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Abstract: An Actinide Lanthanide Separation Process (ALSEP) for the separation of trivalent actinides
(An(III)) from simulated raffinate solution was successfully demonstrated using a 32-stage 1 cm annular
centrifugal contactor setup. The ALSEP solvent was composed of a mixture of 2-ethylhexylphosphonic
acid mono-2-ethylhexyl ester (HEH[EHP]) and N,N,N′,N′-tetra-(2-ethylhexyl)-diglycolamide
(T2EHDGA) in n-dodecane. Flowsheet calculations and evaluation of the results were done using the
Argonne’s Model for Universal Solvent Extraction (AMUSE) code using single-stage distribution data.
The co-extraction of Zr(IV) and Pd(II) was prevented using CDTA (trans-1,2-diaminocyclohexane-
N,N,N′,N′-tetraacetic acid) as a masking agent in the feed. For the scrubbing of co-extracted Mo;
citrate-buffered acetohydroxamic acid was used. The separation of An(III) from the trivalent lanthanides
(Ln(III)) was achieved using citrate-buffered diethylene-triamine-N,N,N′,N”,N”-pentaacetic acid
(DTPA), and Ln(III) were efficiently back extracted using N,N,N′,N′-tetraethyl-diglycolamide (TEDGA).
A clean An(III) product was obtained with a recovery of 95% americium and curium. The Ln(III) were
efficiently stripped; but the Ln(III) product contained 5% of the co-stripped An(III). The carryover
of Am and Cm into the Ln(III) product is attributed to too few actinide stripping stages, which was
constrained by the number of centrifugal contactors available. Improved separation would be achieved
by increasing the number of An strip stages. The heavier lanthanides (Pr, Nd, Sm, Eu, and Gd) and
yttrium were mainly routed to the Ln product, whereas the lighter lanthanides (La and Ce) were
mostly routed to the raffinate.
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1. Introduction

Different waste management strategies for the handling of irradiated used nuclear fuel from
nuclear power plants are followed worldwide by different countries [1]. While several countries
(e.g., Germany and the United States) follow a direct disposal strategy (i.e., no further treatment
of irradiated used nuclear fuel), other countries (e.g., France) follow a recycling strategy for U and
Pu [2–5]. In any strategy, waste will ultimately need to be disposed of in an underground repository.
Such underground repositories are extremely rare with only a handful of repositories in operation
worldwide (e.g., the Waste Isolation Pilot Plant (WIPP) in the United States for the disposal of defense
waste), and a few sites under investigation or in the licensing process. Therefore, a most efficient use of
repository space is preferable. French studies showed that the separation of minor actinides (MA: Np,
Am, and Cm), especially Am, would reduce the total repository volume by up to a factor of seven [6–8].
The separation and recycling of U and Pu from used nuclear fuel is a mature technology, demonstrated
on an industrial scale using the Plutonium Uranium Reduction Extraction (PUREX) process [9].
This process can also be adapted to allow the concurrent separation of Np [10,11]. Separation of the
trivalent actinides Am and Cm from PUREX raffinate solutions, on the other hand, is an ongoing
research interest. Many hydrometallurgical process candidates have been tested, but no development
has yet reached a higher technical readiness level above laboratory-scale testing with genuine
fuel [5,12–16]. Recent developments are aimed at single-cycle processes employing highly selective
chemical systems for the difficult separation of the chemically similar trivalent actinides (An(III))
and lanthanides (Ln(III)), compatible with directly using the PUREX raffinate [16–22]. Furthermore,
to be applied under the harsh conditions of used nuclear fuel recycling, innovative processes should
be robust, use conventional and commercially available equipment and chemicals, and show good
hydrolytic and radiolytic stability. For this purpose, the Actinide Lanthanide Separation Process
(ALSEP) process was developed and proved to fulfill these requirements [18,23–29]. The optimized
ALSEP solvent is composed of 0.5 mol L−1 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester
(HEH[EHP], Figure 1) and 0.05 mol L−1 N,N,N′,N′-tetra-(2-ethylhexyl)-diglycolamide (T2EHDGA,
Figure 1) in n-dodecane [27]. Co-extraction of Zr(IV) and Pd(II) is prevented using 0.05 mol L−1

trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA, Figure 1) as a masking agent in the
feed [30], whereas co-extracted Mo is scrubbed using 0.75 mol L−1 acetohydroxamic acid (AHA,
Figure 1) and 0.175 mol L−1 ammonium citrate at pH 3. The separation of An(III) from Ln(III) is
achieved using 0.015 mol L−1 diethylene-triamine-N,N,N′,N”,N”-pentaacetic acid (DTPA, Figure 1) and
0.2 mol L−1 ammonium citrate at pH 2. Previous demonstration tests, however, showed some kinetics
limitations of the chemical system, which could be overcome using tailored 3D-printed centrifugal
contactors with an extended mixing zone, as well as difficulties with stripping of Ln(III) from the
solvent [27].

The test described in the present paper sought to demonstrate the ALSEP concept using
commercially available centrifugal contactors of a more standard design. The previously observed
kinetic limitations were overcome by adjustment of the solvent composition (decreasing the HEH[EHP]
concentration from 0.75 to 0.5 mol L−1) and operating the An(III) stripping stages at a slightly lower
pH than in the previous investigations. Furthermore, N,N,N′,N′-tetraethyl-diglycolamide (TEDGA)
was used as a hydrophilic complexant for Ln(III) stripping instead of the dilute HNO3 Ln stripping
approach previously attempted.

