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ABSTRACT
Gradient nanostructuredmetallicmaterials with a gradual change of grain boundary and dislocation
density display unprecedent mechanical properties. Herein, we uncover a gradient of point defects
concentration and concomitant gradient bandgap (Eg) narrowing in metal oxide nanoparticles pro-
cessed by a combination of severe shearing and frictional sliding deformation. Using the valence
electron-energy loss spectroscopy technique, we find a gradual decrease of Eg from 2.93 eV in the
interior to 2.43 eV at the edge of the high-pressure torsion processed ZnO flake-shaped particle. This
work paves the way to strain engineering of gradient-structured metal oxide semiconductors for
unique functional properties.

IMPACT STATEMENT
We uncover a gradient of oxygen vacancy concentration and concomitant bandgap narrowing in
an individual metal oxide nanoparticle processed by a combination of severe shearing and frictional
sliding deformation.
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1. Introduction

Gradient-structured materials represent an emerging
class of architectured materials [1] that have garnered
increased attention due to their notable structural per-
formance such as evaded strength-ductility trade-off
dilemma and enhanced fatigue properties [2–5]. This
is attributed to the gradient of grain size, typically
from nanostructured or ultrafine-grained surface layer
to coarse-grained bulk interior. The two main tech-
niques that have been utilized to produce extreme surface
grain refinement and gradient structures are severe plas-
tic deformation (SPD) and dynamic plastic deformation
(DPD) [2–6].However, in addition to high density of dis-
locations and stacking faults/twin boundaries that con-
tribute to surface grain fragmentation and subdivision,
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processing of materials with these techniques also results
in excess concentration of point defects [6,7]. Theoret-
ically, the gradient of their concentration could also be
utilized for design of unique properties.

The formation of vacancies during plastic deformation
is a result of dislocation interactions, and it is expected
to be similar both in metals and ceramics, provided the
vacancy formation energies are similar. However, the
kinetics of vacancy diffusion depends on vacancy migra-
tion energy. Inmost commonmetals, the vacancy forma-
tion and migration energies are nearly equal. For exam-
ple, in coinage metals (Au, Ag, and Cu) both vacancy
formation and migration energies are in the range of
0.8 to 1.0 eV. This is why in these metals the vacancies
are mobile at room temperature, and the gradients of
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their concentration cannot be retained for a long time.
In ceramics, the situation may be different. For example,
in wurtzite ZnO the formation energy of the neutral oxy-
gen vacancy is about 0.73 to 1.0 eV, while its migration
energy is about 2.4 eV [8]. Thus, during plastic deforma-
tion of ZnO the vacancies should be produced with the
same easy as in coinage metals, yet their migration will
be ‘frozen’ at room temperature. This enables engineer-
ing stable vacancy gradients in ceramic materials by the
SPD techniques.

Though oxides are brittle under normal conditions
and possess much less formability than their metallic
counterparts, substantial ductility can be gained under
high hydrostatic confining pressure, which facilitates the
transformation from micro-cracking to plastic slip and
inelastic relaxation, and reduces the critical resolved
shear stress for activation of slip systems [9–11]. For
example, extensive plasticity of α-alumina under hydro-
static pressure of about 3GPa was reported by Percy
Bridgman already in the year 1947 [12]. The SPD tech-
niques such as high-pressure torsion (HPT) have been
widely employed to manipulate the microstructure of
oxides (see Ref. [11] for review). In addition to grain
refinement and phase transformations, formation of oxy-
gen vacancies during HPT processing has been observed
in a range of oxides nanoparticles including BaTiO3 [13],
TiO2 [14], ZnO [15], Al2O3 [16], Y2O3 [17], and
GaN–ZnO [18].

Oxygen vacancies can affect the functional proper-
ties of metal oxides such as the bandgap width, because
the elastic strain of the lattice produced by these point
defects is coupled to the electronic band structure [19].
Therefore, producing a gradient of point defects concen-
tration in metal oxide can result in the gradient of the
material functional properties. In the present work, we
demonstrate a gradient bandgapnarrowing phenomenon
in SPD-processed individual ZnO particles exhibiting
a continuous increase of oxygen vacancy concentration
from the interior to the edge of the particle.

2. Materials andmethods

ZnO particles were sandwiched between two Cu disks
and were processed by HPT at a compressive pres-
sure of 5GPa for 5 turns [10]. To measure the evo-
lution of bandgap energy and oxygen vacancy con-
centration in the HPT-processed ZnO particles, we
used the electron energy-loss spectroscopy (EELS)
technique in a monochromated scanning transmission
electron microscope (STEM) (for a detailed descrip-
tion of the experimental methods, see Supporting
Information and Figure S1 therein).

