satisfy the sesquilinear transformation condition

Rn0(g)µν λn,i,lνν′ R
†
n0(g)ν′µ′ = R−1

n (g)ll′ λn,i,l
′

µµ′ . (1.52)

Here, the bilinear transforms according to the IR n with its components l = 1, ..,dim(n). The index
i accounts for multiply occurring IRs, which will be referred to as the multiplicity in the following.
For example, the bilinear transforms according to the product representation Γ∗n0 ⊗ Γn0 that can be
decomposed as

Γ∗n0 ⊗ Γn0 = #naΓna ⊕#nbΓnb ⊕ . . . , #na ,#nb ∈ N+ . (1.53)

The IR n can be any of the IRs from the set {na, nb, . . . }, and each IR n in (A.14) occurs #n times
which is accounted for by the multiplicity index i = 1, ..,#n. With the classified matrices (A.12) it is
evident that the bilinear transforms according to

Bn,i,l = R−1
n (g)ll′Bn,i,l

′
. (1.54)
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1 Fundamentals: symmetry and spontaneous symmetry breaking

Using this identity, the free energy contribution (A.10) can re-expressed in terms of bilinear combina-
tions

Fint
[
(∆n0,µ

0 )∗,∆n0,µ
0 ,0

]
= un

′,i′,l′

n,i,l Bn,i,l Bn′,i′,l′ +O
((

∆n0,µ
0

)6
)
. (1.55)

This form is reminiscent of the quadratic term (1.45), and with the same reasoning we can first simplify
the condition (1.43) to

un
′,i′,l′

n,i,l = Rn̄(g)l`un
′,i′,`′

n,i,` R
∗
n′(g)l′`′ ∀g ∈ Gp , (1.56)

where we have used R∗n(g) = Rn̄(g). Remember that complex IRs are included via the substitution
n → ñ = n ⊕ n̄. After the summation over g and the application of the grand orthogonality theorem
(1.47) one finds the interaction parameters

un
′,i′,l′

n,i,l = δn̄n′δll′δ``′
1
dn′

un̄,i
′,`′

n,i,` ≡ δn̄n′δll′u
i,i′
n ,

to be diagonal in terms of the IRs but it still depends on the multiplicity index i. Then, the quartic
part of the free energy density becomes

Fint
[
(∆n0,µ

0 )∗,∆n0,µ
0 ,0

]
=
∑
n

∑
i,i′

ui,i
′

n

∑
l

Bn,i,l Bn̄,i′,l +O
((

∆n0,µ
0

)6)
, (1.57)

where the interaction coefficients ui,i
′

n satisfy ui,i
′

n = ui
′,i
n to guarantee the reality of the free energy. It

should be noted that due to Fierz identities not all of the remaining parameters ui,i
′

n are independent.

Bilinear examples We find it instructive to illustrate the classification of the bilinear combinations
on two simple examples.

(i) Consider an order parameter that transforms according to the IR n0 = E of the point group D3
(see Tab. 1.1). The corresponding bilinear decomposition (A.14) reads Γ∗E⊗ΓE = ΓA1⊕ΓA2⊕ΓE .
With the set of transformation matrices RE(g)10 one can determine the associated matrices λn,i,l
via (A.12). This tedious task can be significantly simplified by using appropriate numerical tools
such as the Mathematica package provided by [53]. The classified matrices are listed in table
1.3, together with the behavior of the corresponding bilinear combination Bn,i,l upon the time-
reversal operation (1.41).

(ii) Now, we consider an order parameter that transforms according to the complex IR E⊕ Ē of the
point group C3 (see Tab. 1.1). The bilinear decomposition (A.14) yields (E ⊕ Ē)∗ ⊗ (E ⊕ Ē) =
2A⊕ (E ⊕ Ē) with a multiplicity #A = 2. Again, the classified results are listed in table 1.3.

10The motivated reader is welcome to check the condition him-/herself. The matrices of the IR E of the D3 point group
read C2x = σz, C2{A/B} = (−σz ∓

√
3σx)/2, C±1

3z = (−σ0 ∓ i
√

3σy)/2
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1 Fundamentals: symmetry and spontaneous symmetry breaking

D3 matrix λn,i,l TRS of Bn,i,l

A1 σ0 +

A2 σy −

E
(
σz,−σx

) (
+,+

)
C3 matrix λn,i,l TRS of Bn,i,l

A {σ0, σz}
{

+,−
}

E ⊕ Ē
(
σx + iσy, σx − iσy

) (
+,+

)
Table 1.3: Association of the IRs n occurring in the bilinear combinations Bn,i,l and their re-
spective matrices λn,i,l resulting from (A.12). We have considered the IR n0 = E of the D3, and
the IR n0 = E ⊕ Ē of the C3 point group. The index l = 1, ..,dim(n) couting the components of
multi-dimensional IRs n is denoted by curved brackets, while the multiplicity index i is denoted by
curly brackets. The respective transformation behavior of Bn,i,l upon the time-reversal symmetry
(1.44) is attached.

Fluctuation part We close this chapter by discussing the symmetry-allowed free-energy terms ac-
counting for long-wavelength fluctuations. To follow a similar approach as before, we expand the
quadratic coefficient (1.45) in powers of momentum according to

Mµµ′
n0n0(T, q) ≈ an0(T )δµµ′ +

∑
n

∑
i

∑
l

λn,i,lµµ′

(
dn,i,lα iqα + dn,i,lαβ qαqβ + . . .

)
, (1.58)

with n0 denoting the stabilized IR. Upon the point group symmetries, the matrices λn,i,l and the
spatially-dependent parts in (1.58) transform independently. With the matrices transforming according
to (A.12) the only way the condition (1.46) can be met is for the spatial coefficients to satisfy

dn,i,l
′

α′ R
†
v(g)α′α = dn,i,lα Rn(g)ll′ , (1.59)

dn,i,l
′

α′β′ R
†
v(g)α′αR†v(g)β′β = dn,i,lαβ Rn(g)ll′ . (1.60)

The allowed free energy contributions read λn,i,ldn,i,l, i.e. they only exist for IRs n according to which a
matrix λn,i,l and a gradient coefficient dn,i,l transforms. Additionally, the contributions have to respect
the time-reversal symmetry. As demonstrated in table 1.3, the bilinears transform either even or odd
upon the time-reversal operation, and hence, they can only be paired with a spatial expansion term
of even or odd power, respectively. In the appendix A.3 we show the derivation of a fully symmetry-
compliant momentum-dependent function that is not limited to small momenta.
A system allowing for a linear gradient term is of particular interest as it would minimize the ground

state energy for a finite momentum q and hence, cause an inhomogeneous ground state order. Such
a contribution can only exist in systems without inversion symmetry, i.e. in non-centro-symmetric
systems. The resulting ground state would be somewhat similar to an FFLO state [59, 60], and for
example, in the point group O such a linear contribution is symmetry allowed for an order parameter
transforming according to n0 = T [61].
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2 Chapter 2

Undoped and doped Bi2Se3

This chapter serves as an introduction into the versatile physical properties of the topological insulator
family Bi2Se3, Bi2Te3 and Sb2Te3, as well as on the superconducting state that emerges out of Bi2Se3
upon Cu, Nb or Sr doping. The compound Bi2Se3 is considered a prototypical topological insulator
whose non-trivial properties originate from a strong spin-orbit coupling. The emergent superconducting
state has consistently been reported to be a two-component odd-parity state that breaks the in-
plane C3z rotational symmetry and thereby, it causes a nematic distortion. The superconductor also
shows indications to be topologically non-trivial. In this chapter, we outline and discuss the current
experimental situation and we revisit the theoretically established two-states model.
First, we provide a brief introduction into the concept of topology. Then, we introduce the topological

insulator Bi2Se3 where we present a derivation of the associated model Hamiltonian and we discuss
the non-trivial topology. Third, the possible pairing states are classified and contrasted with the
experiments. In agreement with previous works, we identify the Eu state as the most consistent
pairing candidate. Lastly, we discuss the Eu ground state phases. Of particular interest are the two
distinct nematic solutions—one fully-gapped and one nodal—which are discerned by a sixth-order
parameter. A study of this parameter is attached in the last part.

2.1 Topology

Anti-unitary symmetries play a central role in the field of topology. While a Hamiltonian can be block-
diagonalized with respect to the IRs related to the unitary symmetries, the anti-unitary symmetries can
not be ‘removed’ from these blocks. Hence, the presence or the absence of an anti-unitary symmetry
can be used to classify such an irreducible block [54]. The two anti-unitary symmetries relevant for
condensed matter systems are the time-reversal T̂ and the particle-hole (or charge conjugation) Ĉ
symmetry which are defined by the commutation and anti-commutation relation with the Hamiltonian[

Ĥ, T̂
]

= 0 ,
{
Ĥ, Ĉ

}
= 0 ,

respectively. The two symmetries can either be present, and square to ±1, or they can be absent
[62]. This yields 3 × 3 = 9 classes which exhausts all but one of the symmetry classes developed by
Altland and Zirnbauer [63–65], see table 2.1. In the case where both T̂ and Ĉ are absent, the combined
symmetry T̂ Ĉ, also named the chiral symmetry, can either satisfy the chiral relation {Ĥ, T̂ Ĉ} = 0 ,
or not, which completes the ten classes. The three last columns in the table denote the possible
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2 Undoped and doped Bi2Se3

Class T̂ Ĉ T̂ Ĉ d = 1 d = 2 d = 3

A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z

AI 0 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0

DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2
CII -1 -1 1 2Z 0 Z2
C 0 -1 0 0 2Z 0
CI 1 -1 1 0 0 2Z

Table 2.1: Periodic table of topological matter. The classes can be grouped into the three
standard Wigner-Dyson classes {A,AI,AII}, the three chiral classes {AIII,BDI,CII} and the four
BdG (superconductor) classes {D,C,DIII,CI} [67].

existence of a system in the dimension d, with the associated topological index, either Z2 or Z. These
topological numbers distinguish a topological non-trivial (6= 0) from a trivial (= 0) phase and are
well-defined within the bulk of a fully-gapped systems.
In real material samples, the non-trivial bulk index reveals itself at the boundary. This is a direct

consequence of the so-called bulk-boundary correspondence [55, 66]. A topological character can only
be changed by means of a gap-closing, i.e. the gap has to close at the boundary between topologically
non-identical systems which leads to a localized zero-energy state. Depending on whether the particle-
hole symmetry is present or not, the edge state is a real Majorana mode, or a complex mode of
Dirac type. In particular, in the four superconducting (BdG) classes {D,C,DIII,CI} the particle-hole
symmetry is naturally present and thus, topological superconductors host Majorana edge modes.

Topological insulator The field of topological states of matter has emerged with the detection of
the integer quantum Hall effect in 1980 [11] in a system where the time-reversal symmetry has been
broken by means of a magnetic field. The physics of the integer quantum Hall effect is captured by a
Chern insulator whose characteristic is the broken TRS [68].

For more than 20 years, topological states were only known in combination with a broken time-
reversal symmetry. It took until 2005, when Kane and Mele [69, 70] introduced a model that keeps
the time-reversal symmetry intact, while it still hosts gapless edge states. Thus, they introduced a
time-reversal invariant insulator, whose existence had been experimentally confirmed shortly after [71].
This discovery blew the field of topological insulators wide open [12, 66, 72]. The mechanism playing a
key role in the formation of a topologically non-trivial insulator is the band inversion [73] which is also
the mechanism at work for the Bi2Se3 family. The topological insulator Bi2Se3 falls into the symmetry
class AII, where the electronic bands require T̂ 2 = −1, and particle-hole symmetry is absent. As a
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2 Undoped and doped Bi2Se3

three-dimensional material it is described by a Z2 invariant1 that is defined by

ν2 = Πi=1,..8

√
detw(Ki)
Pfw(Ki)

. (2.1)

The product comprises the eight time-reversal invariant momenta Ki (i = 1, . . . , 8) of the Brioullin
zone. A time-reversal invariant momentum is defined byKi = −Ki+G with a reciprocal lattice vector
G. The sewing matrix wij(k) = 〈ui(−k)|T̂ |uj(k)〉 connects an occupied eigenstate |ui(k)〉 of band i
with the time-reversed counterpart of band j. In the presence of an additional inversion symmetry,
i.e. in centro-symmetric systems like Bi2Se3, the expression (2.1) simplifies to

(−1)ν2 = Πi=1,..8

(
ΠN
j=1ξ2j(Ki)

)
, (2.2)

where ξ2j(Ki) = ξ2j−1(Ki) = ±1 denotes the parity eigenvalue of the 2jth occupied energy band at
the momentum Ki. The product involves the 2N occupied bands.

Topological superconductor A topological superconductor naturally respects the particle-hole sym-
metry Ĉ and it is classified according to one of the four Bogoliubov-de-Gennes (BdG) classes {D,C,DIII,
CI}. Owed to the reality constraint posed by Ĉ, the topological edge states in superconductors are of
Majorana type. Such edge states cause particular attraction for their potential applicability in quan-
tum information technology. In a type-II superconductor these Majorana states also occur at the edges
of vortices where the topological index changes analogously to the sample boundary [75–77]. One key
experimental signature of Majorana modes is a zero-bias peak in the differential conductance.
Let us have a closer look on time-reversal invariant superconductors, i.e. members of the classes

DIII—relevant for doped Bi2Se3—and CI. In three dimensions, the topological bulk index of both
classes can be cast as a winding number that is computed via

νw = 1
24π2

∫
d3k εµνρtr

[(
q−1
k ∂µqk

)(
q−1
k ∂νqk

)(
q−1
k ∂ρqk

)]
, (2.3)

with µ, ν, ρ = kx, ky, kz [67]. The integral extends over the entire Brioullin zone.2 The matrix qk is
defined through the projector

Qk = 2Pk − 1
basis transf.−→

(
0 qk
q†k 0

)
,

that can be brought, upon a basis transformation, into a block off-diagonal form. Hereby, the projection
matrix P ijk = |ui(k)〉〈uj(k)| projects into the occupied eigenstates of the Hamiltonian. Genuinely, the
computation of topological indices like (2.3) is quite tedious. In the particular case of a centro-
symmetric system where the pairing state has odd parity, it has been proven [16, 78] that the above
winding number become non-zero if the two conditions are met: (i) the superconducting gap is fully
established, and (ii) the Fermi surfaces enclose an odd number of time-reversal invariant momentaKi.
In the reminder of this section we refer to these conditions as the Fu and Berg criterion.

1Actually, it is described by one strong Z2 invariant, and three weak Z2 invariants. For a discussion on the weak
invariants, we refer to [74].

2In a continuum model, the integral can be carried out over the entire three-sphere [67].
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2 Undoped and doped Bi2Se3

While insulators characteristically have a large and full energy gap, superconductors may develop
nodal gaps, i.e. gaps that vanish along certain directions in momentum space. Such nodal super-
conductors are not subject to the above classification that vitally depends on the existence of a full
energy gap. Still, nodal superconductors can have non-zero topological numbers which are then de-
fined as loops around the nodal structures [79]. These systems also host gapless edge modes which
may exist along certain hinges or sample edges only [80]. For a comprehensive review on topological
superconductivity we refer to Ref.[81] and references therein.

2.2 Topological insulator Bi2Se3

In this section, we introduce the Bi2Se3 material class including its structural and symmetry properties,
as well as the established low-energy description. After having outlined the structural properties,
we employ the framework developed in chapter 1.3.3 to deduce the model Hamiltonian. Lastly, we
demonstrate the occurrence of topological helical edge states. In the pseudo-spin basis the topological
Z2 index can be easily computed.

Crystal structure and symmetry elements The compound Bi2Se3 (and similarly Bi2Te3 and Sb2Te3)
crystallizes into a trigonal structure that is characterized by the A, B, C stacking sketched in figure
2.1(a). The structure forms so-called quintuple layers between Se-Bi-Se-Bi-Se that are densely packed.
Two adjacent outer Se layers are only weakly coupled through van-der-Waals interactions. The low
energy physics are dominated by the properties within such a quintuple layer.
The primitive cell is constructed from the three lattice vectors t1 = (0, -a/

√
3, c/3) and t2,3 = (±a/2,

a/2
√

3, c/3) with the lattice constants a = 4.1Å and c = 28.6Å [82], and it is shown in figure 2.1(a,b),
indicating the involved symmetry elements. The appropriate space group is R3̄m (D5

3d) with the un-
derlying point group D3d = {E,C2x, C2{A,B}, C

±1
3z } ×

{
E, I

}
consisting of twelve symmetry elements

[83]. The in-plane axes read n̂{A,B} = (±1,−
√

3, 0)/2. Evidently, the x and y directions in these
systems are not equivalent and have to be properly distinguished.3 Using reciprocal lattice vectors
b1 = 2π(0, -2/a

√
3, 1/c) and b2,3 = 2π(±1/a, 1/a

√
3, 1/c), the shape of the first Brillouin zone is shown

in Fig.2.1(d). The eight time-reversal invariant (and inversion-invariant) momenta Ki read

Γ = (0, 0, 0), Lj = 1
2bj , F j = 1

2(b1+jmod 3 + b1+(j+1)mod 3), Z = 1
2

3∑
j=1

bj , (2.4)

with j =
{

1, 2, 3
}
.

2.2.1 Deduction of the model Hamiltonian

The well-established model Hamiltonian for the topological insulator family Bi2Se3, Bi2Te3 and Sb2Te3
has been proposed in [84, 85]. It is based on ab-initio calculations that exposed two bands which reside
close to the Fermi surface at the Γ- point, in agreement with ARPES measurements [86]. Due to the
presence of inversion and time-reversal symmetry, the two bands are doubly degenerate and they have
been associated with hybridized Pz-orbitals from Bi and Se atoms within the quintuple layer. In their
calculation the authors of Ref.[85] included an atomic spin-orbit coupling Hamiltonian Ha−soc = λl · s

3It is also common to use the indications a and a∗, where it holds a=̂x and a∗=̂y.
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2 Undoped and doped Bi2Se3

Figure 2.1: Figure (a) shows the unit cell of Bi2Se3 with the A,B,C stacking and the quintuple
layers indicated. The orange and green spheres represent Bi and Se atoms, respectively. Figure
(b) shows the primitive cell, while Figure (c) displays the top view on unit cell. Figure (d) depicts
the first Brillouin cell.

with realistic values for the coupling constants, λ(Bi) = 1.25 eV and λ(Se) = 0.22 eV [87]. The energy
levels have been found to cross at a certain momentum which is a prerequisite for the system to become
topologically non-trivial. The two doublet states (|P1+

z , ↑〉, |P1+
z , ↓〉) and (|P2−z , ↑〉, |P2−z , ↓〉)—with

parity ± and spin ↑, ↓—transform according to the irreducible representations (IRs) E3g and E3u of
the double group D′3d (cf. table 2.2), respectively.
In the following we derive the model Hamiltonian from [84, 85] with fully symmetry-compliant mo-

mentum dependencies apt for a lattice description. This part also serves as a pedagogical introduction
into symmetry classifications based on a crystal double group.

Transformation matrices Regarding the upcoming classification it is convenient to first state the
involved transformation matrices of the two-dimensional IRs, Eu,Eg, E3u and E3g of the double group
D′3d. The double group D′3d originates from the point group D3d = D3 ×

{
E, I

}
which itself is the

product group consisting of the inversion and the D3 groups. The D3 group elements are denoted by
g0 = {E,C2x, C2{A,B}, C

±1
3z }.

The IR Eu is the vector representation, i.e. it transforms like an (x, y)-vector. The IR Eg transforms
like a pseudo-vector, i.e. it differs from Eu by a sign flip upon the inversion operation REu/g(Ig0) =
∓REu/g(g0). For the elements g0 the vector transformation matrices read

REu/g(C2x) =
(

1 0
0 -1

)
, REu/g(C2{A,B}) = 1

2

(
−1 ∓

√
3

∓
√

3 1

)
, REu/g(C

±1
3z ) = 1

2

(
−1 ∓

√
3

±
√

3 −1

)
. (2.5)

The two IRs Eu/g are real and thus, they transform trivially under 2π rotations, i.e. REu/g(ḡ) =
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2 Undoped and doped Bi2Se3

REu/g(g) for g ∈ D3d where ḡ results from g by a rotation angle shift ϑ→ ϑ+ 2π. This completes the
matrix set for the real IRs Eu/g.

The spinor IR E3g originates from an SU(2) representation. The SU(2) rotation matrix reads
RSU(2)(ϑ, n̂) = exp

(
−iϑ2 s · n̂

)
which allows for a representation of the elements by, for example,

RE3u/E3g(C2x) = RSU(2)(π, êx). Accordingly, the spinor matrices read

RE3u/3g(C2x) = -
(

0 i
i 0

)
, RE3u/3g(C2{A,B}) = ±

(
0 e±i2π/3

e∓i2π/3 0

)
, RE3u/3g(C

±1
3z ) = -

(
e±i2π/3 0

0 e∓i2π/3

)
with n̂{A,B} = (±1,−

√
3, 0)/2. Note that the two IRs only differ by the inversion symmetryRE3u/3g(Ig0)

= ∓RE3u/3g(g0). Since the two IRs originate from an SU(2) representation they pick up a minus sign
upon a 2π rotation, leading to the property RE3u/3g(ḡ) = −RE3u/3g(g) which completes the matrix
sets.

Symmetry constraints on Hamiltonian The Hamiltonian is derived in the basis of the two doublets
P1 and P2 where we introduce the basis vector ĉ = (|P1+

z , ↑〉, |P1+
z , ↓〉, |P2−z , ↑〉, |P2−z , ↓〉) that trans-

forms according to the representation E3g⊕E3u. The authors in [84] have clarified that a C2x rotation
should create a relative minus sign between the two orbitals. This means the transformation matri-
ces are not simply RE3g(g) ⊕ RE3u(g) but they have to be adjusted by the similarity transformation
SE3g = RSU(2)(−π, êz) leading to the unitary transformation matrices

Uc(g) =
(
SE3gRE3g(g)S†E3g

⊕RE3u(g)
)
. (2.6)

To derive the Hamiltonian Ĥ =
∑
k(ĉ†k)Th(k)ĉk, the single-particle Hamiltonian h(k) has to fulfill the

lattice (1.28) and the time-reversal (1.25) constraints, reading

Uc(g)h(R†v(g)k)U†c (g) = h(k) , UT hT (−k)U†T = h(k) . (2.7)

The time-reversal operation T = UT K with the unitary part UT = iσ0sy acts on the states ĉ, where σ
and s denote the orbital and spin space Pauli matrices, respectively.

To account for the lattice constraint (2.7) we detach the orbital (spin, etc.) degrees of freedom from
the spatial part of the single-particle Hamiltonian h(k)αβ = ωn,i,µ(k)λn,i,µαβ where the matrices λn,i,µ
are chosen such that they satisfy the condition

Uc(g)λn,i,µ U†c (g) = R†n(g)µµ′λn,i,µ
′
, (2.8)

with the IR n, the corresponding components µ = 1, ..,dim(n) and the multiplicity index i. Doubly
occurring indices are assumed to be summed over. The occurring IRs and their multiplicities can be
read off from the decomposition of the bilinear form(

E3g ⊕ E3u

)∗
⊗
(
E3g ⊕ E3u

)
= 2A1g ⊕ 2A1u ⊕ 2A2g ⊕ 2A2u ⊕ 2Eg ⊕ 2Eu . (2.9)

Here, each of the six IRs occurs twice (i = 1, 2). Since the bilinear combination of the IRs E3g and E3u
transforms trivially upon 2π rotations, the decomposed IRs in (2.9) have to be part of the underlying
point group D3d. We list the identified matrices λn,i,µ in table 2.3, together with their transformation
behavior upon the time-reversal operation (2.7).
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2 Undoped and doped Bi2Se3

D′3d E 2C3z 3C2x Ē 2C̄3z 3C̄2x IE 2IC3z 3IC2x IĒ 2IC̄3z 3IC̄2x Reality

A1g 1 1 1 1 1 1 1 1 1 1 1 1 pot. real

A2g 1 1 -1 1 1 -1 1 1 -1 1 1 -1 pot. real

Eg 2 -1 0 2 -1 0 2 -1 0 2 -1 0 pot. real

E2g 1 -1 i -1 1 -i 1 -1 i -1 1 -i ess. complex

Ē2g 1 -1 -i -1 1 i 1 -1 -i -1 1 i ess. complex

E3g 2 1 0 -2 -1 0 2 1 0 -2 -1 0 pseudo-real

A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 pot. real

A2u 1 1 -1 1 1 -1 -1 -1 1 -1 -1 1 pot. real

Eu 2 -1 0 2 -1 0 -2 1 0 -2 1 0 pot. real

E2u 1 -1 i -1 1 -i -1 1 -i 1 -1 i ess. complex

Ē2u 1 -1 -i -1 1 i -1 1 i 1 -1 -i ess. complex

E3u 2 1 0 -2 -1 0 -2 -1 0 2 1 0 pseudo-real

Table 2.2: Character table of the double group D′3d. The elements group into the classes like
2C3z = {C3z, C

−1
3z }, 2C̄3z = {C̄3z, C̄

−1
3z }, 3C2x = {C2x, C̄2A, C̄2B} and 3C̄2x = {C̄2x, C2A, C2B}. A

vector transforms according to Eu ⊕A2u.

It is convenient to classify the spatial functions ωn,i,µ(k) such that they satisfy the transformation
property.

ωn,i,µ(R†v(g)k) = ωn,i,µ
′(k)Rn(g)µ′µ . (2.10)

By this means, the combination ωn,i,µ(k)λn,i,µαβ transforms trivially and is an allowed contribution to
the Hamiltonian. The simplest solutions to (2.10) are obtained from a power expansion around the
Γ-point in terms of k

ωn,i,µ(k) ≈ ωn,i,µα kα + ωn,i,µαβ kαkβ + ωn,i,µαβγ kαkβkγ +O(k4) .

Then, the polynomials have to satisfy the conditions

ωn,i,µα′ R
†
v(g)α′α = ωn,i,µ

′
α Rn(g)µ′µ , ωn,i,µα′β′ R

†
v(g)α′αR†v(g)β′β = ωn,i,µ

′

αβ Rn(g)µ′µ , etc.,
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2 Undoped and doped Bi2Se3

D′3d matrix λn,1,µ TRS matrix λn,2,µ TRS

A1g σ0s0 + σzs0 +

A2g σ0sz − σzsz −

Eg σ0 (sx, sy) − σz
(
sx, sy

)
−

A1u σxsz − σysz +

A2u σxs0 + σys0 −

Eu σx
(
sy,−sx

)
− σy

(
sy,−sx

)
+

Table 2.3: Association of the IRs n occurring in the bilinear form of the basis states (2.9) and
their respective matrices λn,i,µ resulting from (2.8). Additionally, the respective transformation
behavior upon the time-reversal symmetry operation (2.7) is added. The matrices highlighted in
purple are the ones that can be paired with a spatial function to transform trivially, and thus,
occur in the Hamiltonian (2.16).

and the resultant functions read

A1g : f
A1g
k = dA1g

1

(
k̃2
x + k̃2

y

)
+ dA1g

2 k̃2
z (2.11)

A1u : fC3
k = R1

(
k̃3
x − 3k̃xk̃2

y

)
(2.12)

A2u : fzk = vzk̃z +R2

(
k̃3
y − 3k̃yk̃2

x

)
(2.13)

Eg :
(
f
Eg,1
k

f
Eg,2
k

)
= 2dEg1

(
k̃yk̃z
-k̃xk̃z

)
+ dEg2

(
k̃2
x − k̃2

y

-2k̃xk̃y

)
(2.14)

Eu :
(
fxk
fyk

)
= v0

(
k̃x
k̃y

)
+ dEu2 k̃z

(
2k̃xk̃y
k̃2
x − k̃2

y

)
. (2.15)

with the dimensionless momentum k̃ = (kxa, kya, kzc). In the appendix A.3 we show the spatial
functions in a lattice representation that is fully symmetry-compliant.
Altogether, the symmetry-allowed contributions can be added to reproduce the model Hamiltonian

from Ref.[84]

h(k) = σ0s0 (−µ+ Ck
)

+ σzs0Mk + σx
(
syfxk − sxfyk

)
− σys0fzk + σxszfC3

k , (2.16)

with the functions Mk = M0 + M2(k̃2
x + k̃2

y) + M12(1 − cos(k̃z)) and Ck = C0 + C2(k̃2
x + k̃2

y) +
C12(1 − cos(k̃z)). The parameters have been derived from ab-initio calculations in Ref.[84]. Unless
stated otherwise, we use their values for Bi2Se3 reading M0 = −0.28 eV, M2 = 44.5 eVÅ2

/a2, M1 =
6.86 eVÅ2

/c2, C0 = −0.0083 eV, C2 = 30.4 eVÅ2
/a2, C1 = 5.74 eVÅ2

/c2 v0 = 3.33 eVÅ/a, vz =
−2.26 eVÅ/c, R1 = 50.6 eVÅ3

/a3, and R2 = 113.3 eVÅ3
/a3.
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2 Undoped and doped Bi2Se3

Pseudo-spin band basis In a system with both, time-reversal and inversion symmetry intact each
energy level is at least fourfold degenerate, and more importantly, the existence of a pseudo-spin basis
is guaranteed. In a pseudo-spin basis the basis components transform just like an ordinary SU(2)
spinor under the inversion and the time-reversal operation (cf. Sec.1.3.4). In the context of Bi2Se3 this
basis has been introduced by the name manifestly covariant Bloch basis (MCBB) [57]. We label the
corresponding band basis vector by ψ̂k = (|ψck,+〉, |ψck,−〉, |ψvk,+〉, |ψvk,−〉) with the conduction and
the valence band doublets satisfying the SU(2) transformation relations

T̂ |ψc,vk ,±〉 = ±sign(Mk)|ψc,v−k,∓〉 , ÛI |ψc,vk ,±〉 = (±1)c,vsign(Mk)|ψc,v−k,±〉 . (2.17)

The inversion operation ÛI eigenvalue (±1)c,v picks +1 for the conduction and −1 for the valence band.
For the single-particle Hamiltonian (2.16) in the basis ĉk, the appropriate unitary transformation
matrix Ub(k) that diagonalizes the system into the pseudo-spin basis ψ̂k = U †b (k)ĉk reads

Ub(k) = sign(Mk)β+
k

(
α+
k σ

zs0 + α−k σ
xsz
)
− f̃zkβ−k

(
α+
k σ

ys0 + iα−k σ
0sz
)

+ f̃xkβ
−
k

(
−α+

k σ
xsy + iα−k σ

zsx
)

+ f̃ykβ
−
k

(
α+
k σ

xsx + iα−k σ
zsy
)
, (2.18)

with the functions being defined below.4 The Hamiltonian in the band basis Ĥ =
∑
k(ψ̂†k)Thb(k)ψ̂k is

characterized through the single-particle Hamiltonian hb(k) = U †b (k)h(k)Ub(k) = diag(E+
k , E

+
k , E

−
k , E

−
k )

with the eigenenergies E±k = −µ + f0
k ± λk. We have defined λk =

√
M2
k + f2

k + (fC3
k )2, fk =

(fxk , f
y
k , f

z
k)T , M̂k = Mk/

√
M2
k + f2

k, β±k = 1
2

√
1± |M̂k|, f̂C3

k = fC3
k /λk, α±k = 1√

2

(
sign(Mk)

√
1 + f̂C3

k ±√
1− f̂C3

k

)
and f̃ jk ≡ f

j
k/|fk|, f̂

j
k = f jk/

√
M2
k + f2

k with j =
{
x, y, z

}
.

Edge states The model Hamiltonian (2.16) involves a non-trivial topological index ν2 characterized
by the Z2 number (2.1). The pseudo-spin relation (2.17) directly leads to the sewing matrix w(k) =
sign(Mk)is̃y, and hence to the topological index

ν2 =
8∏
i=1

sign(MKi). (2.19)

In a system stacked along the z-direction (infinite in the x and y directions) it is sufficient to consider
MΓ = M0 and MZ = M0 + 4M1. If the two values have opposite sign, the system is topologically
non-trivial, as demonstrated in figure 2.2. The emerging gapless edge states are helical. To see this,
we focus on the vicinity of the Γ-point, where the cubic momentum contributions can be neglected.
Then, the Hamiltonian commutes with the helicity operator

ĥhelicity = σ0
(
s× k̂

)
z

= σ0
(
sxk̃y − syk̃x

)
/
√
k̃2
x + k̃2

y , (2.20)

and consequently, they share an eigenbasis. In particular, the edge states are eigenstates of both, the
Hamiltonian and the helicity operator. The helicity operator (2.20) coerces the states to have their

4It is easily checked that the new basis ψ̂k actually satisfies the conditions (2.17), by using the inversion and time-reversal
operations in the original (momentum independent) basis states Ûc(I)ĉ = σzs0ĉ and T̂ ĉ = iσ0sy ĉ.
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- 0.4
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(b)

Figure 2.2: Energy dispersions of the Hamiltonian (2.16) for a system stacked along the z-
direction, and infinite in the x, y-directions. The left figure depicts a trivial state with M0 > 0.
The right figure shows the system in a topological state. The negative mass M0 < 0 has caused
a non-trivial ν2 (2.19), which lead to gapless states living on the edges (top and bottom layer) of
the sample. The crystalline inequivalence between the kx and ky direction is equally reflected by
the bulk and the edge states, with kF,x < kF,y.

in-plane spin orthogonal to the momentum k̂, and hence, the spin winds around the Dirac cone. Due
to inversion and time-reversal symmetry every state is fourfold degenerate with two respective states
living on either side of the sample. The two edge states on one side have opposite helicity and they
counter-propagate [84].
In figure 2.2(b), we illustrate the inequivalence between the kx and ky directions caused by the

hexagonal warping terms R1 and R2 at finite momenta. The edge states reflect the same inequivalence
with kF,x < kF,y, which has been extensively studied in [88, 89].
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2 Undoped and doped Bi2Se3

2.3 Doped Bi2Se3 and nematic superconductivity

In this section, we introduce the multi-faceted superconducting state which emerges out of the topo-
logical insulator Bi2Se3 upon Cu, Sr or Nb doping. We approach the issue from the theoretical side
first, where we begin by classifying and analyzing the possible superconducting pairing states. After-
wards, the experimental achievements are outlined and contrasted with the pairing candidates. In the
last part, we study the Eu ground state phases with an analysis of the discriminating parameter ν−
attached. The parameter ν−discerns between the otherwise degenerate states (1, 0) and (0, 1).

2.3.1 Pairing state candidates

Using the developed formalism from section 1.3.4, we can directly classify the possible pairing states.
We start from the generalized BCS mean-field Hamiltonian (1.21)

Ĥ =
∑
k

(
ĉ†k

)T
h(k)ĉk +

∑
kq

((
ĉ†
k+ q

2

)T
∆(k, q)ĉ†−k+ q

2
+H.c.

)
, (2.21)

written in the basis ĉ = (|P1+
z , ↑〉, |P1+

z , ↓〉, |P2−z , ↑〉, |P2−z , ↓〉).5 Following the lines of Sec.1.3.4, we
expand the pairing function in terms of the IRs n and their components µ = 1, ..,dim(n),

∆αβ(k, q) =
∑
n,µ

∆n,µ
q

(
χn,µk,qλ

n,µ
)†
αβ

, ∆n,µ
q ∈ C .

The microscopic degrees of freedom are denoted by α, β = 1, . . . , N0. The associated partner functions
(χn,µk,qλn,µ) account for spatial variations of the gap function. These functions have to satisfy the
following constraints (see 1.3.4)

lattice : Uc(g)
(
χn,µ
R†v(g)k,R†v(g)q

λn,µ
)†
UTc (g) = RTn (g)µµ′

(
χn,µ

′

k,q λ
n,µ′
)†

∀g ∈ D′3d , (2.22)

anti-symmetry :
(
χn,µk,q

)∗ (
λn,µ

)† = −
(
χn,µ−k,q

)∗ ( (
λn,µ

)† )T
, (2.23)

time-reversal : χn,µk,qUT
( (
λn,µ

)† )†UT =
(
χn̄,µk,−q

)∗ (
λn̄,µ

)†
. (2.24)

To make further progress, we assume the orbital basis to be roughly momentum independent.6 Then,
it is justified to expand the spatial function χn,µk,q ≈ χn,µ0 + χn,µ1,i k̃i + . . . in powers of k and q. The
insertion of the expansion into the lattice constraint (2.22) leads to the simpler conditions

Uc(g)(χn,µ0 )∗
(
λn,µ

)† UTc (g) = RTn (g)µµ′ (χn,µ0 )∗
(
λn,µ

′
)†

∀g ∈ D′3d , (2.25)

Uc(g) (χn,µ1,i )∗R†v(g)i,i′ k̃i′
(
λn,µ

)† UTc (g) = RTn (g)µµ′ (χn,µ
′

1,i )∗k̃i
(
λn,µ

′
)†

∀g ∈ D′3d , (2.26)

5The pairing state candidates have been first identified in [16] where they have worked within a rotated basis
exp(−iπ4 σ

y)s0 ĉ.
6This assumption is often applied. Certainly, the resulting pairing states give qualitative insights into the respective
gap structures. Yet, the justifiability of the assumption can only be determined through a microscopic computation.
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2 Undoped and doped Bi2Se3

D′3d χn,µ0 (λn,1,µ)† k̃iχ
n,µ
1,i (λn,1,µ)†

A1g

{
iσ0sy, iσzsy

}
. . .

A2g —
{
kzσ

xsx, iσx
(

ikxsz + kys
0
)}

Eg —
{
ikzσx

(
isz
s0

)
, iσx

(
kxs0+ikysz
ikxsz−kys0

)
, iσysy

(
ky
-kx

)
, σxsx

(
kx
ky

)}
A1u σysx . . .

A2u iσxsy . . .

Eu σy
(

is0, sz
)

. . .

Table 2.4: Classified homogeneous pairing states. The first column shows the resulting pairing
matrices λn,i,µ for on-site pairing (2.25). The second column depicts the leading-order contributions
in the even-parity channels A2g and Eg, resulting from (2.26).

with the unitary matrices (2.6).
We list the resulting, leading-order pairing terms for each irreducible representation in table 2.4.

The on-site pairing states, shown in the first column, are only possible in the trivial or the odd-parity
channels. Note that the bilinear decomposition of the pairing function, would naively generate twelve
pairing channels, as shown in (2.9). Yet, many of the occurring matrices are not anti-symmetric, and
hence, they violate the condition (2.23). This circumstance could, in principle, be fixed by pairing
them with the trivially-transforming spatial function χn,µk,q = χn3 k̃ · q̃. However, the condensation of a
pairing state with a finite center-of-mass momentum q is in general energetically more costly, and thus,
such inhomogeneous pairing states are not listed in the table. The second column of the table shows
the linear-in-momentum contributions for the even-parity channels A2g and Eg. As a final touch, the
expressions need to satisfy the time-reversal symmetry constraint (2.24) which is always possible, and
which simply requires the right placement of the imaginary unit i, as done in the table 2.4.