This paper first describes single centrifugal contactor tests of the main sections of the ALSEP process
that were performed to measure the effective distribution ratios for use in the flowsheet calculations.
Next, the results of a laboratory-scale countercurrent ALSEP demonstration in 1 cm annular centrifugal
contactors fabricated at Institute of Nuclear Energy Technology (INET), Tsinghua University, Beijing,
China, using a simulated raffinate solution are presented and discussed.
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Figure 1. Chemical structures of molecules used in this study.

2. Materials and Methods

2.1. Chemicals and Reagents

A synthetic ALSEP feed simulant was prepared with a target composition that would be expected
for the raffinate from a U/Pu co-decontamination process [31]. The simulant was based on a light
water reactor fuel burned at 50 gigawatt days per metric ton initial heavy metal, 5 years cooled,
after processing with the PUREX process [9]. It was prepared by dissolving the appropriate metal
nitrates in HNO3 solution. The exceptions were tin (Sn) and tellurium (Te). In the former case, Sn metal
was dissolved in HNO3 and the resulting solution was added to the simulant. In the latter case, Te was
added in the form of Na2TeO4·2H2O. Table 1 presents the composition of the feed simulant used.

Table 1. Composition of the synthetic Actinide Lanthanide Separation Process (ALSEP) feed solution.

Element
Concentration ALSEP

Feed [mg L−1] *
Element

Concentration ALSEP
Feed [mg L−1] *

Fe 7 Cs 665
Rb 90 La 309
Sr 207 Ce 591
Y 119 Pr 267
Zr 718 Nd 1003
Mo 425 Sm 213
Ru 296 Eu 44
Rh 1 Gd 45
Pd 6 241Am 3.1 MBq L−1

Sn 14 244Cm 3.0 MBq L−1

Te 69 152Eu 5.6 MBq L−1

HNO3 2.9 mol L−1

* or as shown.

A solvent composed of 0.5 mol L−1 HEH[EHP] and 0.05 mol L−1 T2EHDGA dissolved in
n-dodecane was used. HEH[EHP] was obtained from Marshallton Research Laboratories, USA,
and purified by a literature procedure [32]. The final purity of the HEH[EHP] was greater than
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99% based on 31P NMR analysis. The neutral extractant, T2EHDGA, was obtained from Eichrom
Technologies LLC (Lisle, IL, USA) and used as received. Anhydrous n-dodecane was purchased from
Sigma-Aldrich, Saint Louis, MO, USA.

CDTA (purity≥ 99.0%) and ammonium citrate (purity≥ 99.0%) were purchased from Sigma-Aldrich,
Munich, Germany. AHA (purity 98%) and DTPA (purity ≥ 98.0%) were purchased from Alfa Aesar,
Karlsruhe, Germany. Nitric acid solutions (Merck AG, Germany) were prepared by dilution from a
65% HNO3 solution EMSURE® for analysis using ultrapure water (18.2 MΩ cm), which was obtained
using an ELGA PURELAB Ultra water purification system. All chemicals were used as received and
only ultrapure water was used for the experiments unless otherwise specified.

CDTA was dissolved in the feed solution to a final concentration of 0.05 mol L−1. The “Scrub 1”
solution was prepared by dilution of 65% HNO3 solution to a concentration of 6.3 mol L−1 HNO3.
The “Scrub 2” solution was prepared by dissolving AHA and ammonium citrate in water and adjusting
the pH of the solution with HNO3 to yield 0.75 mol L−1 AHA and 0.175 mol L−1 ammonium citrate at
pH 3.4. The “Strip 1” solution was prepared by dissolving DTPA and ammonium citrate in water and
adjusting the pH of the solution with HNO3 to yield 0.015 mol L−1 DTPA and 0.2 mol L−1 ammonium
citrate at pH 2.0.

The radiotracers 241Am, 244Cm, and 152Eu were purchased from Isotopendienst M. Blaseg GmbH,
Waldburg, Germany, Oak Ridge National Laboratory, Oak Ridge, USA, and Eckert & Ziegler Nuclitec
GmbH, Braunschweig, Germany, respectively.

2.2. Centrifugal Contactor Setup

The demonstration of the process was carried out using 1 cm annular miniature centrifugal
contactors produced by the Institute of Nuclear Energy Technology, Tsinghua University, Beijing, China,
with the rotors made of titanium and the stator housings made of stainless-steel [33,34]. The process
was run in countercurrent mode with a rotator speed of 4500 rpm, and the speed was checked with a
stroboscope tachometer regularly during the experiment. The contactor battery setup consists of four
batteries with four stages each, resulting in a total available number of 16 stages. As the calculated
flowsheet comprised 32 stages, the test was split into two parts as described below. Calibrated syringe
pumps (Kent Scientific Corp., Torrington, CT, USA) were used to deliver the organic and aqueous flows.

For the single centrifugal contactor tests, a single stage of the 1 cm annular miniature centrifugal
contactors was used. The single centrifugal contactor tests were based on the reference flowsheet [27].
In all experiments, the contactor was first filled with inactive aqueous and organic phases of the same
compositions as required, and then, either the aqueous and organic phase was replaced with the
radioactive phase for the actual test. Table 2 shows the flow rates used in the different single centrifugal
contactor tests. The single centrifugal contactor was operated until the steady state was reached.
If needed, the contactor operation was continued to collect sufficient organic and/or aqueous phase
for the upcoming experiment. After that, the contactor was stopped and the equilibrium distribution
ratios were determined.

