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Abstract: Multi-phase materials often times consist of constituents with high contrasts in
phase-specific mechanical properties. Here, even after homogeneous plastic deformation
phase-specific residual stresses develop that may affect the components behaviour in service.
For numerical simulation of phase-specific residual stresses, knowledge of the particular
phase-specific strain hardening behaviour is essential. In this study, the strain hardening of ferrite and
austenite in cold rolled duplex stainless steel of type X2CrNiN23-4 is investigated. By means of X-ray
diffraction, the phase-specific load partitioning and residual stress evolution are analysed for uniaxial
load application in three directions within the sheets plane, taking into account the sheet metals phase
specific anisotropy. In order to assess the necessity for experimental determination of anisotropic
phase specific behaviour, the strain hardening parameters, derived from only one loading direction,
are implemented in a mean-field approach for prediction of phase-specific stresses. A simplified
simulation approach is applied that only considers macroscopic plastic anisotropy and results are
compared to experimental findings. For all investigated loading directions, it was observed that
austenite is the high-strength phase. This load partitioning behaviour was confirmed by the evolution
of phase-specific residual stresses as a result of uniaxial elasto-plastic loading. With the simplified
and fast numerical approach, satisfying results for prediction of anisotropic phase-specific (residual)
stresses are obtained.

Keywords: duplex stainless steel; load partitioning; micro residual stresses; mean-field homogenisation

1. Introduction

Duplex stainless steels are frequently used in chemical and mechanical engineering application
due to their exceptional corrosion resistance, high yield strength and good formability. They consist
of the two phases—ferrite and austenite—in high volume fractions. Thus, the macroscopic material
response is a result of the combined properties of the individual phases. As the phase specific
elastic and plastic material behaviour of the two constituents may differ significantly, considerable
phase-specific micro residual stresses (RS) develop in addition to the macro RS during manufacturing
of engineering components. It is well known that, apart from macro RS, micro RS may also
influence the components lifetime if subjected to cyclic mechanical loading in service [1]. The reliable
experimental analysis of phase-specific RS in multi-phase materials is therefore of substantial interest,
considering that it enables targeted manufacturing processes regarding the formed residual stress

Crystals 2020, 10, 976; doi:10.3390/cryst10110976 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0001-6886-7311
https://orcid.org/0000-0001-6884-0530
https://orcid.org/0000-0002-5487-8025
http://www.mdpi.com/2073-4352/10/11/976?type=check_update&version=1
http://dx.doi.org/10.3390/cryst10110976
http://www.mdpi.com/journal/crystals


Crystals 2020, 10, 976 2 of 14

distribution. With ever-increasing computational capabilities, the prediction of phase-specific RS
is also feasible nowadays. The numerically efficient mean-field approaches have been proven to
be especially well suited for the application on the integration point level during the simulation
of structural components [2]. Precise knowledge about the contribution of different phases to the
macromechanical behaviour, i.e., the phase-specific strain hardening, is essential for prediction of
macro RS and phase-specific micro RS after plastic deformation. As the micromechanical behaviour
of a single phase, bound in a heterogeneous material, depends on stress and strain coupling effects
of the individual phases, it usually differs from the macromechanical behaviour of a single phase
material with comparable chemical compositions. The utilisation of experimentally determined
macromechanical data as micromechanical input could therefore lead to significant inaccuracies in the
numerical results. However, duplex stainless steels, containing two phases of mostly equal volume
fractions that possess different lattice structures, enable reliable experimental analysis of phase specific
stresses via diffraction methods. Several authors have investigated the phase-specific mechanical
properties and strain partitioning of duplex stainless steels via neutron diffraction, X-ray diffraction
(XRD) and high-energy X-ray diffraction (HEXRD) methods, see, e.g., in [3–5]. Although these studies
all considered austeno-ferritic steels of equal phase fractions and comparable chemical compositions,
varying results were obtained concerning high-strength and low-strength phase and development of
phase-specific RS. Apparently, yield strength and strain hardening behaviour of the individual phases
are strongly affected by the material’s manufacturing history and the precise chemical composition of
the individual phases. For example, nitrogen is known to be a strong austenite stabiliser and increases
the phase-specific strength by interstitial solid solution strengthening [6]. Because the numerical
simulation results depend crucially on the quality of the experimentally determined phase-specific
data, reliable phase-specific strain hardening parameters for the particular alloy and material state
are required. In Simon et al., elasto-plastic parameters from literature were used for a simplified
methodology of the mean-field approach and calculation of the phase-specific RS distributions after
deep drawing of duplex stainless steel sheet X2CrNiN23-4 [7]. Hofinger et al. extended the approach to
a mean-field homogenisation for every time increment and integration point for a metal sheet forming
process [2]. As the cold rolled metal sheet possesses a crystallographic texture, the aim is to now
consider the anisotropic elasto-plastic micromechanical behaviour in the numerical simulation of sheet
metal forming.