Visualization of pairing states The pairing states and the corresponding gap structure can be best
visualized in the band basis. In the pseudo-spin basis, the pairing function can be expressed in terms
of the d-vector representation (cf. (1.39))

∆(k, q) = d0
k,q is̃y + dk,q ·

(
s̃x, s̃y, s̃z

)
is̃y , (2.27)

where the entire gap function information is encapsulated in the d functions with d0
−k,q = d0

k,q and
d−k,q = −dk,q. To employ a d-vector description, the generalized mean-field Hamiltonian (2.21) is
‘rotated’ into the band basis (2.18) where the resultant pairing function becomes

∆b(k, q) = U †b (k + q

2 )∆(k, q)U∗b (−k + q

2 ) . (2.28)

In the course of the unitary transformation one has to adjust the bookkeeping—in a ‘one-by-one’ corre-
spondence, the former orbital and spin matrices

(
σ, s
)
convert into the band and the pseudo-spin indices(

σ̃, s̃
)
. As pointed out in (1.39), the notation (2.27) is only applicable to centro-symmetric and time-

36



2 Undoped and doped Bi2Se3

Figure 2.3: Bogoliubov gap structure for the five indicated pairing states, evaluated for a spherical
Fermi surface. The three states ∆A1u , ∆A2u and ∆A2g exhibit a six-fold symmetric gap structure,
while the chiral states ∆Eu/g ∼ (1, i) respect a three-fold symmetry. The ∆A2u and the ∆Eg ∼ (1, i)
gaps have a point node, and the ∆A2g state forms various line nodes.

reversal invariant systems.7 Starting from a multi-orbital basis, the 2×2 pseudo-spin description makes
only sense if the influence from the other bands can be neglected. In doped Bi2Se3 the chemical poten-
tial is moved into the conduction band, and following the outlined logic, we assume that their is no sub-
stantial coupling to the valence band states. Thus, we restrict the analysis on the conduction band sub-
space ∆cc(k, q) which is extracted from the pairing function via ∆b(k, q) = ∆cc(k, q)is̃y σ̃0+σ̃z

2 +. . . . The
explicit calculation is shown in the appendix B. For zero center-of-mass momentum q the BdG Hamil-
tonian (2.21) can be recast in Nambu space ψ̂Nam

k = ((|ψck,+〉, |ψck,−〉), is̃y((|ψc−k,+〉, |ψc−k,−〉)†)T )T ,

Ĥ = 1
2
∑
k

(
(ψ̂Nam

k )†
)T ( hb(k) 2∆cc(k, 0)

2∆†cc(k, 0) −hTb (−k)

)
ψ̂Nam
k .

This Hamiltonian can be directly diagonalized to extract the Bogoliubov quasi-particle eigenenergies

Λek = ±
√

(E+
k )2 + |d0

k,0|2 , and Λuk = ±
√

(E+
k )2 + |dk,0|2 ± |d∗k,0 × dk,0| , (2.29)

with e/u applicable to parity even or odd pairing states, respectively. The energy gaps in (2.29) directly
allow for a visualization of the respective pairing states in momentum space.
The A1g pairing state with d0,A1g

k,0 = ∆A1g ,1,1
0 + ∆A1g ,2,1

0 M̂k

√
1− (f̂C3

k )2 will not be further examined
as it is fully symmetry-compliant and can not be the cause for any symmetry breaking other than
U(1). For the five other pairing candidates the d-components read

dA1u
k,0 = −∆A1u

0 sign(M̂k)
√

1− (f̂C3
k )2 f̂k , (2.30)

dA2u
k,0 = ∆A2u

0

(
−f̂yk , f̂

x
k , M̂kf̂

C3
k

)T
+ ∆A2u

0
sign(M̂k)f̂C3

k f̂zk
1 + |M̂k|

f̂k , (2.31)

7The description in terms of a d-vector can be modified to also account for non-centro-symmetric systems, see e.g. [56].
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Figure 2.4: Bogoliubov gap structure for the three indicated pairing states, evaluated for a
spherical Fermi surface. (a) shows the ∆Eg ∼

(
1, 0
)
state whose gap exhibits some sort of a

two- to four-fold symmetry. The gap leads to a point and a line node on the Fermi surface,
as indicated in the panels below. (b) and (c) show the gap structure for the odd-parity states
∆Eu ∼

(
1, 0
)
and ∆Eu ∼

(
0, 1
)
. The gap structures are clearly two-fold symmetric, with the(

1, 0
)
state having a full gap, and

(
0, 1
)
state leading to a point node. In the panels below, the

dz(x, y, 0) =
∑
k∈1.BZ e

−i(x̃k̃x+ỹk̃y)(dEuk,0)z component is plotted in real space color-coded underneath
the lattice unit cell (cf. Fig.2.1).

d
0,A2g
k,0 = ∆A2g

0 f̂C3
k f̂zk sign(M̂k)/

√
1− M̂2

k , (2.32)

dEuk,0 =

 f̂zk∆Eu,2
0 + M̂kf̂

C3
k ∆Eu,1

0
−f̂zk∆Eu,1

0 + M̂kf̂
C3
k ∆Eu,2

0
f̂yk∆Eu,1

0 − f̂xk∆Eu,2
0

+ sign(M̂k)
f̂C3
k (f̂xk∆Eu,1

0 + f̂yk∆Eu,2
0 )

1 + |M̂k|
f̂k , (2.33)

d
0,Eg
k,0

sign(M̂k)
=

√
1−(f̂C3

k )2√
1−M̂2

k

( f̂zk f̂
y
k

-f̂zk f̂xk

)
·∆Eg ,1

0 +
(

(f̂xk )2 − (f̂yk )2

-2f̂xk f̂
y
k

)
·∆Eg ,2

0

+
f̂C3
k√

1−M̂2
k

(
f̂xk
f̂yk

)
·∆Eg ,3

0 . (2.34)

In the figures 2.3 and 2.4, we have visualized the respective quasi-particle gap structures (2.29) for an
isotropic Fermi surface.
Figures 2.3 (a)-(c) display the gap structures of the three one-dimensional pairing states. All of

them respect a six-fold in-plane rotational symmetry, and most notably, they differ in their nodal
structures. The A1u state has a full gap, the A2u state has a point node along the kz-direction, and
the A2g state establishes various line nodes. The two two-dimensional pairing channels ∆Eu/g can
realize the three distinct ground state solutions: a time-reversal symmetry breaking chiral state (1, i)
and the two nematic states (1, 0) and (0, 1), cf. Sec.2.3.3. In the figures 2.3 (d)-(e), the Eu and Eg
chiral quasi-particle gaps are visualized. Both gaps respect a three-fold in-plane rotational symmetry.
The odd-parity state forms a full gap, while the even-parity state leads to a point node along the
kz-direction. In what follows in this and the next chapter, the two nematic states, (1, 0) and (0, 1), in
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particular for the odd-parity channel Eu are most important. The corresponding gap structures are
visualized in figure 2.4. The figure (a) shows the ∆Eg ∼ (1, 0) state. This state is certainly incompatible
with the C3z crystal symmetry. It replaces the symmetry by some sort of a two-fold symmetry that
has a certain imprint of a four-fold symmetry. The state leads to a point node along the kz-direction
and a line node, as indicated in the panels below the main figure. Note that time-reversal symmetric
even-parity states like A2g or Eg necessarily establish line nodes on the Fermi surface, see Ref.[57].
The gap of the ∆Eg ∼ (0, 1) state is not depicted. It is essentially the (1, 0)-gap rotated by 45◦ around
the z-axis, and most importantly, both states share the same properties. The last figures, 2.4 (b)-(c),
visualize the gap structure of the two odd-parity nematic states. These states show a pronounced
two-fold symmetry with their axes aligned with the kx- or ky-direction, respectively. Moreover, they
differ in their nodal structure. While the (1, 0) state establishes a full gap, the (0, 1) state has a
symmetry-protected point node along the curve (0, k̃y,−R2k̃

3
y/vz). The the node is protected by the

reflection symmetry Mx : x → −x. The distinction between these two states is a pivotal issue in this
thesis. Due to their relevance, the two pairing states are also plotted in real space together with the
unit cell lattice positions (cf. Fig.2.1) in the respective panels below the main figures. Drawn is the
z-component of the d-vectors dz(x, y, 0) =

∑
k∈1.BZ e

−i(x̃k̃x+ỹk̃y)(dEuk,0)z color-coded on the ground.
Concerning the topological features, we know from the Fu and Berg criterion that the odd-parity

states with a full gap are topologically non-trivial if their Fermi surfaces enclose an odd number of
TRI momenta [16]. Consequently, the odd-parity fully-gapped states ∆A1u , ∆Eu ∼ (1, 0) and ∆Eu ∼
(1, i) are topologically non-trivial—given the Fermi surfaces behave as required. The corresponding
topological invariant is the Z winding number (2.3). The odd-parity nodal states ∆A1u and ∆Eu ∼
(0, 1) can principally be classified as weak topological superconductors with a Z2 topological index
defined around the nodal structures [79].

2.3.2 Discovery of nematic superconductivity

In a pioneering work in 2009, the doping of Bi2Se3 with Cu has been reported to generate a supercon-
ducting state with a Tc of around 3−4 K [14]. In the light of a possible topological state the observation
of superconductivity has attracted a lot of attention and caused an intense follow-up research. Soon
after, specific heat and magnetization measurements identified CuxBi2Se3 as a bulk superconductor
[18, 19]. Later it was found, that doping with Sr and Nb drives Bi2Se3 into a superconducting state
with a similar Tc ≈ 3 − 4 K [90, 91]. ARPES and quantum oscillation measurements in the normal
state of CuxBi2Se3 have observed a Fermi surface evolution from ellipsoidal towards cylindrical with
increasing carrier concentration [92]. The carrier concentration is as low as n ∼ 1020 cm−3 [14, 19], and
has been reported to be even lower for Sr doped systems n ∼ 2× 1019 cm−3 [90, 91]. Additionally, the
ARPES data has demonstrated that Cu doping—electron doping—pushes the chemical potential into
the conduction band with µ ∼ 0.2 − 0.5 eV above the Dirac point, while it leaves the band structure
and the edge states essentially untouched [92, 93].
A major advancement towards the identification of the superconducting pairing state has been re-
ported in 2015 [15]. A spin-rotational symmetry breaking within the basal plane has been detected in
an NMRKnight shift measurement that was directly linked to the superconducting state, see Fig.2.5(a).
In particular, a two-fold symmetry within the basal plane was observed whereas the crystal structure
is three-fold symmetric. This contradiction has been consistently confirmed in various subsequent
experiments for each of the three compounds with probes ranging from angular-dependent specific
heat, resistivity, magnetization, the upper critical field, even to direct visualization via STM imaging
[15, 17, 94–103], see e.g. Fig.2.5(b). The most viable explanation for the emergent two-fold symmetry
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(a) (b)

Figure 2.5: (a) NMR Knight shift measurement that demonstrates a clear two-fold symmetry
within the basal plane of Cu doped Bi2Se3 that occurs alongside the superconducting transition
[15]. Adapted by permission from Springer Nature, copyright 2016. (b) Two-fold symmetry ob-
served in the angular-dependent specific heat measurement of Sr doped Bi2Se3 [99]. Adapted by
permission from the American Physical Society, copyright 2018.

is a spontaneous C3z rotational symmetry breaking caused by the superconducting state.
With regards to the possible pairing states that have been analyzed in the preceding section, only

the four nematic states ∆Eu/g ∼
(
1, 0
)
and ∆Eu/g ∼

(
0, 1
)
do not respect the C3z rotational symmetry.

In particular, the pronounced two-fold symmetric signals seen in Fig. 2.5 point towards the odd-parity
pairing states ∆Eu , cf. Fig. 2.4. Moreover, the even-parity ∆Eg states have line nodes and the
expected heat capacity behavior C ∼ T 2 is inconsistent with measurements [101]. Consequently, the
odd-parity ∆Eu states are the most-likely pairing candidates for doped Bi2Se3. The final discrimination
on which of the two possible states is realized has yet to be delivered. Experiments yield ambiguous
findings on this issue. As an example, one penetration depth measurement detects characteristics of
a nodal structure [103]—favoring ∆Eu ∼

(
0, 1
)
—while another favors the fully-gapped state ∆Eu ∼(

1, 0
)
. Specific heat data [101] also indicates a fully-gapped state. See Ref.[104] for a thorough

comparison.
The question about the topological character of the pairing state has just the same not been com-

pletely resolved. While some early STM measurements observed a zero-bias peak in the differential
conductivity, others did not [17, 104, 105].
Conclusively, it seems justified to attribute the pairing state to the Eu symmetry channel while the

question about the realized state is still under debate.
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2.3.3 Ginzburg-Landau expansion of Eu superconductivity

For the reasons discussed above it is worth shedding some light on the symmetry properties of the
two-dimensional pairing state ∆Eu = (∆Eu,1,∆Eu,2). In this section, we derive the corresponding
Ginzburg-Landau expansion from symmetry principles and study the mean-field ground states. The
occurring Ginzburg-Landau parameters are computed in the appendix B.1. In particular, we present
the sixth-order parameter which discriminates between the two otherwise degenerate states (1, 0) and
(0, 1). The computation suggests that the fully-gapped state (1, 0) is realized on a mean-field level.

Symmetry-based derivation of free energy expansion The constraints imposed by the U(1), time-
reversal and lattice symmetries on a free energy expansion are derived in section 1.3.5. For later
convenience, we work with the action instead of the free energy. Both quantities satisfy the same
constraints. First, we identify the transformation behavior of the bilinear combinations (1.51) in
position space x =

(
r, τ
)

Bn,l(x) =
(
∆Eu(x)

)†
τn,l ∆Eu(x) , (2.35)

with the matrices τn,l being classified via the condition (A.12) and listed in table 2.5. The involved
transformation matrices REu(g) are explicitly stated in (2.5). Since the decomposition of the product
representation Γ∗Eu ⊗ ΓEu = ΓA1g ⊕ ΓA2g ⊕ ΓEg only contains singly-occurring IRs, the multiplicity
index is omitted in the following. The table 2.5 also displays the time-reversal behavior according to
(1.44). Hence, the expanded mean-field action becomes

Smf = r0T

∫
x

BA1g + uT

∫
x

(
BA1g

)2
+ vT

∫
x

(
BA2g

)2
+ S(6)

int , (2.36)

where we have exploited Eq.(A.17) and introduced the two independent parameters u and v. The x-
dependence is implicitly assumed. The fourth-order contribution has a redundancy owed to the Fierz
identity (BEg)2 = (BA1g)2 − (BA2g)2 which has reduced the number of interaction parameters by one
as compared to Eq.(A.17). The full set of ground state phases (see below) can only be attained by
inclusion of sixth-order contributions. The corresponding symmetry deduction is shown in appendix
A.2, and yields

S(6)
int = Tν−

∫
x
BEg ,1

(
(BEg ,1)2 − 3(BEg ,2)2

)
+ Tν+

∫
x
BA1g

(
(BA1g)2 + 3(BA2g)2

)
+ TνEu

∫
x

BA1g(BEg)2,

(2.37)

with the three sixth-order interaction parameters ν−, ν+ and νEu .
Before we study the mean-field phases in the next paragraph, we want to close this symmetry

discussion with the introduction of two additional contribution that are relevant for chapter 3: the
allowed gradient terms Sgrad and the magnetic field coupling SBz . The spatial functions are classified
according to the condition (2.10) and attached to the table 2.5. Evidently, only the combinations
fn,lk Bn,l transform trivially. Thus, the leading-order fluctuation contribution to the action reads

Sgrad = T

∫
x

(
∆Eu

)† (
f
A1g
−i∇τ

0 + fEg−i∇ · τ
Eg
)

∆Eu , (2.38)
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D3d matrix τn,l TRS of Bn,l spatial functions magnetic field B

A1g τ0 + f
A1g
k

A2g τy − Bz

Eg τEg =
(
τ z, -τx

) (
+,+

)
f
Eg
k =

(
f
Eg ,1
k , f

Eg ,2
k

) (
Bx, By

)
Table 2.5: Association of the bilinear combinations Bn,l = (∆Eu)† τn,l ∆Eu (2.35) with the re-
spective IR n according to the transformation condition (A.12). Additionally, the table shows the
transformation behavior of the bilinear upon the time-reversal symmetry operation (1.44). The
last two columns show the classification of the contemplable spatial functions and the magnetic
field in terms of the IRs n.

with the functions

f
A1g
k ≈ d0

(
k̃2
x + k̃2

y

)
+ dzk̃2

z ,

 f
Eg ,1
k

f
Eg ,2
k

 ≈ 2d̃
(
k̃yk̃z
-k̃xk̃z

)
+ d′

(
k̃2
x − k̃2

y

-2k̃xk̃y

)
. (2.39)

Lastly, we apply a magnetic field B to the superconductor. A magnetic field transforms according to
the pseudo-vector IR (Eg ⊕A2g), and it is odd upon the time-reversal operation, see table 2.5. Apart
from the typical orbital coupling, the two-dimensional Eu order parameter allows for a direct linear
coupling of the form

SBz = α′T

∫
x
BzBA2g(x) , (2.40)

that is fully symmetry-compliant. We study the implications of this magnetic term in section 3.5.

Mean-field ground state phases A multi-component order parameter can possess a manifold of
distinct uniform ground state phases. We derive the Eu ground state phase diagram where we find the
three phases shown in figure 2.6(a), in agreement with previous studies [57, 106].
For the explicit calculation, the order parameter is decomposed according to (∆Eu,1,∆Eu,2) =

∆0e
iϕ1(sin

(
θ
)
, cos

(
θ
)
eiδϕ) with ∆0 > 0, ϕ1, δϕ, θ ∈ [0, 2π). The relative phase δϕ is fixed by the

minimization of the non-trivial fourth-order contribution v(BA2g) = v∆4
0 sin2(2θ) sin2(δϕ), and it de-

pends on the sign of the parameter v. The corresponding angle θ and the magnitude ∆0 are determined
from the fourth-order mean-field equations

0 = r0 + 2u∆2
0 + 4v∆2

0 sin2(θ) sin2(δϕ) , 0 = ∆2
0 sin

(
δϕ
) (

cos
(
δϕ
)
− i cos

(
2θ
)

sin
(
δϕ
))

. (2.41)

Thereafter, the solutions are adjusted as to comply with the sixth-order contribution

S(6)
int = ∆6

0

[
v+ + vEu − v− cos

(
6θ
)

+ sin2 (δϕ) sin2 (2θ) (3v+ − vEu − 3v− cos
(
2θ
))]

. (2.42)

For v < 0 it holds δϕ =
{
π, 3π

}
/2, and the equations (2.41) are solved for the four angles θ ={

1, 3, 5, 7
}
π/4 and ∆0 =

√
−r0/2(u+ v). The sixth-order term (2.42) does not substantially influence
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Figure 2.6: Figure (a) depicts the mean-field phase diagram of an Eu order parameter. The
six-(four-)fold degenerate ground states are indicated (blue and green circles) together with their
respective relative phases (red dot). Figure (b) shows the sixth-order interaction parameter ν−
(2.45) evaluated for R1 = 0.

this so-called chiral configuration. As a consequence of the complex nature (∆Eu)∗ 6= ∆Eu , the solution
breaks the time-reversal symmetry. A representative state is ∆Eu = ∆0(1, i).
For positive v > 0 and δϕ =

{
0, π
}
, the mean-field equations yield ∆0 =

√
−r0/2u but leave the

angle θ degenerate. In this case, the cos
(
6θ
)
term in the sixth-order contribution (2.42) lifts the θ

degeneracy and breaks these nematic states into two distinct phases, labeled as nematic A and nematic
B. The nematic solutions read

sc. nematic A : ν− > 0 , θ =
{

0, 2, 4, 6, 8, 10
} π

6 , repr.state:∆Eu = ∆0(0, 1) (2.43)

sc. nematic B : ν− < 0 , θ =
{

1, 3, 5, 7, 9, 11
} π

6 , repr.state:∆Eu = ∆0(1, 0) , (2.44)

where we have added a corresponding representative state, for convenience.
The complete mean-field phase diagram is shown in figure 2.6(a). We have chosen a representation

where the θ orientation is displayed by the large circle and the red dot on the respective small circle
indicates the corresponding relative phases δϕ.
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Sixth-order interaction parameter ν− Among the Ginzburg-Landau parameters, the sixth-order
parameter ν− is particularly important as it discriminates between the nematic phases A and B. We
have derived this parameter from the underlying microscopic Hamiltonian (2.21) (see appendix B),
with the final expression reading

ν− = − 1
12V T 5

∑
k

ηek

((
f̂C3
k

)2
− 1
)3((

f̂xk

)2
−
(
f̂yk

)2
)3

. (2.45)

In this notation it holds ηek = 32T 6∑
ωn

g3
kg3
−k, gk = (iωn − E+

k )−1, k =
(
ωn,k

)
with the fermionic

Matsubara frequency ωn. The gradient functions are defined in section 2.2.1.
The above parameter (2.45) is only non-zero in the presence of the hexagonal warping term f̂C3

k

with R1 6= 0, or if there is a finite coupling between the basal plane and the z-direction with dEu2 6= 0.
In figure 2.6(b) we show the computed value of (2.45) as a function of the z-anisotropy vz/v0 and the
(unknown) parameter dEu2 /R2. Regardless of its value, we only find ν− < 0. Indeed, if we employ the
continuum limit (see appendix B.32 for details) the leading contributions to the parameter ν− are of
the form ν− = −c1(dEu2 )2 − c2R

2
1 < 0 with c1,2 > 0. As a result, we find the microscopic model to

favor a negative parameter ν−, and hence, the suggested mean-field solution is the fully-gapped state
∆Eu = ∆0e

iϕ1
(
1, 0
)
. The discussion on the realized ground state is postponed to the next chapter 3,

where the effect of fluctuations is included.
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3 Chapter 3

Vestigial superconductivity

This work has been inspired by the superconducting state that emerged in doped Bi2Se3. In this
material class, the superconducting transition has consistently been reported to be accompanied by
a nematic distortion. This phenomenon is most consistent with a superconducting order parameter
that transforms according to the two-dimensional odd-parity IR Eu. Additionally, doped Bi2Se3 tends
to exhibit a low carrier density and a small ratio of coherence length over Fermi wave length ξ0/λF
such that fluctuations of the order parameter may not be negligible. Based on these observations,
we perform a large-N analysis where the superconducting fluctuations are consistently accounted
for. We find that the system can stabilize a vestigial nematic phase at a temperature Tnem above the
superconducting transition temperature Tc. Moreover, we demonstrate that the vestigial nematic phase
leads to an in-plane crystal anisotropy that manifests itself in observables such as the conductivity σ,
the susceptibility χ or the upper critical field Hc2. Additionally, we visualize the corresponding unit
cell distortion and we determine the direction of the sound velocity. Lastly, we study the role of a
magnetic field in z-direction with the focus on the possible phases and the associated spatial structures
of a single vortex. While the core work was reported in a recent publication, see Ref.~[107], special
topics (susceptibility, lattice deformation, upper critical field) were treated in a collaboration with the
experimental group of Rolf Lortz [20]. The experimental collaborators have found good evidence for
the existence of a vestigial nematic phase in Nb and Cu doped samples. The discussion of the magnetic
field effect was conducted in collaboration with Erez Berg.

3.1 Introduction to vestigial physics

The word ‘vestigial’ can be paraphrased by ‘forming a very small remnant of something that was
once greater or more noticeable’. The word has been transported into the context of condensed matter
physics to identify the field of fluctuation induced preformed phases, so-called vestigial phases. Suppose
a system is in an ordered phase, characterized by various broken symmetries, say for concreteness O1
and O2. In a vestigial scenario these symmetries are restored sequentially with increasing temperature.
At the lowest temperature both O1 and O2 are broken, but above that exists a phase where only the
symmetry O1 is restored while O2 remains broken. This preceding phase forms a residue of the fully-
broken state. However, not every preceding phase is a vestigial phase in the original sense. For example,
the liquid phase of water is a preceding phase to the ice (the solid phase), but it is not a vestigial
phase of the latter. The discrimination between vestigial and non-vestigial preceding phases results
through the identification of the driving mechanism. In the context of vestigial phases it is fluctuations,
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more precisely, fluctuations of the primary order parameter (magnetization, superconducting order
parameter, etc.) that lead to a preformed stabilized phase. In that sense, the two phases are intimately
connected and are expected to respond jointly to system perturbations such as stress, doping or
magnetic fields. Moreover, a vestigial phase can only exists in proximity to its primary phase where
fluctuations are still substantial. To become more formal, let us denote the primary order parameter
as φ and assume its appearance 〈φ〉 6= 0 breaks the symmetry O1. It is known that the primary order
parameter causes a finite expectation value of the correlation function 〈φφ〉 already above the phase
transition. For example, in the context of superconductivity this correlation function renormalizes the
conductivity or the susceptibility [108–110]. In its nature the correlation function 〈φφ〉 is a measure for
the strength of fluctuations and it is central for the study of vestigial physics. However, as 〈φφ〉 belongs
to the trivial irreducible representation, it can not break a symmetry on its own and it requires some
extension. The idea of vestigial nematicity was inspired by the orthorhombic distortion discovered
in the phase diagram of the iron-based superconductors [111]. For a comprehensive review article
on vestigial phases the reader is directed to the recent article [112]. The key element of such a
vestigial theory is the multi-dimensionality of the primary order parameter φ. Only if φ = (φ1, φ2, . . . )
transforms according to a higher dimensional IR, say n0, the bilinear φλnφ can potentially transform
according to a non-trivial IR n and thus, break additional symmetries. The statement is easily verified
from a group theoretical perspective where the decomposition of the bilinear Γn0⊗Γn0 = Γ0⊕Γ1⊕ . . .
can only contain a non-trivial IR if it holds dim(n0) > 1. Still, the trivially transforming correlation
function 〈φφ〉 does not break a symmetry and can not induce a phase transition. Only non-trivially
transforming correlation functions 〈φλnφ〉 are potential order parameters that may stabilize at a
temperature above the primary transition and hence define a vestigial phase.
It has been demonstrated [111] that the geometry and the dimensionality of the system play a

central role in the formation of vestigial orders. Specifically, only anisotropic systems where the
order parameter fluctuates in d < 3 space-time dimensions are prone to stabilize vestigial phases (see
section 3.2.6 for more details). From the more quantitative approach, the range of the vestigial phase
sensitively depends on the extent of fluctuations: Only a system with a wide critical range can open
an experimentally accessible vestigial phase.

Ginzburg regime The Ginzburg-Landau description of phase transitions retains its validity as long
as all the order parameters and their fluctuations are small. In close proximity to the phase transition
the correlation length diverges and hence, order parameter fluctuations are inevitably strong such that
the Ginzburg-Landau description breaks down, see illustration below. The quantity that determines the

extent of this critical region is called the Ginzburg parameter Gi [48, 113, 114]. The corresponding
statement, originally proposed to validate the mean-field treatment, says that fluctuations in the
system can be neglected if the relative distance δT from the transition temperature Tc is larger than
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the Ginzburg parameter, δT/Tc � Gi′.1 For the purpose of a vestigial study we rather read the
statement in reverse: fluctuation effects are significant within the relative temperature range

δT

Tc
. Gi′

that is of the order of the Ginzburg parameter Gi′ =
(
SG/kB

)−2(4−d) with the dimension d, the
Boltzmann constant kB and the ‘entropy reduction per coherence volume’ SG = ∆Cv ξd0 associated
with the formation of an ordered state. Here, ∆Cv is the heat capacity jump and ξ0 the coherence
length. The Ginzburg criterion can be cast in terms of the coherence length ξ0 as

(
ξ/ξ0

)4−d � SG/kB.
It directly tells that a large coherence length ξ0 stabilizes the mean-field solution and suppresses
the fluctuation regime. Let us examine the value of the Ginzburg parameter Gi′ on the basis of
two examples where we compare the coherence length with the typical length scale. (i) In a typical
superconductor the entropy of condensation per unit cell is of the order SG ∼ kB∆/EF while it holds
for the coherence length ξ0 ∼ vF /∆ with the Fermi velocity vF . Thus, the Ginzburg parameter in
three dimensions can be estimated by Gi′ ∼

(
∆/EF

)4 ∼ 10−16 for typical values of ∆ ∼ 10 K and
EF ∼ 105 K. (ii) For an insulating magnet such as an anti-ferromagnetic Mott insulator one obtains a
coherence length as short as the lattice spacing. A Mott insulator typically only has a single energy
scale (e.g. the Hubbard U) such that the ‘transition entropy’ is of order unity, and consequently, the
Ginzburg parameter can reach values as high as Gi′ ∼ 1. In light of this comparably large number,
the emergence of a vestigial nematicity above the anti-ferromagnetic Mott insulator in the iron-based
materials becomes an almost natural consequence [111].
As illustrated by the first example, a typical superconductor is perfectly well described by a mean-

field theory and fluctuations can be genuinely neglected. This situation may change for unconventional
superconductors where many members exhibit a small carrier concentration. Of particular interest in
the following is doped Bi2Se3, introduced in chapter 2. In this material class, the ratio of the coherence
length over the Fermi wavelength has been reported to be as small as ξ0/λF ∼ 2..4 [14, 18, 19] which
according to the prior arguments enhances the significance of fluctuation physics.

Vestigial scenarios In systems that stabilize a multi-component order parameter φ the primary
phase will always be accompanied by at least one composite order. 2Out of the multiple scenarios
where one or more composite order parameters can be stabilized, we focus on the case where exactly
one composite order forms. This composite appears either as a vestigial phase or simultaneously with
the primary order. For bilinear composites, there is a total of seven possible ways the primary
order parameter φ can engage with its composite companion 〈φλnφ〉, as sketched in figure 3.1. It is
clear that the correlation function 〈φλnφ〉 has to be finite as soon as φ acquires a finite expectation
value such that the primary phase can never precede. In the situation where fluctuations are weak,
or the system‘s geometry is unfavorable for a preformed phase, both order parameters undergo a
joint transition, tagged by Jij with i, j denoting the order of the composite and primary transition,
respectively. The most likely scenario involves the joint first-order transition J11. While the cases J12
and J22 can in principle exist, they turn out to be highly unlikely as will be demonstrated in section

1The actual Ginzburg parameter satisfies the inequality Gi � 1, yet we find that the introduced parameter Gi′ as the
temperature deviation gives a more feasible picture.

2A clarification to the usage of the terminology. We use the term composite order parameter for the non-trivially
transforming expectation value 〈φλφ〉, and as soon as it precedes its primary phase, it becomes a vestigial order
parameter.
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J11 V11 V12

J22 V22 V21

Figure 3.1: Six possible scenarios a multi-dimensional primary order parameter φ can be accom-
panied by a single composite order parameter 〈φλnφ〉. The scenarios are labeled by Vij and Jij for
vestigial and joint with the indices i and j denoting the order of the composite and the primary
transition, respectively.

(3.2.6.1). In figure 3.1, the four panels on the right illustrate all possible vestigial scenarios Vij , where
the individual transitions can be either first- or second-order.

3.2 Large-N analysis of superconducting fluctuations

In line with the reports on doped Bi2Se3 we assume that the superconducting order parameter
∆Eu = (∆Eu,1,∆Eu,2) transforms according to the two-dimensional IR Eu of the crystal point group
D3d. We start from the corresponding Ginzburg-Landau theory, and decouple the interaction terms by
introduction of the composite fields CA1g , CA2g and CEg through a Hubbard-Stratonovich transforma-
tion . In terms of symmetry properties the composite fields transform according to the indicated IRs
which occur in the product decomposition Γ∗Eu⊗ΓEu = ΓA1g⊕ΓA2g⊕ΓEg . The composite fields are the
central objects that play the role of the composite/vestigial order parameters. Note that only CA2g and
CEg qualify as legitimate composite order parameters as they transform non-trivially. With regards to
the implementation, the composite fields embody bilinear combinations of the primary order parameter
such that the expectation values of C represent exactly the correlation functions ∼ 〈(∆Eu)†λn,l∆Eu〉.
The goal of this study is to determine whether superconducting fluctuations can drive these objects
into separate phases above Tc. To this end, the superconducting fluctuations are integrated out, and
the resultant effective action is studied through a large-N based saddle-point analysis.
In the scope of a large-N theory, the large number N of field components φ = (φ1, φ2, . . . , φN )T
typically justifies the saddle-point treatment, cf. Sec. 1.2. In the present case we deal with N = 2
components, the real and imaginary parts of the order parameter field.
The Ginzburg-Landau expansion was derived on symmetry grounds in section 2.3.3 with the param-

eters computed from the microscopic Hamiltonian. This Ginzburg-Landau action S = S0 + Sint + SA
decomposes into three contributions: the kinetic, non-interacting S0, the interacting Sint, and the cou-
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pling term to an external magnetic field SA. Employing the notation from chapter 2.3, we write the
kinetic part as

S0 = V
∑
q

(
∆Eu
q

)† (
(r0 + γ0|νm|+ f

A1g
q ) τ0 + fEgq · τEg

)
︸ ︷︷ ︸

≡(G0
p)−1

∆Eu
q , (3.1)

with the Pauli matrix vector τEg =
(
τ z,−τx

)
and the gradient terms in the continuum limit

f
A1g
q = d0

(
q̃2
x + q̃2

y

)
+ dz q̃2

z ,

 f
Eg ,1
q

f
Eg ,2
q

 = 2d̃
(

q̃y q̃z
-q̃xq̃z

)
+ d′

(
q̃2
x − q̃2

y

-2q̃xq̃y

)
. (3.2)

We use the dimensionless momentum q̃ = (qxa, qya, qzc)T , as well as the notation q = (q, νm), p =
(p, νn) with the bosonic Matsubara frequencies νm = 2πmT . The dynamics of the superconductor
are governed by the term γ0|νm|, as derived in the appendix B.28. The interaction contribution reads

Sint = V
∑
q

((
u+ ζv

)
N

V
∑
q

BA1g
q BA1g

−q +
(
1− ζ

) v
N

BA2g
q BA2g

−q − ζ
v

N
BEg
q BEg

−q

)
, (3.3)

where we have used the notation of the bilinear combinations Bn,lq =
∑

p(∆
Eu
p )†τn,l∆Eu

p+q with the
matrices τn,l listed in table 2.5. The fourth-order interaction term has a certain degree of redundancy
due to the Fierz identity (BA1g)2 = (BA2g) + (BEg)2 which has been accounted for by means of the
(redundancy) parameter ζ ∈ [0, 1]. Note that any value of ζ ∈ [0, 1] is a valid representation of the
interaction and leads to the same mean-field ground state. However, for the study of vestigial phases
the chosen value of ζ matters. This topic will be discussed in more detail in section 3.2.3. In line with
a large-N theory, the interaction parameters have been rescaled

{
u, v
}
→
{
u, v
}
/N . Furthermore, we

are neglecting the sixth-order interaction terms that discriminate between the (otherwise degenerate)
superconducting nematic ground states A and B, see Eq. 2.43.3 While the first part of this chapter
will be studied in absence of an external field, we study the role of the magnetic field in the second
part. The contribution to the action due to the magnetic field coupling reads

SA = V
∑
q,q′

(
∆Eu
q

)† (
α′Bzτ

yδqq′ − eV̂ α
q
2 + q′

2
Aαq-q′ +

e2

2 Ô
αβ
q
2 + q′

2

∑
q1

Aαq1 ·A
β
q-q′-q1

)
︸ ︷︷ ︸

≡(GA)−1
q,q′

∆Eu
q′ , (3.4)

where the first term α′BzBA2g has been identified in Sec. 2.3.3 to be fully symmetry-compliant. Micro-
scopically, the parameter α′ originates from both, the Zeeman and the orbital coupling, see appendix
B.1.2. The remaining contributions in (3.4) result from the orbital coupling of the superconducting
field to the vector potential A, which has formally been carried out by means of a Peierls substitution

3Those terms could be treated by introducing, instead of a Hubbard-Stratonovich transformation, two new fields λ
and σ. The first to replace x by means of a delta-function

∫
Dλδ(λ − x) . . . , and the second by re-expressing the

delta-function according to δ(λ− x) =
∫
Dσ exp(iσ(λ− x)).
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to be lattice-compliant. The involved derivatives read

V̂ α
q =

∂
(
G0
p

)−1

∂pα

∣∣∣∣
p=q

, Ôαβq =
∂2
(
G0
p

)−1

∂pα∂pβ

∣∣∣∣
p=q

, (3.5)

and we note that the charge e=̂2e has to be interpreted as the charge of a Cooper pair.

3.2.1 Derivation of effective action and saddle-point equations

In this section, we decouple the interaction terms, derive the effective action by integrating out the su-
perconducting fluctuations, and compute the corresponding saddle-point equations. For the first step,
a Hubbard-Stratonovich transformation removes the interaction terms at the expense of an additional
field integration. On a technical level, the partition function is multiplied by unity which is expressed
as

1 =
∫
D
[
Cn,l

]
exp
(
βV

1
4un

∑
q

(
Cn,lq − 2unBn,lq

)(
Cn,l−q − 2unBn,l−q

))
, (3.6)

where uA1g = (u + ζv)/N , uA2g = v/N and uEg = −v/N . The four new composite fields Cn,lq can be
interpreted as Cn,lq = 2un〈Bn,lq 〉, and correspondingly, they are real fields in position space which obey
the condition (Cn,lq )∗ = Cn,l−q. After the transformation, the action becomes

S2 = NSC + V
∑
q,q′

(
∆Eu
q

)† (
Gtot

)−1

q,q′
∆Eu
q′ , (3.7)

where we have introduced (Gtot)−1 = (GC)−1 + (GA)−1 and defined

SC = − 1
4(u+ ζv)V

∑
q

CA1g
q CA1g

−q −
(1− ζ)

4v V
∑
q

CA2g
q CA2g

−q + ζ

4vV
∑
q

CEgq CEg−q(
GC
)−1

q,q′
=
(

(r0 + γ0|νm|+ f
A1g
q )δqq′ + CA1g

q−q′
)
τ0 +

(
f
Eg
q δqq′ + ζCEgq−q′

)
· τEg +

(
1− ζ

)
CA2g
q−q′τ

y .

Since the action (3.7) is now quadratic in the superconducting order parameter field, the functional
integration in ∆Eu can be carried out directly. From a physical point of view, the integration imposes
renormalization effects on the remaining fields associated with superconducting fluctuations. This is
the adequate approach for the description above the superconducting phase transition. However, if
the superconducting field is stabilized, its expectation value becomes an observable that should not be
integrated out. Before proceeding let us discuss this issue:

While it is technically rather simple to derive the effective action comprising both, fluctuation and
interaction effects in the regime above the superconducting transition, it is more subtle to deduce the
analogous description inside the superconducting state. The difficulty arises from the fact that only the
non-condensed part of the pairing field can be integrated out. We present two possible methods how
this can be established. While both lead to the same outcome (at zero external field) they conceptually
differ.
(i) Following the textbook [49] approach for the description of the primarily ordered state within a

large-N theory, one decomposes the vector φ = φL +π into one longitudinal φL, and N − 1 transverse
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components π. In the ordered state, we let the longitudinal component condense while the trans-
verse components remain purely fluctuating. They form N − 1 copies of the same Gaussian integral∫
Dπj exp(−Λπ2

j /2) leading to an action contribution of the form (N − 1) log Λ after the integration.
In the large-N limit it holds N − 1 ≈ N and the omitted component is compensated for. In the spirit
of the large-N theory, the residual longitudinal mode φL → φL

√
N needs to be rescaled to acquire

‘weight’ as it is compared to terms of order O(N). Translated into the present superconducting setup,
the superconducting field is decomposed ∆Eu = ∆Eu

L + i∆Eu
T into the longitudinal and transverse com-

ponents which both are two-dimensional themselves. Following the logic from above, there must not
be any mixing between the longitudinal and the transverse component which puts stringent constraints
on the form of the Green‘s function matrix in (3.7). For more details on the approach we refer to the
appendix C.1 where we show that the decoupling only works for zero magnetic field (A = 0) and for
the two specific values ζ = {0, 1}. Then, the corresponding longitudinal and transverse components
can be expressed as

∆Eu
L,q =

(
Re ∆Eu,1

q

ζ Re ∆Eu,2
q + i

(
1− ζ

)
Im ∆Eu,2

q

)
, ∆Eu

T,q =
(

Im ∆Eu,1
q

ζ Im ∆Eu,2
q − i

(
1− ζ

)
Re ∆Eu,2

q

)
.

(ii) The bottleneck of the first approach lies in the fixing of the condensation direction, which enforces
constraints. Let us now define the condensed direction ∆o,Eu as the solution of the equation

δS2

δ∆̄Eu
q

∣∣∣∣
∆Eu
q =∆o,Eu

q

= 0 . (3.8)

Then, we decompose the superconducting field ∆Eu = ∆o,Eu + δ∆Eu into the condensed saddle-
point component ∆o,Eu and fluctuations δ∆Eu around it (in all N directions). By construction, the
condensed and the fluctuation parts in (3.7) decouple such that the corresponding integration over
δ∆Eu can be carried out. The resulting action looks similar to that obtained in method (i). The key
differences lie in the absence of constraints on the coupling matrix, and that the condensation direction
did not have to be fixed a priori. A more detailed discussion is provided in appendix C.1. Owed to
the appeal that comes with the postponed choice of the condensation direction of the superconducting
ground state, we will employ the second method (ii) in the following.