Table 2. Flow rates used in the different single centrifugal contactor tests and composition of the
aqueous phases used to start operation.

Section
Aq. Flow Rate

[mL h−1]
Org. Flow Rate

[mL h−1]
Contactor Filled with *

Extraction 72 24 3 mol L−1 HNO3
Mo scrubbing (Scrub 2) 30 24 Fresh Scrub 2 solution

MA stripping 18 36 Fresh Strip 1 solution
Ln re-extraction 18 18 Fresh Strip 1 solution

Ln stripping 54 36 Fresh 0.5 mol L−1 TEDGA in 0.5 mol L−1 HNO3

* organic phase always fresh ALSEP solvent.
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2.3. Procedures and Analytics

Batch solvent extraction experiments were carried out using equal volumes of 500 μL of each
phase. The aqueous and organic phases were pipetted into screw-cap vials and contacted for 30 min
on an IKA VIBRAX VXR, IKA®-Werke GmbH & Co. KG (Staufen, Germany) basic automatic shaker at
2200 rpm and 22 ◦C. The temperature was controlled by a HAAKE F3 thermostat, Thermo Scientific
HAAKE (Geel, Belgium). After mixing, the phases were disengaged with a Hettich EBA 8s centrifuge,
Andreas Hettich GmbH & Co.KG (Tuttlingen, Germany), for 5 min. The phases were then separated
manually using a fine tipped transfer micropipette. Gamma measurements of 241Am (60 keV) and
152Eu (122 keV) were carried out using an Eurisys EGC 35-195-R germanium coaxial N-type detector,
and spectra were evaluated using the GammaVision Software. Samples were measured directly without
further treatment of the samples. Alpha measurements were carried out for 241Am (5486 keV) and
244Cm (5805 keV) using an ORTEC Octête-pc eight chamber alpha measurement system equipped with
PIPS detectors. Sample preparation for alpha measurement was done by homogenizing a 10 μL alpha
spectroscopy sample in 100 μL of a mixture of Zapon varnish and acetone (1:100 v/v). This mixture was
distributed over a stainless-steel plate obtained from Berthold, Bad Wildbad, Germany. The sample
was dried under a heating lamp and annealed into the stainless-steel plate using a gas-flame burner.
For stable elements, inductively coupled plasma mass spectrometry (ICP-MS) was applied using a
Perkin Elmer NexION 2000C. Aqueous samples were measured after dilution in 1% v/v nitric acid
solution without further treatment. Organic samples were measured directly in a tenside matrix
(Triton-X-100) in 1% v/v HNO3 after dilution.

Acid concentration was measured by titration against 0.1 mol L−1 NaOH using a 798 MPT Titrino,
purchased from Metrohm GmbH & Co. KG (Filderstadt, Germany). The pH of aqueous solutions was
measured with a Metrohm 691 pH Meter, purchased from Metrohm GmbH & Co. KG (Filderstadt,
Germany). The calibration of the pH meter was done using commercial buffer solutions purchased
from Merck AG (Darmstadt, Germany).

Distribution ratios D were calculated as the ratio of activity or concentration of a metal ion in the
organic phase vs. the activity or concentration of the metal ion in the aqueous phase. The separation
factor SF between two metal ions was calculated as the ratio of the corresponding distribution
ratios (SFM1/M2 = DM1/DM2). Distribution ratios between 0.01 and 100 exhibit an uncertainty of ±5%,
whereas lower/higher values exhibit larger uncertainties. Mass balances were calculated as the sum of
aqueous and organic concentrations divided by the initial concentration.

Stage efficiencies in the single centrifugal contactor experiments were calculated depending on
the extraction mode. For the forward extraction tests (extraction section and Ln re-extraction section),
the stage efficiency was calculated as the metal ion distribution ratio in steady state divided by the metal
ion distribution ratio in equilibrium. For the backward extraction tests (Scrub 2, An stripping, and Ln
stripping sections), the stage efficiency was calculated as the metal ion distribution ratio in equilibrium
divided by the metal ion distribution ratio in steady state. The equilibrium distribution ratios in all
single centrifugal contactor tests were determined after stopping the contactor by transferring the
content of its mixing chamber into a test tube and shaking it for 15–30 min on a test tube shaker
(Heidolph reax top test tube shaker, purchased from Heidolph Instruments GmbH Co. KG, Schwabach,
Germany). Then, the test tubes were centrifuged with a Hettich EBA 8s centrifuge, Andreas Hettich
GmbH & Co.KG (Tuttlingen, Germany), and the phases were separated and sampled individually.

To evaluate the results of the full countercurrent centrifugal contactor demonstration test,
process decontamination factors, DFfeed/An product, were calculated according to Equation (1), where Q
is the volumetric flow rate and C is the metal ion (M) concentration. The An/M decontamination
factors were calculated according to Equation (2), and the product concentration factor, CFproduct/feed,
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was calculated according to Equation (3). For the volumetric flow rate Qproduct, the difference in flow
rate between loaded solvent during the first and second part of the test was taken into account.

