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Abstract
We investigate superconductor–insulator quantum phase transitions in ultrathin capacitively coupled superconducting nanowires
with proliferating quantum phase slips. We derive a set of coupled Berezinskii–Kosterlitz–Thouless-like renormalization group
equations demonstrating that interaction between quantum phase slips in one of the wires gets modified due to the effect of plasma
modes propagating in another wire. As a result, the superconductor–insulator phase transition in each of the wires is controlled not
only by its own parameters but also by those of the neighboring wire as well as by mutual capacitance. We argue that supercon-
ducting nanowires with properly chosen parameters may turn insulating once they are brought sufficiently close to each other.
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Introduction
Quantum fluctuations dominate the physics of superconducting
nanowires at sufficiently low temperatures making their behav-
ior markedly different from that of bulk superconductors [1-4].
Many interesting properties of such nanowires are attributed to
the effect of quantum phase slips (QPSs) which correspond to
fluctuation-induced local temporal suppression of the supercon-
ducting order parameter inside the wire accompanied by the
phase slippage process and quantum fluctuations of the voltage

in the form of pulses. By applying a bias current the symmetry
between positive and negative voltage pulses is broken and, as a
result, a superconducting nanowire acquires a non-vanishing
electrical resistance down to the lowest temperatures [5,6]. This
effect was directly observed in a number of experiments [7-10].

Likewise, quantum phase slips in superconducting nanowires
yield shot noise of the voltage [11] which originates from the
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Figure 1: The systems under consideration: a) Two capacitively coupled superconducting nanowires and b) a superconducting nanowire in the form
of a meander.

process of quantum tunneling of magnetic flux quanta across
the wire. One can also proceed beyond the voltage–voltage
correlator and evaluate all cumulants of the voltage operator,
thus deriving full counting statistics of quantum phase slips
[12]. This theory enables one to obtain a complete description
of superconducting fluctuations in such nanowires. Interesting
QPS-related effects also occur in superconducting nanorings
which can be employed, for example, for possible realization of
superconducting qubits [13]. Such effects were investigated the-
oretically [14] and observed experimentally [15,16].

Each quantum phase slip generates sound-like plasma modes
[17] which propagate along the wire and interact with other
QPSs. The exchange of such Mooij–Schön plasmons produces a
logarithmic interaction in space–time between different QPSs
where the magnitude is controlled by the wire diameter (cross
section) [5]. For sufficiently thick wires this interaction is
strong and the QPSs are bound in close pairs. Accordingly, the
(linear) resistance of such wires tends to zero at T → 0, thus
demonstrating a superconducting-like behavior in this limit. On
the other hand, inter-QPS interaction in ultrathin wires is weak,
quantum phase slips are unbound and the superconducting
phase fluctuates strongly along the wire. In this case the wire
looses long-scale superconducting properties, its total resis-
tance remains non-zero and even tends to increase with decreas-
ing temperature thus indicating an insulating behavior at T → 0.
At zero temperature the transition between these two types of
behavior comes as a quantum phase transition (QPT) driven by
the wire diameter [5]. Below we will also refer to this QPT as a
superconductor–insulator transition (SIT).

In this work we will show that this SIT can be substantially
modified in a system of capacitively coupled superconducting
nanowires even without any direct electrical contact between
them. In our previous work [18] we already elucidated some
non-local QPS-related effects in such nanowires which yield

non-equilibrium voltage fluctuations in the system which exhib-
it a non-trivial dependence on frequency and bias current. Here
we will demonstrate that quantum fluctuations in one of the two
wires effectively ”add up” to those of another one, thereby
shifting the QPT in each of the wires in a way to increase the
parameter range for the insulating phase. Qualitatively the same
effect is expected to occur in a single superconducting nano-
wire that has the form of a meander frequently used in experi-
ments.

Results and Discussion
The model
We first consider the system of two long superconducting nano-
wires parallel to each other, as schematically shown in
Figure 1a.

The wires are described by geometric capacitances C1 and C2
(per unit wire length) and kinetic inductances  and  (times
length) effectively representing the two transmission lines.
Capacitive coupling between these two nanowires is accounted
for by the mutual capacitance Cm. The corresponding contribu-
tion to the system Hamiltonian that keeps track of both electric
and magnetic energies in these coupled transmission lines reads

(1)

where x is the coordinate along the wires,  and Cij denote the
matrix elements of the inductance and capacitance matrices

(2)
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and Φ0 = π/e is the superconducting flux quantum. Note that for
the sake of simplicity here and below we set Planck constant ℏ,
speed of light, c, and Boltzmann constant, kB, equal to unity.

The Hamiltonian (Equation 1) is expressed in terms of the dual
operators  and [14] which obey the canonical
commutation relation

(3)

and are related to the charge density and the local phase opera-
tors,  and  respectively, by means of the following
equations

(4)

Physically,  represents the magnetic flux operator, while
the operator  is proportional to that of the total charge

 that has passed through the point x of the ith wire up to
the time moment t, i.e., 

Provided that the wires are thick enough, the low energy Hamil-
tonian in Equation 1 is sufficient. However, for thinner wires,
one should also account for the effect of quantum phase slips.
The corresponding contribution to the total Hamiltonian for our
system can be expressed in the form [14]

(5)

where

(6)

denotes the QPS amplitudes per unit wire length [6], gjξ =
Rq/Rjξ is the dimensionless conductance of the jth wire segment
of length equal to the superconducting coherence length ξ (here
and below Rq = 2π/e2 ≃ 25.8 kΩ is the quantum resistance unit
and Rjξ is the normal state resistance of the corresponding wire
segment), Δ is the superconducting order parameter and a ≈ 1 is
a numerical prefactor. We also note that the Hamiltonian (Equa-
tion 5) describes tunneling of the magnetic flux quantum, Φ0,
across the wire and can be viewed as a linear combination of
creation  and annihilation  operators for the flux
quantum Φ0.