In line with the second method, the superconducting field is decomposed according to ∆Eu =
∆o,Eu + δ∆Eu with the condensed component defined by (3.8). After integration of the fluctuations
δ∆Eu the effective action valid above and below the superconducting transition reads

Seff = N

{
SC + V

∑
q,q′

(
∆o,Eu
q

)† (
Gtot

)−1

q,q′
∆o,Eu
q′ + T

2 tr log
(

2V T
(
Gtot

)−1
)}

. (3.9)

In the spirit of the large-N approach, the condensed field has been rescaled ∆o,Eu
q →

√
N∆o,Eu

q such
that it matches in order O(N) with the other terms. The large prefactor N justifies the upcoming
saddle-point solution.
The effective action (3.9) is a function of six fields with respect to which it shall be minimized. Tech-

nically, the action (3.9) is varied with respect to the four composite fields Cn,lq , while the condensed
superconducting components impose the two additional constraints (3.8). Searching for uniform so-
lutions, Cn,lq = Cn,l0 δq,0 and ∆o,Eu

q = ∆o,Eu
0 δq,0, in the absence of external fields, the six saddle-point
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equations become

0 = − 1
2
(
u+ ζv

) (R0 − r0
)

+
(
∆o,Eu

0

)†
τ0 ∆o,Eu

0 + T

2V
∑
q

trτ
(
GC
q τ

0
)

(3.10)

0 =
(
1− ζ

){
− 1

2vCA2g
0 +

(
∆o,Eu

0

)†
τy ∆o,Eu

0 + T

2V
∑
q

trτ
(
GC
q τ

y
)}

(3.11)

0 = ζ

{
1
2vCEg ,l0 +

(
∆o,Eu

0

)†
τEg ,l ∆o,Eu

0 + T

2V
∑
q

trτ
(
GC
q τ

Eg ,l
)}

(3.12)

0 =
(
GC

0

)−1
∆o,Eu

0 . (3.13)

We identify the combination R0 = r0 + CA1g
0 which characterizes the fluctuation induced mass renor-

malization. For brevity, we write f (0)
q = f

A1g
q + γ0|νm| and (GC)−1

q,q → (GC
q )−1 in the following. The

traces trτ act on the space of the superconducting components denoted by the Pauli matrices τ .
The above saddle-point equations contain all the information about the renormalization effects

caused by fluctuations. As we shall see in the following, these effects will allow us to predict a vestigial
nematic phase for doped Bi2Se3.
With parameters chosen to be compatible with the microscopic description of doped Bi2Se3 we

present the corresponding self-consistent saddle-point solutions, i.e. the temperature behavior of the
respective order parameters, in section 3.2.6.2. In the sections preceding this result, we discuss various
aspects of the problem which help us simplify the eventual solution finding process. In particular, we
aim to keep the framework applicable to both possible vestigial phases, a vestigial chiral (|CA2g

0 | 6= 0)
and a vestigial nematic (|CEg0 | 6= 0). First, in section 3.2.2 the ground state symmetry of the two-
dimensional Eg composite field CEg is discussed and the ground state phases are computed. Second, in
section 3.2.3, we address the role played by the (redundancy) parameter ζ and show that the parameter
has to assume one of the extremes ζ = 0 or ζ = 1. Third, in section 3.2.4 we elaborate on the intimate
relation between the primary and the composite order parameter and derive a direct constraint on the
superconducting state. In section 3.2.5—after implementing the previously derived properties into the
saddle-point equations—we confront the two vestigial scenarios: chiral and nematic. We further show
that the number of saddle-point equations reduces to two in each temperature regime. Before turning
to the full (numeric) solution of the saddle-point equations, we evaluate analytic solutions in section
3.2.6.1 for a simplified model where the order parameter fluctuates classically and in the A1g channel
only. To this end, we introduce a graphical presentation that conveniently illustrates the vestigial
scenario. Finally, in section 3.2.6.2 we solve the full equations numerically, and display the results in
the same representation.

52



3 Vestigial superconductivity

3.2.2 Symmetry properties of an Eg order parameter

The composite field CEg transforms according to a two-dimensional IR such that it can exhibit various
ground states similar to the superconducting order parameter ∆Eu , see section 2.3.3. Following the
scheme of section 1.3, we can study the transformation rules the composite order parameter has to
satisfy. We need to ensure that the coupling term CEg ,lq−q′ (∆

Eu
q )†τEg ,l∆Eu

q′ transforms trivially upon the
symmetry operations. Since the bilinear transforms trivially upon the U(1) symmetry the composite
field does the same. For the point group (1.33) and time-reversal (1.41) operations, the composite field
CEg has to compensate for the ∆Eu transformation, leading to

CEg ,lq−q′
(1.43)→ CEg ,l

′

R†v(g)(q−q′)R
†
Eg

(g)l′l , CEg ,lq−q′
(1.44)→ CEg ,l−(q−q′) . (3.14)

The resulting free energy constraints can be cast in a similar fashion as in (1.42)-(1.44), namely

lattice sym. : F [CEg ,lq , q] = F [CEg ,l
′

q R†Eg(g)l′l,Rv(g) q] , ∀g ∈ Gp , (3.15)

time− reversal sym. : F [CEg ,lq , q] = F [CEg ,lq ,−q] . (3.16)

From here, the route to classify the symmetry-allowed Ginzburg-Landau terms is similar to section
2.3.3. In fact, withREg(g) andREu(g) only differing by a minus sign (which cancels for even Ginzburg-
Landau contributions), the classification of the bilinear combinations is identical to the results in table
2.5. The differences to the superconducting Eu case are two-fold:
(i) The field CEg = (CEg)∗ is real (in position space) such that the bilinear combination CEg0 τyCEg0
vanishes, and the number of fourth-order interaction parameters naturally reduces to one.
(ii) The composite field CEg is no subject to the U(1) symmetry constraint such a cubic term is not
prohibited a priori. Indeed, the decomposition ΓEg ⊗ΓEg ⊗ΓEg = ΓA1g ⊕ . . . reveals that such a term
is explicitly symmetry-allowed. The corresponding identification from symmetry grounds is conducted
in the appendix A.2.
The resulting free energy expansion in terms of the uniform CEg0 order parameter becomes

SEg = NV

{
rc
(

CEg0

)2
+ gc

((
CEg ,10

)3
− 3CEg ,10

(
CEg ,20

)2
)

+ uc

((
CEg0

)2
)2
}
, (3.17)

with the cubic gc and quartic uc interaction parameters. In the literature this action is similar to the
well-known Landau expansion of the Z3-Potts model [115].

Owed to the cubic contribution gc|CEg0 |3 cos
(
3θc
)
in the action (3.17), the resulting ground state

depends on the relative angle θc between the two field components CEg0 = |CEg0 |(cos θc, sin θc). The
angle θc adjusts according to the sign of gc in order to minimize the free energy which leads to the two
distinct three-fold degenerate ground states

vestigial nematic A : gc < 0 , θc =
{

0, 2, 4
} π

3 , (3.18)

vestigial nematic B : gc > 0 , θc =
{

1, 3, 5
} π

3 . (3.19)

The absolute value of the order parameter is identical in both phases and reads
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gC (a.u.)

vestigial nematic A vestigial nematic B
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CEg,1
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ΔEu,1

CEg,2

CEg,1

θ

2θ

0 1-1

Figure 3.2: Ground state phase diagram of the composite order parameter CEg0 falling into the
IR Eg. The green triangles denote the three-fold degenerate ground states in the (CEg ,10 ,CEg ,20 )
plane. The purple arrows indicated the respective association with two distinct superconducting
ground states according to (3.29) and (3.30).

|CEg0 | =
3|gc|
8uc

(
1 +

√
1− 32rcuc

9g2
c

)
. (3.20)

The two ground state phases are visualized as green triangles in figure 3.2 in the (CEg ,10 ,CEg ,20 ) plane. A
finite value of the cubic parameter gc causes the composite order parameter to jump at a temperature
0 < rc <

9g2
c

32uc
≡ rmax

c . As illustrated in figure 1.1(b), at the temperature rmax
c the free energy has an

additional real saddle-point. Only at a lower temperature rc < rmax
c this new solution turns into the

global minimum. Yet, it happens above the critical temperature rc = 0 where the quadratic coefficient
vanishes. As a consequence, dictated by symmetry the transition into the |CEg0 | 6= 0 phase is of first-
order. The parameter gc discriminates between the two possible phases and it quantifies the extent of
the first-order jump.4

Derivation of the Eg expansion parameters The Ginzburg-Landau parameters for the composite
field CEg can be derived explicitly from an expansion of the effective action (3.9) above Tc for small
CEg , see appendix C.2. The expressions for the quadratic rc and cubic gc coefficients become

rc = 1
4v −

1
2
T

V

∑
q

(
Rp0 + f

(0)
q

)2

(
det
(
GC
q [Rp0,C

Eg ,l
0 = CA2g

0 = 0]
)−1)2 , (3.21)

4As has been outlined in 1.1.1 first-order phase transitions can be lifted to second-order if the higher order terms push the
extra minimum above zero. The present statement is restricted to the description of weak first-order phase transitions.
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Figure 3.3: Evaluation of the cubic parameter gc as it results from the equation (3.22) as a
function of d′ and d̃. The value gc is largest at the edges of stability. The chosen parameters were
Rp0/d0 = 1,dz/d0 = 0.2.

gc = −1
3
T

V

∑
q

(
f
Eg ,1
q

)3
− 3fEg ,1q

(
f
Eg ,2
q

)2

(
det
(
GC
q [Rp0,C

Eg ,l
0 = CA2g

0 = 0]
)−1)3 , (3.22)

with Rp0 being the R0-solution in the para-nematic regime, i.e. the solution of equation (3.10) above
Tc with ∆o,Eu

0 = CEg ,l0 = CA2g
0 = 0.

The cubic parameter is particularly interesting as its sign decides on the chosen CEg ground state,
A or B. With regards to the spatial functions (3.2), or their lattice counterparts (2.14), we note that
the cubic parameter gc = 0 vanishes if the fluctuations in the Eg symmetry channel disappear, i.e.
for d′ = d̃ = 0. Moreover, it holds that a simultaneous sign flip of d′ and d̃, also switches the sign
of gc, leading to gc ∝ sign(d′d̃). Now, we assume that the integrand in (3.22) falls off rapidly in the
qx, qy plane such that the integration boundaries do not substantially contribute. Then, the sign flip
of the parameter d̃ → −d̃ can be compensated for by simultaneous flipping qz → −qz5 and thus, the
cubic parameter has to be an even function in d̃. Accordingly, the cubic parameter gc ∝ sign(d′) is an
odd function in d′, which means that the sign of gc and consequently the chosen nematic ground state
solely depends on the sign of d′. In Fig. 3.3 we show the obtained value of gc as a function of d′ and
d̃. The value of d′ that was computed for doped Bi2Se3 (B.23) is positive, such that the corresponding
value of gc is positive, and B (3.19) is the expected vestigial nematic ground state.

5Tihs only holds for negligible contributions from the Brioullin zone boundary in Fig.2.1
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3.2.3 Determination of the (redundancy) parameter ζ

The (redundancy) parameter ζ—directly linked to the Fierz identity—ensures the degenerate repre-
sentations of the fourth-order interaction term. By exploiting the ground state symmetry of the Eg
composite field CEg0 = |CEg0 |(cos θc, sin θc) with the particular angles θc, above Tc the three saddle-point
equations (3.11),(3.12) can be reduced to

0 =
(
1− ζ

)
CA2g

0

 1
2v + T

V

∑
q

(
1− ζ

)
det
(
GC
q

)−1

, 0 = ζ

 |C
Eg
0 |

2v − T

V

∑
q

ζ|CEg0 |+ f
Eg
q ·

CEg0

|CEg0 |

det
(
GC
q

)−1

, (3.23)

where the second equation results from the addition of the two original equations (3.12) for CEg0 .6

If we assume that both composite order parameters |CEg0 | and CA2g
0 are finite above Tc, then both

curly brackets in the Eqs. (3.23) have to vanish simultaneously. However, a numeric evaluation of the
two occurring integrals has shown that both integrals are strictly positive, and zero is only acquired for
|CEg0 | = CA2g

0 = 0.7 Hence, the two curly brackets can not simultaneously yield zero, and in particular,
the sign of the parameter v decides on which bracket may disappear. For positive (negative) v, the
composite field |CEg0 | (C

A2g
0 ) is allowed to become finite while it must hold that CA2g

0 = 0 (|CEg0 | = 0
). The association between v and the composite fields is in line with the superconducting mean-field
analysis from section 2.3.3. To see this, we use the relations for the composite fields

CEg ,l0 = −2v〈
(
∆Eu

0

)†
τEg ,l∆Eu

0 〉 , CA2g
0 = 2v〈

(
∆Eu

0

)†
τy∆Eu

0 〉 . (3.24)

and insert the superconducting mean-field ground states (2.43)-(2.44). This leads to the same associ-
ation as above,

v > 0 : |CEg0 | 6= 0 , CA2g
0 = 0 , (3.25)

v < 0 : |CEg0 | = 0 , CA2g
0 6= 0 . (3.26)

As a conclusion, the present system can only stabilize one composite field, either |CEg0 | for v > 0, or
CA2g

0 for v < 0. Note that the mutual exclusion of the composite fields is not a generic feature but
depended on the details of the saddle-point equations. For the two cases where one of the composite
fields vanishes, we may minimize the energy with respect to the (still free) parameter ζ. A simple
computation then yields that the parameter ζ assumes one of two extreme values, i.e. ζ = 0 or ζ = 1
for v < 0 or v > 0, respectively.

6The subtraction of the two equations vanishes, as the integral
∑
q

(
f
Eg,1
q sin

(
2θ
)
− fEg,2

q cos
(
2θ
))
/ detG[0]q,q = 0

yields zero for the possible CEg ground states. The integral can be shown to be odd upon application of the remaining
two-fold rotation elements C2x, C2A or C2B , depending on the realized ground state.

7In the case fEg
q = 0, the integrals become identical, and the mutual exclusion in (3.23) is plainly visible.
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3.2.4 Relation between the superconducting and the composite order parameters

A peculiar phenomenon in the field of vestigial phases is the preselection of the primary ground state
at the onset temperature Tvest of the vestigial phase. This intimate connection manifests itself in
the saddle-point equation (3.13), reading 0 = (GC

0 )−1∆o,Eu
0 . We discuss the resulting relations for

the nematic (ζ = 1) and the chiral (ζ = 0) cases separately. The diagonalization of the saddle-point
equation leads to a condition which the two ∆o,Eu

0 components have to satisfy. We note that the
renormalized mass R0 > 0 has to be positive.8

In the nematic case (ζ = 1), the saddle-point equation (3.13) takes on the diagonalized form

0 =

 R0 − |CEg0 | 0
0 R0 + |CEg0 |

 1
|CEg0 |

 CEg ,20 ∆o,Eu,1
0 +

(
|CEg0 |+ CEg ,10

)
∆o,Eu,2

0

−CEg ,20 ∆o,Eu,1
0 +

(
|CEg0 | − CEg ,10

)
∆o,Eu,2

0

 , (3.27)

which only allows for a superconducting solution when R0 = |CEg0 |. Additionally, the second entry
in the vector in (3.27) must vanish. Using CEg0 = |CEg0 |(cos

(
θc
)
, sin

(
θc
)
) and introducing the angle

θ = θc/2 ∈
[
0, π
]
, [it holds (|CEg0 | − CEg ,10 )/CEg ,20 = sin θ/ cos θ] the constraint is fulfilled for

∆o,Eu
0 = |∆Eu

0 |e
iϕ0

(
sin θ
cos θ

)
, (3.28)

in agreement with Sec. 2.3.3. Thus, depending on the nematic angle θc, a particular superconducting
angle θ = θc/2 is selected. The corresponding association

vestigial nematic A : gc < 0 , θc =
{

0, 2, 4
} π

3 , → sc. nematic A : θ =
{

0, 2, 4
} π

6 , (3.29)

vestigial nematic B : gc > 0 , θc =
{

1, 3, 5
} π

3 , → sc. nematic B : θ =
{

1, 3, 5
} π

6 , (3.30)

is also illustrated in figure 3.2 by means of the purple arrows.
In the chiral case (ζ = 0), the diagonalized saddle-point equation (3.13) reads

0 =

 R0 − CA2g
0 0

0 R0 + CA2g
0

 1√
2

(
−i∆o,Eu,1

0 + ∆o,Eu,2
0

i∆o,Eu,1
0 + ∆o,Eu,2

0

)
, (3.31)

which leads to the conditions R0 = |CA2g
0 | and ∆o,Eu,1

0 = i sign(CA2g
0 ) ∆o,Eu,2

0 in the superconducting
regime. The corresponding ground state thus becomes

∆o,Eu
0 = |∆Eu

0 |e
iϕ0 1√

2

 1
−i sign

(
CA2g

0

)  , (3.32)

in agreement with the ground state obtained from the mean-field analysis of section 2.3.3.

8At R0 = 0, the superconducting pairing susceptibility would diverge if there was no additional composite order
parameter. With a composite order parameter present, the susceptibility already diverges at R0 = |Cn,l| > 0.
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3.2.5 Contrasting the nematic and chiral scenario

In the preceding three sections, we have accumulated properties and conditions that help to simplify
the saddle-point equations. After the implementation, the former six coupled saddle-point equations
reduce to two in the respective temperature regimes. We contrast the respective equations for the
nematic and the chiral cases in the boxes below, followed by a discussion on the respective symmetry
reduction.

In the nematic case (v > 0 & ζ = 1)
the connection between the real composite and
the superconducting order parameter is estab-
lished via CEg0 = |CEg0 |(cos

(
θc
)
, sin

(
θc
)
) and

∆o,Eu
0 = |∆Eu

0 |eiϕ0
(
sin θ, cos θ

)
, and the saddle-

point equations read for T > Tc

0 =
(
R0 − r0

)
2u′ − T

V

∑
q

R0 + f
(0)
q

det
(
GC
q

)−1 , (3.33)

0 = |C
Eg
0 |

2v − T

V

∑
q

|CEg0 |+ f
Eg
q ·

CEg0

|CEg0 |

det
(
GC
q

)−1 . (3.34)

For T < Tc it holds R0 = |CEg0 | and the equations
read

v − u′

v
|CEg0 | = r0 + 2u′ T

V

∑
q

f
(0)
q − fEgq ·

CEg0

|CEg0 |

det
(
GC
q

)−1 ,

(3.35)

|∆Eu
0 |

2 = |C
Eg
0 |

2v − T

V

∑
q

|CEg0 |+ f
Eg
q ·

CEg0

|CEg0 |

det
(
GC
q

)−1 ,

(3.36)

where we defined u′ = u+ v.

In the chiral case (v < 0 & ζ = 0) the con-
nection between the real composite CA2g

0 and the
superconducting order parameter is established
via ∆o,Eu

0 = |∆Eu
0 |eiϕ0(1,−i sign(CA2g

0 ))/
√

2, and
the saddle-point equations read for T > Tc

0 =
(
R0 − r0

)
2u − T

V

∑
q

R0 + f
(0)
q

det
(
GC
q

)−1 , (3.37)

0 = CA2g
0

2|v| −
T

V

∑
q

CA2g
0

det
(
GC
q

)−1 , (3.38)

and for T < Tc it holds R0 = |CA2g
0 | and the

equations read

|v| − u
|v|

|CA2g
0 | = r0 + 2uT

V

∑
q

f
(0)
q

det
(
GC
q

)−1 ,

(3.39)

|∆Eu
0 |

2 = |C
A2g
0 |

2|v| −
T

V

∑
q

|CA2g
0 |

det
(
GC
q

)−1 .

(3.40)

The above boxes display the summary of the results from the preceding sections. The contrast shows
that on a technical level the two scenarios are described by almost similar equations, and technically,
the vestigial phase can equally be realized in each of the two channels. However, we want to point out
the physical differences related to the two outcomes.

The nematic composite field CEg0 is a Z3-Potts variable (cf. Sec.3.2.2), and as such it always causes
a first-order transition. In terms of symmetries, it leaves the time-reversal symmetry T intact but
it breaks almost all of the point group symmetries. In fact, a given ground state configuration only
retains one of the two-fold rotations, together with inversion, which reduces the point group from D3d to
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C2h. For example, the two ground states θc =
{

0, π
}
retain the same four elements

{
E, I, C2x, IC2x

}9

constituting a C2h group. Accordingly, the symmetry group in the vestigial nematic phase is reduced
to Gvest. nem. = C2h ×T ×U(1). Once the system undergoes the superconducting phase transition into
the Eu state with odd parity, the symmetry group is further reduced by the inversion and the U(1)
operation, yielding the reduction scheme

D3d × T × U(1) vest.nem.−→ Gvest.nem. = C2h × T × U(1) sc.−→ Gsc.nem. = C2 × T . (3.41)

The chiral order parameter CA2g
0 on the other hand, is a time-reversal symmetry breaking Ising

variable, which is not symmetry constrained to a certain order of phase transition. In terms of point
group symmetries, it transforms according to the IR A2g and consequently, it breaks the three two-fold
rotation symmetries and the three mirror symmetries. The remaining point group elements constitute
the point group S6 = {E,C3z, C

−1
3z , I, IC3z, IC

−1
3z } and hence, the symmetry group in the vestigial chiral

phase reads Gvest. chiral = S6 × U(1). Again, the superconducting transition reduces the symmetry by
the inversion and the U(1) symmetry, such that the reduction scheme becomes

D3d × T × U(1) vest.chiral−→ Gvest. chiral = S6 × U(1) sc.−→ Gsc. chiral = C3 . (3.42)

3.2.6 Solution of the saddle-point equations for doped Bi2Se3

Contrary to the preceding sections, where the formalism was kept as generic as possible, we now focus on
the description of doped Bi2Se3 where the parameter v > 0 (see Fig.B.1(b)) is positive, and accordingly,
it holds CA2g

0 = 0 and ζ = 1. Moreover, in line with our microscopic derivation we assume that d′ > 0
(see (B.23)) such that gc > 0, and the nematic ground state angle becomes θc =

{
1, 3, 5

}
π/3, with

CEg0 = |CEg0 |(−1, 0) being one representative state. The corresponding superconducting ground state
angle reads θ =

{
1, 3, 5

}
π/6 with ∆Eu = ∆0e

iϕ0(1, 0) being the representative—fully-gapped—state,
see Fig. 2.4. The mean-field ground state analysis has shown that the sixth-order interaction parameter
ν− lifts the degeneracy between the two nematic phases (A and B). Here, the microscopic calculation
suggests ν− < 0 for doped Bi2Se3 which similarly points to the fully-gapped state. As a first result, we
note that both the mean-field (neglecting fluctuations) and the fluctuation-induced analysis (neglecting
sixth-order interactions) seem to be favoring the fully-gapped state in doped Bi2Se3.

The goal of this section is to study qualitatively whether a vestigial nematic scenario is possible for
doped Bi2Se3 and to derive the temperature behavior of the nematic and the superconducting order
parameters. In section 3.2.6.1 we address the simplified situation where only fluctuations within the
A1g symmetry channel are allowed. This model can be solved analytically and serves as a starting point
to interpret the possible solutions. In section 3.2.6.2 the saddle-point solutions are solved numerically
with fluctuations allowed in all the symmetry channels. Depending on the degree of z-anisotropy, we
find either joint transition or a vestigial nematic solution.
As stated above, the following analysis is done in the classical limit where quantum fluctuations are

neglected. Quantum fluctuations effectively increase the dimension into which the superconducting
field can fluctuate. This has an unfavorable effect on the likelihood of a vestigial scenario, see Ref.
[111]. From a technical point of view, the classical limit amounts to the high temperature regime where
it holds Tγ0 � r0, and the Matsubara summations can be restricted to the leading contributions with
νm = 0.

9The other symmetry elements do not leave the integrals in (3.33)-(3.36) invariant.
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A few words about the critical temperature Tc are in order. From the action (3.9) one can infer
that the superconducting pairing susceptibility reads χpair = R0/(R2

0 − |C
Eg
0 |2) which diverges for

R0 = |CEg0 |. With a decrease in temperature (=̂ decrease in r0 = a0(T − T 0
c )) the renormalized

mass R0 decreases. In the absence of any composite order parameter, the superconducting pairing
susceptibility would diverge for R0 = 0 at a critical temperature defined through (cf. Eq. (3.33))

rc0 = −2(u+ v)T
V

∑
q

f
(0)
q

det
(
GC
q

)−1

∣∣∣∣
R0=|CEg0 |=0

< 0 . (3.43)

In this case the superconducting order parameter undergoes a second-order phase transition (cf. Eq.
(3.10))

|∆Eu
0 |

2 = −δr0
2 (u+ v) , (3.44)

with the defined effective temperature parameter δr0 = r0 − rc0. The negative sign of the critical
temperature value rc0 (3.43) leads us to conclude that superconducting fluctuations would always
lower the transition temperature as a leading order effect. Indeed, by inserting r0 = a0(T − T 0

c )
into δr0 = r0 − rc0 = a0

(
T − Tc

)
we identify the fluctuation renormalized transition temperature

Tc = T 0
c + rc0/a0 < T 0

c .
The aforementioned situation has to be contrasted to the case where a composite order parameter is

present: In that case the primary phase becomes critical for R0 = |CEg0 |, which (using R0 = r0 + CA1g
0 )

translates into the new transition temperature Tc = T 0
c + (|CEg0 | − CA1g

0 )/a0. This corresponds to a
relative enhancement of the transition temperature through the stabilized vestigial order parameter
|CEg0 |. In simple terms, fluctuations suppress Tc but the effect is reduced if they lead to the condensation
of a vestigial phase.

3.2.6.1 Model with A1g fluctuations in the classical regime

The purpose of studying a simplified model is two-fold. On the one hand, we introduce a convenient
approach on how the solutions can be derived and interpreted. On the other hand, the model can
be investigated analytically allowing for a discussion of the entire phase space. In the absence of Eg
fluctuations, i.e. d′ = d̃ = 0, it is clear that gc = 0, and the nematic transition looses its Z3-Potts
character—the transition is not bound to be of first-order anymore. Within the present simplified
model, the only gradient term reads fA1g

q = d0(q̃2
x + q̃2

y) + dz q̃2
z . The system is assumed to extent

infinitely in the qx, qy-plane while it is subject to a momentum cutoff Λ in the qz direction. The cutoff
is assumed to be the largest scale in the problem; in particular Λ2 � {r0, |CEg0 |}, and the exercise
becomes identical to a model considered in Ref. [111]. With a partial fraction decomposition, the two
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integrals in (3.33)-(3.36) can be evaluated analytically, yielding

I1

(
R0, |CEg0 |

)
= -8πd0V0

ΛV
∑
q

(
R0 + f

A1g
q

det
(
GC
q

)−1 −
1

f
A1g
q

)
≈
√
R̃0 + |C̃Eg0 |+

√
R̃0 − |C̃Eg0 | −

2
π
R̃0, (3.45)

I2

(
R0, |CEg0 |

)
= 8πd0V0

ΛV
∑
q

|CEg0 |

det
(
GC
q

)−1 ≈
√
R̃0 + |C̃Eg0 | −

√
R̃0 − |C̃Eg0 | −

2
π
|C̃Eg0 |. (3.46)

Here, we have expanded the results for large Λ2 � {R0, |CEg0 |}/d0ṽ, kept the terms up to the sec-
ond order and introduced the following dimensionless quantities: the coupling constants

{
ũ, ṽ
}

=
{u′, v}T/πd2

0V0, the fields {R̃0, |C̃Eg0 |} = {R0, |CEg0 |}/Λ2dz, and the anisotropy parameter Λz = Λdz/d0ṽ
where V0 = a2c. A reduction of Λz increases the system’s anisotropy. Using the integral notation (3.45)
and (3.46), the saddle-point equations can be expressed as

T > Tc : δr̃0 = R̃0 + û

4Λz
I1

(
R0, |CEg0 |

)
, 0 =

{
1
2 |C̃

Eg
0 | −

1
8Λz

I2

(
R0, |CEg0 |

)}
(3.47)

T < Tc : δr̃0 =
(
1-û
)
R̃0 + û

2Λz
I1
(
R0, R0

)
, |∆̃Eu

0 |
2 =

{
1
2R̃0 −

1
8Λz

I2
(
R0, R0

)}
(3.48)

with ∆̃Eu
0 = ∆Eu

0
√
πd0V0/TΛ2

z, û = u′/v and the effective temperature parameter δr̃0 = (r0−rc0)/Λ2dz,
see (3.43). Conveniently, after all the rescaling procedures, the model only has two independent
parameters left, û and Λz.
Let us now present the solution in a scheme that, we believe, is quite instructive. The idea is to solve

the saddle-point equations in the respective regimes as a function of the renormalized mass parameter
R̃0, with the solutions being δr̃0(R̃0). Thus, we consider the functions which assign to every value
R̃0 the corresponding system temperature δr̃0. Within the three regimes, superconducting, vestigial
nematic, and para-nematic (=̂ above Tnem), the functions read explicitly

δr̃nem
0

(
R̃0

)
= R̃0 + û

4Λz
I1

(
R0, |CEg0 |

(
R0
))

, δr̃paranem
0

(
R̃0

)
= R̃0 + û

4Λz
I1
(
R0, 0

)
, (3.49)

δr̃sc
0

(
R̃0

)
=
(
1− û

)
R̃0 + û

2Λz
I1
(
R0, R0

)
, (3.50)

where |CEg0 |
(
R0
)
is the solution of the second equation in (3.47). As illustrated in the figure 3.4,

the nematic (red curve) and the superconducting (solid light blue curve) solutions are restricted to
certain intervals. The nematic solution δr̃nem

0 only exists within the interval R̃(2nd)
nem < R̃0 < R̃

(2nd)
sc ,

where R̃(2nd)
nem denotes the critical nematic value where the nematic order parameter |CEg0 | emerges, and

R̃
(2nd)
sc denotes the critical superconducting value where it holds R̃0 = |CEg0 |, and the superconducting

order parameter |∆̃Eu
0 | emerges. The superconducting solution δr̃sc

0 only exists for either R̃0 = 0, or
for R̃0 > R̃

(2nd)
sc . In Fig.3.4, we plot the three solutions (3.49),(3.50) for a given parameter set. One

can then track the system‘s ground state as the temperature is lowered, i.e. as δr̃0 is reduced. At high
temperatures the system is in the para-nematic state (light green curve), where neither a nematic nor
a superconducting order parameter is present. As the temperature decreases, the first time an order
can be established, the ground state switches onto the respective nematic or superconducting curve.
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Figure 3.4: (a) and (b) depict a joint first-order (J11) and a vestigial situation (V22) with con-
secutive second-order phase transitions, respectively. The chosen parameters are Λz = 1, u′/v = 2
and Λz = 0.2, u′/v = 2 for the left and right, respectively.

We disregard first-order transitions for a moment. For concreteness, let us focus on Fig.3.4(b), where
the ground state switches onto the red curve. Upon further cooling, the ground state follows the red
curve until it becomes superconducting and evolves on the light blue line. This situation represents
a V22 scenario, where a vestigial nematic phase preempts the superconductor, and both transitions
are of second order. For a first-order transition, the ground state has to ‘jump’ onto another curve,
such that the respective order parameter does not emerge continuously. This is the case in Fig.3.4(a)
where the system undergoes a joint first-order phase transition into the superconducting state (J11).
The temperature where the transition happens is not right at the peak of the blue curve, but slightly
below, see e.g. discussion in Sec 3.2.2. In this situation the vestigial nematic solution does not become
the system‘s ground state at any temperature. It is quite convenient to note that, the figures also
depict the order parameters as functions of R̃0, such that their temperature behavior can indirectly
be inferred. The two demonstrated examples represent two possible realizations resulting from the
saddle-point equations (3.49) and (3.50).
We shall in the following take a more general view and try to understand if the system can estab-

lish other scenarios as well, and in particular what criteria it depends on. A vestigial scenario with
a single composite order parameter has four characteristic temperatures: the two critical tempera-
tures T (2nd)

{sc,nem} where the corresponding susceptibilities diverge, and the two maximum temperatures
T

(max)
{sc,nem} denoting the highest possible temperature for which the respective solution exists. We denote

the corresponding renormalized mass value accordingly, R̃(2nd)
{sc,nem} and R̃

(max)
{sc,nem}. The respective rela-

tions of the points (R̃, T ) determine the realized scenario as summarized in table 3.1. In the present
model, we can analytically extract the characteristic points,10 yielding

10The characteristic values R̃(2nd)
nem and R̃(2nd)

sc are the solutions of (3.47) and (3.48) evaluated at zero |CEg

0 | and |∆̃
Eu
0 |,

respectively. Alternatively, R̃(2nd)
nem is also the value where the quadratic Ginzburg-Landau coefficient rc (3.21) vanishes.

62



3 Vestigial superconductivity

joint J11: T
(max)
sc > T

(max)
nem

vestigial
(

V22
V21

)
: T

(max)
sc < T

(max)
nem & T

(2nd)
nem = T

(max)
nem &

 R̃
(2nd)
sc > R̃

(max)
sc

R̃
(2nd)
sc < R̃

(max)
sc


vestigial

(
V12
V11

)
: T

(max)
sc < T

(max)
nem & T

(2nd)
nem < T

(max)
nem &

 R̃
(2nd)
sc > R̃

(max)
sc

R̃
(2nd)
sc < R̃

(max)
sc


joint

(
J12
J22

)
: T

(max)
sc = T

(max)
nem &

 R̃
(2nd)
sc < R̃

(2nd)
nem

R̃
(2nd)
sc = R̃

(2nd)
nem


Table 3.1: Comparison of the characteristic temperatures and their renormalized mass values,
associated with the respective vestigial or joint scenario. The notation is Vij , Jij with i and j
denoting the order of the composite and the primary transition, respectively (see Fig.3.1).

R̃(2nd)
nem = π2

4b2z
, T (2nd)

nem = π

8Λzb2z

(
û+ 2πΛz(2û+ 1)

)
, (3.51)

R̃(2nd)
sc = π2

2b2z
, T (2nd)

sc = π2(1 + û)
2b2z

, (3.52)

R̃(max)
sc = π2û2

8(û+ πΛz(û− 1)) , T (max)
sc = πû2

8Λz(û+ πΛz(û− 1)) , (3.53)

where bz = 1 + 2πΛz. Within the nematic regime, the solution reads

δr̃nem
0

(
R̃0

)
= 2πΛz − û

2πΛz
R̃0 + ûπ

4Λzbz
, (3.54)

which is a straight line with either a positive or a negative slope, depending on 2πΛz ≶ û. As a

unstable

0 0.5 1
0

1

2

3

Λz

u

Figure 3.5: Phase diagram indicating which scenario is realized in the system. The condition
û+ πΛz(û− 1) > 0 guarantees the stability of the solution.
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Figure 3.6: Temperature behavior of the respective order parameters as they result from the
scenarios depicted in Fig.3.4. The left and right depict a joint first-order (J11) and a vestigial
situation (V22) with consecutive second order phase transition, respectively.

consequence, the maximum value is always at the interval boundary, namely

2πΛz > û: R̃(max)
nem = R̃(2nd)

sc & T (max)
nem = T (2nd)

sc , (3.55)
2πΛz < û: R̃(max)

nem = R̃(2nd)
nem & T (max)

nem = T (2nd)
nem . (3.56)

In the case (3.55) with 2πΛz > û, the maximum nematic temperature equals T (max)
nem = T

(2nd)
sc the

critical superconducting temperature which by definition, is smaller (or equal) than its maximum. In
this model it truly holds T (2nd)

sc < T
(max)
sc , such that the system will always undergo a joint (J11) first-

order phase transition. In particular, the statement is true for a three-dimensional isotropic system,
restored by Λz →∞. No vestigial phase is to be expected for as long as the system is not (sufficiently)
anisotropic. In the opposite case (3.56), when 2πΛz < û, the system can establish a vestigial nematic
phase. Because it then holds T (max)

nem = T
(2nd)
nem the phase transition is of second order. The possible

realizations are easily deduced by comparison of the characteristic values (3.51)-(3.56) with regards to
the conditions in table 3.1.
The resultant phase diagram is depicted in Fig.3.5, showing that only three scenarios can be realized

in this model. For a small degree of anisotropy (large Λz) the system always undergoes a joint first-
order transition. At the fine-tuned points 2πΛz = û, the system realizes joint transitions with the
superconducting transition being of second order. With respect to the representations in Fig.3.4 this
amounts to a horizontal red line where T (max)

nem = T
(2nd)
nem . For that reason, the joint transitions J12, J22

are an artefact of a fine-tuned system and generically, they are not to be expected. For a large degree
of anisotropy the system realizes the vestigial V22 scenario that is depicted in Fig.3.4(b).
Finally, we plot the order parameter behavior as a function of temperature in figure 3.6, correspond-

ing to the system settings of Fig. 3.4. The figures reflect the qualitative conclusions already drawn. The
single distinctive feature results from the first-order transition temperature in case (a). The transition
temperature needs to be determined by means of the global free energy minimum which in the large-N
limit, is identical to the saddle-point action (3.9). It is convenient to plot F sc(δr̃0) − F paranem(δr̃0)
such that its zero marks the transition temperature, see also Fig. 3.7(b) in the next section.
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3.2.6.2 Full model in the classical regime

In this section, we include the Eg fluctuations which generate a finite cubic parameter gc. As a
consequence, the nematic order parameter CEg0 regains its Z3-Potts character and has to undergo a
first-order phase transition. Similarly to the previous case (3.2.6.1), we employ a momentum cutoff Λ
in the qz direction while the in-plane integration is free.11The saddle-point equations

T > Tc : δr̂0 = R̂0 + 2ûI1(R0, |CEg0 |) , 0 = |Ĉ
Eg
0 |
2 − I2(R0, |CEg0 |) , (3.57)

T < Tc : δr̂0 = (1− û)|ĈEg0 |+ 2ûI3(R0, R0) , |∆̂Eu
0 |

2 = |Ĉ
Eg
0 |
2 − I2(R0, R0) , (3.58)

can be expressed in terms of the dimensionless quantities
{
ũ, ṽ
}

= {u′, v}T/πd2
0V0, û = u′/v, as well

as the dimensionless fields {R̂0, |ĈEg0 |, δr̂0} = {R0, |CEg0 |, δr0}/d0ṽ, and ∆̂Eu
0 = ∆Eu

0
√

d0πV0/T . The
two integrals read

I1(R0, |CEg0 |) = −πd0V0
V

∑
q

(
R0 + f

A1g
q

det
(
GC
q

)−1 −
f
A1g
q

det
(
GC
q

)−1

∣∣∣∣
R0=|CEg0 |=0

)
, (3.59)

I2(R0, |CEg0 |) = πd0V0
V

∑
q

|CEg0 |+ f
Eg
q ·

CEg0

|CEg0 |

det
(
GC
q

)−1 , (3.60)

and I3(R0, |CEg0 |) = I1(R0, |CEg0 |) + I2(R0, |CEg0 |). When introducing the rescaled fields in (3.59) and
(3.60), the prefactors cancel and the gradient parameter need to be rescaled according to d0 → 1,
d′ → d′/d0, d̃ → d̃/d0

√
ṽ and dz → dz/d0ṽ. Eventually, the model depends on the three gradient

ratios, the interaction ratio û, and the momentum cutoff Λc = Λc.
To capture the essential physics in doped Bi2Se3, we choose û = 3 and d′/d0 = 0.4. The value

of d̃/d0
√
ṽ = 0.20 is chosen such that it entails a rather large first-order jump (cf. Fig. 3.3). The

parameter dz can be understood as a proxy for the doping level, as the Fermi surface in CuxBi2Se3
has been reported to evolve from ellipsoidal towards cylindrical with increasing doping level [92]. For
a comparably large dz value, i.e. for a Fermi surfaces with a small anisotropy, the system undergoes
joint first-order transitions, similar to Fig.3.4(a). Upon doping the z-anisotropy becomes larger and
the value of dz becomes smaller. A small value dz/d0ṽ = 0.07 captures the vestigial nematic scenario
shown in figure 3.7. In figure (a), the pronounced peak in δr̃nem

0 indicates a first-order transition. Upon
further cooling, superconductivity emerges in a second-order transition when the susceptibility χpair =
R0/(R2

0 − |C
Eg
0 |2) diverges. To determine Tnem we plot the free energy differences F {nem,sc}(δr̃0) −

F paranem(δr̃0) resulting from (3.9) and associate the zero with the transition temperature, see Fig.3.7(b)
lower panel. In agreement with the symmetry constraint, the nematic order parameter undergoes a
first-order transition at a temperature Tnem > Tc. The top panel of figure Fig.3.7(b) shows the
temperature dependence of the nematic and the superconducting order parameters, together with
their respective susceptibilities. The nematic susceptibility χnem, studied in Sec.3.2.7, is enhanced
but—owed to the first-order nature of the transition—does not diverge.