DFfeed/An product =
Q f eed·C f eed

QAn product·CAn product
(1)

DFAn/M =
C(M) f eed·C(An)product·Q f eed

C(M)product·C(An) f eed·Qproduct
(2)

CFproduct/feed =
c(M)product·Q f eed

c(M) f eed·Qproduct
. (3)

3. Results and Discussion

The results of a laboratory-scale countercurrent demonstration test in INET 1 cm annular centrifugal
contactors using a simulated raffinate solution (the feed composition is shown in Table 1) and an
ALSEP solvent comprising 0.5 mol L−1 HEH[EHP] and 0.05 mol L−1 T2EHDGA in n-dodecane are
presented. The provisional flowsheet was based on previous ALSEP demonstration tests that used 3-D
printed 1.25 cm diameter annular centrifugal contactors [24,27], but had to be adapted for the INET
centrifugal contactors and laboratory-specific framework. The flowsheet developed by Gelis et al. [27],
consisting of a total of six sections (extraction, high acid scrubbing, Mo scrubbing, MA stripping,
Ln re-extraction, and Ln stripping) was used as the starting point. The adaption of the flowsheet
to the 1 cm centrifugal contactors used in this test required measuring the stage efficiencies of the
individual stages and updating the flowsheet calculation. Additionally, Ln stripping was found to be
problematic in the previous demonstration test and required improvement [27]. These single-stage
centrifugal contactor tests and Ln stripping experiments are presented and discussed, followed by
flowsheet calculations and the results of the laboratory-scale countercurrent demonstration test.

3.1. Single-Centrifugal Contactor Tests and Radiochemical Analyses

Five single-stage centrifugal contactor tests were run to test the different sections of the tentative
flowsheet of the ALSEP process. These sections were: extraction, Mo scrubbing (Scrub 2), MA stripping,
Ln re-extraction, and Ln stripping. The high acid scrubbing section (Scrub 1) was not tested, as its only
purpose is to adjust the HNO3 concentration in the extraction section of the final flowsheet. The flow
rates and composition of the aqueous phases used to start operation of the contactors are shown in
Table 2.

3.1.1. Extraction Section

In the first single centrifugal contactor test, the extraction section of the flowsheet was simulated.
CDTA was added to the ALSEP feed solution to yield a concentration of 0.05 mol L−1. Then, the feed
was mixed with Scrub 1 and Scrub 2 solutions in the same ratio as given in the reference flowsheet [27]
(1:2.5:2.5), and the radiotracers 152Eu, 241Am, and 244Cm were added to the mixture.

Figure 2 shows the Am, Cm, and Eu distribution ratios as a function of the experimental run time
and equilibrium values in the extraction section single centrifugal contactor test. Distribution ratios
(D) and mass balances calculated from the transient and equilibrium samples, and stage efficiencies
for all metal ions, are shown in Table S1. The stage efficiencies were calculated by dividing the last
transient sample distribution ratio (49 min) by the equilibrium distribution ratio.

The stage efficiency for extraction of An(III) and Ln(III) was high and ranged from 75% to 100%,
with the lower value for Cm likely due to uncertainties in alpha spectroscopy measurement. The Eu (γ)
stage efficiency was found to be much lower as compared to the ICP-MS measured value. The reason
could not be clarified but, apparently, the equilibrium DEu(γ) value is inconsistently higher compared
to the DEu(ICP-MS) value, although the other samples were in relative good agreement. This rather large
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deviation in the different Eu analytics is also visible in Figure 2, but was not observed in other data of
this study. No precipitation or phase entrainment were observed in the experiment and the collected
aqueous and organic samples were clear. However, the mass balances of Y, Zr, and Mo were low in all
samples, and the mass balances of Pd, Rh, and Sn were low in the equilibrium sample. It is assumed
that these metal ions partly precipitated, but did not yield a visible precipitate possibly due to the quite
high dilution through the addition of Scrub 1 and Scrub 2 to the feed. The lower mass balance is in line
with observations from previous batch extraction tests, where poor mass balances were also measured
for these elements. The formation of interfacial crud in the ALSEP system was reported before and was
found to be mainly caused by Sn [35]. The stage efficiency was found to be quite low for the metal ions
with a poor mass balance. It is not clear if the reason for the low stage efficiency was the precipitation
or actually lower extraction rates. Molybdenum was partly extracted with steady-state distribution
ratios around 0.3. The equilibrium distribution ratio was much higher (4.9), resulting in a low stage
efficiency. Slow Mo extraction kinetics has been observed previously [18,24].

Figure 2. Am, Cm, and Eu distribution ratios as a function of the experimental run time (data points)
and equilibrium values (horizontal lines) in the extraction section single centrifugal contactor test.
“g”, “a”, and “ICP” indicate values measured by gamma and alpha spectrometry as well as inductively
coupled plasma mass spectrometry (ICP-MS), respectively.

A decrease in distribution ratios, especially for An(III) and Ln(III) was observed with time in this
experiment. This behavior is a result of how the experiment was started. The contactor was first filled
with 3 mol L−1 HNO3 and ALSEP solvent and operated at actual flow rate to get the right phase ratio in
the contactor. Then, the aqueous flow was switched to the active feed. Therefore, two superimposing
kinetic effects must be taken into account: the extraction of metal ions into the solvent phase and the
exchange of the aqueous phase in the mixing chamber. As the extraction of An(III) and Ln(III) is fast,
a faster in-growth in the organic phase concentration as compared to the aqueous phase concentration
is observed and consequently, decreasing distribution ratios are observed. Nevertheless, steady state
was reached for the important elements.