The purpose of this work is to determine the anisotropic phase-specific strain hardening behaviour
of cold rolled duplex stainless steel sheet of type X2CrNiN23-4 (AISI S32304). The material consists of
ferrite and austenite in equal volume fraction. Therefore, it is well suited for analysis of phase-specific
residual stresses by means of diffraction methods. The initial material state is characterised by
texture analyses using XRD and electron backscatter diffraction (EBSD), while EBSD is also applied
to determine average grain sizes of both phases. The development of phase-specific stresses is
analysed via XRD of stepwise uniaxially loaded tensile specimen, while the loading direction is
varied with respect to the rolling direction of the sheet metal. Here, loading in rolling direction (RD),
transverse to the rolling direction (TD) and in direction 45° to the rolling direction is considered.
For distinct steps of increased loading in each of the loading experiments the surface-near stresses are
determined in situ for both phases up to the applied strain of εt = 10%. In between the loading steps
the specimens are completely unloaded and phase-specific RS are determined for the unloaded state.
From the evolution of integral breadths of the diffraction lines, the yield strength is found for all three
directions. Additionally, the crystallographic textures are again analysed after plastic deformation,
for discussion of texture evolution effects. From experimentally determined phase-specific yield
points and load partitioning, strain hardening parameters are derived that can be implemented in
numerical simulations for prediction of phase-specific RS. Here, a simplified anisotropic mean-field
approach is proposed, considering the macroscopic plastic anisotropy, i.e., the Lankford parameters
R, and experimentally determined phase specific strain hardening for only one loading direction,
i.e., the TD. With the described mean-field approach the strain hardening for ferrite and austenite is
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subsequently predicted for uniaxial load application in the directions 45◦and RD and compared to the
experimental results.

2. Materials and Methods

2.1. Material

For the experimental investigations, cold rolled sheet material of X2CrNiN23-4 of 1.5 mm thickness
was used as received. The chemical composition, as determined by emission spectroscopy and melt
extraction, is given in Table 1. Metallographic analysis revealed a phase fraction of 50% ferrite and
austenite with elongated grain structures in rolling direction.

Table 1. Chemical composition of X2CrNiN23-4 in weight %.

C Cr Ni Mn Co Si Mo N Fe

0.034 23.91 4.74 1.326 0.104 0.38 0.37 0.13 balance

The phase-specific average grain size was analysed from EBSD mappings of the sheets plane
section and cross section, see Figure 1. For ferrite, significantly larger average grain sizes (~13 µm) and
a pronounced elongation in rolling direction (RD) were observed, whereas austenite shows smaller,
rather spherically shaped grains (~4 µm). No further phases were detected.

Figure 1. Electron backscatter diffraction (EBSD) phase index maps (top) and orientation maps of
ferrite (centre) and austenite (bottom) for plane section (left) and cross section (right).