11In Ref. [107], we employed a lattice version with natural cutoffs. However, for the present purpose, in particular to
demonstrate a pronounced peak of δr̃nem in Fig. 3.7(a) it is more convenient to work with the continuum model.
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Figure 3.7: The figures depict the expected vestigial nematic scenario for doped Bi2Se3. The
system undergoes a first-order transition at the temperature determined from the free energy in
the lower panel of (b). At the lower temperature it becomes superconducting where the pairing
susceptibility diverges. The nematic susceptibility does not diverge due to the first-order vestigial
nematic transition. The parameters were chosen as u′/v = 3, d′/d0 = 0.40, dz/d0ṽ = 0.07,
d̃/d0
√
ṽ = 0.20 and the cutoff in z-direction Λzc = 10.

The above result demonstrates that a vestigial nematic scenario with Tnem > Tc is possible in doped
Bi2Se3; at least in a certain doping range. Additionally, our theory reveals that superconducting fluc-
tuations experience a sudden enhancement at the vestigial nematic phase transition. This effect is
reflected in an enhanced observable signal, e.g. in the magnetization is shown in Fig. 3.14. Further-
more, the nematic distortion triggers a distinct in-plane anisotropy which is studied next. The present
theory can not reliably predict the extent of the nematic transition temperature Tnem − Tc due to the
uncertainties in the parameters. In the next section (3.2.7), we compute the nematic susceptibility. In
section (3.3), we discuss how an in-plane anisotropy is imposed on the conductivity and the magnetic
susceptibility, and the response of the atomic lattice is discussed in section (3.4). The nematic order
causes a lattice distortion that is preceded by the softening of certain elastic constants due to the
nematic fluctuations above Tnem.

3.2.7 Nematic susceptibility

By construction, the nematic susceptibility is the quantity that signals how far the system is away
from the nematic critical temperature. As such it is directly related to the quadratic coefficient rc in
the corresponding Ginzburg-Landau expansion. Formally, the nematic susceptibility is defined as the
correlation function

χnem,ij(q) = 〈BEg ,iq BEg ,j−q 〉 − 〈B
Eg ,i
q 〉〈BEg ,j−q 〉 , (3.61)

where BEg is the superconducting bilinear combination in the nematic Eg symmetry channel, see Eq.
(3.3). Within the field integral approach it is common to introduce a conjugated field in order to
compute a correlation function. The conjugated field h couples linearly to BEg generating the action
contribution Sh =

∑
q hq · BEg

−q. Consequently, the partition function Z
[
h
]
depends on the external
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field, and the expectation value of BEg and the correlation function (3.61) can be derived as

〈BEg ,jq 〉h = T
δ logZ

[
h
]

δhj,−q
, χnem,ij(q) = δ〈BEg ,jq 〉h

δhi,q

∣∣∣∣
h=0

= T
δ2 logZ

[
h
]

δhi,qδhj,−q

∣∣∣∣
h=0

. (3.62)

Hence, the partition function Z
[
h
]
needs to be evaluated. The addition of Sh to the action (3.9)

effectively amounts to the replacement (GC)−1
q,q′ → (GC[h])−1

q,q′ = (GC)−1
q,q′+hq−q′ ·τEg in the action (3.7).

After the composite fields are introduced, i.e. after the Hubbard-Stratonovich transformation, the first
formula of the susceptibility (3.62) can be changed to

χnem,ij(q) = − 1
2v
δ〈CEg ,jq 〉h
δhi,q

∣∣∣∣
h=0

. (3.63)

We use the relation (3.63) to derive the nematic susceptibility from the saddle-point equation instead
of actually evaluating Z

[
h
]
. In the presence of a finite field h, the expectation value 〈CEg ,jq 〉h can

already be finite above the nematic phase. The saddle-point equations related to CEg ,jq (h) above the
nematic transition (using CEg ,jq (h) = CEg ,j0 (h)δq,0) reads

0 = 1
2vCEg ,j0 (h) + T

2V
∑
q

trτ
(
GC
q,q[h]τEg ,j

)
. (3.64)

We vary the equation (3.64) with respect to hi,0, evaluate it at zero field h = 0, and insert the definition
of the nematic susceptibility (3.63). We find

χnem(0) = −χ(0)
nem(0)

(
1− 2vχ(0)

nem(0)
)−1

,

where we have used that CA1g
0 6= CA1g

0 [h], see appendix C.4.1 for details. Moreover, the bare suscep-
tibility χ

(0)
nem,lj(0) = T

2V
∑

q trτ (GC
q τ

Eg ,lGC
q τ

Eg ,j)|h=0 is found to be proportional to the unity matrix
χ

(0)
nem,lj(0) = 1

2Π̃z,zδl,j . Therefore, the nematic susceptibility is proportional to the unity matrix

χnem(0) = −
1
2Π̃z,z

1− vΠ̃z,z

1 = − Π̃z,z

8vrc
1 . (3.65)

With its elements inversely proportional to the quadratic coefficient rc, the diagonal element χnem(0)ii
shows a Curie-Weiss behavior, as shown in figure 3.7(b). However, due to the first-order nature of the
phase transition, the nematic susceptibility does not diverge: it rather reaches χ−1

nem(0) ∼ g2
c at the

Tnem. Experimentally, the enhancement of the nematic susceptibility should be directly observable via
electronic Raman scattering in the Eg symmetry channel [116, 117].
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3.3 In-plane anisotropy of the resistivity and magnetic susceptibility

In the following we analyze how the superconducting fluctuations renormalize the resistivity and the
magnetic susceptibility above Tc. In particular, we discuss how the nematic order parameter imposes
an anisotropy between two orthogonal in-plane directions. For simplicity, we disregard the normal
state quasi-particle contributions. The following calculations are based on earlier works [108–110] and
generalize them by including the effects of the nematic order parameter. In the following sections,
we derive the general relations between the partition function and two observables (susceptibility and
conductivity). We then present the key steps in evaluating the respective observables with the main
results summarized in Fig. 3.8. More details on the derivations can be found in the appendix C.3.

3.3.1 London response kernel

The London response kernel Qαβ(q) with α, β =
{

1, 2, 3
}
and q = (νm, q) is also known as the current-

current correlation function. As the vector potential A is the conjugated field to the current j they
couple via SA = V

∑
q j−q ·Aq and both, the expectation value of the current and the London response

kernel can be extracted via

〈jαq 〉 = T

V

δ logZ[A]
δAα−q

∣∣∣∣
A=0

, Qαβ(q) = T

V

δ2 logZ[A]
δAβq δAα−q

∣∣∣∣
A=0

= V

T
〈jαq j

β
−q〉 −

V

T
〈jαq 〉〈j

β
−q〉 . (3.66)

The response kernel presents the key quantity for determining the conductivity and susceptibility of the
system. Indeed, as discussed in section 1.1.3 the London kernel is directly related to the conductivity
via

Reσ(ν + i0, q) = ImQ(ν + i0, q)
ν

− πδ(ν) ReQ(ν + i0, q). (3.67)

The second (diverging) term is zero above Tc and finite below. The magnetization and the magnetic
susceptibility on the other hand are defined as the derivatives of the free energy with respect to the
magnetic field H,

Mα
q

[
H
]

= − 1
µ0V

∂F
[
H
]

∂Hα
−q

, χαβ(q) =
∂Mα

q

[
H
]

∂Hβ
q

∣∣∣
H=0

. (3.68)

In the present model, the free energy depends explicitly onH due to the term α′BzBA2g and implicitly
via the vector potentialA. Hence, it is convenient to view the free energy F

[
H,A

]
= −T logZ

[
H,A

]
as a function of both, the vector potential and the magnetic field, and expand it accordingly

F
[
H,A

]
≈ −T logZ

[
0,0

]
− V µ0

∑
q

Mα
−q[0]Hα

q −
V µ2

0
2
∑
q

QHαβ(q)Hα
−qH

β
q −

V

2
∑
q

QAαβ(q)Aα−qAβq ,

(3.69)
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where we defined

QHαβ(q) = T

V µ2
0

δ2 logZ
[
H,A

]
δHβ
−qδH

α
q

∣∣∣
A=const

∣∣∣
A=H=0

, QAαβ(q) = T

V

δ2 logZ[H,A]
δAβq δAα−q

∣∣∣
H=const

∣∣∣
A=H=0

.

(3.70)

As is shown in the appendix, the omitted expansion terms vanish due to the inversion symmetry. The
quadratic terms in (3.69) need to be expressed in terms of A to identify the London response kernel Q,
and in terms ofH to compute the magnetic susceptibility χ. In Fourier space the magnetic flux density
is related to the vector potential via Bq = iq×Aq. Upon application of the Coulomb gauge q ·Aq = 0
the relation can be inverted to Aαq = iεαβγqβBγ

q /|q|2.12 Assuming there is no finite magnetization
above Tc it holds Hq = Bq/µ0 with the permeability constant µ0. Then, the free energy (3.69) can
be expressed in terms of A and H, and we derive the London kernel and the magnetic susceptibility
χαβ(q) = µ0Q̃αβ(q) with

London kernel: Qαβ(q) = QAαβ(q)−QHα′β′(q)εαα′γεββ′γ′qγqγ′ , (3.71)

magn. susceptibility: Q̃αβ(q) = QHαβ(q) +QAα′β′(q)εαα′γεββ′γ′
qγqγ′

|q|4
. (3.72)

3.3.2 Anisotropic response of physical observables

Let us compute the correlation functions for the action (3.9) in the presence of a magnetic field.
Remember that a magnetic field couples through the Green‘s function matrix (G

[
A
]
)−1
q,q′ = (GC)−1

q,q′ +
(GA

[
A
]
)−1
q,q′ with the second term reading

(
GA
[
A
])−1

q,q′
= α′Bzτ

y − eV̂ α
q
2 + q′

2
Aαq−q′ +

e2

2 Ô
αβ
q
2 + q′

2

∑
q1

Aαq1 ·A
β
q−q′−q1 ,

and V̂ α
q , Ôαβq defined in (3.5). To proceed we evaluate the partition function Z

[
H,A

]
at the saddle-

point solution. Then, the correlation functions become quite handy: It holdsQAαβ(q) = Kαβ(q)−Kαβ(0)
and

Kαβ(q) = Te2

V

∑
p

trτ
(
GC
p+ q

2
V̂ β
p GC

p− q2
V̂ α
p

)
, QHαβ(q) = T (α′)2

V
δq,0δα,zδβ,z

∑
p

trτ
(
GC
p τ

yGC
p τ

y
)
,

(3.73)

where the function Kαβ(q) is even [Kαβ(−q) = Kαβ(q)] and symmetric [Kβα(q) = Kαβ(q)]. From a
diagrammatic point of view both summations in (3.73) represent a one-loop diagram with V̂ or τy at
the vertices. Since the nematic order parameter does not break the time-reversal symmetry, we find
the zero-field magnetization Mα

q [0] = −Tδq,0
µ0V

∑
p trτ (GC

p τ
y) = 0 to vanish. We note however, that a

vestigial chiral order parameter CA2g
0 (which couples with τy) would induce a finite magnetization.

For the optical conductivity we explicitly derive the formula (3.67) in the appendix. After the

12To see this explicitly, one considers the term q ×Bq, inserts Bq and applies the Coulomb gauge.
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(a) (b)

Figure 3.8: (a) shows the in-plane resistivity (3.74) and (b) the diamagnetic susceptibility (3.76)
alongside the measurement by [20]. Both observables display an enhanced signal with the transition
onset and a pronounced anisotropy in the nematic state. For the indicated ground state (θc = π)
we find ρyy > ρxx and χyy < χxx while it would be the opposite for θc = 0. For a discussion of the
experiment, see Sec.3.6. The plotted data originates from [107].

analytical continuation it becomes

Reσαβ(ν + i0,0) = Te2

πV

∑
p

∫ ∞
−∞

dε trτ
( Im[GC

p (ε+ ν + i0)]
ε+ ν

V̂ β
p

Im[GC
p (ε+ i0)]
ε

V̂ α
p

)
, (3.74)

where the ε integration can be carried out analytically. Note that QH does not contribute to the
London kernel (3.71) in the zero-momentum limit. The conductivity is evaluated numerically and the
corresponding ρxx and ρyy resistivity components are plotted as a function of the temperature in figure
3.8(a). For the nematic ground state CEg0 = |CEg0 |(−1, 0), we find ρyy > ρxx inside the vestigial nematic
phase. The relation ρyy > ρxx holds for all three degenerate states θc =

{
1, 3, 5

}
π/3. For the members

of the second ground state set with θc =
{

0, 2, 4
}
π/3 one finds the opposite order ρyy < ρxx.

To compute the DC magnetic susceptibility χαβ(νm = 0, q = 0) the zero-momentum limit can only
be taken after the kernel QAαβ(q) is expanded according to

QAαβ(q) ≈ 1
2 Γγδaβ qγqδ , with Γγδaβ =

∂2QAαβ(q)
∂qγ∂qδ

∣∣∣∣
q=0

. (3.75)

The zeroth-order term vanishes by construction and a linear term is forbidden since QAαβ(−q) = QAαβ(q).
The elements of the quadratic expansion tensor are subject to the constraints Γγδaβ = Γγδβα = Γδγaβ = Γaβγδ .
With this, the DC susceptibility in Eq. (3.72) becomes

χαβ(νm = 0, q = 0) = µ0Q
H
αβ(0) + 1

2µ0Γδδ′α′β′ εαα′γεββ′γ′ q̂δ q̂δ′ q̂γ q̂γ′ .

While this expression seems to depend on the momentum direction q̂γ = qγ/|q|, a careful study
reveals that the expression is isotropic in momentum space. Due to the relation Hq = µ0iq ×Aq, the
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orthogonality between the momentum q and the magnetic field H has to be considered. In fact, for
the respective susceptibility components in the relation Mα(0) = χαβ(q⊥)||q|→0H

β(0), the transverse
momentum q⊥ has to be chosen such that q⊥ ⊥ H. For example, for H = |H|ex it must hold
q⊥ = |q|

(
cosϕ, sinϕ, 0

)
. After some algebra the diagonal components can be simplified to

χxx(0, 0) (∗)= χ0
2
c2

a2 Γ̃zzyy , χyy(0, 0) (∗)= χ0
2
c2

a2 Γ̃zzxx , χzz(0, 0) (∗)= χ0
2

(
2Q̃Hzz(0) + Γ̃yyxx

)
, (3.76)

where the value of the susceptibilities scales with the number χ0 = µ0Te
2a4/V0~2. The Planck‘s

constant ~ has been reinstalled.13 The rescaled quantities Q̃H and Γ̃γδαβ are defined in the appendix
C.3. The value Q̃Hzz(0) > 0 is a purely para-magnetic contribution to the susceptibility χzz(0, 0). The
numerical evaluation of the formulae (3.76) is done in the high-temperature limit, i.e. for the leading
Matsubara term with νn = 0, with the results displayed in figure 3.8(b). Similar to the conductivity,
the susceptibility displays an enhanced signal with the onset of the fluctuation-induced phase, and
it develops an in-plane anisotropy where, for the chosen ground state (θc = π), it holds χyy < χxx.
Note that for both quantities, conductivity and susceptibility, the inequalities between the xx and yy
components flip as the ground state becomes θc → 0.

3.4 Lattice deformation due to vestigial nematicity

Here, we investigate the interplay between the lattice degrees of freedom and the vestigial nematic
order parameter. To this end, we introduce the language of elasticity theory and classify the occurring
tensor with respect to their lattice transformation properties in Sec. 3.4.1. In section 3.4.2 we study
how the vestigial nematic order parameter induces certain strain components and thereby, causes
a lattice distortion. Also, the implications of nematic fluctuations above Tnem with respect to the
renormalization of elastic constants and the sound velocity are analyzed.

3.4.1 Elasticity- and strain tensor, and their symmetry

In crystal elasticity theory infinitesimal strain is measured with the strain tensor

εαβ = 1
2

(
∂uα
∂rβ

+
∂uβ
∂rα

)
, (3.77)

which consists of the symmetrized differential of the lattice displacement field uα(r) with α, β =
{1, 2, 3}. A structural phase transition is directly reflected by the strain tensor, and hence, certain
strain components play the role of an order parameter in a Ginzburg-Landau sense. Let us briefly
develop a theoretical framework suited for a proper description of lattice energetics. For this purpose,
we follow the work by [54]: The energy of a solid must not depend on arbitrary rigid displacements
r → r + tD and thus, the potential energy should only depend on position differences r1 − r2. By
assuming that this difference is small compared to typical measurement length scales, the coordinate
transformation r → r′(r) can be expanded and higher order terms may be neglected. Then, the

13We have marked the identities in (3.76) with an asterisk to annotate that the underlying relations have only been
verified numerically, not analytically.
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potential energy V =
∫
r V(r) is characterized by a potential per unit undeformed volume

V(r) = V
(
∂r′α(r)
∂rγ

)
, (3.78)

which is a function of first-order derivatives only. The constant argument disappears due to the
invariance under constant displacements. If one further imposes the invariance of the description
under proper rotations of the crystal, the potential V → V

(
Sαβ

)
becomes a function of the six scalar

products Sαβ = ∇rr′α(r) · ∇rr′β(r). The potential density can equally well be expressed in terms of
the shifted variable Ŝαβ = (Sαβ − δαβ)/2 which is directly related to the strain tensor (3.77). This
becomes explicit when introducing the lattice displacement uα(r) = r′α(r) − rα, such that it holds
Ŝαβ = εαβ + 1

2∇ru(r) · ∇ru(r). In accordance with the assumption of the derivative expansion the
second term can be neglected and one finds in the limit of infinitesimal strain

V = 1
2

∫
r
εαβCαβγδεγδ . (3.79)

The absence of a linear term in ε is based on the assumption that the system has originally (e.g.
at a high temperature) been in an equilibrium configuration [118]. As key observations of this brief
introduction into the energetics of lattices, we keep in mind that the strain tensor εαβ is the defining
field variable, and that the corresponding ‘mass’ is represented by the elastic stiffness tensor, or briefly
the elastic tensor Cαβγδ.

In terms of transformation properties we deduce from the definition Sαβ = ∇rr′α(r) · ∇rr′β(r) that
Sαβ (and similarly the strain tensor εαβ) transforms according to the product representation of two
vectors. More precisely, it transforms according to the symmetric part of the product representation,
which makes the strain tensor εαβ a symmetric second-ranked tensor with six independent components,
owed to εαβ = εβα. Accordingly, the elastic stiffness tensor Cαβγδ becomes a symmetric fourth-ranked
tensor, whose number of independent components is reduced to 21 owed to the symmetry constraint
and the exchange of indices Cγδαβ = Cαβγδ.14 The number of components further reduces in the
presence of non-trivial crystal symmetry operations like rotations, reflections or inversion. Let us also
note that the volume change associated with the lattice transformation implemented in (3.78) is given
by the corresponding Jacobian

V ′

V
= det

(
∂r′α(r)
∂rγ

)
= det

(
δαγ + ∂uα(r)

∂rγ

)
≈ 1 + divu = 1 + tr ε , (3.80)

which has been expanded for small derivatives. Accordingly, only trivial strain, i.e. tr ε 6= 0, can cause
a volume change. The conjugated field to the strain tensor εαβ is called the stress tensor σ(s)

αβ and it
describes externally exerted stresses in the various symmetry channels. The quantity σ(s)

αβ is again a
symmetric second-ranked tensor15and in linear response theory the important relation between stress-

14If we had not imposed rotational invariance, there would be 45 components, see [54] for a discussion.
15We have added the superindex (s) to distinguish the stress tensor from the electrical conductivity used in the previous

section.
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and the strain tensor reads

σ
(s)
αβ = Cαβγδεγδ . (3.81)

It is common practice in elasticity theory to introduce a contracted representation that maps the
tensor equations (3.79) and (3.81) to regular matrix multiplications. To this end, the six elements of
the second ranked tensors are compressed into the vectors

ε =
(
ε1, ε2, ε3, ε4, ε5, ε6

)T =
(
εxx, εyy, εzz, 2εyz, 2εzx, 2εxy

)T
,

σ(s) =
(
σ

(s)
1 , σ

(s)
2 , σ

(s)
3 , σ

(s)
4 , σ

(s)
5 , σ

(s)
6

)T
=
(
σ(s)
xx , σ

(s)
yy , σ

(s)
zz ,

σ
(s)
yz + σ

(s)
zy

2 ,
σ

(s)
xz + σ

(s)
zx

2 ,
σ

(s)
xy + σ

(s)
yx

2

)T
,

and the elastic stiffness tensor turns into a matrix

C =

 c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
c44 c45 c46

c55 c56
c66

 .

The stress relation (3.81) now becomes the matrix equation of the form σ(s) = Cε and the potential
energy reads

V = 1
2

∫
r
εTCε . (3.82)

Symmetry properties in SO(3) As mentioned earlier, the strain tensor transforms as the symmetric
product representation of two vectors. To develop an intuitive understanding, let us first assume that
the system has a full rotational symmetry, i.e. its symmetry group is SO(3). The corresponding IRs
read ΓJ with J denoting the angular momentum. A vector in this group transforms like (1.18) and
falls into the ΓJ=1 IR. Its product representation becomes

ΓJ=1 ⊗ ΓJ=1 =
(
ΓJ=0 ⊕ ΓJ=2

)
s
⊕
(
ΓJ=1

)
a
,

where we have highlighted the symmetric and the asymmetric IRs. The strain tensor—transforming
according to the symmetric part—decomposes into a singlet and a quintuplet representation. In order
to classify the strain components in the sectors ΓJ=0 and ΓJ=2, we study the transformation property
of a generic strain component εn,l = λn,lαβ∂αuβ where λn,l is a matrix characterized by an IR n and its
component l = 1, . . . ,dim(n) and where both, ∂α and uβ transform like vectors. The matrices λn,l are
chosen such that they satisfy the condition

Rv(g)α′αRv(g)β′βλn,lα′β′ = Rn(g)ll′ λn,l
′

αβ , (3.83)
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D3d λn,lαβ∂αuβ strain tensor component

A1g
∂xux + ∂yuy εA1g ,1 = 1√

2

(
εxx + εyy

)
∂zuz εA1g ,2 = 1√

2εzz

A2g ∂xuy − ∂yux 0

Eg

(
∂xux − ∂yuy,−∂xuy − ∂yux

)
εEg ,1 = 1√

2

(
εxx − εyy,−2εxy

)(
∂yuz + ∂zuy,−∂xuz − ∂zux

)
εEg ,2 =

√
2
(

2εyz,−2εzx
)(

∂yuz − ∂zuy,−∂xuz + ∂zux

) (
0, 0
)

Table 3.2: The matrices λn,l are determined from the condition (3.83), and they are related to
the six strain tensor by εn,l = λn,lαβ∂αuβ .

and hence, they determine the transformation property for the corresponding strain component εn,l.
Using the transformation matrices of SO(3), the singlet and quintuplet strain components become

ΓJ=0 :
(
εxx + εyy + εzz

)
(3.84)

ΓJ=2 :
(
εxx − εyy + 2iεxy, 2εzx + 2iεyz, εzz −

εxx + εyy
2 , 2εzx − 2iεyz, εxx − εyy − 2iεxy

)
. (3.85)

The singlet corresponds to the trace of the elasticity tensor and it is thus, the only component that
leads a volume change, see Eq. (3.80). The other five components do not cause a volume change and are
termed as shear strain. The number of independent elastic tensor components Cαβγδ is determined by
the number of trivially transforming bilinear combinations of the symmetric strain tensor. Specifically,
one computes the product representation of the symmetric strain tensor(

ΓJ=0 ⊕ ΓJ=2
)
⊗
(
ΓJ=0 ⊕ ΓJ=2

)
=
(
2ΓJ=0 ⊕ 2ΓJ=2 ⊕ ΓJ=4

)
s
⊕
(
ΓJ=1 ⊕ ΓJ=2 ⊕ ΓJ=3

)
a
, (3.86)

and counts how often the trivial (here ΓJ=0) IR appears (here twice). Thus, the fully rotational
invariant system only allows for two independent elastic tensor components which are associated to
a transverse and a longitudinal mode. From the decomposition (3.86), one notes that the bilinear
separates into a 21-dimensional symmetric and a 15-dimensional asymmetric block, in agreement with
the maximal number of 21 independent components.

Symmetry properties in D3d The situation changes in a lattice where a point group reduces the
symmetry operations. Let us consider here the point group D3d (cf. table 1.1) which is the relevant
symmetry group for doped Bi2Se3. In this group, the vector representation reads Eu ⊕ A2u and the
strain tensor decomposes into(

Eu ⊕A2u
)
⊗
(
Eu ⊕A2u

)
=
(

2A1g ⊕ 2Eg
)
s
⊕
(
A2g ⊕ Eg

)
a
,

with four IRs constituting the symmetric part. Using the transformation matrices (2.5), the matrices
λn,l of the strain components εn,l = λn,lαβ∂αuβ can be directly determined via (3.83), see table 3.2. It is

74



3 Vestigial superconductivity

convenient to work within the symmetry basis spanned by the IRs, where the strain- and stress tensors
are expressed by

εD3d =
(
εA1g

εEg

)
, with εA1g =

(
εA1g ,1

εA1g ,2

)
, εEg =

(
εEg ,1,1, εEg ,1,2, εEg ,2,1, εEg ,2,2

)T
, (3.87)

σD3d =
(
σA1g

σEg

)
, with σA1g =

(
σA1g ,1

σA1g ,2

)
, σEg =

(
σEg ,1,1, σEg ,1,2, σEg ,2,1, σEg ,2,2

)T
. (3.88)

The mapping between the original and the symmetry basis ε = R−1
0 εD3d is established via the non-

orthogonal matrix

R0 = 1√
2

 1 1 0 0 0 0
0 0 1 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 −1
0 0 0 2 0 0
0 0 0 0 −2 0

 ,

with detR0 = 1. In the symmetry basis, the strain tensor εD3d transforms according to εD3d →
Rε(g)εD3d upon the point group symmetry operations g, where Rε(g) = (RA1g(g)⊕RA1g(g)⊕REg(g)⊕
REg(g)). This allows for a direct determination of the symmetry-allowed components of the stiffness
tensor in the potential energy

V = 1
2

∫
r

(
εD3d

)T
CD3dεD3d . (3.89)

The constraint that the potential energy has to transform trivially under the point group operations
g imposes the condition RTε (g)CD3dRε(g) = CD3d . We derive the stiffness tensor16

CD3d =
(
CA1g 0

0 CEg

)
, with CA1g =

(
cA1g ,1 cA1g ,3
cA1g ,3 cA1g ,2

)
, CEg =

(
cEg ,1 cEg ,3
cEg ,3 cEg ,2

)
⊗ 12 . (3.90)

In the D3d point group the stiffness tensor has the six independent components {cA1g ,i, cEg ,i} with
i = 1, 2, 3. For practical purposes, we also relate them to the components in the original basis which
can be deduced from

C = RT0 CD3dR0 =


c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14
0 0 0 0 c14

1
2 (c11−c12)

 ,

leading to the identification c11 = 1
2cA1g ,1 + 1

2cEg ,1,c12 = 1
2cA1g ,1 − 1

2cEg ,1, c33 = 1
2cA1g ,2, c44 = 2cEg ,2,

c13 = 1
2cA1g ,3, c14 = cEg ,3.

Finally, let us provide quantitative values for the elastic components: In Ref. [119] first principle
calculations were performed to determine these elastic constants for Bi2Se3 as a function of isotropic
pressure. At ambient pressure the authors have obtained the values c11 = 103.2 GPa, c12 = 27.9 GPa,
c33 = 78.9 GPa, c44 = 37.7 GPa, c13 = 35.4 GPa, c14 = −26.5 GPa. With increasing pressure the
magnitudes of these constants grow more or less uniformly.
16For clarity, the matrix structure of CEg involes sub-diagonals; it is not block diagonal.
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3.4.2 Interplay between nematicity and elasticity

After the introductory considerations on elasticity theory, we are now ready to study the impact of the
vestigial nematicity on the underlying lattice degrees of freedom. The interplay between the electronic
and lattice degrees of freedom with respect to phase transitions is often considered as a ‘chicken or egg’
causality dilemma. In our theory for Bi2Se3 with no intrinsic incorporation of a lattice softening, the
answer is unambiguous: the electronic degrees of freedom drive the vestigial nematic phase transition
and cause the impact on the structural order via the symmetry-allowed nemato-elastic coupling term

Snem−el = V
∑
q

BEg
q ·

(
κc1ε

Eg ,1
−q + κc2ε

Eg ,2
−q

)
+ V

∑
q

BA1g
q

(
κA1ε

A1g ,1
−q + κA2ε

A1g ,2
−q

)
. (3.91)

Here, four coupling constants κc{1,2} and κA{1,2} are allowed. Note the absence (to leading order) of
a direct coupling between the strain tensor and the corresponding bilinear combination BA2g . This
implies that the chiral state qualitatively differs from the nematic state in that it does not trigger a
lattice distortion. In the following, we study the effect of the coupling (3.91) in two steps: First we
discuss the lattice deformations caused in the vestigial phase, see section 3.4.2.1, and thereafter, in
section 3.4.2.2 we analyze the role of nematic fluctuations above Tnem. Details on the derivation are
laid out in the appendix C.4.

3.4.2.1 Lattice deformation caused by vestigial nematicity

Let us describe the elasto-nematic coupling in the vicinity of the vestigial nematic phase transition
where the Ginzburg-Landau formalism is applicable. Starting from the original superconducting basis,
the relevant ingredients involve the inclusion of Eq. (3.91) to the original action (3.7), integrating out
the superconducting fluctuations, and a Ginzburg-Landau expansion in terms of CEg , see appendix
C.2 for details. The resulting elasto-nematic problem S = SEg + Sel + Snem−el can be cast by the
effective actions

SEg = NT

∫
r,τ

{
rc|CEg |2 + gc

((
CEg ,1

)3
− 3CEg ,1

(
CEg ,2

)2 )
+ uc|CEg |4

}
Sel = NT

∫
r,τ

{
1
2

(
εD3d

)T
CD3dεD3d − σD3d · εD3d − CEg ·

(
κ′c1ε

Eg ,1 + κ′c2ε
Eg ,2

)}
,

in position space x = (r, τ). Additionally, the system may be subject to an external stress σD3d .
The nematic part of the system already fulfills the saddle-point solution with the order parameter
CEg0 = |CEg0 |(cos(θc), sin(θc)) characterized by the two three-fold degenerate solutions (3.18),(3.19).
Minimization of the action with respect to the strain components yields the saddle-point equations

εA1g =
(
CA1g

)−1
σA1g , εEg =

(
CEg

)−1
(
σEg +

 κ′c1CEg0
κ′c2CEg0

) , (3.92)

with the inverse elastic matrix (
CEg

)−1
=
(

ĉEg ,2 −ĉEg ,3
−ĉEg ,3 ĉEg ,1

)
⊗ 12 ,
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sc + nematic nematic metallic

temperatureTnemTc

Figure 3.9: Vestigial nematic scenario from the viewpoint of the unit cell deformation. We have
chosen an exaggerated distortion η = 0.1. The plotted superconducting state is the ∆Eu = (1, 0)
shown in Fig.2.4. For more information on the crystal properties see section 2.2.

and ĉEg ,i = cEg ,i/(cEg ,1cEg ,2 − (cEg ,3)2). Contemplating the saddle-point equations we note first that
there is no coupling between the nematic order parameter and the A1g components of the strain
tensor. Consequently, nematicity does not cause any dilatation. Second, the nematic order parameter
acts as a new ‘stress field’ and hence, it induces all of the εEg components including the out-of-
plane components εEg ,2. These strain components naturally entail a deformation of the unit cell. For a
simplified visualization of the in-plane deformation, we assume that the out-of-plane strain components
εEg ,2 are small. The in-plane doublet εEg ,1 =

(
εxx − εyy,−2εxy

)
/
√

2 then transforms (similar to CEg)
like a real Eg order parameter, and thus εEg ,1 realizes the very same ground state phases. Two such
representative states are εEg ,1 =

(
±1, 0

)
. These states are characterized by a compression along x, and

an extension along y (or vice-versa). The conservation of the unit cell volume (or the area A0 = 3ab)
imposes a constraint on the lattice parameter variations, as

a′ = a(1 + η) , b′ = b/(1 + η) (3.93)

with η ∈ R and |η| � 1. We sketch the lattice distortions within a vestigial nematic scenario in figure
3.9 where we also illustrate one possible unit cell deformation, according to Eq. (3.93). Third, we note
that the saddle-point equation (3.92) can also be read in reverse, i.e. any finite Eg strain component
εEg can induce a nematic order parameter CEg . This is particularly interesting in the context of doped
Bi2Se3 as a puzzling observation has been reported: While the nematic ground state is three-fold
degenerate, experiments report a sample-dependent (yet fixed) nematic direction. This axis is robust
against many thermal cycles which is counter-intuitive if one assumes the degeneracy to hold [97, 99].
A viable explanation for this circumstance involves random internal strain fields which do not average
out and therefore generate a small but finite Eg strain. The coupling of this strain field to the nematic
order parameter breaks the threefold degeneracy and defines a preferred condensation direction. This
hypothesis would imply that the nematic order parameter is finite above Tnem but owed to its Z3-
Potts nature, the first-order phase transition at Tnem would still be well-defined, see Ref.[20]. Let us
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conclude by highlighting a promising experimental route to test these ideas. Due to recent advances
in measuring samples under controlled external stress, experiments are currently conducted which aim
to switch between the nematic phases A and B upon the application of external stress [120].

3.4.2.2 Renormalization due to nematic fluctuations above Tnem

Above the nematic transition Tnem the order parameter CEg is zero but as the system approaches
the phase transition, nematic fluctuations get enhanced. In section 3.2.7 we have computed the corre-
sponding susceptibility and determined its Curie-Weiss temperature behavior. We now want to discuss
how the nematic fluctuations affect the underlying lattice. The enhanced fluctuations leave an imprint
on the lattice degrees of freedom and the approaching phase transition is signaled by a so-called lattice
softening, where certain elastic constants and the sound velocity of the corresponding acoustic phonon
modes decrease simultaneously. In this part, we first study renormalization of the elastic constants
before we determine the directions of the vanishing sound velocity. The elastic constants can experi-
mentally be accessed by means of resonant ultra sound experiments [121], or bending experiments to
determine the shear modulus [122]. Inelastic neutron scattering measurements can directly detect the
directions of the decreasing acoustic phonon branches [123].
Owed to the linear coupling between the nematic bilinear combination BEg and the strain tensor εEg ,

the respective response functions are related through the identity (a rigorous derivation is provided in
the appendix C.4) (

Cr,Egq

)−1
=
(
CEg

)−1
+
(
CEg

)−1
κ̂cχ̂nem(q)κ̂c

(
CEg

)−1
,

that relates the nematic susceptibility

χ̂nem(q) =
(

1 1
1 1

)
⊗ χnem(q) , with κ̂c =

(
κc1 0
0 κc2

)
⊗ 12 ,

with the renormalized elastic tensor Cr,Egq . In the long wavelength limit (q = 0) we use the identity
χ̂nem(0) = χval

nem(0)12 with χval
nem(0) = −Π̃z,z/8vrc (cf. Eq.3.65) and compute the renormalized elastic

tensor

Cr,Egq = 1
1 + χval

nem(0)
cEg,1cEg,2−c2Eg,3

(
κc2ζ13 + κc1ζ23

)
cEg ,1 + χval

nem(0)ζ2
13

cEg,1cEg,2−c2Eg,3
cEg ,3 −

χval
nem(0)ζ13ζ23

cEg,1cEg,2−c2Eg,3

cEg ,3 −
χval

nem(0)ζ13ζ23
cEg,1cEg,2−c2Eg,3

cEg ,2 + χval
nem(0)ζ2

23
cEg,1cEg,2−c2Eg,3

⊗ 12 .

Here, we have introduced ζ13 = κc2cEg ,1 − κc1cEg ,3 and ζ23 = κc1cEg ,2 − κc2cEg ,3. In the critical limit
where χval

nem(0) → −∞, the determinant of the matrix vanishes and hence, at least two eigenvalues
vanish accordingly.

The acoustic phonon spectrum is defined as the eigenvalue spectrum of the dynamic matrix D(q),
where the modes are computed from det(ρω2 − D(q)) = 0. In order to derive the dynamic matrix,
we exploit the stress tensor σ(s) as being a measure for the applied force per unit volume defined by

Fα(r) =
∑

β

∂σ
(s)
αβ (r)
∂rβ

. This allows us to establish a classical equation of motion for the displacement
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Figure 3.10: Plotted sound velocity on a unit sphere. The sound velocity vanishes along the
directions of the 12 red spots.

field uα(r) reading

ρ
∂2uα(r)
∂t2

=
∑
β

∂σ
(s)
αβ(r)
∂rβ

,

with ρ denoting the mass density. T insertion of the linear relationship between stress and strain (3.81)
leads to the wave equation

ρ
∂2uα(r)
∂t2

=
∑
β,γ,δ

Cαβγδ
∂2uγ(r)
∂rβ∂rδ

,

which by means of the wave ansatz uα(r) = u
(0)
α ei(ωt−q·r), directly converts into the eigenvalue

problem ρω2u
(0)
α =

∑
γ Dαγ(q)u(0)

γ . Thu, we define the dynamic matrix as

Dαγ(q) =
∑
β,δ

Cαβγδqβqδ .