As the main purpose of the Scrub 1 section in the flowsheet is to increase the HNO3 concentration
in the extraction section and the main elements are expected to stay extracted in the organic phase
with high distribution ratios in that section, no single-stage data for the Scrub 1 section were needed
for flowsheet calculation. Therefore, a single centrifugal contactor test of the Scrub 1 section was
not conducted.
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3.1.2. Scrub 2 Section

It was recognized that the amount of loaded organic phase from the extraction section test would
be insufficient to run all further planned single centrifugal contactor tests. Therefore, a batch contact
was conducted under the same conditions as in the extraction section test, i.e., an aqueous phase
with the same composition as in the extraction section test was batch contacted for 30 min with
the correspondent volume of ALSEP solvent. During phase separation, a small amount of white
precipitation was encountered at the phase boundary, which was expected (it had been observed in
previous studies) [35]. Based on the mass balance, the precipitate was found to be mainly composed of
Sn, Mo, Zr, and Y. The organic phase was centrifuged to separate the precipitate, and the loaded organic
phase from the batch contact was mixed with the loaded organic phase from the single centrifugal
contactor extraction section test. This combined organic phase was then batch contacted under Scrub 1
conditions, i.e., contacted with the correspondent volume of a 1:1 mixture of Scrub 1 and Scrub 2
solutions for 30 min (a/o phase ratio of 2.5:1). The phases were separated to yield the loaded organic
phase for the Scrub 2 single centrifugal contactor test. In this second batch contact, no precipitation was
observed. The organic phase composition is shown together with the results of the single centrifugal
contactor test in Table S2. The loaded solvent mainly contained An(III) and Ln(III) and some impurities
of Y, Zr, Mo, Ru, Rb, Sr, and Fe.

Figure 3 shows the Am, Cm, and Eu distribution ratios as a function of the experimental run time
and equilibrium values in the Scrub 2 section single centrifugal contactor test. Distribution ratios and
mass balances calculated from the transient and equilibrium samples, and stage efficiencies for all
metal ions, are shown in Table S2. The stage efficiencies were calculated by dividing the equilibrium
distribution ratio by the mean value of the transient samples distribution ratios from 80, 90, and 100 min.
As the steady state had been already reached, taking the mean value of those three samples was done
to reduce uncertainties. For An(III) and Ln(III), the stage efficiency was high. These elements stayed
in the organic phase with high distribution ratios. The molybdenum stage efficiency was relatively
low at 8%. However, this was caused by a steady-state distribution ratios of ca. 0.17 and a very
low equilibrium D (0.01). Therefore, eight Scrub 2 stages were expected to be sufficient, although a
higher number of stages would clearly be beneficial for more efficient scrubbing of Mo from the loaded
organic phase. In the Scrub 2 section, Rb, Sr, and Cs also showed distribution ratios below 1 and would
therefore be scrubbed. Co-extracted Zr, Y, Ru, and Fe would not be scrubbed in that section, as the
distribution ratios were above 1.
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Figure 3. Am, Cm, and Eu distribution ratios as a function of the experimental run time (data points)
and equilibrium values (horizontal lines) in the Scrub 2 section single centrifugal contactor test. “g”, “a”,
and “I” indicate values measured by gamma and alpha spectrometry as well as ICP-MS, respectively.
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3.1.3. An Stripping Section

In this section, the An(III)/Ln(III) separation is conducted. In the reference flowsheet [27], mixing of
the loaded solvent stream with a fresh solvent stream with the same flow rate is foreseen. Therefore,
the collected organic phase from the previous single centrifugal contactor test was mixed with the same
volume of fresh ALSEP solvent and the mixture was analyzed (Table S3). The aqueous phase used in
the An stripping section consisted of 0.015 mol L−1 DTPA + 0.2 mol L−1 ammonium citrate at pH 2.0.
Figure 4 shows the Am, Cm, and Eu distribution ratios as a function of the experimental run time and
equilibrium values in the An stripping section single centrifugal contactor test. Distribution ratios
and mass balances calculated from the transient and equilibrium samples, and stage efficiencies for all
metal ions, are shown in Table S3. The stage efficiencies were calculated by dividing the equilibrium
distribution ratio by the mean value of the transient samples distribution ratios at 115, 125, and 140 min.
The results show that Am and Cm were stripped into the aqueous phase with steady-state distribution
ratios of ca. 0.3 and good separation from the Ln’s (e.g., steady-state SFLa/Am = 10, SFNd/Am = 11,
and the others were higher). The stage efficiency for An(III) was ca. 35–40%, whereas for Ln(III) it was
ca. 55–75%. The concentration of several fission products was already quite low in the used organic
feed. Therefore, it was not possible to properly quantify their concentrations in the effluents and
calculate the distribution ratios, mass balances, and stage efficiencies, as indicated in Table S3. The Zr
concentrations in the aqueous phases were below the detection limit, but they were measurable in the
organic effluent. Hence, the Zr distribution ratios are quite high in that section, resulting in a good
An(III)/Zr separation. The Mo stage efficiency was again very low (5%) but the distribution ratios did
not show a clear trend, probably due to the low feed concentration. Nevertheless, it is anticipated that
Mo would not be stripped to a large extend in that section. Ruthenium, Rb, Fe, and Y distribution
ratios were >1; these elements would therefore not be stripped. Strontium distribution ratios were
difficult to be measured due to the low Sr concentration in the feed. The distribution ratios decreased
during the test to values below 1. Therefore, Sr could partially be stripped in this section, but it is
believed that during a full test, Sr (as well as Ru and Rb) will already be scrubbed quantitatively in
earlier sections.