3. Results and discussion

The as-synthesized single-crystalline ZnO particles
obtained via indirect or French process exhibit a typical
nodular shape [20] and an average size of 311± 150 nm
(see Figure 1(a) and Figure S2 for TEM characteriza-
tion of the nearly Wulff-shaped ZnO single-crystals).
Since the hardness of single-crystalline ZnO is close to
5GPa, compressing the agglomerates of ZnO nanoparti-
cles under the pressure of 5GPa only introduced consol-
idation, but did not deform or break the particles and did
not change their average size (Figure 1(b)). However, by
conducting HPT process, significant plastic deformation
was introduced into the ZnO particles and their mor-
phology transformed from equiaxed- to flake-like one.
As shown in Figure 1(c), the as-synthesized equiaxed
ZnO particles are not transparent under bright-field (BF)
TEM imaging conditions, and thickness fringes can be
observed at the edge of the particles. On the other hand,
an HPT-processed ZnO particle shown in Figure 1(e)
is transparent and polycrystalline, indicating that ZnO
particles have undergone severe plastic deformation and
that the deformation was accompanied by grain frag-
mentation. The selected area diffraction pattern (SADP)
taken from the deformed particle indicates that it is poly-
crystalline and no phase transformation from hexagonal
wurtzite to rocksalt phase occurred. Finally, it is interest-
ing to note that we performed SADP on several deformed
particles and no diffraction spots or rings from {002} lat-
tice planes were observed due to the strong basal texture
developed during the HPT processing.

During the HPT processing, in addition to severe
shear deformation of individual ZnO particles, relative
frictional sliding between them and subsequent consol-
idation of the particle agglomerates also occurred [21].
In the latter process, the edge of the flake-shaped par-
ticles could develop a wedge-like shape with decreasing
thickness, enabling better particles packing and increase
of the compact density, as schematically illustrated in
Figure 2(a). It has been revealed that friction deforma-
tion by relative sliding under SPD condition (hydrostatic
pressure and shear strain) contributes to higher extent
of lattice strain and plastic instability of the sliding sur-
faces, as compared to a more homogeneous deformation
in the interior of the processed material [22]. In the
present case, we anticipate higher density of defects at
the surfaces and edge regions of the HPT-processed ZnO
particles.

The wedge-like shape of the edge region was con-
firmed by the relative thickness map, Figure 2(b,c). The
mean free path of inelastically scattered electrons, λ, was
estimated to be 91 or 149 nm, using two formulas derived
with the aid of the log-ratio method [23,24]. Based on
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Figure 1. The change of ZnO particles morphology and microstructure caused by HPT processing. SEM images of as-synthesized (a)
and compacted (b) ZnO particles with average particle sizes of 311± 150 nm and 304± 149 nm, respectively; (c) a BF-TEM image of as-
synthesized ZnOparticles; insert and arrows highlight the thickness fringes at the edge of the particles; (d) a SEM image of HPT-processed
ZnO particles having average dimensions of 603± 243 nm and 78± 42 nm along the shearing direction (SD) and normal direction (ND),
respectively; (e) a BF-TEM image of an HPT-processed ZnO particle; insert shows a SADP taken from the particle.

the analysis of SEM micrographs, the maximum thick-
ness of the deformed ZnO particles is about 120 nm.
Therefore, we selected λ = 91 nm, as the other estimate
(λ = 149 nm) leads to an estimated thickness of 170 nm
in the center region of the ZnO particle, much higher
than the measured value of 120 nm.

For the measurement of bandgap at specific sites on
an HPT-processed ZnO particle, valence EEL spectra
(VEELS) were collected. To extract the bandgap value,
the power-law model was used to subtract the back-
ground signal using a fitting range 1.5 to 2.4 eV. It is worth
noting that the effect of subtraction range on the deter-
mined value of bandgap onset of ZnO is small, and the
error is within 0.04 eV [25]. Then, we applied the lin-
ear fit method to determine the bandgap energy, since
this method overcomes the effects of specimen thickness
variation and reduces the Cerenkov effect [26–28]. In
this method, the bandgap energy is estimated by find-
ing the intersection point of a straight horizontal line
corresponding to the averaged background level (after
subtraction) with a linear fit to the onset of the loss sig-
nal spectrum. Finally, according to analysis of Erni and

Browning [29], since normalized emission rate for ZnO
is 0.69 (having the maximum real part of dielectric con-
stant of 3.5 to 5 [30–32]) and below the critical value of
0.9, Cerenkov radiation generation is strongly damped.