The eigenspectrum of the dynamic matrix contains a phonon mode with vanishing sound velocity cs(q̂)
as soon as |χval

nem(0)| grows large. This mode is found along one of the twelve directions characterized
by (using q̂ = (cosϕs sin θs, sinϕs sin θs, cos θs))

θs = π

2 & ϕs = {0, 1, 2, 3, 4, 5}π3 , θs = π

4 & ϕs = {1, 5, 9}π6 , θs = 3π
4 & ϕs = {3, 7, 11}π6 , (3.94)

and indicated in figure 3.10. Along these directions the acoustic spectrum evolves quadratically and
as mentioned above, inelastic neutron scattering experiments should be able to detect the decreasing
sound velocity [123].
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3.5 Implications of an external magnetic field

In this section we discuss the effect of an applied magnetic field on the properties of the superconducting
state—in the presence and in the absence of a vestigial nematic phase. A particular interest arises from
the direct coupling α′BzBA2g between the magnetic field component Bz and the bilinear combination
BA2g which is symmetry-allowed due to the multi-dimensional nature of the order parameter. In section
3.5.1 we consider a magnetic field applied in the z-direction where we investigate the interplay between
the α′-term and the orbital contributions with respect to the possible ground state phases, as well as
the structure of the vortex state. Later, in section (3.5.2) we study the magnetic field in the basal plane
and revisit the angle-dependence of the upper critical field from the viewpoint of a vestigial scenario.
Doped Bi2Se3 is a type-II superconductor with a rather large Ginzburg-Landau parameter κ =

λL/ξ. Consequently, the Shubnikov state appears at a small magnetic field and occupies most of the
phase diagram. In this state, the order parameter is inhomogeneous since the system is penetrated
by quantized magnetic flux lines, so-called vortices, that form a superlattice. The description of a
vortex lattice state goes back to Abrikosov [124]. It has been shown that the energetically most
favorable vortex configuration is that of a close-packed triangular lattice [125]. For multi-component
superconductors possible vortex lattices have been subject to intense studies in the context of UPt3
and Sr2RuO4 [126–130]. Most noticeably, it has been found that the multi-component pairing states
can favor a square or a rectangular lattice over a triangular one and that the vortex shape can become
elongated. The situation in doped Bi2Se3 is quite comparable with elongated vortices already reported
by STM imaging [17].
In order to address the above questions we consider a system close to the upper critical field, where

we can solve the linearized Ginzburg-Landau equations: Starting from the Ginzburg-Landau expansion
(3.7) in the presence of a magnetic field the real-space action reads

S = NSC +N

∫
r

(
∆Eu

)†((
R0 + f

A1g
−i∇r−eA

)
τ0 +

(
f
Eg
−i∇r−eA + CEg

)
· τEg + α′Bzτ

y

)
∆Eu . (3.95)

We have restricted ourselves to static solutions and assumed that the magnetic field is uniform B =
|B|(cosϕB sin θB, sinϕB sin θB, cos θB) with the vector potential being A(r) = −r ×B/2. Note that
this choice of magnetic field leaves the inversion symmetry intact such that the solution will decompose
into party even and odd sectors. Next, we introduce the covariant derivatives Dj = −i∂j − eAj(r).
Similar to the Landau quantization for a fermionic theory, the magnetic field triggers a quantum
harmonic oscillator algebra with [Dx, Dy] = ieBz, [Dy, Dz] = ieBx, and [Dz, Dx] = ieBy. We derive
the linearized Ginzburg-Landau equations by varying the action (3.95) with respect to ∆Eu and for
later convenience, we represent the equations in the basis ∆Eu,± = ∆Eu,1 ± i∆Eu,2,

0 =
(
R0 − α′Bz + d0(D2

x +D2
y) + dzD2

z

)
∆Eu,+ +

(
d′D2

+ + id̃
{
Dz, D−

}
+ + CEg ,−

)
∆Eu,− (3.96)

0 =
(
R0 + α′Bz + d0(D2

x +D2
y) + dzD2

z

)
∆Eu,− +

(
d′D2

− − id̃
{
Dz, D+

}
+ + CEg ,+

)
∆Eu,+, (3.97)

with CEg ,± = CEg ,1 ± iCEg ,2 and D± = Dx ± iDy.17 The above equations are analyzed separately for
the two cases of an out-of-plane B = Bzez and an in-plane B = |B|(cosϕBex + sinϕBey) magnetic
field.
17Additionally, the lattice constants have been absorbed into the parameter according to (d0, d′)a2 → (d0, d′), dzc2 → dz

and d̃ac→ d̃.
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3.5.1 Magnetic field in the z-direction

With the magnetic field pointing into the z-direction B = Bzez the harmonic quantization will occur
in the x, y plane since [Dx, Dy] = ieBz. Moreover, we neglect modulations along the vortex axis as
they commonly increase the vortex energy [32]. Thus, we require Dz∆Eu,± = 0. With the annihilation
and creation operators a, a† = (Dx ± isign(Bz)Dy)/

√
2e|B| it holds [a, a†] = 1, and the gap equations

become

0 =
(
R̂0 − α̂ sign(Bz) + (a†a+ 1

2)
)

∆Eu,+ +
(

d̂′
(
θ(Bz)a2 + θ(−Bz)(a†)2

)
+ ĈEg ,−

)
∆Eu,− (3.98)

0 =
(
R̂0 + α̂ sign(Bz) + (a†a+ 1

2)
)

∆Eu,− +
(

d̂′
(
θ(Bz)(a†)2 + θ(−Bz)a2

)
+ ĈEg ,+

)
∆Eu,+, (3.99)

with the notation R̂0 = R0/2e|B|d0, α̂ = α′/2ed0, ĈEg ,+ = CEg ,+/2e|B|d0, d̂′ = d′/d0. For clarity, we
choose Bz > 0 in the following. The case Bz < 0 is immediately covered by interchanging ∆Eu,+ ↔
∆Eu,− and CEg ,+ ↔ CEg ,−. Following the approach in [128, 131] we expand the superconducting order
parameter in the basis of the unperturbed harmonic oscillator

∆Eu,+ =
∞∑

n+=0
an+ |n+〉 , ∆Eu,− =

∞∑
n−=0

bn− |n−〉 , (3.100)

where importantly, the two bases {|n+〉} and {|n−〉} are part of the same Hilbert space. It holds that
a|n±〉 = √n± |n± − 1〉 and a†|n±〉 =

√
n± + 1 |n± + 1〉. Inserting these expressions into (3.98),(3.99)

yields a recursion formula for the expansion coefficients

R̂0an = an

(
α̂− n− 1

2

)
− d̂′ bn+2

√
(n+ 2) (n+ 1) − ĈEg ,−bn (3.101)

R̂0bn = bn

(
− α̂− n− 1

2

)
− d̂′ an−2

√
n(n− 1) − ĈEg ,+ an , (3.102)

where n = 0, 1, 2, . . . . As a consequence of the inversion symmetry, the two subspaces of even and
odd n are uncoupled. In a one-to-one correspondence even and odd identify the parity eigenvalues.
With the lowest lying eigenstate being parity even, the ground state should also be parity even. We
introduce the vector ζ = (b0, a0, b2, a2, b4, a4, . . . )T for the even coefficients, and recast the recursion
formula as the eigenvalue problem R̂0ζ = Mζ with the matrix

M =


−α̂− 1

2 −ĈEg,+ 0 0 0 0 ...

−ĈEg,− α̂− 1
2 −d̂′

√
2 0 0 0

0 −d̂′
√

2 −α̂− 5
2 −ĈEg,+ 0 0

0 0 −ĈEg,− α̂− 5
2 −d̂′

√
12 0

0 0 0 −d̂′
√

12 −α̂− 9
2 −ĈEg,+

0 0 0 0 −ĈEg,− α̂− 9
2 ...

... ... ...

 . (3.103)

The interpretation of the eigenwert problem is the following. Let us assume that λ(j) and u(j) (j =
1, 2, . . . ) are the eigenvalues and -vectors of the matrix M . Then, the matrix equation is solved for
ζ = u(j) when R̂0 = λ(j) for any of the eigenvalues. Using R0 = a0(T − T 0

c ) + CA1g , the equation can
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(a) (b) (c)

Figure 3.11: Three possible phase diagrams for a magnetic field along the z-direction. In case (a)
the system undergoes split transitions where it first enters a chiral phase. In cases (b) and (c) the
finite nematic order parameter is present right at Tc, and the systems are nematically distorted.
The shapes of a single vortex in the respective phases are indicated.

be re-expressed as

0 = a0

(
T −

(
T 0
c + 2e|B|d0λ

(j) − CA1g

a0

))
,

and it is first satisfied when R̂0 reaches the largest eigenvalue λmax = max(λ). Thus, the highest
possible Tc(B) is achieved for λ = λmax. The diagonal elements of the matrix M become increasingly
smaller such that the maximum eigenvalue should be dominated by the first few matrix entries. We
study the maximum eigenvalue of M in two steps. First, we consider the simpler case without vesti-
gial nematic order where we show that for a certain parameter range, the system can undergo split
transitions where the precursor phase is non-nematic. Second, we discuss the vestigial nematic case.
In the absence of a nematic order, it is straightforward to determine the largest eigenvalue of the

matrix M . In agreement with Ref. [131] we find two distinct possible ground state arrangements with
the maximum eigenvalue

λmax =

λ
(I) = -1

2 − α̂ , α̂ < −(d̂′)2/2

λ(II) = -3
2 +

√(
1 + α̂

)2 + 2(d̂′)2 , α̂ > −(d̂′)2/2
. (3.104)

The corresponding eigenvectors read u(1) =
(
1, 0, 0, 0, . . .

)T and u(2) = (0, η+,−sign(d̂′)η−, 0, . . . )T

with η± = 1√
2

(
1 ± (1 + α̂)/

√(
1 + α̂

)2 + 2(d̂′)2
)1/2

. Let us reassess the previous assumption of an
absent nematic order parameter. For this, we explicitly state the corresponding superconducting order
parameters (3.100) reading

(I) :
(

∆Eu,+

∆Eu,−

)
= |∆Eu

0 |

(
0

ϕ0(r)

)
, (II) :

(
∆Eu,+

∆Eu,−

)
= |∆Eu

0 |

(
ηλ+ϕ0(r)

−sign(d̂′)η−ϕ2(r)

)
, (3.105)
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(a) (b) (c)

Figure 3.12: Spatial structure of the harmonic oscillator eigenfunction ϕ0(r) and ϕ2(r), and their
addition with η = 0.6.

with the lowest lying harmonic oscillator eigenfunctions

ϕ0(r) =
√
e|B|
2π e−

e|B|
4 (x2+y2) , ϕ2(r) = (e|B|)

3
2

4
√
π

(x− iy)2 e−
e|B|

4 (x2+y2) . (3.106)

The insertion of the states (3.105) into the nematic correlation function CEg ,l0 = −2v〈(∆Eu
0 )†τEg ,l∆Eu

0 〉
shows that the second state (II) yields a finite value |CEg0 | and thus, it violates the initial assumption.
The second state is to be discarded. The first state (I) on the other hand, is in line with the assumption
(|CEg0 | = 0) and deserves further attention.
The realization of the first case (I) is subject to the condition |α̂| > (d̂′)2/2. To start with a simple

expression, let us assume that all gradient terms can be neglected. In this limit, the action becomes
diagonal

S = TNV

(
|∆Eu,+|2

(
r0 − α′Bz

)
+ |∆Eu,−|2

(
r0 + α′Bz

))
,

with the magnetic field lifting the (∆Eu,1,∆Eu,2)-degeneracy. This causes the system to undergo a
split transition where it first enters a purely chiral phase at T (1)

c = T 0
c + |α′Bz|/a0 before it undergoes

a second phase transition at T (2)
c = T 0

c − |α′Bz|/a0 where the state develops a nematic character and
breaks the in-plane rotational symmetry. In the discussed case (I), the gradients are not completely
negligible but the situation is conceptually the same. The key difference is that the upper transition
temperature Tc = T 0

c −CA1g/a0 +Bz(|α′|−ed0)/a0 experiences a net decrease with Bz due to the trivial
fluctuations d0. In fact, the microscopic analysis (see Fig. B.1(a)) shows that the slope |α′| − ed0 is
negative. The solution (I) is rotationally invariant and the basis functions employed to construct the
vortex solution inherit this invariance. We have sketched the resulting phase diagram in figure 3.11(a).
In the presence of a finite nematic order parameter CEg0 all matrix elements in M are coupled.

Nonetheless, since the diagonal entries decrease with growing n, the first few entries dominantly con-
tribute to λmax. As long as CEg0 is not too large, it is reasonable to study the leading 3× 3 matrix. In
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this case, the maximum eigenvalue and its eigenvector take the analytic form

λ(3) = −3
2 + 1− α̂

3

(
1 + 4η(3) cos

(
1
3 arccos

(
4(1− α̂)2 + 27|CEg0 |2

(1− α̂)2(2η(3))3 − 3
2η(3)

)))
, (3.107)

u(3) = 1
|u(3)|

(
2(d̂′)2 + (1 + α̂)2 − (λ(3) + 3

2)2, ĈEg ,−
(
λ(3) + 3

2 + 1 + α̂
)
,−
√

2d̂′ĈEg ,−, 0, 0, . . .
)T
,

(3.108)

with η(3) =
√

1 + 3(α̂+ (d̂′)2/2 + |CEg0 |2/4)/(1− α̂)2.18 While the above expressions appear quite
unhandy, the solution becomes more comprehensible if it is translated into the superconducting order
parameter eigenstate (

∆Eu,+

∆Eu,−

)
= |∆Eu

0 | u
(3)
1

 û
(3)
2 ϕ0(r)

ϕ0(r) + û
(3)
3 ϕ2(r)

 , (3.109)

with û
(3)
2,3 = u

(3)
2,3/u

(3)
1 . Since û(3)

3 ∼ d̂′ĈEg ,− the nematic order parameter couples the two oscillator
eigenfunctions leading to the distinct two-fold rotational symmetry as illustrated in figure 3.12. The
axis of elongation (either x or y) depends on the sign of û(3)

3 ∼ d̂′ĈEg ,− which is a fixed combination,
see discussion below. Note that the solutions (3.109) form the basis for the construction of the vortex
lattice. As such, the vortex solution will inherit the distortion from (3.109) [32, 130]. Figure 3.11
shows the complete phase diagram with the cases where a nematic order parameter is present, either
via joint transition (b), or by means of a vestigial nematic phase (c).

18To recover the two uncoupled cases, the two identities are useful cos(3α) = 4 cos3(α) − 3 cos(α), and
arccos(cos(3arccos(1/2η))) = 3arccos(1/2η)θ(1− η)θ(η + 1

2 ) + (2π − 3arccos(1/2η))θ(η − 1).
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3.5.2 Magnetic field in the basal plane

With the magnetic field being applied in the basal plane B = |B|(cosϕBex + sinϕBey) the angular
dependence of the upper critical field Hc2(ϕB) can be determined. In Ref. [132] this problem has been
addressed in relation to doped Bi2Se3. The key result is that a two-fold symmetric angle-dependence
of the upper critical field emerges as soon as an Eg ‘symmetry breaking field’ is present. While the
authors had to apply an external stress σEg ,1 (3.88), in our case this ‘symmetry breaking field’ emerges
naturally as the order parameter CEg in the vestigial nematic phase.
Since the mathematical treatment is similar to that of the out-of-plane field, the derivation has

been moved into the appendix C.5. We focus on the resulting upper critical field, which—in absence
and presence of nematic order—is shown in figure 3.13. In agreement with previous studies we find
a two-fold angle dependence as soon as the nematic order parameter is finite. The orientation of the
ellipse however, is unconditionally fixed within our theory. Specifically, the elongated axis has to align
with the crystal x-axis. To demonstrate this, we use the result from Ref.[132] where the upper critical
field has been analytically derived in the limit of small d̃, reading

Hc2(ϕB) = H
(0)
c2

(
1− d′

2d0
sign(CEg ,1) cos

(
2ϕB

))
. (3.110)

Here, the long axis is determined from the sign(d′CEg ,1). Having that in mind we recall that the
sign(d′) implies a specific sign(CEg ,1), see derivation in section 3.2.2. In fact, regardless of the actual
sign(d′) (our analysis suggests d′ > 0), the product d′CEg ,1 < 0 is always negative and thus, the long
Hc2 axis has to be aligned with the crystal x-axis. This observation is particularly interesting in light
of the discrepancy of the Hc2 orientations in different experiments [104].

Figure 3.13: In-plane upper critical field Hc2 as it results from (C.42) plotted for both, a nematic
order parameter present and absent. The vestigial nematic theory confines the long axis to align
with the crystal x-axis.
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3.6 Conclusion of chapter 3 and discussion

Based on the observation of a two-dimensional superconducting pairing state in doped Bi2Se3 and
the increased role of fluctuations due to a low carrier density, we have predicted the existence of a
fluctuation-induced nematic phase that precedes superconductivity. As a consequence of this vestigial
nematicity, the rotational C3z and the U(1) symmetry are separately broken at temperatures Tnem
and Tc < Tnem . The vestigial nematic state is characterized by strong anisotropic fluctuations that
cause an anisotropy in various quantities, among them the electrical conductivity and the diamagnetic
susceptibility. The nematic phase transition is of first order owed to the Z3-Potts character of the
nematic order parameter. Within this universality class the ground state is three-fold degenerate and
thus, it gives rise to three distinct nematic domains. The nematic order parameter couples to both, in-
plane (εxx−εyy, εxy) and out-of-plane (εyz, εzx) strain components which makes the degenerate nematic
ground especially vulnerable to intrinsic strain or external stress fields in the Eg symmetry channels.
Focusing on the in-plane strain, we have evaluated the corresponding unit cell deformation. The
nematic fluctuations reflect themselves in an enhanced nematic susceptibility that should be directly
measurable by Raman scattering in the Eg symmetry channel. Moreover, we study the corresponding
softening of the lattice in terms of decreasing Eg elastic constants and an accompanied vanishing of
the sound velocity. The in-plane rotational symmetry breaking is also reflected in the upper critical
field Hc2, and while there is discrepancy in experiments on the large Hc2 axis, we demonstrate that the
vestigial nematic scenario is only compatible with the large axis being aligned with the crystal x-axis
(or the a direction). We also indicate a similar restriction for the nematically distorted vortices.

Strong experimental support for the existence of a vestigial nematic phase in Nb and Cu doped Bi2Se3
has been provided by Rolf Lortz and collaborators [20] with the main results shown in figure 3.14(b).
The measured data agrees well with all the outlined vestigial nematic predictions. In particular, in the
thermal expansion data an onset of in-plane anisotropy is observed at Tnem = 3.8 K significantly above
the superconducting transition temperature Tc = 3.25 K. The latter is determined from the specific
heat data. The step-like transition in the thermal expansion is characteristic for a first-order phase
transition. Additionally, an enhanced response is detected in the susceptibility and in the resistivity
near Tnem.

The sketch in figure 3.14(a) depicts the phase diagram for a doped Bi2Se3 compound. The vestigial
nematic phase is expected to merge with superconductivity and to undergo joint first-order transitions
as Tc decreases and quantum fluctuations become more important and additionally, the z-anisotropy
gets less pronounced.
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Figure 3.14: (a) illustrates the expected phase diagram for doped Bi2Se3 as a function of doping,
see [107]. As Tc decreases quantum fluctuations drive the system towards joint transitions. The red
dots mark the corresponding tricritical point. (b) displays thermal expansion, specific heat, and
magnetization measurements on a Nb0.25Bi2Se3 sample [20]. The thermal expansion ∆L(T )/L0
is measured along three directions in the basal plane, showing a step-like onset of anisotropy at
∼ 3.8 K. Also at ∼ 3.8 K the magnetization gets strongly enhanced. The data supports a vestigial
nematic scenario with Tnem = 3.8 K above Tc = 3.25 K.
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4 Chapter 4

Phase stiffness suppression due to
umklapp scattering

In section 1.1.3 we have given a short introduction on the phase stiffness with an emphasis on its
physical significance. In this chapter we will elaborate in more detail on its properties, and we will
draw some attention on mechanisms that tend to overcome the so-called Leggett‘s theorem: At zero
temperature and in a Galilean invariant system every single electron contributes to the superfluid
density, and hence to the phase stiffness (4.1). In particular, we study the suppressive influence
that the periodic lattice has on the phase stiffness. We show that this suppression is mediated by
superconducting fluctuations, and that the suppression increases with increasing BCS coupling strength
g as illustrated in figure 4.1. The suppression is most pronounced at a van-Hove point where the density
of electronic states at the Fermi surface diverges. This work has been done in collaboration with Jörg
Schmalian.

4.1 Introductory remarks

The superfluid stiffness is a measure for classical and quantum fluctuations of the superconducting
phase. It has been introduced in section 1.1.3 as ρs = ns/m with the superfluid density ns, i.e. as
the fraction of electrons that in the picture of a two-fluid model n = nn + ns are responsible for the
superflow. In a clean conventional superconductor the superfluid stiffness is sufficiently large such that
phase fluctuations play a negligible role in the determination of the critical temperature Tc. Instead,
the critical temperature is dominated by the amplitude value 2|∆|, which is the energy it needs to
break a Cooper pair. Finite temperature fluctuations arise in the form of Bogoliubov quasi-particles
that dominate the entropy, and set the scale for Tc. The reason why phase fluctuations have no
significant impact on Tc has to do with the confinement by Leggett‘s theorem, which sets the energy
scale ρs = n/m ∼ kd−2

F EF of phase fluctuations much higher than the counterpart of amplitude
fluctuation k2−d

F |∆|.

Leggett‘s theorem and its limits The Leggett‘s theorem says that in a Galilean invariant system,
it is the entire electronic density n that contributes to the superfluid density ns at zero temperature
[21, 133, 134]. This statement remarkably holds regardless of the strength of the BCS interaction.
Meaning that even if only a small fraction of the electronic system around the Fermi surface actually
‘feels’ the superconducting pairing, the supercurrent is carried by the entire electronic system. The only
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Figure 4.1: Phase stiffness ρs as a function of the BCS coupling strength g at zero temperature. In
a Galilean invariant system (brown dashed) ρs is constant (4.1) (The value is chosen by hand.). The
phase stiffness ρs as calculated in the present lattice model (solid green) clearly shows a significant
suppression due to scattering processes off the periodic potential. Plotted are the dimensionless
quantities ρs/t and g/D with D = 4t.

requirement is that the quasi-particle spectrum is parabolic εk ∼ k2 such that the Galilean invariance
is intact. The mathematical formulation of the theorem reads

ρs = n

m
, (4.1)

and has been rigorously proven in [21]. We want to illustrate the theorem from a different perspective,
the optical conductivity. The f-sum rule introduced in section 1.1.3 says that the spectral weight
of the optical conductivity is a conserved quantity. This means that upon the transition from a
metallic into a superconducting state no spectral weight from the Drude peak can get lost, and in
particular the weight within the frequency window 0 < ν < 2|∆| gets transferred into the weight of the
superconducting delta-function (1.8). The weight of the delta-function πρs(e∗)2 is a direct indicator
of the phase stiffness. To demonstrate the Leggett‘s theorem, we have to treat the metal as a Galilean
invariant system. In a Galilean invariant system the momentum is conserved such that the momentum
relaxation scattering time τtr →∞ is by far the largest scale in the problem. In this limit |∆| � τ−1

tr ,
the entire Drude weight is below 2|∆|, and the total spectral weight gets transferred into the delta
function, cf. Fig.4.2(a). The resultant phase stiffness ρs = n/m, where we have absorbed a factor of
4π into its definition, indeed confirms the theorem by Leggett. Also, the approach from the optical
conductivity directly reveals how the phase stiffness is reduced once a system is not Galilean invariant
anymore. If for example, the momentum relaxation time is large but not infinite, the phase stiffness
reduces according to

ρs = n

m

(
1− 1

π|∆|τtr

)
(4.2)

where parts of the former spectral weight reside above 2|∆| as illustrated in the figure. With this simple
but powerful picture in mind, we understand that any source of momentum relaxing scattering would
decrease the phase stiffness. The most frequently discussed suppression results from randomly placed
impurities, see e.g. Ref.[135]. Apart from impurity scattering, momentum relaxing scattering events
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(a) (b) (c)

Figure 4.2: (a) demonstrates how the Drude spectral weight gets shifted into the weight of the
superconducting delta-function, which is proportional to the phase stiffness ρs. (b) and (c) visualize
the conceptual similarity with regards to scattering processes between randomly placed disorder
and the lattice potential.

are naturally caused by the underlying lattice itself, in the form of umklapp scattering events. Thus,
a periodic potential acts in a similar fashion as a disorder potential which is illustrated in Fig.4.2(b)
and (c). In both cases the phase stiffness suppression can be cast by equation (4.2) with the origin of
the transport scattering time differing. In one case, it results τ−1

tr ∼ c|U |2νF from randomly placed
impurity scatterers with amplitude U and concentration c, and in the other case it is determined by
the scattering strength UG of lattice vibrations τ−1

tr ∼ |UG|2νF . This begs the question about the
magnitude of the phase stiffness suppression caused by umklapp scattering events.
Besides this rather general motivation, there are a number of interesting open questions in several
classes of superconductors.

Motivation Having discussed the conventional superconductors where phase fluctuations are negligi-
ble, there are materials that are believed to be described within the opposite limit. In the under-doped
cuprate superconductors, the properties are assumed to be governed by the vicinity to the Mott in-
sulating state [136–144]. This regime is characterized by a low carrier density and the expectation
that the phase stiffness ρs ∼ x is proportional to the doping level. In its nature, the Mott state is a
lattice-caused phenomenon where Galilean invariance is necessarily broken such that equation (4.1) is
not applicable. In this regime there is strong experimental evidence that the phase fluctuations destroy
the superconducting state and hence, determine Tc, while amplitude fluctuations play an inferior role.
In fact, there is an observed large energy gap that even extends into the normal state [8–10].
Materials that fall into the intermediate regime between the clean conventional limit of e.g. In

or Al on the one hand, and the under-doped cuprates like YBa2Cu3O6+δ or La2−xSrxCuO4 on the
other hand, should display both, strong electronic correlations and reasonably well-defined quasi-
particles at an intermediate amount of carrier concentration. Examples thereof would be the iron-
based superconductors, Sr2RuO4, or the over-doped side of the cuprates. In all three systems it is not
appropriate, for different reasons, to apply an approximate parabolic or single-band dispersion, i.e.
to employ effectively Galilean invariance. Strained Sr2RuO4 [145–148] and the over-doped cuprates
[149–155] on the one hand, draw their physical properties from flat bands and the influence of the van-
Hove singularity in the electronic dispersion which resides close to the Fermi energy, while most of the
properties of iron-based superconductors [156] crucially depend on their multiple electronic bands. A
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particularly interesting observation in the over-doped cuprates TI2Ba2CuO6+δ, Y1−xCaxBa2Cu3O7−δ
and La2−xSrxCuO4 is the suppression of the phase stiffness as a function of doping in a wide regime
from optical doping all the way to the point where superconductivity disappears [22, 23, 157–160].
A viable explanation that accounts for this effect has been provided by the theory of a dirty d-wave
BCS superconductor [161, 162]. However, it seems worthwhile to investigate the effect caused by
alternative Galilean invariance breaking sources that could suppress the phase stiffness even in the
clean limit. This notion is supported by evidence that the phase stiffness suppression in these systems
is probably not exclusively due to disorder [23, 159, 160, 163]. Even in systems where the phase stiffness
suppression can be likely attributed to a dirty d-wave scenario [161, 162] or in a more general sense to
emergent disorder as discussed in Ref.[164], the effect might still be facilitated by a reduction of the
phase stiffness due to scattering events that are already present in the perfectly clean system.

Outline In this work, we determine the zero-temperature phase stiffness for a clean s- and d-wave
superconductor with a flat electronic dispersion in the vicinity of a van-Hove singularity. We include
Gaussian fluctuations beyond the mean-field theory, where we can separately study the renormalization
effects of the lattice on the fermionic and the bosonic contributions to the phase stiffness. We find
that the former changes the stiffness only little while the bosonic degrees of freedom already cause
a significant phase stiffness reduction at a moderate dimensionless pairing interaction strength, cf.
Fig.4.1. The calculation was done for a two-dimensional electronic dispersion on a square lattice with
an attractive d-wave BCS interaction at a filling that puts the system close to the van-Hove point. Our
results might be of relevance for the over-doped cuprates, and in particular, in vicinity of the quantum
critical point the discussed effects should be of quantitative importance.

4.2 Theoretical approach to the phase stiffness

The superfluid stiffness ρs is a measure for the rigidity of the superconducting state against quantum
or classical fluctuations in the phase of the condensate. In the sense of Eq. (1.6) F ∼ 1

2ρs(∇ϕ+e∗A)2,
it penalizes the corresponding fluctuations, while it determines the increase in kinetic energy in the
presence of an external field. In order to define the stiffness ρs we follow Refs. [165–169] and impose a
phase twist Φ onto the system. The phase twist induces a superfluid velocity vs ∼ Φ/L (see Eq.(4.6)
below) and consequently, it enhances the kinetic energy according to ∼ Ldv2

s ∼ Ld−2Φ2 with the
system length L and the sample dimension d. The associated proportionality factor is exactly the
phase stiffness which can thus, be defined

ρs = lim
Φ→0

∂2

∂Φ2 lim
L→∞

L2−dF (Φ) , (4.3)

as the second derivative of the free energy with respect to the phase twist Φ. For a discussion of the
order of limits we refer to [170]. In the following we will unfold the involved steps and derive the above
relation a bit more carefully.
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Twisted boundary conditions We find it instructive to outline the origin of the twisted boundary
conditions. An easy way to understand the whereabouts of such a phase twist can be seen by considering
a single-particle Schrödinger equation in a constant magnetic field

1
2m

(
−i∇− eA

)2
ψ + V (r)ψ = Eψ .

The magnetic field can be completely removed from the above equation upon application of the gauge
transformation

ψ(x)→ ψ̃(x)e−ie
∫ x
0 A·d`

where we have defined x as the dimension that winds around the magnetic field axis. The expense of
such an operation lies in the enforcement of twisted boundary conditions on the new fermionic fields

ψ̃(x+ L) =eiΦψ̃(x) , (4.4)

with the introduced phase twist Φ = eΦB, the magnetic flux ΦB = i
∮ L

0 A · d`. In general, it is more
appropriate to invert the above logic and to assume that there is an imposed phase twist Φ to begin
with. Its origin could e.g. be an Aharonov-Bohm flux. Without loss of generality, we apply the
phase twist only along the x-direction. As a result of (4.4), the momentum quantization in x-direction
becomes kxn = 2π

L n+ Φ
L , and it is convenient to apply the gauge transformation

ψ̃(x) =ei
Φ
L
xψ(x) , (4.5)

such that the new fermionic fields ψ(x) = ψ(x + L) satisfy periodic boundary conditions. From the
superconducting order parameter ∆ ∝ 〈ψ̃ψ̃〉, we can identify the superfluid velocity associated with
the phase twist as

vs = 2Φ
ML

, (4.6)

where M = 2m is the mass of a Cooper pair. Altogether, the increase in kinetic energy can be
computed by an expansion of the free energy in terms of a small phase twist Φ

∆F (Φ) = F (Φ)− F (0) ≈ Φ2

2
∂2F (Φ)
∂Φ2

∣∣∣∣
Φ→0

≡ 1
2ρsv

2
sL

d , (4.7)

where the superfluid number density ns, or the phase stiffness ρs = ns/m have been defined by (4.3).

92



4 Phase stiffness suppression due to umklapp scattering

Full phase stiffness expression For the later treatment it proves useful to unpack the phase
stiffness (4.3) similarly to the work in [166]. It is convenient to express the free energy F (N) =
Ω(µ(N)) +Nµ(N) in terms of the grand canonical potential Ω(µ) where the chemical potential µ(N)
is defined via N = −∂Ω(µ)

∂µ . Our system is assumed to be inside the superconducting state such that
the superconducting gap ∆ can be treated like a thermodynamic quantity itself. Then, the free energy
can be interpreted as F (N) → F (N,∆), similar to the magnetization M inside a magnetically order
state. Additionally, we impose the phase twist Φ such that the explicit dependencies of the Legendre
transform read

F
(
N,∆

(
µ(N,Φ), Φ

)
, Φ
)

= Ω
(
µ(N,Φ),∆

(
µ(N,Φ), Φ

)
, Φ
)
−Nµ(N,Φ) , (4.8)

where we define the superconducting gap ∆
(
µ, Φ

)
by 0 = ∂Ω(µ,∆,Φ)

∂∆ |µ. Actually, in the course of the
upcoming derivation we will decompose the grand canonical potential Ω = ΩF + ΩB into a mean-field
part ΩF and a fluctuation driven part ΩB, where the gap will only be defined as the minimum value of
the former part 0 = ∂ΩF

∂∆ |µ. In other words, the superconducting gap that occurs in the thermodynamic
relations is the mean-field gap. As we show in the appendix D.2, both the chemical potential and the
mean-field gap evolve quadratically with the imposed phase twist such that the first-order derivatives
vanish ∂∆

∂Φ |µ|Φ→0 = ∂µ
∂Φ |Φ→0 = 0. This allows us to unpack the phase stiffness (4.3) according to

ρs =∂2Ω
∂Φ2 +N

∂2µ

∂Φ2

=∂2Ω
∂Φ2

∣∣∣∣
∆,µ

+

 ∂Ω
∂∆

∣∣∣∣
µ

(
∂2∆
∂Φ2

∣∣∣∣
µ

+ ∂∆
∂µ

∂2µ

∂Φ2

)
+ ∂Ω
∂µ

∣∣∣∣
∆

∂2µ

∂Φ2

+N
∂2µ

∂Φ2 (4.9)

= ∂2ΩF

∂Φ2

∣∣∣∣
∆,µ︸ ︷︷ ︸

ρ
(F )
s

+ ∂2ΩB

∂Φ2

∣∣∣∣
∆,µ

+ ∂ΩB

∂∆

∣∣∣∣
µ

∂2∆
∂Φ2

∣∣∣∣
µ︸ ︷︷ ︸

ρ
(B)
s

, (4.10)

where we implicitly assume the evaluation at zero phase twist Φ→ 0. We have introduced the fermionic
(F) and bosonic (B) contributions to the phase stiffness which will be at the core of the study in sections
4.4 and 4.5. In the last line (4.10) we have inserted the number equation

N =− ∂Ω(∆(µ), µ)
∂µ

= −∂Ω
∂µ

∣∣∣∣
∆
− ∂Ω
∂∆

∣∣∣∣
µ

∂∆
∂µ

(4.11)

=−∂ΩF

∂µ

∣∣∣∣
∆︸ ︷︷ ︸

NF

+ (−1)∂ΩB

∂µ

∣∣∣∣
∆
− ∂ΩB

∂∆

∣∣∣∣
µ

∂∆
∂µ︸ ︷︷ ︸

NB

, (4.12)

which has to hold for any value of the phase twist, in particular also for Φ = 0. In the next section we
implement our microscopic model and we derive the particular grand canonical potential. Finally we
evaluate the formulae (4.10).
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4 Phase stiffness suppression due to umklapp scattering

4.3 Microscopic model and thermodynamic potential

The aim of this section is to find an expression for the thermodynamic potential Ω(Φ) as a function
of the externally applied phase twist Φ. The grand canonical potential Ω(Φ) = −T ln Z(Φ) can be
derived microscopically via the partition function

Z(Φ) =
∫
D[ψ, ψ̄] e−S[ψ,ψ̄,Φ] ,

which is expressed as a functional integral over the fermionic Graßmann fields ψ and ψ̄ [169]. For
brevity, we set the lattice constant a = 1 throughout this chapter. The present study is designed to
capture the physics of the over-doped region of the cuprate high-temperature superconductors. These
systems fall into the point group C4v where most of the member states seem to be realizing a d-wave
pairing state that transforms according to the IR B1. This state is a singlet, and it transforms even
upon the C2z and odd upon the C±4z operations, giving it a x2−y2 character. The corresponding action
in position and imaginary time space reads (see Ref. [168])

S =
∫
τ,r,r′

¯̃ψσ(r,τ)
[
(∂τ−µ) δr,r′− tδnnr,r′− t′δnnnr,r′

]
ψ̃σ(r′,τ)− g

4

∫
τ,r,r′

B†(r, r′, τ) B(r, r′, τ) δnnr,r′ (4.13)

with the nearest (t) and next-to-nearest (t′) neighbor hopping parameter, the BCS interaction constant
g and the shorthand notations , δnnr,r′ = δ(r − r′ ± ex) + δ(r − r′ ± ey), δnnnr,r′ = δ(r − r′ ± (ex + ey)) +
δ(r − r′ ± (ex − ey)) that lead to the electronic dispersion relation. The dispersion comprises a
two-dimensional square lattice with nearest (t) and next-to-nearest (t′) neighbor hopping,

εk =− 2t [cos
(
kx
)

+ cos
(
ky

)
]− 4t′ cos

(
kx
)

cos
(
ky

)
− µ . (4.14)

The bilinear combinations

B(r, r′, τ) = ψ̃↓(r′, τ)ψ̃↑(r, τ)− ψ̃↑(r′, τ)ψ̃↓(r, τ)

lead to the commonly known d-wave attraction Bq =
∑

k γkψ↓−k+ q
2
ψ↑k+ q

2
with γk = cos(kx)− cos(ky).

The interaction term in (4.13) also contains an extended s-wave part that will be dropped once we
switch into momentum space. The reason why we introduced the action in position space lies in the
simpler treatment of the phase twist Φ. We want to impose twisted boundary conditions (4.4) onto
our system. As a first step, we apply the fermionic gauge transformation (4.5) such that the new fields
ψ satisfy periodic boundary conditions. With respect to the action (4.13) the gauge transformation
(4.5) only shifts the hopping parameters according to {t, t′} → {t, t′} e−i

Φ
L

(x−x′), while the remaining
terms in (4.13) are left unchanged. The new action in momentum space, where the extended s-wave
part has been dropped, reads

S =
∑
k

ψ̄σk

(
−iωn+εΦk

)
ψσk − g

T

L2

∑
q

B̄qBq ,
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4 Phase stiffness suppression due to umklapp scattering

with εΦk = εk−Φ
L
ex
. We use the notation k = (iωn,k) and q = (iνm, q) denoting fermionic and bosonic

Matsubara frequencies, respectively. Next, we decouple the interaction part by means of a Hubbard-
Stratonovich transformation,

eg
T
L2
∑
qB̄qBq =

∫
D[∆̄,∆]e−

1
g

∑
q∆̄q∆q+

√
T
L2
∑
q

{
∆̄qBq+∆qB̄q

}
,

which introduces the superconducting pairing field ∆. The action becomes

S = 1
g

∑
q

∆̄q∆q −
∑
k,k′

Ψ†k

[
Ĝ−1,Φ

]
k,k′

Ψk′ , (4.15)

with the Nambu-Gorkov Green‘s function

[
Ĝ−1,Φ

]
k,k′

=


(
iωn − εΦk

)
δk,k′

√
T
L2γk

2 + k′
2

∆k−k′√
T
L2γk

2 + k′
2

∆̄k′−k

(
iωn + ε−Φk

)
δk,k′

 , (4.16)

and the Nambu spinor Ψk = (ψ↑k, ψ̄↓−k)T . Since the action (B.4) is bilinear in the fermionic fields, the
corresponding Gaussian integration in the partition function can be performed, yielding

Z(Φ) =
∫
D[ψ, ψ̄]D[∆̄,∆] e−S[ψ,ψ̄,∆̄,∆,Φ]

=
∫
D[∆̄,∆] e−Seff [∆̄,∆,Φ] , (4.17)

with the effective action

Seff = 1
g

∑
q

∆̄q∆q − tr ln
[
Ĝ−1,Φ

]
. (4.18)

Here, the trace refers to a summation over spin indices as well as momenta and Matsubara frequencies.
In the following, we use the saddle-point approximation and we treat the superconducting fluctuations
as small, i.e. we formally expand the action in terms of small bosonic fluctuations. The minimization
of the action (4.18) with respect to the pairing field ∆ yields the well-known BCS gap equation in the
d-wave channel

1
g

= T

L2∆0

∑
k

γkF
Φ
k , (4.19)

with the anomalous Green‘s function in the presence of the phase twist FΦk defined in (D.3). In a next
step, we expand the superconducting order parameter around its mean-field value ∆q = ∆0

√
T
L2 δq,0 +

δ∆q + iθq , where δ∆q and θq are the amplitude and phase field, respectively. The Nambu-Gorkov
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4 Phase stiffness suppression due to umklapp scattering

Green‘s function (4.16) can be decomposed as [Ĝ−1]k,k′ = Ĝ−1
k δk,k′+Λ̂(1)

k,k′ , with the mean-field Nambu-
Gorkov Green‘s function

Ĝ−1,Φ
k =

(
iωn − εΦk γk∆0
γk∆0 iωn + ε−Φk

)
, (4.20)

and the fluctuation part Λ̂(1)
k,k′ =

√
T
L2γk

2 + k′
2

(δ∆k−k′ τ̂x − θk−k′ τ̂y) where the Pauli matrices τ̂x,y act in
the spinor space. Expanding the action (4.18) up to second order yields Seff = SΦ0 + SΦ2 with

SΦ0 =1
g

L2

T
∆2

0 − tr ln
[
−Ĝ−1,Φ

]
,

SΦ2 =1
g

∑
q

(
δ∆−qδ∆q + θ−qθq

)
+ 1

2tr
[(
ĜΦΛ̂(1)

)2]
=1

2
∑
q

(
δ∆−q
θ−q

)T
M̂Φ
q

(
δ∆q

θq

)
.