Figure 4. Am, Cm, and Eu distribution ratios as a function of the experimental run time (data points)
and equilibrium values (horizontal lines) in the An stripping section single centrifugal contactor
test. “g”, “a”, and “I” indicate values measured by gamma and alpha spectrometry as well as
ICP-MS, respectively.
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3.1.4. Ln Re-Extraction Section

In this section, the Ln re-extraction was studied using the collected aqueous phases from the
An stripping section (containing 0.015 mol L−1 DTPA + 0.2 mol L−1 ammonium citrate at pH 2.0)
and fresh ALSEP solvent. Figure 5 shows the Am, Cm, and Eu distribution ratios as a function of
the experimental run time and equilibrium values in the Ln re-extraction section single centrifugal
contactor test. Distribution ratios and mass balances calculated from the transient and equilibrium
samples and stage efficiencies for all metal ions are shown in Table S4, together with the concentrations
of metal ions in the aqueous feed (combined aqueous effluents from the An stripping section test).
The stage efficiencies were calculated by dividing the mean value of the transient samples distribution
ratios at 75, 105, and 135 min by the equilibrium distribution ratio. Ln(III) distribution ratios were well
above 1 and An(III) distribution ratios were ca. 0.15, resulting in high separation factors SFLn/Am ≥ 17.
Stage efficiencies were generally high for An(III) and Ln(III). Strontium, Fe, Mo, and Cs were the only
other fission products that were detectable in at least one of the phases. The Sr, Mo, and Cs distribution
ratios were <1, but these elements should be scrubbed during a full countercurrent test in previous
sections. Iron distribution ratios were mostly <1, but some values were also >1. This behavior is
probably caused by a slight corrosion of the stainless-steel contactor housing, causing slightly increased
Fe concentrations in the organic samples (although still <0.5 mg L−1). Similar corrosion was also
observed during the full countercurrent demonstration test (see below).

Figure 5. Am, Cm, and Eu distribution ratios as a function of the experimental run time (data points)
and equilibrium values (horizontal lines) in the Ln re-extraction section single centrifugal contactor
test. “g”, “a”, and “I” indicate values measured by gamma and alpha spectrometry as well as
ICP-MS, respectively.

3.1.5. Ln Stripping Batch Tests

During previous countercurrent ALSEP tests, the Ln stripping was found to be difficult with
using just dilute HNO3, and it was concluded that the Ln stripping needed to be improved [27].
The use of TEDGA (Figure 1) had previously been found to be effective in Ln stripping from a loaded
ALSEP solvent [23]. As the chemical conditions for the Ln stripping section were not fixed before,
batch stripping tests were conducted aimed at finding appropriate conditions to be tested in a single
centrifugal contactor test and finally to be tested in a full countercurrent process demonstration.
The batch tests were conducted using the loaded organic phase from the An stripping section single
centrifugal contactor test. Different HNO3 and TEDGA concentrations were tested in the range of
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0.3–1.0 mol L−1 HNO3 and 0–0.5 mol L−1 TEDGA. The results (Table S5) show that, without addition of
TEDGA at any of the HNO3 concentrations tested, distribution ratios for several heavier Ln(III) were
above one and distribution ratios increased with increasing HNO3 concentration. With the addition of
TEDGA, the An(III) and Ln(III) distribution ratios were decreased considerably and the Ln(III) ions
were stripped nearly quantitatively within one contact (D values ca. 0.01). Based on these results,
it was decided to test 0.5 mol L−1 TEDGA in 0.5 mol L−1 HNO3 in the single centrifugal contactor test.

3.1.6. Ln Stripping Section

For the Ln stripping section, 0.5 mol L−1 TEDGA in 0.5 mol L−1 HNO3 was tested. Figure 6 shows
the Am, Cm, and Eu distribution ratios as a function of the experimental run time and equilibrium
values. Distribution ratios D and mass balances calculated from the transient and equilibrium samples
and stage efficiencies for all metal ions are shown in Table S6, together with the concentrations of metal
ions in the organic feed (combined organic effluents from the An stripping section test). The stage
efficiencies were calculated by dividing the equilibrium distribution ratio by the mean value of the
transient samples distribution ratios at 50, 60, and 65.5 min.

Figure 6. Am, Cm, and Eu distribution ratios as a function of the experimental run time (data points) and
equilibrium values (horizontal lines) in the Ln stripping section single centrifugal contactor test. “g”, “a”,
and “I” indicate values measured by gamma and alpha spectrometry as well as ICP-MS, respectively.

Ln(III) and An(III) distribution ratios were all around 0.2 in steady state. The distribution ratios
were much lower in equilibrium, resulting in very low calculated stage efficiencies of ca. 1–2%.
Nevertheless, the Ln(III) and An(III) distribution ratios were believed to be low enough to enable
back-extraction during the full countercurrent demonstration test. As the distribution ratios for Ln(III)
and An(III) were very similar, a separation was not observed in this step.

The fission product’s distribution ratios show that Zr, Mo, Fe, Rb, Pd, and Ru would stay extracted
in the organic phase and would be routed to the spent solvent in a full countercurrent test if not
scrubbed in earlier stages. Any Sr and Y present would be stripped together with the Ln(III).

During the Ln stripping single centrifugal contactor test, a turbidity of the effluent organic phase
was observed, which was attributed to the relatively high concentration of 0.5 mol L−1 TEDGA used in
the test. That turbidity had not been observed in the batch tests, probably due to intense centrifugation
to facilitate phase separation. TEDGA may form partly extractable Ln complexes, causing the
observed turbidity [36–38]. Therefore, it was decided to reduce the TEDGA concentration in the full
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countercurrent demonstration test to 0.2 mol L−1 TEDGA in 0.5 mol L−1 HNO3, as this composition
showed comparable results in the batch tests. Therefore, the lower TEDGA concentration was used
in the full countercurrent demonstration test. To compensate for the lower TEDGA concentration,
the flow rate was increased to 72 mL h−1 in the flowsheet test.