As shown in Figure 3, the edge region of the HPT-
processed ZnO particle displays a gradient bandgap
narrowing phenomenon. The bandgap values change
from 2.43± 0.06, to 2.61± 0.05, 2.74± 0.04, 2.86± 0.04,
2.91± 0.03, 2.92± 0.03 and 2.93± 0.03 eV, frompoint #1
to #7, respectively. Significant bandgap change is found
between the points #1 and #5, which are within about
120 nm from the particle edge, corresponding to the
relative thickness change from 0.22λ (20 nm) to 0.78λ
(71 nm). Moving from point #5 to #7 towards the inte-
rior of the particle results in the bandgap value reach-
ing a plateau at 2.9 eV. This bandgap variation from
2.4 to 2.9 eV is in good agreement with the apprecia-
ble tail absorbance below the bandgap onset energy of
2.8 eV measured by ultraviolet-visible diffuse reflectance
spectroscopy in wurtzite ZnO compacts HPT-processed
under compressive pressure of 3GPa [15]. It is worth
noting that the bandgap onset would gradually redshift
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Figure 2. The wedge-like shape of the edge region on HPT-processed ZnO particles. (a) a schematic illustration of the frictional sliding,
shear deformation and consolidation of the HPT-processed ZnO particles; (b) an ADF-STEM image of two HPT-processed ZnO particles
with an overlap region, indicating that frictional sliding may occur between them; (c) a map of the relative thickness, t/λ, taken from a
particle edge region highlighted in (b). The absolute thickness changes gradually from 0.32λ (29 nm) to 1.14λ (104 nm) from the edge
to the interior of the particle, within a distance of 225 nm along the particle surface.

to lower energies with increasing thickness due to
stronger retardation from Cerenkov radiation in thicker
regions [26,33]. In the present case, the bandgap onsets
exhibit a blueshift with increasing thickness, indicating
little effect of Cerenkov radiation.

Further possible reasons for the observed bandgap
narrowing include: (i) Cu diffusion intoZnOduringHPT
processing and its chemical modification [34], and (ii)
gradient of dislocations density across the ZnO particle
and concomitant variation of the bandgap [35]. As for the
former reason, our previous study reveals that no inter-
mixing occurred between the cladding Cu disk and ZnO
clusters [10]. As for the latter reason, it was shown in
Ref. [35] that the effect of dislocations on the bandgap of
ZnO is only minor, i.e. an increase in dislocations density
form ∼2.4× 1015 to ∼5.3× 1015 1/m2 causes a minor
bandgap narrowing from 3.26 to 3.20 eV, one order of
magnitude smaller than observed in the present work.
Therefore, the gradient bandgap narrowing observed in
the presentwork can neither be attributed to the chemical
doping nor to the dislocations density variations.

Another possible explanation for the gradient
bandgap narrowing is a gradual increase of oxygen
vacancy (VO) concentration from the center towards the
edge of the particle. Indeed, it has been widely reported
that VO contribute to bandgap narrowing [14–17]. The
first-principles calculations of Razavi-Khosroshah et al.

demonstrated that introducing 6.25% of VO into wurtzite
ZnO could reduce its bandgap onset energy from 3.22
to 2.91 eV [15]. By tuning the oxygen deficiency in ZnO
coatings, Zhang et al. revealed a reduction of bandgap
energy to ∼2.5 eV in ZnO0.952 with the VO concentra-
tion of 4.8% [36,37]. Finally, it has been widely reported
that HPT process is capable of inducing high vacancy
concentration that is comparable to the equilibrium
vacancy concentration in respective material at its melt-
ing point (Tm) [38]. This is a maximum vacancy con-
centration that a solid can sustain without melting or
amorphization [39]. Our estimates of the equilibriumVO
concentration in ZnO at Tm = 2248K yielded the range
of 4.3% to 7.9% (see Supporting Information). There-
fore, a reduction of bandgap energy to ∼2.43 eV can
be caused by oxygen vacancies produced during HPT
processing.