The initial residual stress state was determined at the sheets surface and centre using XRD
(subsequent to electrochemical polishing), according to the procedure described in Section 2.2.
Only minor residual stresses (|σRS| < 30 MPa) are present, thus the initial material state of such
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a high-strength steel can be considered as stress-free. The crystallographic texture of the cold rolled
sheet material was analysed by means of XRD using a diffractometer of type Seifert XRD 3003 PTS
with iron-filtered Co-Kα radiation. As primary aperture, a pin hole collimator with a nominal diameter
of 1 mm was used and a 4 mm slit on the secondary side in front of the scintillation counter. Incomplete
pole figures (azimuthal angle range: −170◦ ≤ ϕ ≤ 170◦; polar angle range: 0◦ ≤ ψ ≤ 70◦) were
measured from the normal direction (ND) (i.e., in the sheet plane) for both phases. Three suitable
ferrite lattice planes ({220}-, {211}- and {200}) and three austenite lattice planes ({200}-, {220}- and {311})
were analysed. Using the open source Matlab toolbox MTEX, the complete orientation distribution
function (ODF) was calculated, assuming orthorhombic specimen symmetry. As can be seen in Figure 2,
typical rolling texture components for bcc- and fcc-structured materials were observed. The ferritic
phase (bcc) shows components of the α-fibre with rotated cube {001}<110> as major component and a
weakly pronounced γ-fibre. The austenitic phase (fcc) has texture components of brass {110}<211>,
Goss {110}<001> and copper {112}<111>. Successive electrochemical polishing and repeated texture
analysis on the newly generated surface revealed only a weak texture gradient in sheet thickness
direction in the initial state.
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Figure 2. {100}-, {110}-, {111}-pole figures for ferrite and austenite recalculated from the orientation
distribution functions (ODFs) (from XRD surface texture analysis). (a) Ferrite and (b) austenite.

From the analysed ODF and single-crystal elastic constants, the phase-specific stiffness tensors〈
Cijkl

〉α
and

〈
Cijkl

〉γ
for the textured phases were determined according to the geometric mean of

Voigt and Reuss bounds as proposed in [8]. Single-crystal elastic constants for ferrite and austenite
are taken from literature, as given in Table 2. The three-dimensional distributions of phase-specific

Young’s modulus E, calculated from
〈

Cijkl

〉α,γ
, are shown in Figure 3.

Table 2. Single-crystal elastic constants.

Phase C11 C12 C44

Ferrite [9] 230 GPa 134 GPa 117 GPa
Austenite [10] 209 GPa 133 GPa 121 GPa
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Figure 3. Young’s modulus distribution E of the textured phases. (a) Ferrite and (b) austenite.

2.2. Experimental Methods

The phase-specific strain hardening behaviour was investigated for three directions in respect to
the rolling direction of the sheet metal. Tensile test specimens were cut from the X2CrNiN23-4 sheet
material according to geometry and orientation, as given in Figure 4. A miniature tensile/compression
module DDS-2 from Kammrath & Weiss GmbH, Germany with an attached 10 kN loading cell was
used for uniaxial load application of the three specimens. Total strain was measured with an axial
extensometer of type EXA 10-1 from Sandner Messtechnik GmbH, Germany.

Figure 4. Specimen dimensions and orientations in respect to the sheet rolling direction.

The load application was performed position controlled with a strain rate of about 0.0003 s−1.
For predefined load steps, the cross head of the miniature loading rig was held in position for 30 min,
enabling stress and strain relaxations. Subsequently, phase-specific stress analyses were performed by
means of XRD, first of the loaded state and thereafter of the completely unloaded state. This stepwise
approach was repeated up to a total strain of about 10 % for all three specimens. The procedure
is schematically shown in Figure 5. From stress–strain recording of the interrupted tensile tests,
the orientation-dependent macro strain hardening behaviour can be derived. X-ray diffraction analyses
were performed on a θ-2θ-diffractometer using V-filtered CrKα radiation. The primary beam was
tailored using a pin hole aperture of 1 mm in diameter. In front of the detector, a 2 mm slit was used
for the analysis of the {220}-austenite diffraction line, and a 4 mm symmetrisation slit was used for the
{211}-ferrite diffraction line [11]. The interference lines were fitted using a Pearson VII function after
background subtraction, Kα2 {220}-diffraction line was stripped via a double-peak fit. The measurement
was performed for 15 tilt angles ψ equally distributed over sin2 ψ. Due to shadowing effects of the
tensile testing rig, the maximum polar angle ψ was limited to ±45◦. The average integral breadths
(<IB>) of the X-ray interference lines were evaluated for scattering vectors close to the specimen
surface normal, i.e., for |ψ| < 30◦. Due to constant measurement point and unchanged measuring and
evaluation parameters, an increase in phase-specific <IB> can be related to an increase of phase-specific
degree of plastic deformation if significant changes in size of coherently scattering regions can be
excluded [12].
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Figure 5. Loading and unloading scheme for XRD analysis of phase-specific stress development
(LS = loading stress; RS = residual stress).