3.2. Flowsheet Calculations Using the AMUSE Code

The single centrifugal contactor distribution ratio data measured for each section of the proposed
flowsheet was used in conjunction with the Argonne Model for Universal Solvent Extraction (AMUSE)
Code [39] to evaluate the proposed ALSEP flowsheet for testing in 1 cm centrifugal contactors. For the
extraction and scrub sections, the goal was to achieve greater than 99% recovery of the minor actinides
(Am and Cm) with less than 0.1% extraction of non-Ln metals such as other fission products and
transition metals.

The following adjustments to the reference flowsheet [27] and assumption were made:

1. The co-extraction section was reduced to 6 stages and scrub 2 section increased to 8 stages to
enable more complete Mo scrubbing.

2. Distribution data from single-stage contactor tests were used in the AMUSE code with no further
adjustment of stage efficiency.

3. Results using the final D values (steady state) as well as with average D values (excluding first
and second samples) during the single-stage tests were both used to evaluate recovery.

4. Scrub 1 D values were assumed the same as the extraction D values.

The experimental D values utilized in the modeling from the single-stage contactor tests are
summarized in Table S7. Both the final D values (steady state) as well as the average D values (excluding
first and second samples) during the single-stage tests were listed and were used to determine the
recovery of each element. These results are presented in Table 3. The calculations predicted that 99.9%
Am and 99.99% Cm would be recovered. The trivalent lanthanides recovery was calculated to range
from 10% for La to >99.99% for Gd. The heavier Ln(III) are better extracted in the ALSEP system, as
reflected by the increasing recovery. Yttrium was calculated to be recovered with 47–78%, depending
on which D values were used for the calculations. The number of Scrub 2 stages was predicted to
be suitable to reach a carryover of <0.01% of the Mo into the MA separation section. The data from
the single-stage tests showed measured extraction D values to be low (approx. 0.3) in the transient
samples but 4.9 when equilibrated. However, even assuming a D value of 4.9 in the extraction stages,
the recovery of Mo was found to be less than 0.1% due to the low scrub D values. Iron was found to
extract only slightly (0.2–0.6%).

Based on the AMUSE calculation, the flowsheet shown in Figure 7 was developed and tested in
the countercurrent test.

Table 3. Predicted recovery into solvent exiting Scrub 2 section.

Recovery in the Loaded Solvent after Scrub 2

Steady State Average

Am 99.87% 99.92%
Eu >99.99% >99.99%
Cm 99.99% 99.97%
La 10.00% 10.70%
Ce 70.20% 72.80%
Pr 96.90% 97.40%
Nd 99.70% 99.80%
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Table 3. Cont.

Recovery in the Loaded Solvent after Scrub 2

Steady State Average

Sm >99.99% >99.99%
Eu >99.99% >99.99%
Gd >99.99% >99.98%
Mo <0.01% <0.01%
Fe 0.64% 0.16%
Zr <0.01% 0.01%
Ru <0.01% <0.01%
Rb <0.01% <0.01%
Sr <0.01% <0.01%
Cs <0.01% <0.01%
Y 47.00% 78.00%

Rh <0.01% <0.01%
Pd <0.01% <0.01%
Sn <0.01% <0.01%
Te <0.01% <0.01%

 

n

n

Figure 7. Flowsheet of the Actinide Lanthanide Separation Process (ALSEP) process demonstration.

3.3. Full Countercurrent Test and Radiochemical Analyses

The ALSEP process demonstration was run in the 1 cm annular miniature centrifugal contactor
setup, installed in the laboratories of Forschungszentrum Jülich, Germany. The tested flowsheet is
shown in Figure 7. Because only 16 contactors were available in the testing rig, the test had to be
split into two parts and run on consecutive days. On the first day, the extraction and scrubbing
stages were performed and the loaded solvent was collected and stored overnight. On the next
day, the collected loaded solvent was used as the organic feed (as shown in Figure 7), and the Ln
re-extraction, MA stripping, and Ln stripping sections of the flowsheet were run. On both days the
experiments were run until steady state was reached. During the first day, the test was continued
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until enough loaded solvent for the second day was collected. The outlets of the centrifugal contactor
battery (raffinate, loaded solvent, An product, Ln product, and spent solvent) were monitored by
sampling and quick gamma measurements of 241Am and 152Eu. These initial gamma spectroscopy
results were used to assess the approach to steady state during the test.

After stopping the tests (stopping pumps and contactors), the contents of the mixing chambers
were quickly transferred to test tubes and centrifuged to achieve quantitative phase separation.
Both phases were samples and analyzed by gamma and alpha spectroscopy and ICP-MS analysis,
and the pH was measured or the aqueous phase was titrated, depending on the HNO3 concentration.

The stage profiles for Am and Eu, as well as Am and Cm are shown in Figure 8 and Figure S1,
respectively. Americium and Cm showed comparable profiles. Figure S2 shows the corresponding
distribution ratios. The results for several elements analyzed by different analytical techniques were
compared to each other and found to be in very good agreement (e.g., Am profiles were determined by
gamma, alpha, and ICP-MS measurements).
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Figure 8. Am and Eu stage profiles of the ALSEP demonstration test (data from ICP-MS measurements,
in very well agreement with data from gamma spectrometry).