The inverse matrix pair fluctuation propagator M̂Φ
q for a current-carrying superfluid is given by

M̂Φ
q =

 Γ(∆∆),Φ
q iΓ(∆θ),Φ

q

−iΓ(∆θ),Φ
q Γ(θθ),Φ

q

 , (4.21)

with the matrix elements defined in the appendix D.1. Eventually, the bosonic Gaussian field integra-
tion can be performed and the partition function (4.17) becomes

Z(Φ) =e−SΦ0
∫
D[δ∆, θ] e−SΦ2 = e−S

Φ
0
∏
q

[
det M̂Φ

q

]− 1
2
. (4.22)

In the last line, constant factors have been neglected since they do not contribute to the phase stiffness.
The ensuing grand canonical potential reads

Ω(Φ) =ΩF (Φ) + ΩB(Φ),

with the fermionic and bosonic contributions

ΩF (Φ) =L2

g
∆2

0 − T tr ln
[
−Ĝ−1,Φ

]
, (4.23)

ΩB(Φ) =1
2 T

∑
q

ln det M̂Φ
q . (4.24)

These expressions allow for the calculation of the phase stiffness (4.10) which is explicitly done in the
next two sections.
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4.4 Fermionic part of the phase stiffness

In this part, we study the fermionic contribution ρ(F )
s to the phase stiffness (4.10). The evaluation of

the derivative of equation (4.10) and (4.23) at zero temperature yields after performing the summation
over Matsubara frequencies

ρ(F )
s =∂2ΩF

∂Φ2

∣∣∣∣∣∣
∆,µ

= 1
L2

∑
k

∂2εk
∂k2

x

(
1− εk

λk

)
, (4.25)

with λk =
√
ε2k + γ2

k∆2
0. It is instructive to first revisit Leggett‘s theorem which, once again, says that

the entire electronic system contributes to a Galilean invariant superfluid, cf. Eq. (4.1). In such a
Galilean invariant system, it holds (∂2εk)/(∂k2

x) = 1/m and thus, one can easily derive the equation
ρ

(F )
s = NF

L2m , with NF defined in (4.12) and (D.11). Moreover, in the case of Galilean invariance
one obtains for the bosonic contribution that it holds NB = ρ

(B)
s = 0, see the appendix D.3 for

details. Consequently, no matter how strong the BCS coupling strength, in a Galilean invariant flow
the superfluid density ns = n always equals the electron density at zero temperature as is sketched
in Fig. 4.1. If however, Galilean invariance is broken, for example, via the underlying lattice, i.e.
εk 6= k2/(2m) − µ, the superfluid density changes. We have numerically analyzed the fermionic part
to the phase stiffness (4.25) for our cuprate lattice model (4.14) for three distinct cases, as shown in
Fig. 4.3. Apart from the actual model (4.14), we have also studied the system at perfect nesting in
both, s-wave and d-wave pairing channels. The results show a similar behavior for all three cases. The
decrease of the fermionic part ρ(F )

s is moderate and does not change significantly as a function of the
coupling strength g.

4.5 Bosonic part of the phase stiffness

The aim of this section is to evaluate the bosonic contribution ρ
(B)
s to the phase stiffness (4.10). A

priori, it is not clear how large ρ(B)
s can become in a lattice model. The bosonic contribution reads

ρ(B)
s =∂2ΩB

∂Φ2

∣∣∣∣
∆,µ

+ ∂ΩB

∂∆

∣∣∣∣
∆,µ

∂2∆
∂Φ2

∣∣∣∣
µ

. (4.26)

Unpacking the expression (4.26) with the aid of (4.24) yields

ρ(B)
s = T

2L2

∑
q

−
(

Γ(θθ)
q Γ(∆∆1)

q + Γ(∆∆)
q Γ(θθ1)

q − 2Γ(∆θ)
q Γ(∆θ1)

q

)2

(
det M̂0

q

)2

+
Γ(θθ)
q Γ(∆∆2)

q + Γ(∆∆)
q Γ(θθ2)

q + 2Γ(∆∆1)
q Γ(θθ1)

q − 2Γ(∆θ)
q Γ(∆θ2)

q − 2
(

Γ(∆θ1)
q

)2

det M̂0
q

, (4.27)
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Figure 4.3: The plot shows the fermionic ρ(F )
s and the negative bosonic ρ(B)

s contribution to
the phase stiffness as a function of the BCS coupling strength for three cases. Solid green: the
lattice model (4.14) with the chosen values t′/t = −0.2749 and µ/t = −0.8772. Dashed blue:
the model (4.14) at perfect nesting (t′ = µ = 0) with d-wave pairing. Dotted red: the model
(4.14) at perfect nesting (t′ = µ = 0) with s-wave (γk = 1) pairing. In all three cases the phase
stiffness exhibits the same behavior. While the fermionic contribution is roughly unchanged, the
bosonic contribution rises significantly in its magnitude as the coupling strength increases. The
shaded gray background indicates the limit of applicability of the weak-coupling theory. Results
in the dark region should not be considered trustworthy. Plotted are the dimensionless quantities
ρs/t and g/D with D = 4t. The small solid circles in the bosonic curves denote the numerically
computed points.

where we defined

Γ(ζ)
q = Γ(ζ),0

q , Γ(ζ1)
q = L

∂Γ(ζ),Φ
q

∂Φ

∣∣∣∣
∆,µ

, Γ(ζ2)
q = L2∂

2Γ(ζ),Φ
q

∂Φ2

∣∣∣∣
∆,µ

+ L2∂
2∆
∂Φ2

∣∣∣∣
µ

∂Γ(ζ),Φ
q

∂∆

∣∣∣∣
µ

,

with ζ =
{

∆∆, θθ,∆θ
}
. The propagators Γ(ζ),Φ

q and the derivative of the gap ∂2∆
∂Φ2 |µ are calculated in

the appendix D. The figure 4.3 shows the bosonic contribution (4.27) to the phase stiffness—multiplied
by −1 for clarity—as a function of the BCS coupling strength at zero temperature. Similarly to the
previous section, we have investigated the same three scenarios and again, we find that the overall
behavior is the same for all three of them. In contrast to the fermionic contribution, the bosonic
part heavily depends on the coupling strength. Its magnitude increases significantly and becomes
comparable to the fermionic part already for a small BCS coupling strength.
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4.6 Conclusion of chapter 4

In this work, we have studied how the superfluid phase stiffness ρs changes in a clean system as
Galilean invariance is broken by a periodic lattice potential. In particular, we focus on systems with
a flat-band electronic dispersion in the vicinity of the Fermi energy, i.e. on systems with a van-Hove
singularity nearby. Our findings might be of relevance for the over-doped cuprate superconductors.
Compared to Galilean invariant systems where fluctuations do not contribute to the phase stiffness,
we have found these fluctuations to generate a significant downward renormalization in such a lattice
model. The dominant source of momentum relaxation in the case of a periodic lattice are the umklapp
scattering events. The renormalization effect can already for a rather moderate interaction strength
be as pronounced as to make the fluctuation and the mean-field driven contributions similar in size.
The resulting suppression of the phase stiffness is depicted in Fig.4.3. In the case of the cuprate
superconductors, our analysis does not provide a controlled description of the physics revolving around
the quantum critical point. Nonetheless, our theory may provide an insight into the understanding of
the phase stiffness reduction and the strong role played by phase fluctuations and inhomogeneities.
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Conclusion

In this thesis two aspects that revolve around the role of fluctuations in unconventional superconductors
have been studied, and will be summarized in the following.

Vestigial nematic phase Having introduced the doped topological insulator Bi2Se3 and discussed
its superconducting properties in chapter 2, we exploit three of its main characteristics in chapter 3:
(i) the pairing state is two-dimensional, which is consistent with a C3z rotational symmetry breaking
[15, 17, 94–103], (ii) the low carrier density n ∼ 1020 cm−3 and small ratio of coherence length over
Fermi wavelength ξ0/λF = 2..4 significantly enhances superconducting fluctuations [14, 18, 19], and
(iii) the Fermi surface displays a strong anisotropy with increased doping level [92].
These three observations are a prerequisite for the study we have conducted: a possible fluctuation-

induced phase that precedes the superconducting state. On the basis of a large-N theory—with the
parameters being chosen compatibly with doped Bi2Se3—we predict the existence of such a vestigial
nematic phase. As a consequence, the C3z rotational and the U(1) symmetry are separately broken
at temperatures Tnem and Tc < Tnem. A characteristic of the vestigial nematic phase is the presence
of strong anisotropic fluctuations that inflict their anisotropy on various observables such as the ones
explicitly computed, i.e. the conductivity and the diamagnetic susceptibility. The nematic phase
transition falls into the universality class of the Z3-Potts model and thus, the onset at Tnem is a first-
order transition. Additionally, the ground state is three-fold degenerate which manifests itself in three
distinct domains. The balance among these domains is particularly vulnerable as the nematic order
parameter couples to both, in-plane (εxx−εyy, εxy) and out-of-plane (εyz, εzx) strain fields. Focusing on
in-plane strain only, we have illustrated the lattice deformation caused by the nematicity. The nematic
susceptibility signals the approaching nematic phase transition, yet owed to the first-order transition,
it does not diverge. We have studied the associated lattice softening and thereby, we analyzed the
renormalization of the Eg elastic constants and determined the directions of vanishing sound velocity.
The condensation of a vestigial phase enhances the superconducting transition temperature as com-
pared to the Tc suppression caused by trivial fluctuations. While Tc should still be smaller than the
mean-field temperature, it may offer an explanation for the comparably large transition temperature in
doped Bi2Se3, given the small carrier concentration. A controversial issue raised by the experimental
findings in doped Bi2Se3 concerns the orientation of the in-plane upper critical field Hc2 [104]. In this
regard the vestigial nematic scenario unambiguously confines the large Hc2 axis to be aligned with the
crystal x-axis. In a doping range where the z-anisotropy is less pronounced, the two transitions merge
and undergo a joint first-order transition. We show that in this case—depending on the microscopic
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parameters—a magnetic field in the z-direction can give rise to split phase transitions where the system
first enters a chiral phase with the C3z rotational symmetry still being intact. Only below a second
transition, the system acquires its nematic character.
Strong experimental evidence which is consistent with a vestigial nematic scenario has been pro-

vided by Rolf Lortz and collaborators [20]. They have probed the thermal expansion of Nb and Cu
doped Bi2Se3 samples and detected an onset of in-plane anisotropy at a temperature Tnem = 3.8 K
above the superconducting transition Tc = 3.25 K. The observed step-like transition is characteristic
of a first-order transition, and magnetostriction data has demonstrated that the inflicted lattice dis-
tortion vanishes at the offset of superconductivity. In addition, the observed enhanced signals in the
magnetization and in the resistivity roughly coincide with the nematic transition temperature.
The structure of the superconducting ground state in doped Bi2Se3 is still a topic of debate; either

the fully-gapped ∆Eu ∼
(
1, 0
)
or the nodal state ∆Eu ∼

(
0, 1
)
is realized. While this has essentially

no consequences for the above prediction, our microscopic analysis suggests that the fully-gapped state
is favored by the system. This tendency is found in both contributing channels, the discriminating
mean-field interaction parameter and the fluctuation-induced nematic order parameter.
The framework of the presented theory can equally be applied to any other fluctuation-induced

correlation function. The concept may potentially be useful for the identification of yet unknown
phases in unconventional superconductors.

Phase stiffness suppression In chapter 4 we have addressed a fundamental question: can scatter-
ing processes in a clean lattice system cause a significant reduction of the phase stiffness? It is known
from Leggett’s theorem that in a Galilean invariant system at zero temperature the value of the phase
stiffness ρs ∼ n involves the entire electronic density. Similar to disorder, the lattice manifestly breaks
the Galilean invariance and thus, causes a phase stiffness suppression. In this work, we have aimed at
quantifying the extent of the corresponding suppression. We have focused on a system with a flat-band
electronic dispersion where a van-Hove singularity is located in the vicinity of the Fermi surface. In a
periodic lattice, umklapp scattering events are the dominant source of momentum relaxation. While
the fluctuation contribution to the phase stiffness vanishes in a Galilean invariant system, we have
found these superconducting fluctuations to generate a significant downward renormalization in such a
lattice system. For moderate values of the coupling strength the renormalization can already be as pro-
nounced as to make the fluctuation and the mean-field driven contributions similar in size. This finding
may be of direct relevance for some cuprate superconductors in the over-doped regime where a phase
stiffness suppression has been reported. In particular, evidence has been given in [23, 159, 160, 163]
that the observed suppression should not exclusively be due to disorder.
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A Appendix A

Symmetry-based deductions

A.1 Time-reversal symmetry constraint on pairing function

In section 1.3.4 we have introduced the matrices Λn,µ = UT λn,µ , and exploited the relations(
χn,µk,qΛn,µ

)†
=
(
χn̄,µk,−qΛ

n̄,µ
)
, ∆n,µ

q =
(

∆n̄,µ
−q

)∗
. (A.1)

Here, we want to illustrate their validity. For a real proof we refer to Ref. [56, 171]. Our illustration
follows the lines in Ref. [56] and starts from the BCS interaction Hamiltonian, i.e. the expression
before the mean-field decoupling has been carried out. The Hamiltonian reads

Hint = −V
∑

gµµ
′

nn′

{
ĉ†,T
k+ q

2

(
χn,µk,qΛn,µ

)†
UT ĉ†−k+ q

2

}{
ĉT−k′+ q

2
U†T
(
χn
′,µ′

k′,q
Λn′,µ′

)
ĉk′+ q

2

}
, (A.2)

with the notation being identical to what has been used in chapter 1. The rotated matrix Λn,µ = UT λn,µ
transforms under the point group symmetry elements in a sesquilinear form

Ug
(
χn,µ
R†v(g)k,R†v(g)q

Λn,µ
)†
U†g = Ug

(
χn,µ
R†v(g)k,R†v(g)q

λn,µ
)†
UTg U

†
T

(A.5)= RTn (g)µµ′
(
χn,µ

′

k,q Λn,µ′
)†
,

(A.3)

H.c.: Ug
(
χn,µ
R†v(g)k,R†v(g)q

Λn,µ
)
U†g = R†n(g)µµ′

(
χn,µ

′

k,q Λn,µ′
)
, (A.4)

where the transformation property

Ug
(
χn,µ
R†v(g)k,R†v(g)q

λn,µ
)†
UTg = RTn (g)µµ′

(
χn,µ

′

k,q λ
n,µ′
)†
, (A.5)

has been inserted. The time-reversal operation commutes with each lattice element [T ,Ug] = 0, such
that it holds UT UTg = U†gUT and U†T U

†
g = UTg U

†
T . As a first step, the invariance upon point group

elements is imposed on the Hamiltonian (A.2) which leads to a the diagonalization of the coupling
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parameter gµµ
′

nn′ ≡ gnδµµ′δnn′ , see Sec. 1.3.5.1 Next, the action of the time-reversal is considered where
we allow for complex conjugated pairs of IRs n and n̄. For the time-reversed Hamiltonian one computes
(using (1.23) and UTT = −UT )

Hint = −gnV
{
ĉ†,T
k+ q

2

(
χn,µk,qΛn,µ

)†
UT ĉ†−k+ q

2

}{
ĉT−k′+ q

2
U†T
(
χn,µ
k′,q

Λn,µ
)
ĉk′+ q

2

}

− gn̄V

{
ĉ†,T
k+ q

2

(
χn̄,µk,qΛn̄,µ

)†
UT ĉ†−k+ q

2

}{
ĉT−k′+ q

2
U†T
(
χn̄,µ
k′,q

Λn̄,µ
)
ĉk′+ q

2

}
(A.6)

T̂ HintT̂ † = −gnV
{
ĉ†,T
k+ q

2

(
χn,µk,−qΛ

n,µ
)
UT ĉ†−k+ q

2

}{
ĉT−k′+ q

2
U†T
(
χn,µ
k′,−qΛ

n,µ
)†
ĉk′+ q

2

}

− gn̄V
{
ĉ†,T
k+ q

2

(
χn̄,µk,−qΛ

n̄,µ
)
UT ĉ†−k+ q

2

}{
ĉT−k′+ q

2
U†T
(
χn̄,µ
k′,−qΛ

n̄,µ
)†
ĉk′+ q

2

}
. (A.7)

In case of a real IR (n = n̄) the time-reversal symmetry requires the partner functions to satisfy the
condition (χn,µk,qΛn,µ)† = (χn,µk,−qΛn,µ). The IRs of a complex conjugated pair are mixed upon application
of point group symmetry operations on (A.6) and (A.7). Using (A.3),(A.4) we note that the first gn
term in (A.6) transforms exactly like the first gn̄ term in (A.7), namely(

χn,µk,qΛn,µ
)†
→ RTn (g)µµ′

(
χn,µ

′

k,q Λn,µ′
)†

,
(
χn̄,µk,−qΛ

n̄,µ
)
→ RTn (g)µµ′

(
χn̄,µ

′

k,−qΛ
n̄,µ′
)
, (A.8)

where we have used the defining property Rn̄(g) = R∗n(g). Since the two terms supposedly belong to
different IRs, this equivalence only makes sense if, in fact, the two IRs n and n̄ transform as a doublet.
Then, it must hold(

χn,µk,qΛn,µ
)†

= eiζn,µ
(
χn̄,µk,−qΛ

n̄,µ
)
, and gn̄ = gn ,

with an arbitrary phase factor eiζn,µ that can be chosen to unity. Thus, the IRs of a complex conjugated
pair, n and n̄, effectively transform like a 2 dimn-dimensional IR.

Next, we derive the action of the time-reversal operation on the pairing field

∆(k, q) =
∑
n,µ

∆n,µ
q

(
χn,µk,qΛn,µ

)†
UT .

The time-reversed pairing field ∆T (k, q) = UT ∆∗(−k,−q)UTT (1.26) can be simplified according to

1One has to apply the point group symmetry constraint similar to Eq.(1.27), apply the transformation behavior of the
partner functions (1.32), sum over all group elements and apply the grand orthogonality theorem (cf. Sec.1.3.5).
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∆T (k, q) =
∑
n,µ

(
∆n,µ
−q

)∗
UT
(
χn,µ−k,−qΛ

n,µ
)T
U∗T UTT

(A.1)=
∑
n,µ

(
∆n,µ
−q

)∗
UT
(
χn̄,µ−k,qΛ

n̄,µ
)∗

(A.9)=
∑
n,µ

(
∆n,µ
−q

)∗ (
χn̄,µk,qΛn̄,µ

)†
UT

=
∑
n,µ

(
∆n̄,µ
−q

)∗ (
χn,µk,qΛn,µ

)†
UT ,

and hence, the condition (A.1) has to hold in the presence of time-reversal symmetry. In the third
line, we have inserted the anti-symmetry constraint

∆(k, q) =
∑
n,µ

∆n,µ
q

(
χn,µk,qΛn,µ

)†
UT = −∆T (−k, q) =

∑
n,µ

∆n,µ
q UT

(
χn,µ−k,qΛ

n,µ
)∗

. (A.9)

A.2 Trilinear forms and sixth-order terms of the free energy

In section 1.3.5, the interaction contributions to the free energy up to fourth order have been computed.
Here, we apply the same logic to derive the sixth-order terms. Due to the U(1) symmetry constraint
(1.42), a generic sixth-order term has to be of the form

F (6)
int

[
(∆n0,µ)∗,∆n0,µ,0

]
= vµ1µ2µ3µ4µ5µ6(∆n0,µ1)∗(∆n0,µ2)∗(∆n0,µ3)∗∆n0,µ4∆n0,µ5∆n0,µ6 . (A.10)

In this context, the central objects are the trilinear combinations

Tn,i,l = ∆n0,µ1∆n0,µ2∆n0,µ3 λn,i,lµ1µ2µ3 , (A.11)

with the IRs n and its component l = 1, ..,dim(n) and possible multiplicities denoted by i. The
respective tensors λn,i,lµ1µ2µ3 are determined such that they satisfy the transformation condition

λn,i,lν1ν2ν3 R
†
n0(g)ν1µ1R†n0(g)ν2µ2R†n0(g)ν3µ3 = R−1

n (g)ll′ λn,i,l
′

µ1µ2µ3 , (A.12)

and thus, the trilinear combinations transform according to

Tn,i,l = R−1
n (g)ll′Tn,i,l

′
. (A.13)

The occurring IRs n have to be part of the set {na, nb, . . . } that results from the decomposition

Γn0 ⊗ Γn0 ⊗ Γn0 = #naΓna ⊕#nbΓnb ⊕ . . . , #na ,#nb ∈ N+ , (A.14)
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where i = 1, ..,#n. Using the trilinear representation (A.11), the free energy (A.10) can be conveniently
compressed to

F (6)
int

[
(∆n0,µ)∗,∆n0,µ,0

]
= vn

′,i′,l′

n,i,l Tn,i,l
(
Tn
′,i′,l′

)∗
. (A.15)

Upon application of the point group symmetry constraint (1.43), we obtain the condition for the
interaction parameters

vn
′,i′,l′

n,i,l = R∗n(g)l`vn
′,i′,`′

n,i,` Rn′(g)l′`′ ∀g ∈ Gp , (A.16)

where we have used R∗n(g) = Rn̄(g). The summation of Eq. (A.16) over all the group elements g and
the subsequent application of the grand orthogonality theorem (1.47) yields

vn
′,i′,l′

n,i,l == δnn′δll′δ``′
1
dn

vn,i
′,`′

n,i,` ≡ δnn′δll′v
i,i′
n .

Thus,—similarly to the quadratic and quartic terms—the sixth-order term diagonalizes with respect
to the IRs n and becomes

F (6)
int

[
(∆n0,µ)∗,∆n0,µ,0

]
=
∑
n

∑
i,i′

vi,i
′

n

∑
l

Tn,i,l
(
Tn,i

′,l
)∗

. (A.17)

Superconducting Eu order parameter of D3d Let us consider a superconducting order parameter
that belongs to the two-dimensional IR n0 = Eu of the point group D3d, see Tab.1.1. The corresponding
bilinear and trilinear decompositions (A.14) read

ΓEu ⊗ ΓEu = ΓA1g ⊕ ΓA2g ⊕ ΓEg , ΓEu ⊗ ΓEu ⊗ ΓEu = ΓA1u ⊕ ΓA2u ⊕ 3ΓEu . (A.18)

The tensor elements λn,i,lµ1µ2µ3 of the trinlinear form are determined via (A.12) with the results listed in
table A.1. Explicitly, the sixth-order contribution to the free energy reads

F (6)
int = vA1u

[(
∆Eu,1

)3
− 3∆Eu,1

(
∆Eu,2

)2
] [(

∆Eu,1
)3
− 3∆Eu,1

(
∆Eu,2

)2
]∗

(A.19)

+ vA2u

[
3
(

∆Eu,1
)2

∆Eu,2 −
(

∆Eu,2
)3
] [

3
(

∆Eu,1
)2

∆Eu,2 −
(

∆Eu,2
)3
]∗

(A.20)

+ vEu

[(
∆Eu,1

)2
+
(

∆Eu,2
)2
] [(

∆Eu,1
)2

+
(

∆Eu,2
)2
]∗ [
|∆Eu,1|2 + |∆Eu,2|2

]
(A.21)

= ν+B0

(
B2

0 + 3B2
y

)
+ ν−Bz

(
B2
z − 3B2

x

)
+ vEuB0

(
B2
x + B2

z

)
, (A.22)

where we introduced v± = (vA1u ± vA2u)/2 and the bilinear forms Bj =
(
∆Eu

)†
τ j∆Eu . Upon

decomposition of the order parameter (∆Eu)T = ∆0e
iϕ1
(

sin
(
θ
)
, cos

(
θ
)
eiδϕ
)
with ∆0 > 0, ϕ1, δϕ, θ ∈[

0, 2π
]
, the free energy can be rewritten as

F (6)
int = ∆6

0

[
v+ + vEu − v− cos

(
6θ
)

+ sin2 (δϕ) sin2 (2θ) (3v+ − vEu − 3v− cos
(
2θ
))]

.

105



A Symmetry-based deductions

D3d tensorsλn,i,l trilinear forms Tn,i,l

A1u λA1u,1,1
111 = −λA1u,1,1

122 = −λA1u,1,1
212 = −λA1u,1,1

221 = 1 (∆Eu,1)3 − 3∆Eu,1(∆Eu,2)2

A2u λA2u,1,1
112 = λA2u,1,1

121 = λA2u,1,1
211 = −λA2u,1,1

222 = 1 3(∆Eu,1)2∆Eu,2 − (∆Eu,2)3(
λEu,1,1111 = λEu,1,1221 = λEu,1,2112 = λEu,1,2222 = 1

)
(∆Eu)2∆Eu

Eu

(
λEu,2,1122 = −λEu,2,1221 = −λEu,2,2112 = λEu,2,2211 = 1

) (
0, 0
)(

λEu,3,1212 = −λEu,3,1221 = −λEu,3,2112 = λEu,3,2121 = 1
) (

0, 0
)

Table A.1: Trilinear analysis for the IR n0 = Eu of the point group D3d. The tensors λn,i,l
associated with the IRs n =

{
A1u, A2u, Eu

}
as they result from the condition (A.12). Only the

shown elements are non-zero. Note that (A.18) explains the multiplicity i = 1, 2, 3 in the n = Eu
case. On the right column we have explicitly stated the corresponding trilinear combinations
(A.11).

Composite Eg order parameter of D3d In this part, we consider a real two-dimensional IR n0 = Eg
of the point group D3d, and for convenience, we denote the order parameter as CEg ,l. Then, the trilinear
form reads

Tn,i,` = CEg ,l1CEg ,l2CEg ,l3 λn,i,`l1l2l3
, (A.23)

and with regards to Eq. (3.14) it is apt to determine λn,i,`l1l2l3
via

R†Eg(g)l1l′1R
†
Eg

(g)l2l′2R
†
Eg

(g)l3l′3λ
n,i,`
l′1l
′
2l
′
3

= Rn(g)``′ λn,i,`
′

l1l2l3
, (A.24)

such that the trilinear transforms as Tn,i,l = Rn(g)``′Tn,i,`
′ . In table A.2 we show the resulting

association.

D3d tensorsλn,i,l trilinear forms Tn,i,l

A1g λ
A1g ,1,1
111 = −λA1g ,1,1

122 = −λA1g ,1,1
212 = −λA1g ,1,1

221 = 1 (CEg ,1)3 − 3CEg ,1(CEg ,2)2

A2g λ
A2g ,1,1
112 = λ

A2g ,1,1
121 = λ

A2g ,1,1
211 = −λA2g ,1,1

222 = 1 3(CEg ,1)2CEg ,2 − (CEg ,2)3(
λ
Eg ,1,1
111 = λ

Eg ,1,1
221 = λ

Eg ,1,2
112 = λ

Eg ,1,2
222 = 1

)
(CEg)2CEg

Eg

(
λ
Eg ,2,1
122 = −λEg ,2,1221 = −λEg ,2,2112 = λ

Eg ,2,2
211 = 1

) (
0, 0
)(

λ
Eg ,3,1
212 = −λEg ,3,1221 = −λEg ,3,2112 = λ

Eg ,3,2
121 = 1

) (
0, 0
)

Table A.2: Trilinear analysis for the IR n0 = Eg of the point group D3d.
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A.3 Lattice-compliant spatial functions

In section 2.2.1 we have derived the model Hamiltonian for the Bi2Se3 topological insulator family.
The two important orbitals that reside close to the Fermi energy at the Γ- point have been found
[84, 85] to transform according to the representation E3g ⊕ E3u of the crystal double group D′3d, cf.
table 2.2. With the transformation matrices 2.6 we want to determine the fully symmetry-compliant
momentum functions that satisfy

ωn,i,µ(R†v(g)k) = ωn,i,µ
′(k)Rn(g)µ′µ , (A.25)

with the vector representation reading Rv(g) = REu(g) ⊕ RA2u(g). The condition (A.25) does not
depend on the properties of the associated fields such that the resulting classification can be used for
both, the model Hamiltonian and the free energy expansion. For the D3d (or the D′3d double group)
we find spatial functions in the five symmetry channels A1g, Eg, A1u, A2u and Eu which read

A1g : f
A1g
k = dA1g

1 gx2+y2(k̃) + dA1g
2 2

(
1− cos

(
k̃z

))
(A.26)

A1u : fC3
k = R1g

C3
y (k̃) (A.27)

A2u : fzk = vz sin
(
k̃z

)
+R2g

C3
x (k̃) (A.28)

Eg :

 f
Eg ,1
k

f
Eg ,2
k

 = sin
(
k̃z

)dEg1a g
(1)
y (k̃) + dEg1b g

(2)
y (k̃)

-dEg1a g
(1)
x (k̃)− dEg1b g

(2)
x (k̃)

+ dEg2 cos
(
k̃z

)(gx2-y2(k̃)
-g2xy(k̃)

)
(A.29)

Eu :
(
fxk
fyk

)
= cos

(
k̃z

)dEu1a g
(1)
x (k̃) + dEu1b g

(2)
x (k̃)

dEu1a g
(1)
y (k̃) + dEu1b g

(2)
y (k̃)

+ dEu2 sin
(
k̃z

)( g2xy(k̃)
gx2-y2(k̃)

)
, (A.30)

where the functions

g2xy = 8√
3

sin
(√3

2 k̃y

)
sin
( k̃x

2

)
, g(1)

x = 2
3 cos

(√3
2 k̃y

)
sin
( k̃x

2

)
+ 2

3 sin
(
k̃x

)
,

gx2-y2 = 8
3

(
cos
(√3

2 k̃y

)
cos
( k̃x

2

)
− cos

(
k̃x

))
, g(1)

y = 2√
3

sin
(√3

2 k̃y

)
cos
( k̃x

2

)
,

gx2+y2 = 4
3 −

8
9 cos

(3
2 k̃x
)

cos
(√3

2 k̃y

)
− 4

9cos
(√

3k̃y
)
, g(2)

x = 2
3 sin

(3
2 k̃x
)

cos
(√3

2 k̃y

)
,

gC3
x = 8

3
√

3

(
2 cos

(3
2 k̃x
)

sin
(√3

2 k̃y

)
− sin

(√
3k̃y
))
, g(2)

y = 2
3
√

3

(
cos
(3

2 k̃x
)

sin
(√3

2 k̃y

)
+sin

(√
3k̃y
))
,

gC3
y =8

(
2 cos

(√3
2 k̃y

)
sin
( k̃x

2

)
− sin

(
k̃x

))
,

and the dimensionless momenta k̃ = (kxa, kya, kzc) have been introduced. Note that the functions
(A.26)-(A.30) reproduce the long wavelength limit shown in the main part (2.11)-(2.15) with v0 =
dEu1a +dEu1b and 2dEg1 = dEg1a + dEg1b .
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B Appendix B

Derivation of the Eu Ginzburg-Landau
parameters

In this part, we derive the Ginzburg-Landau parameters for the two-component Eu pairing state, cf.
Sec. 2.3.3. We start from the generalized BCS Hamiltonian

Ĥ = V
∑
k

(ĉ†k)Th(k)ĉk + V
∑
kq

(
(ĉ†
k+ q

2
)T∆(k, q)ĉ†−k+ q

2
+H.c.

)
, (B.1)

where the single-particle Hamiltonian has been derived in (2.16). We use the field integral approach,
where the partition function

Z =
∫
D
[
c, c̄
]

exp
(
−βS

[
c, c̄
])

(B.2)

is evaluated in the basis of coherent states. In this basis the former fermionic operators ĉ, ĉ† di-
rectly become Graßman fields c, c̄ which necessarily respect the Graßman algebra [40]. The integra-
tion in (B.2) involves all possible field configurations with the integration measure reading D[c, c̄] =
limN→∞

∏N
i=1 d(ci, c̄i). The exponent consists of the inverse temperature β = T−1, and the action in

imaginary time τ representation

S
[
c, c̄,∆,∆∗

]
= T

∫
τ

(∫
r
c̄T (r, τ)∂τσ0s0c(r, τ) +H(c, c̄,∆,∆∗, τ)

)
,

with the real-space Hamiltonian function H(c, c̄,∆,∆∗, τ) deduced from (B.1). Additionally, we apply
a magnetic field via a minimal coupling −i∂r → −i∂r − eA method in real-space, and by a Zeeman
coupling µ0B · s. The additional term hA in the Hamiltonian results from h(k) → h(k) + hA(k, k′).
Then, the corresponding action becomes

S
[
c, c∗,∆,∆∗

]
= V

∑
k,k′

c̄Tk

({
−iωnσ0s0 + h(k) + µ0B · sσ0

}
δk,k′ + hA(k, k′)

)
ck′

+ V
∑
k,k′

(
c̄Tk ∆(k − k

′

2 , k + k′)c∗k′ +H.c.

)
+ V

gEu

∑
q

∑
µ

|∆Eu,µ
q |2, (B.3)
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where k = (ωn,k) and q = (νm, q) comprises momenta k and q together with the fermionic ωn =
(2n+ 1)πT and bosonic νm = 2mπT Matsubara frequencies.1The second line in (B.3) originates from
the Hubbard-Stratonovich decoupling of the BCS interaction Hamiltonian (A.2). In the course of
this procedure, the new paring field ∆(k, q) =

∑
µ ∆Eu,µ

q (χEu,µk,q ΛEu,µ)† gets associated with ∆Eu,µ
q ∼

〈ĉT−k+ q
2

(χEu,µk,q λEu,µ) ĉk+ q
2
〉. In a first step, we switch into the pseudo-spin band basis ψk = (ψc+,k,ψc−,k,

ψv+,k,ψ
v
−,k) = U †b (k)ck (cf. Eq. 2.18) yielding

S
[
ψ, ψ̄,∆,∆∗

]
= V

∑
k,k′

ψ̄Tk

({
−iωnσ̃0s̃0 + hb(k) + hBb (k)

}
δk,k′ + hAb (k, k′)

)
ψk′

+ V
∑
k,k′

(
ψ̄Tk ∆b(

k − k′

2 , k + k′)ψ̄k′ +H.c.

)
+ V

gEu

∑
q

|∆Eu
q |2 (B.4)

with

hAb (k, k′) = U †b (k)hA(k, k′)Ub(k′) , ∆b(
k − k′

2 , k + k′) = U †b (k)∆(k − k
′

2 , k + k′)U∗b (k′),

hBb (k) = U †b (k)µ0B · sσ0Ub(k) , hb(k) = diag(E+
k , E

+
k , E

−
k , E

−
k ).

Since the Cu doping [92] pushes the chemical potential into the conduction band (µ > |M0|), we
focus only on the conduction band subspace ψcck = (ψc+,k,ψc−,k) in the following. More formally, we
assume that the valence band is far away from the Fermi surface, and that there is no substantial
coupling between the valence and the conduction band. Then, we extract the corresponding pairing
field ∆cc(k, q) from ∆b(k, q) = ∆cc(k, q)is̃y σ̃

0+σ̃z
2 + . . . . Furthermore, we switch into Nambu space with

the Nambu spinor ψNb
k = (ψcck , is̃yψ̄cc−k)T where the action (B.4) reads

S
[
ψ, ψ̄,∆,∆∗

]
= V

gEu

∑
q

|∆Eu
q |2 −

V

2
∑
k,k′

(
ψNb
k

)†
G−1
k,k′ [A]ψNb

k′ , (B.5)

and the Green‘s function matrix becomes

G−1
k,k′ [A] =

{
iωnτ̃

0s̃0 − E+
k τ̃

z s̃0 − τ̃0hBcc(k)
}
δk,k′ − τ̃0hAcc(k, k′)

− 2τ̃+∆cc(
k + k′

2 , k − k′)− 2τ̃−∆†cc(
k + k′

2 ,−k + k′) . (B.6)

Pairing state The corresponding pairing field in the pseudo-spin basis reads

∆cc(k, q) =
(
d0,Eu
k,q + dEuk,q ·

(
s̃x, s̃y, s̃z

))
is̃y .

The complete d-functions read

−id0,Eu
k,q

sign(M2) = F x,−k,q ∆Eu,1
q + F y,−k,q ∆Eu,2

q + FC3
k,q

(
f̂z2 f̂

y
1 − f̂

z
1 f̂

y
2

)
∆Eu,1
q −FC3

k,q

(
f̂z2 f̂

x
1 − f̂z1 f̂x2

)
∆Eu,2
q (B.7)

1We use the Fourier transforms c(r, τ) =
∑
n,k e

−i(ωnτ−rk)ck and ck = T
V

∫
r,τ

ei(ωnτ−rk)c(r, τ).

109



B Derivation of the Eu Ginzburg-Landau parameters

dEuk,q
sign(M2) =

 F z,+k,q ∆Eu,2
q

−F z,+k,q ∆Eu,1
q

F y,+k,q ∆Eu,1
q − F x,+k,q ∆Eu,2

q

+ FC3
k,q

(
M1M2
|M1M2|

(
1+|M̂1|

)(
1+|M̂2|

)
− f̂1 · f̂2

)∆Eu,1
q

∆Eu,2
q

0


+ FC3

k,q

((
f̂x1 ∆Eu,1

q + f̂y1∆Eu,2
q

)
f̂2 +

(
f̂x2 ∆Eu,1

q + f̂y2∆Eu,2
q

)
f̂1

)
(B.8)

where for brevity, we use the notation 1=̂k + q
2 , 2=̂k − q

2 together with

F j,±k,q =
(
α+

1 α
−
2 + α−1 α

+
2

) (1 + |M̂2|
)

sign(M2)f̂ j1 ±
(

1 + |M̂1|
)

sign(M1)f̂ j2

4
√

1 + |M̂1|
√

1 + |M̂2|
,

FC3
k,q =

(
α+

1 α
+
2 + α−1 α

−
2

) 1

4
√

1 + |M̂1|
√

1 + |M̂2|
.