Loading stresses (LS) and residual stresses (RS) were evaluated according to the sin2 ψ-method
for the stress component corresponding to the loading direction [13]. The X-ray elastic constants (XEC)
were calculated following the approach proposed by Kneer for the self-consistent Eshelby–Kröner
model (see, e.g., in [14–16]). By this means, for ferrite 1

2 s{211}
2 = 5.7006× 10−6 MPa−1 and austenite

1
2 s{220}

2 = 5.9613× 10−6 MPa−1 were calculated using single-crystal stiffness constants, given in Table 2.
As reference values for the XRD line positions, i.e., the diffraction line positions for the unstressed
crystal lattice, 2θ

α{211}
0 = 155.35◦ and 2θ

γ{220}
0 = 128.25◦ were considered. From slopes of 2θ vs. sin2 ψ

distributions, the difference of stress components
〈
σϕ − σ33

〉α,γ is calculated according to Equation (1).
Brackets 〈〉 denote the average over the volume of coherently scattering regions.

〈
σϕ − σ33

〉α,γ
= − 1

2 tan θ
{hkl}
0

1
1
2 s{hkl}

2

∂2θ{hkl}

∂ sin2 ψ
(1)

As 〈σ33〉α,γ cannot be determined without knowledge of the precise lattice parameters for the
stress-free condition aα,γ

0 , in this work 〈σ33〉α,γ = 0 is assumed, which is justified due to the limited
information depth of 5 µm for CrKα radiation in steel. The macro RS σϕ and phase-specific stresses of

second kind
〈

σI I
ϕ

〉α,γ
are calculated from determined phase-specific stresses

〈
σϕ

〉α,γ and the phase
volume fraction cα,γ according to the following equations [17].

〈
σϕ

〉α,γ
= σϕ +

〈
σI I

ϕ

〉α,γ
(2)

σϕ = cα

〈
σϕ

〉α
+ cγ

〈
σϕ

〉γ , cα + cγ = 1 (3)

Subsequent to the final loading step of εt = 10%, repeated texture analyses on the specimen
surfaces were performed for all three specimens, as described in Section 2.1.

2.3. Numerical Methods

The methodology proposed by Hofinger et al. [2] is used for the numerical simulation. Fully
anisotropic phase specific and effective stiffness tensors as described in Section 2.1 are used for the
localization relations.

The plastic strain rates of the phases are given by

ε̇
p
α,γ = ε̇

p
0α,γ


√

3
2 σα,γ ·Hα,γ[σα,γ]− σF1

α,γ

σF2
α,γ

mα,γ √
3
2Hα,γ[σα,γ]√

σα,γ ·Hα,γ[σα,γ]
(4)
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with the anisotropy tensor Hα,γ, flow stress σF1
α,γ and σF2

α,γ, stress exponent mα,γ and reference strain
rate ε̇

p
0α,γ. Böhlke et al. [18] proposed a correlation of plastic and elastic anisotropies. In this work,

the following form of the anisotropy tensor will be used,

H = P2 + ηα,γA′α,γ, (5)

where ηα,γ is a calibration parameter which specifies the amount of plastic anisotropy described by the
fourth-order texture coefficient A′α,γ. Böhlke and Bertram [19] showed that the fourth-order texture
coefficient results based on the orientation distribution function fα,γ(g) and the crystallographic basis
Dα,γ(g) as

A′α,γ =

√
30

30

(
I ⊗ I + 2Is − 5

∫
g

fα,γ(g)Dα,γ(g)dg
)

. (6)

For numeric simplicity, σF1
α,γ is assumed to be zero, while the flow stress σF2

α,γ = σF
α,γ is modeled by

a phenomenological Voce-type hardening approach

σF
α,γ = σF0

α,γ + (σF∞
α,γ − σF0

α,γ)

(
1− exp

(
Θ∞

α,γ −Θ0
α,γ

σF∞
α,γ − σF0

α,γ
ε

eq
α,γ

))
+ Θ∞

α,γε
eq
α,γ, (7)

where the initial yield stress σF0
α,γ, the saturation stress σF∞

α,γ , the initial hardening modulus Θ0
α,γ and the

saturation hardening modulus Θ∞
α,γ are introduced as material parameters.