Americium, Cm, and Eu were well extracted and stayed in the organic phase during the scrubbing
steps. The An/Ln separation worked well, as Am and Cm were mostly routed to the An product,
whereas Eu was nearly quantitatively routed to the Ln product. A slight Am and Cm recycling was
observed in the Ln re-extraction section, presumably due to a slight pH change in stages 17–22 from pH
1.7 to pH 1.9, similar to observations reported by Gelis et al. [27] This pH change was attributed to the
acidic extractant introduced with the fresh solvent stream, which had not been pre-equilibrated prior
to the experiment. The pH values in the An stripping section (stages 23–28) were relatively constant at
pH 1.9–2.0. The measured pH values or H+ concentrations are shown in Figure 9.

The An(III) product was fairly clean with only very low contaminations, resulting in excellent
decontamination factors (see Table 4). However, a small fraction of Am and Cm (ca. 5%) was routed
to the Ln product. Apparently, the number of An stripping stages was insufficient to achieve a
quantitative An/Ln separation. The Am and Cm stage profiles suggest that two additional An stripping
stages would have resulted in near complete separation of the An from the Ln.
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Figure 9. Measured pH values or titrated H+ concentration in the stages of the ALSEP demonstration
test. Note that the right y-axis is plotted upside down.

The Ln stripping with TEDGA worked very well and four stages were sufficient for a good
back-extraction from the solvent. The only contaminants found in the spent solvent were Fe (12.1%),
Sn (0.8%), and Pd (0.1%). As discussed below, the Fe content found in the spent solvent probably
stems from a slight corrosion of the stainless-steel contactor housing, as some Cr (typical stainless-steel
additive) was also found in those samples (Cr was not added with the feed).

Evaluation of the ICP-MS data show that the non-Ln fission products were mostly routed to the
raffinate. Palladium and Zr masking in the feed with CDTA was effective, and the Mo scrubbing
also worked well, as predicted by AMUSE calculations. The Mo and Zr stage profiles are shown in
Figure 10. The heavier lanthanides (Pr, Nd, Sm, Eu, and Gd) and Y were mainly routed to the Ln
product, whereas the lighter lanthanides (La, Ce) were also partly found in the raffinate, as expected
based on previous batch distribution measurements and flowsheet calculations. Table 4 shows the mass
balances, recoveries, process, and An/Ln decontamination factors, as well as product concentration
factors obtained during the ALSEP test. The overall Fe mass balance suggests slight corrosion of the
stainless-steel contactor housing, as Fe was found in all process streams with a >100% mass balance.
Furthermore, the spent solvent contained a relatively high amount of Fe, supporting the assumption
that the solvent has some corrosive effect on the stainless-steel contactor housing. Iron is fairly strongly
extracted into the ALSEP solvent. However, its extraction is slow, so the extent of extraction will
depend on the residence time in the contactors.

Figures S3–S5 show the stage profiles for La, Ce, Pr, Nd, Sm, and Gd.
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Figure 10. Mo and Zr stage profiles of the ALSEP demonstration test (data from ICP-MS measurements).

4. Conclusions

The successful application of the ALSEP process in 1 cm centrifugal contactors was demonstrated.
Trivalent Am and Cm were recovered with high purity from a simulated raffinate solution and only
slight losses of An(III) to the Ln product were observed. These losses can be minimized using a higher
number of An stripping stages. The demonstration tests described in this paper used an improved
Ln stripping section. The use of TEDGA proved very successful in almost quantitative stripping of
trivalent metal ions, which is an improvement over previous demonstration tests. The spent solvent
only contained slight contaminations of iron, probably from slow corrosion of the stainless-steel
contactor housing, which should be addressed before implementation on a larger scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/20/7217/s1,
Table S1: Distribution ratios D, mass balances, and stage efficiencies in the extraction single centrifugal contactor
test, Table S2: Feed concentrations, distribution ratios D, mass balances, and stage efficiencies in the Scrub 2
single centrifugal contactor test, Table S3: Feed concentrations, distribution ratios D, mass balances, and stage
efficiencies in the An stripping single centrifugal contactor test, Table S4: Feed concentrations, distribution ratios D,
mass balances, and stage efficiencies in the Ln re-extraction single centrifugal contactor test, Table S5: Distribution
ratios D as a function of the HNO3 and N,N,N′,N′-tetraethyl-diglycolamide (TEDGA) concentrations in the Ln
stripping batch tests, Table S6: Feed concentrations, distribution ratios D, mass balances, and stage efficiencies
in the Ln stripping single centrifugal contactor test, Table S7: D values used for the flowsheet calculations
with the AMUSE code, Figure S1: Am and Cm stage profiles of the Actinide Lanthanide Separation Process
(ALSEP) demonstration test (data from alpha spectrometry), Figure S2: Am, Cm, and Eu distribution ratios in
the stages of the ALSEP demonstration test (Am, Eu data from inductively coupled plasma mass spectrometry
(ICP-MS) measurements, and Cm data from alpha spectrometry), Figure S3: La and Ce stage profiles of the
ALSEP demonstration test (data from ICP-MS measurements), Figure S4: Pr and Nd stage profiles of the ALSEP
demonstration test (data from ICP-MS measurements), Figure S5: Sm and Gd stage profiles of the ALSEP
demonstration test (data from ICP-MS measurements).
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