It is useful to decompose the d-functions according to

dEuk,q =
∑
µ

∆Eu,µ
q dEu,µk,q , d0,Eu

k,q =
∑
µ

∆Eu,µ
q d0,Eu,µ

k,q . (B.9)

Effective action The Graßmann Nambu fields in (B.5) are bilinear and can, in principle, be in-
tegrated out. Yet, the components of the Nambu spinor ψNb

k = (ψcck , is̃yψ̄cc−k) are not independent
variables. In the box below, we demonstrate the integration.
The Graßmann integration can be carried out upon usage of the integral

∫
dη exp(−1

2η
TAη) =

√
detA

with a quadratic matrix A and Graßmann variables η, η̄ [172, 173]. Note that for a singlet pairing state,
one can directly apply the integral

∫
d
(
η, η̄

)
exp

(
−η̄TAη

)
= detA. Noting that the ‘conjugated’

Nambu spinor in (B.5) can be expressed by the ‘non-conjugated’ one via (ψNb
k )† = (ψNb

−k)T is̃y τ̃x ≡
(ψNb

k′ )TOk′k with the matrix Ok′k = iτ̃xs̃yδk′,−k. Then, the above integral can be used which leads
to
∫
dψNb exp

(
− 1

2(ψNb)T
(
− βG̃−1[A]

)
ψNb

)
=
√
det(−βG̃−1[A]) with G̃−1[A] = OG−1[A], see

(B.10). The additional constant in (B.11) vanishes since tr log
(
O
)

= log det
(
O
)

= 0. The zero
results from det

(
iτ̃xs̃y

)
= 1, and the internal k structure of the matrix O which leads to det

(
O
)

=

det
(
iτ̃xs̃y

)
det2(N1+N2+N3)

(
0 iτ̃xs̃y

iτ̃xs̃y 0

)
= 1 where ki = −kN1 , . . . , kNi . Including the Matsubara

summation gives the same structure and it still holds det
(
O
)

= 1.
The resulting effective action becomes

S
[
∆,∆∗

]
= V

gEu

∑
q

|∆Eu
q |2 −

T

2 tr log
(
−βOG−1[A]

)
, (B.10)

= V

gEu

∑
q

|∆Eu
q |2 −

T

2 tr log
(
O
)
− T

2 tr log
(
−βG−1[A]

)
. (B.11)

The action (B.11) encapsulates the full microscopic information, and will be expanded around Tc in
the next section. For later convenience, we derive the BCS mean-field equations from (B.11) which
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[using ∆Eu,µ
q = ∆µδq,0] read

δS
δ∆̄Eu,µ

q

∣∣∣
∆Eu,µ
q =∆µδq,0

= 0 = V

gEu
∆µ + T

∑
k,k′

tr
(
Gk,k[A]τ̃−dEu,µk,0 · s̃

)
. (B.12)

Useful relations and identities For clarity we use ∆̄Eu,µ
q := (∆Eu,µ

q )∗ and d̄Euk,q := (dEuk,q)∗ in the
following. The upcoming equations can be conveniently expressed via the functions

D
({0,z})
k,q = 1

2

((
dEu,1k,q

)2
±
(
dEu,2k,q

)2
−
((

d0,Eu,1
k,q

)2
±
(
d0,Eu,2
k,q

)2 ))
,

D
(x)
k,q = −dEu,1k,q · d

Eu,2
k,q + d0,Eu,1

k,q d0,Eu,2
k,q

D
(y)
k,q = dEu,1k,q × d

Eu,2
k,q + i

(
d0,Eu,2
k,q dEu,1k,q − d

0,Eu,1
k,q dEu,2k,q

)
, (B.13)

where it holds
(
D

(y)
k,q

)2
=
(
D

(0)
k,q

)2
−
(
D

(z)
k,q

)2
−
(
D

(x)
k,q

)2
. In case of zero external momentum q = 0,

the expressions simplify to

D
({0,z})
k,0 =1± 1

2 + 1
2

((
f̂C3
k

)2
− 1
)(

M̂2
k ± M̂2

k +
(
f̂xk

)2
±
(
f̂yk

)2
)

(B.14)

D
(x)
k,0 =f̂xk f̂

y
k

(
1−

(
f̂C3
k

)2 )
(B.15)(

D
(y)
k,0

)2
=
((

f̂zk

)2 (
1−

(
f̂C3
k

)2 )
+
(
f̂C3
k

)2
)(

f̂2
k + M̂2

k

(
f̂C3
k

)2
)
,

and we can deduce the properties∫
k
D

(z)
k,0Hk =

∫
k
D

(x)
k,0Hk = 0 ,

∫
k

(
D

(z)
k,0

)2
Hk =

∫
k

(
D

(x)
k,0

)2
Hk ,

∫
k

(
D

(z)
k,0

)3
Hk = −

∫
k
D

(z)
k,0

(
D

(x)
k,0

)2
,

(B.16)

valid for a function Hk = Hk

((
f̂xk

)2
+
(
f̂yk

)2
,
(
f̂zk

)2
, f̂C3
k , M̂k

)
that transforms trivially under a C3z

rotation.2

2To check the identities, first note that any integral that is odd in kx vanishes. Then, considering the transformation
under a C3z rotation (2.5) of the function (f̂xk )2 − (f̂yk )2 and the square thereof, one finds the other relations.
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B.1 Ginzburg-Landau parameters

A Ginzburg-Landau theory aims to describe a system around a second-order phase transition where
the order parameter is assumed to be small. To this end, we decompose the inverse Green‘s function
matrix (B.6) according to G−1

k,k′ [A] = G−1
k,k′ [A] + ∆̂k,k′ with

G−1
k,k′ [A] ≡

(
G0
k

)−1
δkk′ +

(
GBk

)−1
[B]δkk′ +

(
GA
)−1

k,k′
[A] , (B.17)

∆̂k,k′ ≡ −2τ̃+∆cc(
k + k′

2 , k − k′)− 2τ̃−∆†cc(
k + k′

2 ,−k + k′) ,

and(
G0
k

)−1
= iωnτ̃

0s̃0 − E+
k τ̃

z s̃0 ,
(
GBk

)−1
[B] = −τ̃0hBcc(k) ,

(
GA
)−1

k,k′
[A] = −τ̃0hAcc(k,k′) .

Using log
(
1 +A

)
= −

∑∞
j=1(−A)j/j we expand the action (B.11) for small ∆,∆∗ which leads to

S
[
∆,∆∗

]
= V

gEu

∑
q

|∆Eu
q |2 + S0 −

T

2 tr log
(

1+G[A]∆̂
)
≈ V

gEu

∑
q

|∆Eu
q |2 + S0 +

∑
j∈2N

T

2j tr
(
G[A]∆̂

)j
(B.18)

with S0 = −T
2 tr log

(
−βG−1[A]

)
describing the normal state properties. The internal Nambu structure

forces the odd expansion powers to vanish. To calculate the Green‘s function matrix G[A] from (B.17)
we treat the magnetic field as a small perturbation which yields

G[A] =
((

G0
)−1

{
1 +G0

(
GB
)−1

[B] +G0
(
GA
)−1

[A]
})−1

=
{
1 +G0

(
GB
)−1

[B] +G0
(
GA
)−1

[A]
}−1

G0

≈ G0 −G0
(
GB
)−1

[B]G0 −G0
(
GA
)−1

[A]G0 , (B.19)

with G0
k =

(
gk 0
0 −g−k

)
s̃0 and gk = (iωn−E+

k )−1. Thus, the quadratic term in (B.18) can be decomposed

into S(2) = S(2)
0 + S(2)

B + S(2)
A with

S(2)
0 = V

gEu

∑
q

|∆Eu
q |2 + T

4 tr
(
G0∆̂G0∆̂

)
, S(2)

B = −T2 tr
(
G0∆̂G0

(
GB
)−1

[B]G0∆̂
)
, (B.20)

S(2)
A = −T2 tr

(
G0∆̂G0

(
GA
)−1

[A]G0∆̂
)
, (B.21)

where contributions of the order O(A2) have been neglected.
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B.1.1 Non-magnetic contributions

In the following, we will subsequently study the individual contributions, beginning with the quadratic
non-magnetic contributions. Here, the trace can be evaluated according to

T

4 tr
(
G0∆̂G0∆̂

)
= −4T

∑
k,q

gk+ q
2
g−k+ q

2

(
d0,Eu
k,q d̄0,Eu

k,q + dEuk,q · d̄
Eu
k,q

)
=− 4

T

∑
k,q

ηk,q
∑

j=0,x,z
∆̄Eu
q τ jD

(j)
k,q∆

Eu
q

(B.22)

with ηk,q = T 2∑
ωn

gk+ q
2
g−k+ q

2
. To determine the gradient terms, we expand ηk,q ≈ ηk,0 + Σij

k q̃iq̃j
where we are mostly interested in the second derivatives. Due to the smallness of Tc, the derivatives
∂qiηk,q yield a factor 1/T which will yield the respective dominant contribution. It holds

ηk,q = T

2

tanh
(E+

k+ q
2

2T + iνm
4T

)
+ tanh

(E+
k− q

2
2T + iνm

4T

)
E+
k+q/2 + E+

k−q/2 + iνm
, Σij

k = 1
16T 2

{(
ηa2
k +

E+
k

8λk
ηak

)
F ikF

j
k

λ2
k

−
E+
k

4λk
ηakF

ij
k

}
,

with F ik = ∂λ2
k/∂k̃i, F

ij
k = ∂2λ2

k/∂k̃i∂k̃j and the dimensionless momenta k̃ =
(
kxa, kya, kzc

)
. We have

also introduced the temperature weights

ηak = 8T 4
∑
ωn

g2
kg2
−k = − T 2(

E+
k

)2

E+
k − T sinh

(
E+
k /T

)
E+
k cosh2

(
E+
k /2T

) , ηa2
k = − T

8E+
k

tanh
(
E+
k /2T

)
cosh2

(
E+
k /2T

) .
Mass term In the q = 0 case, the expansion term (B.22) provides only a finite value in the τ0

channel. Together with the coupling constant in (B.12) we can derive the mass parameter as

r0 = 1
gEu
− 4
TV

∑
k

ηk,0D
(0)
k,0 = 1

V

∑
k

2
E+
k

[
tanh

(
E+
k

2Tc

)
− tanh

(
E+
k

2T

)]
D

(0)
k,0 .

Using tanh
(
Ek
2T

)
≈ tanh

(
Ek
2Tc

)
− Ek(T−Tc)

2T 2
c cosh2(Ek/2Tc)

we can also identify a0 in r0 = a0(T − Tc) as

a0 = 1
T 2
c V

∑
k

D
(0)
k,0

cosh2(Ek/2Tc)
.

Gradient terms The computation of the gradient terms d0,d′,dz and d̃ from (2.38) is straightforward,
albeit a bit tedious. We focus on the main contributions stemming from the second derivative of ηk,q
which are parametrical large in terms of

(
v0/Tc

)
. Thus, we can identify

d0 = − 2
TV

∑
k

(
Σxx
k + Σyy

k

)
D

(0)
k,0 , d′ = − 4

TV

∑
k

Σxy
k D

(x)
k,0 , (B.23)

dz = − 4
TV

∑
k

Σzz
k D

(0)
k,0 , d̃ = − 4

TV

∑
k

Σxz
k D

(x)
k,0 , (B.24)

113



B Derivation of the Eu Ginzburg-Landau parameters
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Figure B.1: (a) The gradient parameters d0,d′,dz,dy and d̃ from (B.23)-(B.24). Moreover, we
show the Zeeman caused magnetic prefactor α calculated from the the expression (B.41). The
Ginzburg-Landau parameters are evaluated for C0 = C1 = C2 = R1 = dEu2 = R2 = 0. Only the
parameter d̃ has to be computed at finite dEu2 and R2 since it would vanish otherwise. (b) The
interaction parameter u and v from Eq. (B.29).

where in the q = 0 the functions are given in (B.14) and (B.15). The gradient terms are evaluated and
plotted in figure B.1.

Frequency term To compute the leading Matsubara frequency-dependent expansion term, we have
to take a slightly different route. In particular, the order of integration in (B.22) is important. We first
carry out the momentum summation, before the Matsubara summation. Let us denote the summation
over k of the τ0 term in (B.22) by I0(νm, q) reading

I0(νm,0) = −4T
∑
n

∑
k

D
(0)
k,0

(
1(

E+
k − iνm2

)2
+ ω2

n

− 1(
E+
k

)2
+ ω2

n

)
.

= I
(i)
0 (νm,0) + I

(ii)
0 (νm,0) + I

(iii)
0 (νm,0) ,

We decompose the expression I0(νm,0) = I
(i)
0 (νm,0) + I

(ii)
0 (νm,0) + I

(iii)
0 (νm,0) into a manifestly

particle-hole symmetric contribution

I
(i)
0 (νm,0) = −4TV ν(0)D(0)

kF ,0

∑
n

∫
dε

(
1(

ε− iνm2
)2

+ ω2
n

− 1
ε2 + ω2

n

)
, (B.25)
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with I(i)
0 (−νm,0) = I

(i)
0 (νm,0), and the two terms compensating for it

I
(ii)
0 (νm,0) = −4TV D(0)

kF ,0

∑
n

∫
dεδν(ε)

(
1(

ε− iνm2
)2

+ ω2
n

− 1
ε2 + ω2

n

)
(B.26)

I
(iii)
0 (νm,0) = −4T

∑
n

∑
k

δD
(0)
k,0

(
1(

E+
k − iνm2

)2
+ ω2

n

− 1(
E+
k

)2
+ ω2

n

)
, (B.27)

with δD
(0)
k,0 = D

(0)
k,0 − D

(0)
kF ,0, the density of states ν(ε) = 1

V

∑
k δ(ε − E

+
k ) and ν(ε) = ν(0) + δν(ε).

Focusing on the first term (B.25), we compute (after having shifted the external Matsubara frequency)

I
(i)
0 (νm,0) = −4TV ν(0)D(0)

kF ,0

∑
n

∫
dε

(
1

(−iωn − ε) (iωn + iνm − ε)
− 1(

ε2 + ω2
n

))

= 4πTV ν(0)D(0)
kF ,0

∑
n≥0

(
νm
2

ωn(ωn + νm
2 ) + θ (m− 1− n)

ωn

)

= −2V ν(0)D(0)
kF ,0

(
ψD

(
1
2

)
− 1

2ψD
(

1
2 + νm

2πT

)
− 1

2ψD
(

1
2 + νm

4πT

))
≈ V γ0 |νm| , (B.28)

with γ0 = 3π
8T ν(0)D(0)

kF ,0 and the digamma function ψD (x). In the last line we have expanded for small
Matsubara frequencies and we have applied the modulus due to the property I(i)

0 (−νm,0) = I
(i)
0 (νm,0)

. The contributions (B.26) and (B.27) may on a linear level well modify γ0 and produce a term
proportional to νm. However, since both terms describe deviations from the particle-hole symmetric
contribution, we consider their influence as negligible, and will treat the term (B.28) as the dominant
frequency dependence. Note, that the Fourier relations hold

−T
2π

∫ β

0

∫ β

0
dτdτ ′

eiνmτe−iνm′τ
′

(τ − τ ′)2 = −1
2π δm,m

′

∫ β

−β
dτ

eiνmτ

(τ + i0)(τ − i0) = δm,m′ |νm| .

Quartic interaction contribution For the higher order expansion terms, we ignore gradient terms
and magnetic field coupling. For the fourth-order term S(4)

0 = T
8 tr
(
G0∆̂G0∆̂G0∆̂G0∆̂

)
we compute

S(4)
0 = 4T

∑
k,q1,q3,q

g2
kg2
−ktr′

(
∆cc(k, q1 + q)∆†cc(k, q1)∆cc(k, q3 − q)∆†cc(k, q3)

)
=Tuj

∫
x

B2
j ,

where we have introduced uj = 1
V T 3

∑
k η

a
k(D(j)

k,0)2. From (B.16) we know that it holds ux = uz. Using
the Fierz identity, we can absorb the x, z terms into the other two terms according to

u = u0 + uz = 1
V T 3

∑
k

ηak

[(
D

(y)
k,0

)2
+ 3
(
D

(x)
k,0

)2
]
, v = uy − ux = 1

V T 3

∑
k

ηak

[(
D

(y)
k,0

)2
−
(
D

(x)
k,0

)2
]
,

(B.29)

where we have used the identities (B.13) and (B.16). The parameter are plotted in figure B.1(b).
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Sixth-order interaction contribution Using the same assumptions as in the quartic part above, we
simplify the contribution S(6)

0 = T
12tr

(
G0∆̂G0∆̂G0∆̂G0∆̂G0∆̂G0∆̂

)
according to

S(6)
0 = −32

3 T
∑

k,q1,..,q5

g3
kg3
−ktr′

∆cc(k, q1)∆†cc(k,−q2)∆cc(k, q3)∆†cc(k,−q4)∆cc(k, q5)∆†cc(k,
∑
i

qi)


= ν−T

∫
x

Bz
(

B2
z − 3B2

x

)
+ ν+T

∫
x

B0

(
B2

0 + 3B2
y

)
+ νEuT

∫
x

B0

(
B2
x + B2

z

)
,

where we have introduced

ν− = − 2
3V T 5

∑
k

ηek

(
D

(z)
k,0

)3
, ν+ = − 2

3V T 5

∑
k

ηekD
(0)
k,0

((
D

(0)
k,0

)2
− 1

2

(
D

(z)
k,0

)2
)

(B.30)

νEu = − 7
3V T 5

∑
k

ηekD
(0)
k,0

(
D

(z)
k,0

)2
, (B.31)

and ηek = 32T 6∑
ωn

g3
kg3
−k. For the role it plays in discriminating between the nematic ground states

A and B (2.43), it is worth examining the parameter ν− a little closer. It only gets non-zero if there
is a finite hexagonal warping term with R1 6= 0, or if there is a finite coupling between the basal plane
and the z-direction with dEu2 6= 0. If we employ the continuum limit, we find the leading contributions
to be

ν− = − v4
0

12V T 5
3

16π2

∫
dk‖k

9
‖

∫
dkzη

e
k

5(dEu2 )2k2
z + 1

4
R2

1v
2
0k

4
‖

M2
k + v2

0k
2
‖ + v2

zk
2
z

 , (B.32)

which yields sign(ν−) < 0 regardless of the individual signs of dEu2 or R1.
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B.1.2 Magnetic contributions

The magnetic terms we consider in (B.3) are on the one hand, the Zeeman coupling term hB(k) =
µ0B · sσ0 and on the other hand, the orbital coupling term hA(k,k′) that formally results from a
Peierls substitution and which is of the form

hA(k,k′) = −e∂h(p)
∂p

∣∣∣
p= k+k′

2

·Ak−k′ . (B.33)

We assume the magnetic field B = ∇ × A(r) to be constant such that the vector potential A(r)
becomes an odd function both, in position A(−r) = −A(r) and in momentum space A−q = −Aq.
Note that we only include linear magnetic contributions to the Ginzburg-Landau action, such that the
linear term (B.33) is sufficient. On the basis of the Hamiltonian (2.16) we can write

hA(k,k′) = σzs0MA
k,k′ + σx

(
syfAxk,k′ − sxfAy

k,k′

)
− σys0fAzk,k′ (B.34)

where we have defined

MA
k,k′ = −e∂Mp

∂pα

∣∣∣
p= k+k′

2

Aαk−k′ , f
A{x,y}
k,k′

= −e∂f
{x,y}
p

∂pα

∣∣∣
p= k+k′

2

Aαk−k′ , fAzk,k′ = −e
∂fzp
∂pα

∣∣∣
p= k+k′

2

Aαk−k′ .

(B.35)

For simplicity and brevity, we set fC3
k = f0

k = 0 in this part. Yet, they could be straightforwardly
included if need be. The expressions (B.35) are odd under momentum exchange MA

k′,k
= −MA

k,k′
,

fAk′,k = −fAk,k′ and transform under inversion as MA
−k,−k′ = MA

k,k′
, fA−k,−k′ = −fAk,k′ with f

A
k,k′ =

(fAx
k,k′

, fAy
k,k′

, fAz
k,k′

). After a switch into the band basis (B.4), the magnetic terms (B.34) and hB(k)
become

hAcc(k,k′) = a0(k,k′) · s̃ + a(k,k′) · s̃ , hBcc(k) = bk · s̃ , (B.36)

where we have only kept the respective conduction band part, e.g. hAb (k,k′) = hAcc(k,k′) σ̃
0+σ̃z

2 + . . . .
The individual components read

bk
sign(Mk) = µ0

 Bx
By

M̂kBz

− µ0

(
Bxf̂

x
k +Byf̂

y
k

)
− sign(Mk)Bz f̂zk

1 + |M̂k|
f̂k ,
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) β+
k

4β+
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4β+
k

f̂k · fAk,k′

+
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|Mk|
− Mk′
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)(
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)
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16β+
k β
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+
(
Mk

|Mk|
+ Mk′

|Mk′ |

)MA
k,k′β

+
k β

+
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−
MA
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f̂k · f̂k′

16β+
k β

+
k′

 ,
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a(k,k′) = iMA
k,k′

(
1− MkMk′

|MkMk′ |

) β+
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4β+
k′
f̂k′ −
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f̂k × fAk,k′ −
β+
k

4β+
k′
f̂k′ × fAk,k′

+ i
(
Mk

|Mk|
− Mk′

|Mk′ |

)
β+
k β

+
k′
fAk,k′

+ i
(
Mk

|Mk|
− Mk′

|Mk′ |

) (f̂k (fAk,k′ · f̂k′)+ f̂k′
(
fAk,k′ · f̂k

)
− fAk,k′

(
f̂k · f̂k′

))
16β+

k β
+
k′

.

Due to the properties a0(−k,−k′) = a0(k,k′), a0(k′,k) = −a0(k,k′), a(−k,−k′) = a(k,k′), a(k′,k) =
a(k,k′) and b−k = bk both Hamiltonians (B.36) couple via the τ0 matrix in Nambu space as is used
in (B.6). Eventually, we have all prerequisites to compute the Ginzburg-Landau parameters α, dy in
the magnetic contribution

SB = T

∫
x

(
αµ0 + 2ea2dy

)
︸ ︷︷ ︸

≡α′

Bz∆̄Euτy∆Eu , (B.37)

which originate from the microscopic Zeeman coupling and the orbital coupling, respectively.

Zeeman term The Zeeman term causes the contribution related to α that can be computed from
the expanded action (B.20) yielding

S(2)
B = 2T tr

((
gkg2
−k∆cc(k, q)hBcc(k)∆†cc(k, q)− gkg2

−k∆†cc(−k, q)hBcc(k)∆cc(−k, q)
))

(B.38)

= − 1
T 2

∑
k,q

η
(4)
k bk ·D

(y)
k,0∆̄Eu

q τy∆Eu
q (B.39)

= V µ0Bzα
∑
q

∆̄Eu
q τy∆Eu

q (B.40)

with η(4)
k = 8T 3∑

ωn
gkg2
−k = Ek

T η
a
k, D

(y)
k,0 = f̂zk f̂k and

α = − 1
µ0BzV T 2

∑
k,q

η
(4)
k bk ·D

(y)
k,0 = − 1

V T 2

∑
k,q

Ek
T
ηak

(
f̂zk

)2
. (B.41)

The parameter is plotted in figure B.1(a), and we see that it is parametrically (Tc/v0) smaller than
the gradient parameters.
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B Derivation of the Eu Ginzburg-Landau parameters

Orbital coupling Now, we address the orbital coupling term (B.21) and in particular, we focus on
the part related to dy which leads to the BzBA2g term, according to

i
∑
q′

(
q′xA

y
q′ − q

′
yA

x
q′

)∑
q

∆̄Eu
q τy∆Eu

q → Bz
∑
q

∆̄Eu
q τy∆Eu

q . (B.42)

The corresponding action can be simplified to

S(2)
A = 1

2T 2

∑
k,q,q′

η
(5)
k,q′

(
∆̄Eu
q τy∆Eu

q

)(
a0(k,k − q′)D̃y

k,q′ − 2a(k,k − q′) ·D(y)
k,0

)
, (B.43)

with

D̃y
k,q′ = −i

(
dEu,1k,0 · d

Eu,2
k− q′

2 ,−q′
− dEu,2k,0 · d

Eu,1
k− q′

2 ,−q′

)
, (B.44)

D
(y)
k,q = dEu,1k,q × d

Eu,2
k,q + i

(
d0,Eu,2
k,q dEu,1k,q − d

0,Eu,1
k,q dEu,2k,q

)
,

and η
(5)
k,q′ = 8T 3∑

ωn
g−kg2

k−q′ with η
(5)
k,0 = Ek

T η
a
k. It holds D̃y

k,q′ ∼ q′i and a(k,k − q′) ∼ q′i such
that the deduction of the BzBA2g term (B.42) requires the respective accompanying terms to be
evaluated at q′ = 0. Then, the action (B.43) can be expanded with respect to q′ yielding S(2)

A =
V (2ea2Bz)dy

∑
q(∆̄

Eu
q τy∆Eu

q ) with

dy = − v2
0

16V T 2

∑
k

Ek
T
ηak

(
fyk

)2
+
(
fxk

)2
+ 4

(
fzk

)2

(
M2
k + f2

k

)3/2 . (B.45)

The parameter dy is plotted in figure B.1(a), where we note that it is of the same order as the other
gradient parameters. In particular, this means that the α′ action contribution (B.37) is not negligible.
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C Appendix C

Vestigial nematicity

In this part, we provide further details on relations used in chapter 3.

C.1 Large-N theory in the primary ordered phase

Here, we want to discuss how the superconducting ordered phase can be described in the context of
vestigial phases. While the actual number in the present problem is N = 2 (=̂real- and imaginary part
of ∆Eu), systematically the number has to be treated as the largest scale in the problem. We present
two possible methods which conceptually slightly differ.

Condensation along a given direction The first approach is based on the textbook [49]. We
explain the key elements in the language of the real field φ = (φ1, φ2, . . . , φN )T with N components.
The corresponding action is of the form S = 1

2φ
T Âφ+ cλ2 with the positive definite diagonal matrix

Â = diag(A1, A2, .., AN ), and the composite field being λ. Now, one decomposes the field φ = φLeL+π
into one longitudinal φL, and N − 1 transverse components π, where the longitudinal component is
assumed to condense in the primary phase. Note that the longitudinal component has to be chosen
in this approach and is fixed. The N − 1 components π are purely fluctuating and can be integrated
out. For concreteness, we choose eL = e1 such that the action becomes

S =1
2A1φ

2
L + 1

2π
T Âπ + cλ2 . (C.1)

After integration of the N − 1 finite components of π, the effective action reads

S =1
2A1φ

2
L + N − 1

2
1

N − 1log
( N∏
i=2

Ai

)
︸ ︷︷ ︸

≡log Ã

+cλ2 , (C.2)

where we have identified the new matrix log Ã. For as long as not too many of the eigenvalues Ai ≈ 1
equal one, it holds log Ã = O(1) and not O(1/N). The statement is in particular true for Ai = A0 all
eigenvalues being identical. Thus, the second term in (C.2) is of order O(N), where it holds N−1 ≈ N .
Then, one needs to rescale the condensed component according to φL → φL

√
N to establish the same

order in N . Eventually, the action (C.2) has an overall prefactor N .
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C Vestigial nematicity

In the present superconducting model, the large number N arises from the two complex components,
i.e. real- and imaginary part of the order parameter ∆Eu . Moreover, due to the two-dimensional IR,
the longitudinal and the transverse components individually have a two-dimensional structure, such
that the Green‘s function

(
G
[
A
])−1

embodies a 2N × 2N matrix in the large-N language. The first
task is to find a longitudinal direction which is chosen such that the action between the longitudinal
and transverse components decouples similar to (C.1). Starting from the action (3.7)

S = SC + V
∑
q,q′

(
∆Eu
q

)† (
G
[
A
])−1

q,q′
∆Eu
q′ , (C.3)

we decompose the order parameter according to

∆Eu
q =

(
Re ∆Eu,1

q

ζ Re ∆Eu,2
q + i

(
1− ζ

)
Im ∆Eu,2

q

)
︸ ︷︷ ︸

=∆c.A
q

+i
(

Im ∆Eu,1
q

ζ Im ∆Eu,2
q − i

(
1− ζ

)
Re ∆Eu,2

q

)
︸ ︷︷ ︸

=∆c.B
q

, (C.4)

with ζ = {0, 1}. Then, the action (C.3) becomes

S = SC + V
∑

j={A,B}

∑
q,q′

(
∆c.j
q

)† (
G
[
A
])−1

q,q′
∆c.j
q′

+ 2V
∑
q,q′

(
Re ∆Eu,1

q

Im ∆Eu,1
q

)((
1− ζ

)
τ0tr

[(
G
[
A
])−1

q,q′
τx
]

+ iζτytr
[(
G
[
A
])−1

q,q′
τy
])Re ∆Eu,2

q′

Im ∆Eu,2
q′

 ,

(C.5)

with

tr
[(
G
[
A
])−1

q,q′
τx
]

= −2fEg ,2q δqq′ − 2ζCEg ,2q−q′ +
2e∂fEg ,2p

∂pα

∣∣∣
p= q+q′

2

Aαq-q′ −
∑
q1

e2∂2f
Eg ,2
p

∂pα∂pβ

∣∣∣
p= q+q′

2

Aαq1A
β
q-q′-q1 ,

tr
[(
G
[
A
])−1

q,q′
τy
]

= 2
(
1− ζ

)
CA2g
q−q′ + 2Bz .

Aiming for a uniform solution ∆c.j
q = ∆c.j

0 δq,0, we note that the coupling term (C.5) only vanishes if
both holds, ζ =

{
0, 1
}
and the external field is zero. These are the constraints we have to impose on the

system in the superconducting state such that the action decouples in line with the large-N approach
(C.1). Now, we assign ∆c.A as the longitudinal component, and we integrate out the remaining N − 1
components, yielding1

S− = SC + V
(
∆c.A

0

)† (
G [0]

)−1
0,0 ∆c.A

0 + β−1N − 1
2 tr log

(
2V β−1 (G [0]

)−1
)
, (C.6)

1The integration runs over a N -component real vector v and reads
∫
dv exp

(
− 1

2v
TAv

)
=
√

2πN/
√

detA, where the
symmetric part of the matrix A has to be positive definite. In the cases ζ = 1 and ζ = 0 the matrices read
A = (G[0])−1 and A = O†(G[0])−1O, respectively. The matrix O =

(
1 0
0 i

)
does not change the integrals outcome as

det
(
O†(G[0])−1O

)
= det

(
(G[0])−1

)
.
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C Vestigial nematicity

and eventually, we approximate N−1 ≈ N . If the temperature is above the superconducting transition,
the purely fluctuating superconducting field in Eq. (C.3) can directly be integrated out with the result
reading

S+ = SC + β−1N

2 tr log
(

2V β−1
(
G
[
A
])−1

)
.

In the large-N limit the two actions are smoothly connected.

Condensation along an arbitrary direction Again, we begin by considering a (φ2)2 theory with
the real field φ = (φ1, φ2, . . . , φN )T having N components. The corresponding action is of the form
S = 1

2φ
T Âφ + cλ2 where Â is an arbitrary positive definite matrix, and the composite field reads λ.

Now, we define a condensed direction φ0 as the solution of the equation

δS
δφ

∣∣∣
φ=φ0

= 0 .

We express the field φ = φ0 + δφ via the condensed component φ0, and the fluctuations δφ in all N
components. By construction, the corresponding action decomposes according to

S̃ =1
2φ

T
0 Âφ0 + 1

2δφ
T Âδφ+ cλ2 , (C.7)

and the δφ can be integrated out. The corresponding effective action reads

S =1
2φ

T
0 Âφ0 + N

2
1
N

log
( N∏
i=1

Ai

)
︸ ︷︷ ︸

≡log Ã

+cλ2 , (C.8)

with the eigenvalues Ai of the matrix Â. Again, we have defined the matrix log Ã which is of the
order O(1) unless too many eigenvalues Ai ≈ 1 yield one. After rescaling the condensed component
φ0 → φ0

√
N , the resulting action looks similar to (C.2). However, the key difference is that the present

approach did not require the matrix Â to be diagonal, nor did one have to specify the direction of the
condensed component in the first place.
To employ this method on the present superconductor, we start from the action (3.7)

S∆ = SC + V
∑
q,q′

(
∆Eu
q

)† (
G
[
A
])−1

q,q′
∆Eu
q′ , (C.9)

and define the ordered field ∆o,Eu
q via the solution of the equation

δS∆

δ∆̄Eu
q

∣∣∣
∆Eu
q =∆o,Eu

q

= 0 . (C.10)

Next, we decompose the order parameter ∆Eu
q = ∆o,Eu

q + δ∆Eu
q around its ordered component ∆o,Eu

q ,
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C Vestigial nematicity

we insert the ansatz and integrate out the fluctuating fields, yielding

Sf = SC + V
∑
q,q′

(
∆o,Eu
q

)† (
G
[
A
])−1

q,q′
∆o,Eu
q′ + β−1N

2 tr log
(

2V β−1
(
G
[
A
])−1

)
.

Eventually, we rescale the superconducting field ∆o,Eu
q →∆o,Eu

q

√
N , and the action looks the same as

in the previous method, yet the condensation direction is left unspecified.

C.2 Derivation of the CEg free energy expansion

In this part, we derive the Ginzburg-Landau parameter rc,gc and uc of the composite order parameter
CEg0 . We start from the mean-field equations valid above the superconducting transition

0 = − V

2u′
(
R0 − δr0 − rc0

)
+ T

1
2
∑
q

trτ
(
Gq
[
R0,CEg ,l0

]
τ0
)

(C.11)

0 = V

2vCEg ,l0 + T
1
2
∑
q

trτ
(
Gq
[
R0,CEg ,l0

]
τEg ,l

)
, (C.12)

where we have introduced the notation u′ = u+ v, R0 = r0 + CA1g
0 , δr0 = r0 − rc0 and r̂c0 according to

Eq. (3.43). For clarity, the matrix Green‘s function (C.13) reads

Gq
[
R0,CEg ,l0

]
=

(
R0 + f

(0)
q

)
τ0 −

(
f
Eg ,l
q + CEg ,l0

)
τEg ,l(

R0 + f
(0)
q

)2
−
(
f
Eg
q + CEg0

)2 . (C.13)

The goal is to expand the above equations with respect to CEg0 , yet because of Eq. (C.12), the
renormalized mass R0(CEg0 ) has to be treated as a function of CEg0 as well. For this purpose, we
expand R0 around its value in the para-nematic phase Rp according to

R0 = Rp + κ
(1)
l CEg ,l0 + κ

(2)
ll′ CEg ,l0 CEg ,l

′

0 . (C.14)

It proves useful to first expand the matrix (C.13) for small CEg ,l0 which provides the expression

Gq
[
R0,CEg ,l0

]
≈ Gpq −

(
GpqGpq κ

(1)
l + Gpq τEg ,lGpq

)
CEg ,l0 +

(
GpqGpqGpq κ

(1)
l κ

(1)
l′ − G

p
qGpq κ

(2)
ll′

)
CEg ,l0 CEg ,l

′

0

+ 1
2

(
Gpq
(
Gpq τEg ,l

′ + τEg ,l
′Gpq
)
Gpq κ

(1)
l + Gpq

(
Gpq τEg ,l + τEg ,lGpq

)
Gpq κ

(1)
l′

)
CEg ,l0 CEg ,l

′

0

+ 1
2G

p
q

(
τEg ,l

′Gpq τEg ,l + τEg ,lGpq τEg ,l
′
)
GpqCEg ,l0 CEg ,l

′

0 , (C.15)

where we have introduced Gpq = Gq[Rp, 0] and employed the derivatives

∂Gq[R0,CEg ,l0 ]
∂R0

= −Gq[R0,CEg ,l0 ]Gq[R0,CEg ,l0 ] , ∂Gq[R0,CEg ,l0 ]
∂CEg ,l0

= −Gq[R0,CEg ,l0 ]τEg ,lGq[R0,CEg ,l0 ].
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C Vestigial nematicity

The insertion of the expansion (C.15) into (C.11) and sorting with respect to powers of CEg ,l0 yields

Rp = δr0 + rc0 + u′Π̃0, (C.16)

κ
(1)
l CEg ,l0 = −u′

(
Π̃0,0 κ

(1)
l + Π̃0,l

)
CEg ,l0 , (C.17)

κ
(2)
ll′ CEg ,l0 CEg ,l

′

0 = u′
(

Π̃0,0,0 κ
(1)
l κ

(1)
l′ − Π̃0,0 κ

(2)
ll′ + Π̃0,0,l′ κ

(1)
l + Π̃0,0,l κ

(1)
l′ +

Π̃0,l′,l + Π̃0,l,l′

2

)
CEg ,l0 CEg ,l

′

0 .

(C.18)

Here, we have introduced the notation

Π̃i = T

V

∑
q

trτ
(
Gpq τi

)
, Π̃i,j = T

V

∑
q

trτ
(
Gpq τiGpq τj

)
, (C.19)

Π̃i,j,k = T

V

∑
q

trτ
(
Gpq τiGpq τjGpq τk

)
, Π̃i,j,k,l = T

V

∑
q

trτ
(
Gpq τiGpq τjGpq τkGpq τl

)
, (C.20)

with
{

i, j, k, l
}
∈
{

0, 1, 2
}
where

{
1, 2
}

=̂{(Eg, 1), (Eg, 2)}. For l = 1, 2 it is easily proven that the
expressions Π̃l = Π̃0,l = 0 have to vanish and Π̃0,l,l′ = Π̃0,z,zδl,l′ owed to the symmetry behavior
of fEg ,lq . In particular, the following identities are useful for the upcoming derivation

∫
q f

Eg ,1
q Hq =∫

q f
Eg ,2
q Hq = 0,∫
q
(fEgq )TσzfEgq Hq =

∫
q
(fEgq )TσxfEgq Hq = 0 ,

∫
q

(
(fEgq )TσzfEgq

)2
Hq =

∫
q

(
(fEgq )TσxfEgq

)2
Hq ,

(C.21)

which are valid for any function Hq = Hq((f
Eg
q )2, f

A1g
q ) that transforms trivially.2 The equation (C.17)

only allows for the solution κ(1)
l = 0 and thus, equation (C.18) is solved for

κ
(2)
ll′ = Π̃0,z,z

1
u′ + Π̃0,0

δl,l′ ≡ κ
(2)
0 δl,l′ .

Next, we expand the action (3.9) with respect to CEg to derive the desired free energy expansion. To
this end, we separate the Green‘s function matrix according to(

GC
)−1

q,q
=
(
Rp0 + f (0)

q

)
τ0 + f

Eg ,l
q τEg ,l︸ ︷︷ ︸

(Gpq )−1

+κ
(2)
0

(
CEg0

)2
τ0 + CEg ,l0 τEg ,l︸ ︷︷ ︸
Ĉ

,

2The identities can be proven in a similar way as in Eq. (B.16) with the transformation properties (2.5) of fEg,l
q under

the C3z and C2x rotations.
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and insert it, together with (C.14) into the action (3.9) and expand

S
NV

= − 1
4u′

(
R0 − δr0 − rc0

)2 + 1
4v

(
CEg0

)2
+ T

1
2V tr log

(
2V β−1 (Gp)−1

)
+ T

1
2V tr log

(
1 + GpĈ

)
≈ Sp + rc

(
CEg0

)2
+ gc

((
CEg ,10

)3
− 3CEg ,10

(
CEg ,20

)2
)

+ uc
(

CEg0

)4
. (C.22)

The para-nematic part reads Sp = T
2V tr log(2V β−1 (Gp)−1)− 1

4u′ (Rp−δr0−rc0)2 and we have identified
the desired parameters as

rc = 1
4

(
1
v
− Π̃z,z

)
, gc = 1

6Π̃z,z,z, uc = 1
8

(
2(Π̃0,z,z)2

1
u′ + Π̃0,0

− Π̃z,z,z,z

)
. (C.23)

The traces that were involved in the expansion of (C.22) can be simplified to

T

V
tr
(
GpĈ

)
= κ

(2)
0 (CEg0 )2Π̃0,

T

V
tr
(
GpĈ

)2
= (κ(2)

0 )2(CEg0 )4Π̃0,0 + (CEg0 )2Π̃z,z,

T

V
tr
(
GpĈ

)4
= (CEg0 )4Π̃z,z,z,z,

T

V
tr
(
GpĈ

)3
= CEg ,10

(
(CEg ,10 )2− 3(CEg ,20 )2

)
Π̃z,z,z + 3κ(2)

0 (CEg0 )4Π̃0,z,z,

where it has been used Π̃l,l′ = Π̃z,zδl,l′ . Explicitly, the integrals read

Π̃0 = 2T
V

∑
q

(Rp + f
(0)
q )

det
(
Gp
)−1
q

, Π̃0,z,z = 2T
V

∑
q

(Rp + f (0)
q )(Rp + f

(0)
q )2 + (fEgq )2

(det
(
Gp
)−1
q

)3
,

Π̃0,0 = 2T
V

∑
q

(Rp + f
(0)
q )2 + (fEgq )2

(det
(
Gp
)−1
q

)2
, Π̃z,z,z = −2T

V

∑
q

f
Eg ,1
q

(fEg ,1q )2 − 3(fEg ,2q )2

(det
(
Gp
)−1
q

)3
,

Π̃z,z = 2T
V

∑
q

(Rp + f
(0)
q )2

(det
(
Gp
)−1
q

)2
, Π̃z,z,z,z = 2T

V

∑
q

(Rp + f (0)
q )2 (Rp + f

(0)
q )2 + 4(fEgq )2

(det
(
Gp
)−1
q

)4
.
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C.3 Conductivity and magnetic susceptibility

In this part, we provide more details on the calculations involved in the derivations carried out in
section 3.3. In the free energy expansion in (3.69) we have omitted the two terms

δ logZ
[
H,A

]
δAαq

∣∣∣
H

∣∣∣
A=H=0

= 0, δ

δHα
q

[
δ logZ

[
H,A

]
δAβ−q

∣∣∣
H

]∣∣∣
A

∣∣∣
A=H=0

= 0 ,

which vanish due to the fact that a single A derivative leads to expressions which are odd upon
the inversion symmetry. Central for the derivation of the conductivity and the susceptibility are the
correlation functions QAαβ(q) and QHαβ(q). With the definitions given in (3.70) the correlation function
QAαβ(q) evaluates for our system (3.9) to

QAαβ(q) = T

V

δ2 logZ[H,A]
δAβq δAα−q

∣∣∣
H

∣∣∣
A=H=0

= −T
V

δ

δAβq
tr
(
G
[
A
] δG [A]−1

δAα−q

)∣∣∣
A=0

= Te2

V

∑
p′

trτ
(
GC
q+p′ V̂

β
p′+ q

2
GC
p′ V̂

α
p′+ q

2

)
− Te2

V

∑
p

trτ
(
GC
p Ôαβ(p)

)
= Kαβ(q)−Kαβ(0) , (C.24)

where we have exploited the identity δG[A]
δAβq

= −G
[
A
] δG[A]−1

δAβq
G
[
A
]
and we have integrated by parts in

the last line, using Ôαβ(p) = ∂αV̂
β
p . Eventually, the task amounts to the computation of the function

Kαβ(q) = Te2

V

∑
p

trτ
(
GC
p+ q

2
V̂ β
p GC

p− q2
V̂ α
p

)
. (C.25)

The second correlation function QHαβ(q) can be written as

QHαβ(q) = T

V µ2
0

δ2 logZ
[
H,A

]
δHβ
−qδH

α
q

∣∣∣
A

∣∣∣
A=H=0

= − T

V µ2
0

δ

δHβ
−q

tr
(
G
[
A
] δG [A]−1

δHα
q

)∣∣∣
A

∣∣∣
A=H=0

= T (α′)2

V
δq,0δα,zδβ,ztr

(
GC
p τ

yGC
p τ

y
)
> 0 ,

where the positivity leads to a purely para-magnetic contribution to the susceptibility, cf. Eq. (3.76).