Fitting a hardening curve to data from an uniaxial tensile test requires the computation of the flow
stress σF and the equivalent plastic strain εp from the measured stresses and strains. A heterogeneous
material complicates this computation as, even though the stress component in loading direction σ11

has been measured locally, the other components are not known. However, the effective stress is
uniaxial and therefore known from the local measurements:

σ̄11 =
1
2
(〈σ11〉α + 〈σ11〉γ), (8)

with all other components being zero. The task at hand is to calculate the localised stress where the
elastic stress localisation tensor B is known exactly for two-phase materials, but the inelastic stress
localisation tensor b depends on the unknown plastic stresses. In lieu of an exact localisation, it is
assumed that the inelastic stress localisation tensor has the same direction as the effective plastic strain.
Given the measured local and global stress, only one localisation is consistent with this assumption:

σα,γ = B[σ̄] + (σ11,α,γ −B[σ̄]11,α,γ)N(H̄[σ̄]), (9)

where N(A) = A/||A|| denotes the direction of a second-order tensor. The flow stress is now
calculated through local application of the Hill criterion. As the plastic strains cannot be directly
measured, the Voigt-type approach εα,γ = ε̄ is chosen as a simple approximation to localise the total
strains, resulting in

ε
p
11,α,γ = ε̄11 − (C−1

α,γ[σα,γ])11. (10)

As only the stress component in loading direction σ11 was experimentally determined, in this
work it is assumed that the direction of local plastic strain always corresponds to the direction of local
stress for calculation of the equivalent plastic strain, leading to

ε
p
α,γ =

ε
p
11,α,γ

N11(Hα,γ[σα,γ])
. (11)

To facilitate a fit to the hardening curve, all points in the elastic regime are excised from the
data. The hardening curves are fitted to the data points with a least-squares optimisation using the
Levenberg–Marquardt algorithm.
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In order to obtain the calibration parameter ηα,γ, an optimisation problem is defined based on
the experimentally characterised macroscopic plastic anisotropy. The anisotropy is characterised with
the Lankford parameter Rβ, which is defined as the ratio of in-plane and out-of-plane logarithmic
strains for a tensile test at 20 % elongation, where β corresponds to the angle between tensile direction
and rolling direction, as seen in Figure 4. The admissible domain for ηα,γ is sampled in tensile test
simulations and optimised with mean squared error

e = (R0 − R0,sim)2 + (R45 − R45,sim)2 + (R90 − R90,sim)2, (12)

with regards to the Lankford parameter values measured in [7].

3. Results and Discussion

3.1. Development of Crystallographic Texture

ODF 45◦sections of ferrite and austenite phase, determined after the final plastic deformation,
are depicted in Figure 6 and can be compared to the initial texture of the cold rolled sheet. Depending
on the loading direction, different changes in crystallographic texture were observed for both phases.
For the ferritic phase, the plastic deformation in RD and TD resulted in a stronger component of
rotated cube texture, whereas the loading direction in 45◦reduced this texture component as well as
the whole α-fibre. The austenitic phase has a pronounced copper component, which is weakened
after plastic deformation to ε = 10% in all three loading cases. The uniaxial loading in rolling direction
however formed a 110<111>-texture component, and after loading in 45◦direction a rather strong Goss
orientation is developed. The austenite phase of the specimen subject to loading in TD developed only
a weak texture. The total change in texture for all loading directions is rather small in respect to the
initial texture index.

initial state plastic strain εp = 10 %
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Figure 6. ODF sections ϕ2 = 45◦for initial state and after applied plastic strain of εp = 10% in different
orientations for ferrite phase (top) and austenite phase (bottom).
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3.2. Evolution of Integral Breadths

Figure 7 shows the average integral breadths <IB> of the diffraction lines for ferrite and austenite
vs. the nominal applied load σn. Although negligible deviations from initial <IB> already exist
for smaller loads, a significant increase in <IB> is observed for all three specimen orientations only
for an applied load of approximately σn = 480 MPa. Due to the limited number of loading steps,
the accurate phase-specific anisotropic yield strength cannot be determined from evolution of <IB>.
For the following numerical simulations it is therefore assumed that the yield point corresponds to the
respective phase-specific stress

〈
σLS

α,γ

〉
, present at approximately σn = 480 MPa.
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Figure 7. Evolution of integral breadths of the ferrite and austenite X-ray diffraction lines vs. the
applied stress σn in rolling direction (left), 45◦direction (center) and transverse direction (right).