In this work, due to higher strain and larger frac-
tion of friction-affected surface area, the thinner edge
region is expected to possess higher defects density
than that of the central, thicker region of the flake-
shaped particle. The variation of VO concentration
can be revealed by the electron energy-loss near-edge
structure (ELNES) of O K-edge which represents the
p-projected density of unoccupied states of the O atoms.
Any change in the local symmetry will affect the Zn
3d-O 2p covalent-bonding interaction and the orbital
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Figure 3. Gradient bandgap narrowing at the edge of an HPT-processed ZnO particle. (a) the ADF image of a deformed ZnO particle
on which seven EELS acquisition locations are labeled; (b) a relative thickness map showing the t/λ changes from 0.22 at the outermost
edge to 0.78 within 120 nm towards the interior of the particle; (c) seven VEEL spectra after ZLP and background subtraction. Note the
increase of slopes of the low-loss spectra from point #1 to #7 with increasing thickness. Furthermore, the intensity of the humps before
the bandgap onsets increased along with increasing thickness due to greater Cerenkov and surface effects.

Figure 4. The evolution of valence band maximum and conduction band minimum at the edge region studied by core-loss EELS of (a)
O K-edge and (b) Zn L2,3-edge. The spectra are averaged from the strips shown in the insert in (b), and the background signals were
subtracted. Note the arrow in (a) pointing at the characteristic peak a1.

hybridization [40,41]. A reduction of the p–d interac-
tion by disorder would lead to an upward shift of the
valence band maximum (VBM), which can be revealed
by the change of the features in ELNES [42]. As seen
in Figure 4(a), the peak a of O K-edge splits into four
characteristic peaks due to the ligand-field and exchange
interactions, and corresponds to the transitions towards
d-p hybridized vacant states, i.e. 2t2 and 3e states [43].
The two main characteristic peaks a1 at 534.8 eV and
a2 at 536.9 eV, with an energy separation of 2.1 eV, are
the signature of the tetrahedral arrangement of the O
atoms [44]. The relative intensity of these two peaks is
strongly influenced by the VO concentration and the

ratio of a1/a2 increases with increasing VO concentra-
tion [45–47]. By measuring the intensity of a1 (in the
range of 533.5 to 535.5 eV) and a2 (in the range of
536.0 to 538.0 eV), it is found that the ratio of a1/a2
increases from 84.7% in the interior region of the particle
(0.64λ) to 85.7% at 0.39λ, and 86.3% at 0.22λ. Therefore,
the gradient increase of VO concentration contributes
to the upward shift of the VBM and gradient bandgap
narrowing.

In addition, we also checked the possible contribution
of downward shift of conduction band minimum (CBM)
to the bandgap narrowing. As seen in Figure 4(b), the
onset energy of Zn L3-edge at four positions remained
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nearly constant at 1015 eV. This indicates that the CBM
did not shift. This is expected because the shift of CBM
is mainly governed by the change of coordination sym-
metry of the Zn atoms [28,48]; since no phase transfor-
mation or significant structural disorder was detected in
the SADPs of the HPT-processed ZnO particles, the Zn
coordination symmetry was not affected.

4. Conclusion and outlook

In conclusion, a gradient bandgap energy narrowing
phenomenon in individual HPT-processed flake-shaped
ZnO nanoparticles was revealed employing the STEM-
EELS technique. The bandgap onset energy decreased
from 2.93 eV in the interior to 2.43 eV at the edge of the
particle within about 200 nm. The underpinning mech-
anism is the gradient of oxygen vacancy concentration
which was induced by the combination of severe shear-
ing and frictional sliding deformation. The edge of the
particle underwent higher plastic deformation than that
of the interior region, as the thicknesses of the edge and
central regions of the studied particle are about 20 and
104 nm, respectively.

The gradient point defects distribution not only
expands the family of gradient-structured materials,
but also provides a new designing route for bandgap
engineering of semiconductor materials. For exam-
ple, regarding the photovoltaics applications, single-
bandgap materials such as Si (Eg = 1.12 eV) and CuO
(Eg = 1.4 eV) exhibit maximum theoretical solar to elec-
trical power conversion efficiency at about 33% and 31%,
respectively [49]. Solar light with photon energies greater
than the bandgap is partially absorbed and partially lost
as heat. Therefore, to efficiently absorb broader energy
spectrum, multilayer solar cells built of the layers with
different bandgaps have been designed, known as multi-
junction cells [50]. Gradient-bandgap materials can pro-
vide an alternative, lower-cost way of capturing higher
fraction of the sunlight. The SPD-based method devel-
oped in this work to generate the gradients of the point
defect distribution and the bandgap can be applied to a
large number of semiconductormaterials. Large bandgap
gradients can be achieved by tailoring the processing
parameters (e.g. compressive pressure, shearing and fric-
tional strain). We hope that our work will stimulate the
use of materials with engineered bandgap gradients in
photovoltaic applications.
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