Magnetic susceptibility In order to derive the static DC susceptibility, we expand the response
kernel (C.24) to second order in the momentum q, reading QAαβ(q) ≈ 1

2 Γγδaβ qγqδ. The expansion
coefficients obey the relations Γγδaβ = Γγδβα = Γδγaβ. The explicit expression can be cast as Γγδaβ =
Dβγ
αδ +Dαδ

βγ +Dαγ
βδ +Dβδ

αγ + 2Pαδβγ with

Dγδ
αβ = Te2

8V
∑
p

trτ
[
GC
p

(
V̂ α
p GC

p V̂
β
p + V̂ β

p GC
p V̂

α
p

)
GC
p Ô

γδ
p

]
, Pαδβγ =−Te

2

2V
∑
p

trτ
[
GC
p V̂

α
p GC

p V̂
δ
p GC

p V̂
β
p GC

p V̂
γ
p

]
.
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From the above expression it can be deduced that the coefficients Γγδaβ are also identical upon pairwise
exchange of indices Γγδaβ = Γaβγδ . Using these symmetries, the diagonal elements of the susceptibility
can be expressed as [using q̂α = qα/|q|]

χxx(0, 0) = µ0
2

(
Γδδ′yy q̂δ q̂δ′ q̂z q̂z + Γδδ′zz q̂δ q̂δ′ q̂y q̂y − 2Γδδ′yz q̂δ q̂δ′ q̂z q̂y

)
= µ0

2

(
q̂2
y q̂

2
z

(
Γyyyy + Γzzzz − 4Γyzyz

)
+ (q̂4

y + q̂4
z)Γzzyy + 2q̂y q̂z(q̂2

z − q̂2
y)
(

Γyzyy − Γzzyz
))

(∗)= χ0
2 ĉ2 Γ̃zzyy ,

χyy(0, 0) = µ0
2

(
Γδδ′zz q̂δ q̂δ′ q̂xq̂x + Γδδ′xx q̂δ q̂δ′ q̂z q̂z − 2Γδδ′zx q̂δ q̂δ′ q̂xq̂z

)
= µ0

2

(
q̂2
xq̂

2
z

(
Γxxxx + Γzzzz − 4Γxzxz

)
+ (q̂4

x + q̂4
z)Γzzxx + 2q̂xq̂z(q̂2

x − q̂2
z)
(
Γxzzz − Γxzxx

))
(∗)= χ0

2 ĉ2 Γ̃zzxx ,

χzz(0, 0) = µ0Q
H
zz(0) + µ0

2

(
−2Γδδ′xy q̂δ q̂δ′ q̂y q̂x + Γδδ′xx q̂δ q̂δ′ q̂y q̂y + Γδδ′yy q̂δ q̂δ′ q̂xq̂x

)
= µ0Q

H
zz(0) + µ0

2

(
q̂2
xq̂

2
y

(
Γxxxx + Γyyyy − 4Γxyxy

)
+ (q̂4

x + q̂4
y)Γyyxx + 2q̂xq̂y(q̂2

x − q̂2
y)
(

Γxyyy − Γxyxx
))

(∗)= χ0Q̃
H
zz(0) + χ0

2 Γ̃yyxx .

where we have reinstalled ~ and introduced χ0 = µ0Te
2a4/V0~2, as well as the dimensional quantities

Γ̃γδαβ = V0
T

~2

e2
1

aαaβaγaδ
Γγδαβ and Q̃Hzz(0) = V0~2

Te2a4 Q
H
zz(0) with a1 = a2 = a, a3 = c and ĉ = c/a. The quest

of finding symmetry arguments of why the following identities

Γyyyy + Γzzzz − 4Γyzyz
(∗)= 2Γzzyy , Γyzyy

(∗)= Γzzyz ,

Γxxxx + Γzzzz − 4Γxzxz
(∗)= 2Γzzxx , Γyzyy

(∗)= Γzzyz
(∗)= 0 ,

Γxxxx + Γyyyy − 4Γxyxy
(∗)= 2Γyyxx , Γxyyy

(∗)= Γxyxx
(∗)= 0 ,

should hold has proven to be a tedious business. The numerical evaluations clearly suggest the above
relations to hold. (The asterisk marks that they have not been proven analytically.) From a physical
point of view, they should hold since otherwise the static DC values χxx(0, 0), χyy(0, 0) and χzz(0, 0)
would depend on the direction q̂α from which zero is approached.
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C.3.1 Conductivity

For the evaluation of the conductivity the internal Matsubara summation of Kαβ(q, iνm) (C.25) has
to be taken seriously, and fully accounted for. We rewrite the expression according to

Kαβ(iνm, q) = Te2

V

∑
p

∑
νn

trτ
(
GC
p+ q

2
(iνn)V̂ β

p GC
p− q

2
(iνn − iνm)V̂ α

p

)
= e2

V

∑
p

∮
C

dz

2πi n(z) trτ
(
GC
p+ q

2
(z)V̂ β

p GC
p− q

2
(z − iνm)V̂ α

p

)
= e2

πV

∑
p

∫ ∞
−∞

dε n(ε) trτ
(

Im
[
GC
p+ q

2
(ε+ i0)

]
V̂ β
p GC

p− q
2
(ε− iνm)V̂ α

p

+ GC
p+ q

2
(ε+ iνm)V̂ β

p Im
[
GC
p− q

2
(ε+ i0)

]
V̂ α
p

))
,

with the Bose function n(ε) = 1/(eβε − 1). In the second line we have deformed the integration
contour C to the integration contours ε ± i0 above and below the real axis, and we have identified
2i ImGC

p (ε + i0) = GC
p (ε + i0) − GC

p (ε − i0). In a next step, we perform an analytical continuation
iνm → ν + i0 and write the imaginary part of the above function as

ImKαβ(ν + i0, q) = e2

πV

∑
p

∫ ∞
−∞

dε δn(ε, ν) trτ
(

Im
[
GC
p+ q

2
(ε+ ν + i0)

]
V̂ β
p Im

[
GC
p− q

2
(ε+ i0)

]
V̂ α
p

)
,

with δn(ε, ν) = n(ε)−n(ε+ ν). If we approximate δn(ε, ν) ≈ νT/ε(ε+ ν), we can conveniently express
the conductivity (3.67) by

Reσαβ(ν + i0, q) =
ImQAαβ(ν + i0, q)

ν
(C.26)

≈ Te2

πV

∑
p

∫ ∞
−∞

dε trτ
( Im

[
GC
p+ q

2
(ε+ ν + i0)

]
ε+ ν

V̂ β
p

Im
[
GC
p− q

2
(ε+ i0)

]
ε

V̂ α
p

)
. (C.27)

Note that the above result holds for any Green‘s function matrix GC
p (ε). In the following, we carry

out the ε integration which requires the actual frequency dependence of the present Green‘s function
matrix. After the analytical continuation the Green‘s function reads(

GC
p

)−1
(ν + i0) =

(
r0 + iγ0ν + f

A1g
p + CA1g

0

)
τ0 +

(
f
Eg
p + CEg0

)
· τEg .

We diagonalize this matrix

(
GC
p

)−1
(ν + i0) = Uσp

(
λσ−p + iγ0ν 0

0 λσ+
p + iγ0ν

)(
Uσp

)†
, (C.28)
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using the unitary matrix

Uσp =

 βσ−p −sign(fEg ,2p + CEg ,20 )βσ+
p

sign(fEg ,2p + CEg ,20 )βσ+
p βσ−p

 ,

with βσ±p =
√

1± (fEg ,1p + CEg ,10 )/|fEgp + CEg0 | and the eigenvalues λσ±p = r0+fA1g
p +CA1g

0 ±|fEgp +CEg0 |.
Then, the imaginary part of the inverse of (C.28) becomes

ImGC
p (ν + i0)
ν

= −γ0U
σ
p

 1
(λσ−p )2+γ2

0ν
2 0

0 1
(λσ+

p )2+γ2
0ν

2

(Uσp )† ,
and the ε integration in (C.27) can be carried out, yielding

Reσαβ(ν + i0,0) = 2Te2

V
γ0
∑
p

(
1
λσ−p

Ṽ α
1,1,pṼ

β
1,1,p

(2λσ−p )2 + γ2
0ν

2 + 1
λσ+
p

Ṽ α
2,2,pṼ

β
2,2,p

(2λσ+
p )2 + γ2

0ν
2

+ 1
2

(
1
λσ−p

+ 1
λσ+
p

)
Ṽ α

1,2,pṼ
β

2,1,p + Ṽ α
2,1,pṼ

β
1,2,p

(λσ+
p + λσ−p )2 + γ2

0ν
2

)
(C.29)

with the introduced velocity matrix Ṽ β
p =

(
Uσp

)†
V̂ β
p U

σ
p . The involved integrals were of the kind∫ ∞

−∞

dε

2π
1

µ2
1 + ε2

1
µ2

2 + (ε+ ν)2 = µ1 + µ2
2µ1µ2

1(
ν2 + (µ1 + µ2)2

) .
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C.4 Nematic susceptibility and renormalized elastic constants

In the first part of this section, we derive a rigorous relation between the nematic susceptibility and the
renormalized elastic constants. Since they are linearly coupled, also their response functions must be
somehow related. In the second part, we deduce an explicit expression for the nematic susceptibility.
We start from an action where the fluctuating superconductor is coupled to its elastic degrees of
freedom characterized by the strain tensor εD3d . We use the notation developed in section 3.4.1.
Additionally, we couple the nematic degrees of freedom to the external field hEg = (hEg ,1, hEg ,2) via∑

q BEg
q · hEg−q, and the dilatation related components via

∑
q BA1g

q hA1g
−q . The bilinear forms are defined

as Bn,lq =
∑

q1
(∆Eu

q1 )†τn,l∆Eu
q1+q. We also apply an external stress tensor σD3d via Sσ = −

∑
q σ

D3d
−q ε

D3d
q

with σD3d = ((σA1g)T , (σEg)T )T . Then, the action S = S[hn,l,σD3d ] depends on the external fields,
and the expectation values can be computed via

〈Bn,lq 〉 = T
δ logZ[hn,l,σD3d ]

δhn,l−q
, 〈εA1g ,j

q 〉 = T
δ logZ[hn,l,σD3d ]

δσ
A1g ,j
−q

, 〈εEg ,αq 〉 = T
δ logZ[hn,l,σD3d ]

δσ
Eg ,α
−q

, (C.30)

with i, j =
{

1, 2
}
and α, β =

{
1, . . . , 4

}
. As is usual, we define the corresponding susceptibilities, the

nematic susceptibility χnem and the renormalized elastic tensor Cr, as the second derivatives evaluated
at zero field, i.e.

χnem,ij(q) = T
δ2 logZ[hn,l,σD3d ]

δhEg ,iq δhEg ,j−q

∣∣∣
hn,l=σD3d=0

,
(
Cr,Egq

)−1

α,β
= T

δ2 logZ[hn,l,σD3d ]
δσ

Eg ,α
q δσ

Eg ,β
−q

∣∣∣
hn,l=σD3d=0

.

Apart from the two above response functions which are the most relevant for our application, we also
define the remaining correlation functions for completeness,(
Cr,A1g
q

)−1

i,j
= T

δ2 logZ[hn,l,σD3d ]
δσ

A1g ,i
q δσ

A1g ,j
−q

∣∣∣
hn,l=σD3d=0

,
(
Cr,A1gEg
q

)−1

i,β
= T

δ2 logZ[hn,l,σD3d ]
δσ

A1g ,i
q δσ

Eg ,β
−q

∣∣∣
hn,l=σD3d=0

,

χA1g(q) = T
δ2 logZ[hn,l,σD3d ]

δhA1g
q δhA1g

−q

∣∣∣
hn,l=σD3d=0

, χA1gEg ,j(q) = T
δ2 logZ[hn,l,σD3d ]

δhEg ,jq δhA1g
−q

∣∣∣
hn,l=σD3d=0

.

Another way, the susceptibilities can be expressed is via

χnem,ij(q) = δ〈BEg ,jq 〉h
δhi,q

∣∣∣∣
0
, χA1g(q) = δ〈BA1g

q 〉
δhA1g
q

∣∣∣∣
0
, χA1gEg ,j(q) = δ〈BA1g

q 〉
δhEg ,jq

=
δ〈BEg ,j−q 〉

δhA1g
−q

∣∣∣∣
0
.

The explicit action is a combination of (3.7) and (3.89) with the additional elasto-nematic coupling
terms

∑
q BEg

q · (κc1ε
Eg ,1
−q + κc2ε

Eg ,2
−q ) and

∑
q BA1g

q (κA1ε
A1g ,1
−q + κA2ε

A1g ,2
−q ). It reads

Skin
NV

= SC +
∑
q,q′

(
∆Eu
q

)† (
GC
)−1

q,q′
∆Eu
q′ + 1

2
∑
q

(
εD3d
−q

)T
CD3dεD3d

q (C.31)

Scoupl
NV

=
∑
q

(
B̃
A1g
−q

B̃Eg−q

)T (
ε
A1g
q

ε
Eg
q

)
−
∑
q

(hEg−q)T · B
Eg
q −

∑
q

hA1g
−q BA1g

q −
∑
q

(σD3d
−q )T · εD3d

q , (C.32)
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with (
GC
)−1

q,q′
=
((

r0 + γ0|νm|+ f
A1g
q

)
δqq′ + CA1g

q−q′

)
τ0 +

(
f
Eg
q δqq′ + CEgq−q′

)
· τEg ,

and the vectors

B̃A1g
q =

(
κA1B

A1g
q

κA2B
A1g
q

)
=
(
κA1 0

0 κA2

)
︸ ︷︷ ︸

κ̂A

(
B
A1g
q

B
A1g
q

)
, B̃Eg

q =
(
κc1BEgq
κc2BEgq

)
=
(
κc112 0

0 κc212

)
︸ ︷︷ ︸

κ̂c

(
BEgq
BEgq

)
.

In this notation, the partition function has to be evaluated as

Z
[
hn,l,σD3d

]
=
∫
DεD3d

q DCEgq DCA1g
q D

(
∆̄Eu
q ,∆Eu

q

)
e
−βS

[
hn,l,σD3d

]

with S[hn,l,σD3d ] = Skin + Scoupl. For brevity, we will comprise all the integration variables in D =
DεD3d

q DCEgq DCA1g
q D

(
∆̄Eu
q ,∆Eu

q

)
in the following. As a first, step we remove the direct coupling

εD3d
q σD3d

−q in the above action by shifting the integration variable to (εD3d
q )′ = εD3d

q − (CD3d)−1σD3d
q . To

explicitly state the variable shift let us first compute the inverse bare elastic tensor from (3.90) yielding

(
CD3d

)−1
=

 (
CA1g

)−1
0

0
(
CEg

)−1

 ,

with (
CA1g

)−1
=
(

ĉA1g ,2 −ĉA1g ,3
−ĉA1g ,3 ĉA1g ,1

)
,

(
CEg

)−1
=
(

ĉEg ,2 −ĉEg ,3
−ĉEg ,3 ĉEg ,1

)
⊗ 12 ,

and ĉA1g ,i = cA1g ,i/(cA1g ,1cA1g ,2 − (cA1g ,3)2) and ĉEg ,i = cEg ,i/(cEg ,1cEg ,2 − (cEg ,3)2). Then, we can
express the variable shift as

εD3d
q =

(
εD3d
q

)′
+

 (
CA1g

)−1
σ
A1g
q(

CEg
)−1

σ
Eg
q


which turns the action into (we replace ε′ → ε afterwards)

Skin
NV

= SC +
∑
q,q′

(
∆Eu
q

)† (
GC
)−1

q,q′
∆Eu
q′ + 1

2
∑
q

(
εD3d
−q

)T
CD3dεD3d

q − 1
2
∑
q

(
σD3d
−q

)T(
CD3d

)−1
σD3d
q

Scoupl
NV

=
∑
q

(
B̃
A1g
−q

B̃Eg−q

)T  ε
A1g
q +

(
CA1g

)−1
σ
A1g
q

ε
Eg
q +

(
CEg

)−1
σ
Eg
q

−∑
q

(hEg−q)T · B
Eg
q −

∑
q

hA1g
−q BA1g

q .
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Now, we perform the derivatives in (C.30) explicitly to obtain

〈Bn,jq 〉 = T
δ logZ[hn,l,σD3d ]

δhn,j−q
= 1
Z[hn,l,σD3d ]

∫
D Bn,jq e

−T−1S
[
hn,l,σD3d

]
,

〈εEg ,βq 〉 = T
δ logZ[hn,l,σD3d ]

δσ
Eg ,β
−q

= 1
Z[hn,l,σD3d ]

∫
D
(
σ
Eg ,β′
q

(
CEg

)−1

β′β
− κ̂β′β′′c BEg ,2−β

′′mod(2)
q

(
CEg

)−1

β′β

)
= σ

Eg ,β′
q

(
CEg

)−1

β′β
− κ̂β′β′′c T

δ logZ[hn,l,σD3d ]
δhEg ,2−β

′′mod(2)
−q

(
CEg

)−1

β′β
, (C.33)

〈εA1g ,j
q 〉 = T

δ logZ[hn,l,σD3d ]
δσ

A1g ,j
−q

= 1
Z[hn,l,σD3d ]

∫
D
(
σ
A1g ,i
q

(
CA1g

)−1

ij
− κ̂ii′A BA1g

q

(
CA1g

)−1

ij

)
= σ

A1g ,i
q

(
CA1g

)−1

ij
− κ̂ii′A

(
CA1g

)−1

ij
T
δ logZ[hn,l,σD3d ]

δhA1g
−q

. (C.34)

Next,we compute the second derivative

T
δ2 logZ[hn,l,σD3d ]
δσ

Eg ,α
q δσ

Eg ,β
−q

=
(
CEg

)−1

αβ
−
(
CEg

)−1

ββ′
κ̂β
′β′′

c T
δ2 logZ[hn,l,σD3d ]

δhEg ,2−β
′′mod(2)

−q δσ
Eg ,α
q

=
(
CEg

)−1

αβ
+
(
CEg

)−1

α′α

(
CEg

)−1

ββ′
κ̂β
′β′′

c κ̂α
′α′′

c T
δ2 logZ[hn,l,σD3d ]

δhEg ,2−β
′′mod(2)

−q δhEg ,2−α
′′mod(2)

q

,

which becomes the eventual relation(
Cr,Egq

)−1

α,β
=
(
CEg

)−1

αβ
+
(
CEg

)−1

α′α

(
CEg

)−1

ββ′
κ̂β
′β′′

c κ̂α
′α′′

c χnem,2−α′′mod(2),2−β′′mod(2)(q).

In matrix representation the equation reads(
Cr,Egq

)−1
=
(
CEg

)−1
+
(
CEg

)−1
κ̂cχ̂nem(q)κ̂c

(
CEg

)−1
(C.35)

with

χ̂nem(q) =
(
χnem(q) χnem(q)
χnem(q) χnem(q)

)
.

While the above relation (C.35) is the one, we are most interested in, we can also relate the remaining
elastic constants to the respective correlation functions, and eventually study the renormalization
thereof due to approaching superconducting instability. Taking the other second derivatives of (C.34)
and (C.33) yields

T
δ2 logZ[hn,l,σD3d ]
δσ

A1g ,i
q δσ

A1g ,j
−q

=
(
CA1g

)−1

ij
+ κ̂j

′j′′

A

(
CA1g

)−1

j′j
κ̂i
′i′′
A

(
CA1g

)−1

i′i
T
δ2 logZ[hn,l,σD3d ]

δhA1g
q δhA1g

−q

T
δ2 logZ[hn,l,σD3d ]
δσ

A1g ,i
q δσ

Eg ,β
−q

=
(
CEg

)−1

β′β
κ̂β
′β′′

c κ̂i
′j′

A

(
CA1g

)−1

i′i
T

δ2 logZ[hn,l,σD3d ]
δhEg ,2−β

′′mod(2)
−q δhA1g

q
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and thus, the relations (
Cr,A1g
q

)−1

i,j
=
(
CA1g

)−1
+
(
CA1g

)−1
χ̂A1g(q)

(
CA1g

)−1
,(

Cr,A1gEg
q

)−1
=
(
CA1g

)−1
χ̂A1gEg(−q)κ̂c

(
CEg

)−1
,

with

χ̂A1g(q) =
(

κ2
A1 κA1κA2

κA1κA2 κ2
A2

)
χA1g(q), χ̂A1gEg(q) =

(
κA1 κA1
κA2 κA2

)
⊗ χA1gEg(q).

C.4.1 Computation of the nematic susceptibility

We derive the nematic susceptibility conveniently from the saddle-point equations above Tc in the
presence of the external fields hEg and hA1g . The corresponding action is given in (C.31), and after
the Hubbard-Stratonovich transformation, the saddle-point equations can be derived

0 = − 1
2u′C

A1g
0 + T

2V
∑
q

trτ
(
GC
q,q[hn,l]τ0

)
, 0 = 1

2vCEg ,l0 + T

2V
∑
q

trτ
(
GC
q,q[hn,l]τEg ,l

)
,

with GC
q,q′ [hn,l] = (GC)−1

q,q′+hEgq−q′ ·τEg + +hA1g
q−q′τ

A1g . The variation of the above equations with respect
to hEg ,j0 and hA1g

0 yields

0 = −χA1gEg ,j(0)− 2u′χ(0)
A1g

(0)χA1gEg ,j(0)− χ(0)
A1gEg ,l′

(0)
(
−2vχnem,jl′(0) + δj,l′

)
, (C.36)

0 = −χnem,jl(0)− χ(0)
nem,ll′(0)

(
−2vχnem,jl′(0) + δj,l′

)
− 2u′χ(0)

A1gEg ,l
(0)χA1gEg ,j(0), (C.37)

0 = −χA1g(0)− χ(0)
A1g

(0)
(

2u′χA1g(0) + 1
)

+ 2vχ(0)
A1gEg ,l′

(0)χA1gEg ,l′(0), (C.38)

0 = −χA1gEg ,l(0) + 2vχ(0)
nem,ll′(0)χA1gEg ,l′(0)− χ(0)

A1gEg ,l
(0)
(

2u′χA1g(0) + 1
)
, (C.39)

with χnem,ij(q) = − 1
2v
δ〈CEg,jq 〉h
δhi,q |hn,l=0, χA1gEg ,j(q) = 1

2u′
∂〈C

A1g
q 〉h

∂h
Eg,j
q

|hn,l=0 = − 1
2v
∂〈CEg,j−q 〉h
∂h

A1g
−q

|hn,l=0, χA1g(q) =

1
2u′

∂〈C
A1g
q 〉h

∂h
A1g
q

|hn,l=0 and

χ
(0)
A1g

(0) = T

2V
∑
q

trτ
(
Gqτ0Gqτ0

) ∣∣∣
hn,l=0

, χ
(0)
nem,lj(0) = T

2V
∑
q

trτ
(
GqτEg ,lGqτEg ,j

) ∣∣∣
hn,l=0

,

χ
(0)
A1gEg ,l

(0) = T

2V
∑
q

trτ
(
GqτEg ,lGqτ0

) ∣∣∣
hn,l=0

.

In the para-nematic regime, i.e. T > Tnem, the bare susceptibilities become

χ
(0)
A1g

(0) = 1
2Π̃0,0 , χ

(0)
nem,lj(0) = 1

2Π̃l,j , χ
(0)
A1gEg ,l

(0) = 1
2Π̃0,l = 0,
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with the definitions (C.19). With the vanishing χ(0)
A1gEg ,l

(0) = 0 the equations (C.36)-(C.39) are easily
solved by

χnem(0) = −χ(0)
nem(0)

(
1− 2vχ(0)

nem(0)
)−1

, χA1g(0) = −
χ

(0)
A1g

(0)

1 + 2u′χ(0)
A1g

(0)
.

Inserting the identity Π̃l,l′ = Π̃z,zδl,l′ (see Sec.C.2), we can further simplify the nematic susceptibility
to

χnem(0) =
−1

2Π̃z,z

1− vΠ̃z,z

1 .

C.5 Derivation of the upper critical field

In this section, we redo the analysis of Sec. 3.5.1, yet with the magnetic field being applied within the
basal plane B = |B|(cosϕBex + sinϕBey). The aim of this part is to determine the angle dependence
of the upper critical field Hc2(ϕB). It is convenient to rotate the coordinate system such that one
axis, say the new x-axis, coincides with the magnetic field direction. Hence, we rotate the coordinates
according to

r = RSO(3)(ϕB, ez)r′ , ∇r = RSO(3)(ϕB, ez)∇r′ , A′(r′) = R−1
SO(3)(ϕB, ez)A(r) = |B|2

(
0

-z′
y′

)
with the representation of the rotation matrix (1.18)

RSO(3)(ϕB, ez) =
(

cosϕB − sinϕB 0
sinϕB cosϕB 0

0 0 1

)
.

Then, the canonical momenta transform as (Dx, Dy, Dz)T = RSO(3)(ϕB, ez)(Dx′ , Dy′ , Dz′)T and it
holds [Dx′ , Dy′ ] = [Dx′ , Dz′ ] = 0 and [Dy′ , Dz′ ] = ie|B|. Thus, the x′-direction is aligned with the
magnetic field, while Dy′ , Dz′ fulfill the harmonic oscillator algebra. Similarly to section 3.5.1, we
neglect modulations along the vortex axis, such that Dx′∆Eu,± = 0. In the rotated frame, the two
saddle-point equations become

0 =
(
R0 + d0D

2
y′ + dzD2

z′

)
∆Eu,+ −

(
d′e2iϕBD2

y′ − d̃e−iϕB
{
Dz′ , Dy′

}
+
− CEg ,−

)
∆Eu,− (C.40)

0 =
(
R0 + d0D

2
y′ + dzD2

z′

)
∆Eu,− −

(
d′e−2iϕBD2

y′ − d̃eiϕB
{
Dz′ , Dy′

}
+
− CEg ,+

)
∆Eu,+ . (C.41)

With the annihilation and creation operators

a = 1√
2e|B|

√
d0dz

(√
d0Dy′ + i

√
dzDz′

)
, a† = 1√

2e|B|
√

d0dz

(√
d0Dy′ − i

√
dzDz′

)
,
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satisfying [a, a†] = 1, the above equations transform into

0 =
(
R0 + a†a+ 1

2

)
∆Eu,+ −

( d̂′e2iϕB

4

(
a2 + (a†)2 + 2a†a+ 1

)
− iˆ̃de−iϕB

2

(
(a†)2 − a2

)
− CEg ,−

)
∆Eu,−,

0 =
(
R0 + a†a+ 1

2

)
∆Eu,− −

( d̂′e−2iϕB

4

(
a2 + (a†)2 + 2a†a+ 1

)
− iˆ̃deiϕB

2

(
(a†)2 − a2

)
− CEg ,+

)
∆Eu,+,

where we have defined {R̂0, ĈEg ,+} = {R0,CEg ,+}/2e|B|
√

d0dz, α̂ = α′/2ed0, d̂′ = d′/d0 and ˆ̃d =
d̃/
√

d0dz. Using again the ansatz (3.100), we find the recursion formula

R̂0an = −an
(
n+ 1

2

)
+ 1

4

(
d̂′e2iϕB + 2iˆ̃de−iϕB

)
bn+2

√
(n+ 2) (n+ 1)

+ 1
4

(
d̂′e2iϕB − 2iˆ̃de−iϕB

)
bn−2

√
n(n− 1) +

(
1
4 d̂′e2iϕB (2n+ 1)− ĈEg ,−

)
bn , (C.42)

R̂0bn = −bn
(
n+ 1

2

)
+ 1

4

(
d̂′e−2iϕB + 2iˆ̃deiϕB

)
an+2

√
(n+ 2) (n+ 1)

+ 1
4

(
d̂′e−2iϕB − 2iˆ̃deiϕB

)
an−2

√
n(n− 1) +

(
1
4 d̂′e−2iϕB (2n+ 1)− CEg ,+

)
an , (C.43)

valid for n = 0, 1, 2, . . . . For the reasons outlined in Sec. 3.5.1, we focus on the even subspace and
introduce the vector ζ = (b0, a0, b2, a2, b4, a4, . . . )T , which transforms the above condition into the
eigenwert problem R̂0ζ = Mζ. For clarity, we do not show the matrix M explicitly. Yet, the resulting
angle dependence of Hc2(ϕB)— i.e. the Hc2 contour in the x, y-plane which yields a fixed maximum
eigenvalue—is plotted in Fig. 3.13, with and without a nematic order parameter present.
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D Appendix D

Phase stiffness

In this part, we provide the calculations and proofs that were exploited in chapter 4.

D.1 Individual propagators and Matsubara summation

In this part of the appendix, we provide the explicit expressions for both, the individual Green‘s
functions hidden in (4.20) and the matrix elements (4.21). The Green‘s function matrix, i.e. the
inverse of (4.20), reads

ĜΦk =
(
GΦk FΦk
FΦk −GΦ−k

)
, (D.1)

where the normal and anomalous Green‘s functions in the presence of an external flux are given by

GΦk =
−(iωn + εΦ−k)

ω2
n + εΦk ε

Φ
−k + γ2

k∆2
0 + iωn(εΦk − εΦ−k)

=
(uΦk )2

iωn − aΦk − λΦk
+

(vΦk )2

iωn − aΦk + λΦk
, (D.2)

FΦk = γk∆0

ω2
n + εΦk ε

Φ
−k + γ2

k∆2
0 + iωn(εΦk − εΦ−k)

=γk∆0

2λΦk

(
−1

iωn − aΦk − λΦk
+ 1
iωn − aΦk + λΦk

)
. (D.3)

Here, we have defined λΦk =
√

(ξΦk )2 + γ2
k∆2

0, uΦk =
√

1
2(1 + ξΦk /λ

Φ
k ), vΦk =

√
1
2(1− ξΦk /λΦk ), as well as

ξΦk =εk + 2 cos
(
kx
)

sin2( Φ2L)
(
t+ 2t′ cos

(
ky

))
, aΦk =− 2 sin

(
kx
)
sin(Φ

L
)
(
t+ 2t′ cos

(
ky

))
.

Using this notation, the matrix elements of M̂Φ (4.21) become
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Γ(∆∆),Φ
q =2

g
+ 2Γ(FF ),Φ

q + Γ(GG),Φ
q + Γ(GG),Φ

−q

= 1
L2

∑
k

{
γ2
k

λΦk
+
(

1 +
ξΦk ξ

Φ
k+q − γkγk+q∆2

0

λΦkλ
Φ
k+q

) γ2
k+ q

2
(λΦk+q+λΦk )

(iνm−δaΦk,q)2 − (λΦk+q+λΦk )2

}
, (D.4)

Γ(θθ),Φ
q =2

g
− 2Γ(FF ),Φ

q + Γ(GG),Φ
q + Γ(GG),Φ

−q

= 1
L2

∑
k

{
γ2
k

λΦk
+
(

1 +
ξΦk ξ

Φ
k+q + γkγk+q∆2

0

λΦkλ
Φ
k+q

) γ2
k+ q

2
(λΦk+q+λΦk )

(iνm−δaΦk,q)2 − (λΦk+q+λΦk )2

}
, (D.5)

Γ(∆θ),Φ
q =Γ(GG),Φ

q − Γ(GG),Φ
−q

= 1
L2

∑
k

(
ξΦk
λΦk

+
ξΦk+q

λΦk+q

) γ2
k+ q

2
(iνm−δaΦk,q)

(iνm−δaΦk,q)2 − (λΦk+q+λΦk )2 , (D.6)

where the Matsubara summations have been performed and the zero-temperature limit T = 0 has
been applied. We have defined the quantity δaΦk,q = aΦk+q − aΦk . Furthermore, the gap equation (4.19)
has been used and the expressions

Γ(FF ),Φ
q = T

L2

∑
k

γ2
k+ q

2
FΦk F

Φ
k+q = -1

L2

∑
k

γ2
k+ q

2

γkγk+q∆2
0

2λΦkλΦk+q

(λΦk+q+λΦk )
(iνm−δaΦk,q)2 − (λΦk+q+λΦk )2 ,

Γ(GG),Φ
q =-T

L2

∑
k

γ2
k+ q

2
GΦ−kG

Φ
k+q = -1

2L2

∑
k

γ2
k+ q

2

(iνm−δaΦk,q)
(
ξΦk
λΦk

+ ξΦk+q

λΦk+q

)
+ (λΦk+q+λΦk )

(
1+ ξΦk ξ

Φ
k+q

λΦkλ
Φ
k+q

)
(iνm−δaΦk,q)2 − (λΦk+q+λΦk )2 ,

have been inserted. All the above equations are evaluated at zero-temperature. Note that by having
set the Fermi functions f(±λΦk + aΦk ) = θ(∓1), we ignore integral contributions from the derivatives
f ′(±λΦk + aΦk ) = f ′′(±λΦk + aΦk ) which would occur during the computation of the phase stiffness. In
other words, we neglect additional integral contributions from the single points in the Brillouin zone
where λk = 0.
The calculation of the derivatives of the matrix elements (D.4-D.6) with respect to Φ or ∆ as required

in section 4.5 is tedious but straightforward. We refrain from showing these lengthy expressions.

D.2 Derivatives of the gap and the chemical potential

This part deals with the response of the superconducting gap and the chemical potential on the
applied external flux Φ. To be more precise, we want to prove that the first-order derivatives of the
superconducting gap, and the chemical potential indeed vanish. Afterwards, we compute the required
higher order derivatives. All the occurring derivatives are implicitly assumed to be evaluated at Φ→ 0.
At the core of the proof is the identity

∂Ω
∂Φ

∣∣∣
∆,µ

∣∣∣
Φ→0

= 0 , (D.7)
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which is quickly checked upon exploitation of the mirror symmetry Mx : qx → −qx after the derivative
has been carried out. Now, we express the number and the gap equation by

N = −∂Ω
∂µ
≡ fN

(
µ(Φ),∆

(
µ(Φ), Φ

)
, Φ
)
, g−1 = ∂ΩF

∂∆ ≡ f∆

(
µ(Φ),∆

(
µ(Φ), Φ

)
, Φ
)
. (D.8)

The application of ∂
∂Φ |∆,µ on (D.8) allows for a respective interchange of the order of variation and

hence, the identity (D.7) can be employed yielding ∂fN
∂Φ |∆,µ = ∂f∆

∂Φ |∆,µ = 0. This, however, means that
the total derivatives of (D.8) with respect to the phase twist read

0 = ∂fN
∂∆

∣∣∣
µ

∂∆
∂Φ

∣∣∣
µ

+
(
∂fN
∂∆

∣∣∣
µ

∂∆
∂µ

+ ∂fN
∂µ

∣∣∣
∆

)
∂µ

∂Φ
, 0 = ∂f∆

∂∆

∣∣∣
µ

∂∆
∂Φ

∣∣∣
µ

+
(
∂f∆
∂∆

∣∣∣
µ

∂∆
∂µ

+ ∂f∆
∂µ

∣∣∣
∆

)
∂µ

∂Φ
,

(D.9)

which only allow for the trivial solution

∂∆
∂Φ

∣∣∣
µ

= ∂µ

∂Φ
= 0 . (D.10)

Let us now compute the functions in (D.8) and the derivatives at zero temperature explicitly. The
bosonic part NB of the number equation (4.12) is considered as a higher order term in the weak
coupling limit. The mean-field part of the number of electrons (4.12) and the gap equation (4.19) at
zero temperature become

NF = 2T
∑
k

GΦk =
∑
k

(
1−

εΦk
λΦk

)
,

1
g

= T

L2∆0

∑
k

γkF
Φ
k = 1

L2

∑
k

γ2
k

2λΦk
. (D.11)

For the two functions one computes the derivatives

∂fN
∂∆

∣∣∣
µ

= ∆0c1 ,
∂fN
∂µ

∣∣∣
∆

= ∆2
0c2 ,

∂f∆
∂∆

∣∣∣
µ

= −∆0c0
2 ,

∂f∆
∂µ

∣∣∣
∆

= c1
2 ,

∂2f∆
∂Φ2

∣∣∣
∆,µ

= c3
L2 ,

where we have introduced the functions c0 = L−2∑
k γ

4
k/λ

3
k, c1 = L−2∑

k γ
2
kεk/λ

3
k, c2 = L−2∑

k γ
2
k/λ

3
k

and c3 = −L−2∑
k
∂2εk
∂k2
x
γ2
kεk/λ

3
k. For the second derivative of the gap function we obtain

0 = ∂2f∆
∂Φ2 |∆,µ + ∂f∆

∂∆

∣∣∣∣
µ

∂2∆
∂Φ2

∣∣∣∣
µ

+
(
∂f∆
∂∆

∣∣∣∣
µ

∂∆
∂µ

+ ∂f∆
∂µ

∣∣∣∣
∆

)
︸ ︷︷ ︸

=0

∂2µ

∂Φ2 .

The second term vanishes because the gap equation (D.8) has to hold for any value of Φ, in particular
also for Φ = 0. In this case, the derivative of the gap equation (D.8) with respect to the chemical
potential exactly yields the term in the bracket. Hence, the required second derivative of the gap
function becomes

∂2∆
∂Φ2

∣∣∣
µ

= 1
L2

2c3
∆0c0

. (D.12)
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D.3 Limit of a Galilean invariant system

In the limit of a Galilean invariant system, i.e. εk = k2/2m− µ, it must hold ρ(B)
s = 0. In the present

formalism, this is not obviously recovered. Following Ref.[167], we prove the identity by carrying out
the external Matsubara integration. In the limit of Galilean invariance the form of the propagators
(D.4)-(D.6) allows that the derivative with respect to Φ at constant ∆ and µ can be recast as a
derivative with respect to iνm. As an example, it holds

∂2Γ(ζ),Φ
q

∂Φ2

∣∣∣∣
∆,µ

= ∂2

∂(iνm)2 Γ̃(ζ),0
q ,

where the integrand in Γ̃(ζ),0
q is multiplied by an extra factor k2

x/m
2L2. Similar relations hold for the

remaining propagators. Additionally, it holds ∂2∆
∂Φ2 |µ = 0. The core result is that the derivative of the

matrix M̂Φ (4.21) can be recast into

∂2 ln det M̂Φ
q

∂Φ2

∣∣∣∣
∆,µ

=
∂2 ln det M̃0

q

∂(iνm)2 ,

and the external Matsubara integration can be carried out yielding∫ ∞
−∞

dν
∂2 ln det M̃0

q

∂ν2 =
∂ ln det M̃0

q

∂ν

∣∣∣∣+∞
−∞

= 0 .

It is clear from Eqs. (D.4)-(D.6) that the first-order derivatives vanish in the limit ν → ±∞ while the
original propagators stay finite. This completes the proof that the bosonic contribution in the Galilean
invariant system is equal to zero.
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