3.3. Load Partitioning Behaviour

The load partitioning behaviour of the two constituents is analysed by means of XRD analysis for
distinct steps of the uniaxially applied load σn. In Figure 8, the distribution of normalised maximum
intensities and the 2θhkl distribution are both plotted vs. sin2 ψ for all investigated loading directions
of ferrite and austenite, exemplary depicted for the applied load of σn = 600 MPa. It is evident that,
for measurement directions in RD and 45◦, the diffraction line intensities vary strongly over the
analysed ψ-range due to the initial crystallographic texture. However, the 2θ-sin2 ψ distributions reveal
that only small deviations from linear dependency are present, which may be caused by elastic and
plastic anisotropy effects. We therefore conclude that sin2 ψ evaluation is accompanied by small errors
and the approach for residual stress analysis is still justified. The errors in stress evaluation vary with
loading direction due to the present crystallographic texture and are depicted as error bars for the
evaluated stress values. As the transverse orientation is influenced less by texture based evaluation
errors, the phase-specific strain hardening parameters, required for the mean-field simulation, are fitted
to the experimental results from this direction.

In Figure 9, the evaluated phase-specific stresses under uniaxial loading
〈

σLS
α,γ

〉
are depicted vs.

the applied total strain εt for ferrite and austenite and all three specimen orientations. In the area
that is expected to be purely elastic (approximately σn < 350 MPa), a linear increase of phase-specific
stresses was observed. Here, no significant difference in the phase wise load response was determined.
For a load application that exceeds the macro yield strength (~480 MPa), increasing load partitioning is
determined for all investigated directions. According to the XRD analysis of α-{211}- and γ-{220}-lattice
planes, austenite shows a higher strength than ferrite. While for austenite pronounced strain hardening
was observed, ferrite shows plastic yielding with only minor hardening for increased deformation.
For the final applied strain of ε = 10% the phase-specific loads differ by about 200 MPa to 400 MPa
depending on the observed direction. This is due to the significantly smaller average grain sizes of the
austenitic phase compared to the ferrite grains. Furthermore, the nitrogen content of 0.13 weight %
implies a significant solid solution strengthening effect of the austenitic phase [20].
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Figure 8. Diffraction line positions 2θhkl and peak intensity distribution vs. sin2 ψ for loading state
of σn = 600 MPa in RD (left), 45◦(center) and TD (right) of the ferrite phase (top) and the austenite
phase (bottom).
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Figure 9. Evolution of the phase-specific loading stress (LS) for uniaxial loading in rolling direction
RD (left), 45◦direction (centre) and transverse direction TD (right).

The load partitioning behaviour is also evident in the evolution of phase-specific residual
stresses. After unloading from the respective steps, the phase-specific micro-residual stresses that are
developed due to the mismatch in yield strength and strain hardening still exist, see Figure 10. As the
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phase-specific stiffness parameters differ only slightly, the partitioning of phase-specific loads is nearly
retained for the unloaded state. As expected from the experimental procedure, no macro-residual
stress is developed for the homogeneously applied tensile stresses.
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Figure 10. Evolution of phase-specific residual stress after loading in rolling direction RD (left),
45◦direction (centre) and transverse direction TD (right).

3.4. Numerical Results with Mean-Field Approach

The fitting process described in Section 2.3 is applied to the measurements carried out in TD
direction. The onset of plastic deformation as indicated by the integral breadths of the X-ray diffraction
lines is observed at an effective stress of approximately σn = 480 MPa, which corresponds to local
initial stresses of σF0

γ = 420 MPa for austenite and σF0
α = 380 MPa for ferrite. These are used as cut-off

values for the elastic regime. To fit the plasticity parameter ηα,γ, the Lankford parameters measured
in [7] of R0 = 0.60, R45 = 0.72 and R90 = 0.80 are used. The plasticity parameters follow as outlined
in Table 3.

Table 3. Material parameters derived from measurements orthogonal to the rolling direction RD.

σF0
α,γ σF∞

α,γ Θ0
α,γ Θ∞

α,γ ηα,γ

Austenite 420 MPa 640 MPa 70.7 GPa 3490 MPa 3.0
Ferrite 380 MPa 427 MPa 4.81 GPa 21 MPa −5.5

Phase and effective stiffnesses are approximated using the geometric mean [8]. The measured
texture data are used alongside literature data for austenite [10] and ferrite [9] single crystal stiffnesses
as given in Table 2. In Figure 11, the fit to the data determined for TD can be seen on the right. A perfect
fit is not achieved, owing to the microstructural assumptions detailed in Section 2.3: the localization of
the total stress via a Voigt-type assumption, and the assumption that the direction of plastic strains
always corresponds to the direction of stress both locally and on the effective scale. In the left and
middle figures, the simulated predictions for the stress and strain evolutions in rolling and 45° direction
can be seen, along with the measurements for those directions.

Although only the material’s macroscopic plastic anisotropy is considered, the load partitioning
is in accordance with the experimental results for all three loading directions. Deviations between
simulation and experimental results for RD and 45° direction of up to 150 MPa are partly due to
the lower accuracy of experimental results for these directions. We conclude that the consideration
of the Langford parameters combined with the experimentally determined phase-specific strain
hardening of one direction in the sheets plane already enables a reasonable approach for simulation
of phase-specific RS. A more accurate prediction of phase-specific RS, e.g., for complex metal sheet
forming process, may be achieved with consideration of the complete data of anisotropic phase-specific
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strain hardening. However, such an approach is much more elaborate and would reduce the
simulation’s speed significantly.
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Figure 11. Comparison of calculated (lines) and experimental (symbols) results: Fitted strain
hardening of transverse direction (right) and simulated strain hardening for uniaxial loading in
rolling direction (left) and 45◦direction (center).

4. Conclusions

Cold rolled duplex stainless steel sheets X2CrNiN23-4 were uniaxially loaded in three directions
with respect to the rolling direction, i.e., in RD, 45◦direction and TD. XRD-analyses were performed to
obtain the phase-specific strain hardening behaviour and development of residual stresses. From the
experimental results of the TD load, phase-specific strain hardening parameters were derived and
considered in a fast mean-field approach. Taking into account the macroscopic Lankford parameters
R, the anisotropic strain hardening of direction 45° and RD was simulated for austenite and ferrite.
From the experimental and numerical results, the following conclusions can be drawn.

• For the material state examined in this work, only minor evolution of crystallographic texture
was observed for the given plastic deformations, which justifies neglecting texture development
in the simulation.

• From the evolution of integral breadths of ferrite {211}- and austenite {220}-diffraction lines, it is
concluded that only negligible differences in the phase-specific yield strengths exist.

• The austenitic phase possesses higher strength compared to the ferritic phase for all investigated
directions of load application, resulting in the evolution of phase-specific residual stresses even
for homogeneous plastic deformation. This is due to the smaller grain size of austenite and the
solid solution strengthening by nitrogen.

• The proposed fast simulation approach based on phase specific strain hardening combined with
macroscopic plastic anisotropy enables phase-specific RS simulation of satisfying accordance
with experimental results. Deviations are caused in part by inaccuracies in the experimental
approach, causing the neglecting of texture effects in the stress evaluation. Additionally, some
deviations are due to the simplification of the phase specific plastic anisotropy approximated by
the macroscopic Lankford parameters.

With the presented phase-specific anisotropic strain hardening parameters experimentally
determined from the particular material state, a valuable set of phase-specific data is now provided for
further validation of the application of mean-field approaches to the cold rolled duplex stainless steel
sheet in particular.
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MDPI Multidisciplinary Digital Publishing Institute
XRD X-ray diffraction
EBSD Electron backscatter diffraction
ODF Orientation density function
XEC X-ray elastic constants
fcc face-centred cubic
bcc body-centred cubic
RS residual stress
LS loading stress
RD/TD/ND rolling/transverse/normal direction
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