It is obvious from Equation 4 that QPS events cause redistribu-
tion of charges inside the wire and generate pairs of voltage
pulses moving simultaneously in the opposite direction (cf.,
Figure 1a)

(7)

Clearly, in the presence of capacitive coupling quantum phase
slips in one of the wires also generate voltage pulses in another
one.

To summarize the above considerations, the total Hamiltonian
for our system is defined as a sum of the two terms in
Equation 1 and Equation 5,

(8)

representing an effective sine-Gordon model that will be treated
below.

Quantum phase transitions: renormalization
group analysis
In order to quantitatively describe QPT in coupled supercon-
ducting wires we will employ the renormalization group (RG)
analysis. This approach is well developed and was successfully
applied to a variety of problems in condensed matter theory,
such as, the problem of weak Coulomb blockade in tunnel [19-
22] and non-tunnel [23-25] barriers between normal metals or
that of a dissipative phase transition in resistively shunted
Josephson junctions [19,26-28]. In the case of superconducting
nanowires QPT was described [5] with the aid of RG equations
equivalent to those initially developed for two-dimensional
superconducting fi lms [29] which exhibit  classical
Berezinskii–Kosterlitz–Thouless (BKT) phase transition driven
by temperature. In contrast, quantum SIT in quasi-one-dimen-
sional superconducting wires [5] with geometric capacitance C
and kinetic inductance  is controlled by the parameter [5]

(9)

which is proportional to the square root of the wire cross
section, s.

It follows immediately from the analysis of [5] that, provided
the two superconducting wires depicted in Figure 1a are decou-
pled from each other (i.e., for Cm → 0), one should expect two
independent QPTs to occur in these two wires respectively at



Beilstein J. Nanotechnol. 2020, 11, 1402–1408.

1405

λ1 = 2 and at λ2 = 2 where, according to Equation 9, we define
 The task at hand is to investigate the

effect of capacitive coupling between the wires on these two
QPTs.

For this purpose let us express the grand partition function of
our system  in terms of the path integral

(10)

where

(11)

is the effective action corresponding to the Hamiltonian (Equa-
tion 8) and

(12)

denotes the effective fugacity for the gas of quantum phase slips
in the ith wire. Note that, having in mind that the QPS core size
in x- and τ-directions is respectively x0 ∼ ξ and τ0 ∼ Δ−1, in
Equation 11 for the sake of convenience we rescaled the spatial
coordinate in units of x0, i.e. x → xξ and the time coordinate in
units of τ0, i.e. τ → τ/Δ.

In the spirit of Wilson’s RG approach we routinely divide the
χ-variables into fast and slow components, , where

(13)

Setting δΛ/Λ ≪ 1, expanding in the fast field components 
and integrating them out we proceed perturbatively in y1,2 and
observe that in order to account for the leading order correc-
tions it is necessary to evaluate the matrix Green function at
coincident points which reads

(14)

where  and  is the velocity matrix
for plasmon modes propagating along the wires. The matrix 
has the form

(15)

where  is the velocity of the Mooij–Schön modes
in the ith wire in the absence of capacitive coupling between the
wires, i.e. for Cm → 0.

Following the standard procedure [29] and proceeding to bigger
and bigger scales Λ, we eventually arrive at the following RG
equations for the QPS fugacities y1 and y2:

(16)

where λ11 and λ22 are diagonal elements of the matrix  (Equa-
tion 15). Note that here we restrict our RG analysis to the
lowest order in y1,2 which is sufficient for our purposes. As long
as one keeps only the linear y1,2 terms in the RG equations, all
other parameters of our problem, e.g., λii, remain un-renormal-
ized.

As it can be observed from Equation 16, our system exhibits
two BKT-like QPTs at λ11 = 2 and λ22 = 2. In the limit Cm → 0
the wires are independent from each other, λ11(22) → λ1(2) and
these QPTs obviously reduce to that predicted in [5]. However,
for non-zero capacitive coupling between the wires, the two
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Figure 2: a) Critical surfaces corresponding to SIT at λ11 = 2 and λ22 = 2. b) Phase diagram for two capacitively coupled superconducting nanowires
with λ1 = 2.01 and λ2 = 2.03. Both curves λ11(Cm) and λ22(Cm) decrease and cross the critical line λc = 2 with increasing mutual capacitance, Cm.

QPTs occur at the values of λ1,2 exceeding 2. For the first wire
the corresponding phase transition point is fixed by the condi-
tion

(17)

The same condition for the second wire is obtained from (Equa-
tion 17) by interchanging the indices 1 ↔ 2.

The above results allow us to conclude that in the presence of
capacitive coupling SIT in both wires occurs at larger values of
λ1,2 than in the absence of such coupling. In other words, quan-
tum fluctuations in one of these wires effectively decrease the
superconducting properties of the other one.

It follows from Equation 17 that the magnitude of such mutual
influence depends on the ratio of the plasmon velocities in the
two wires v1/v2 and on the strength of the capacitive coupling
controlled by Cm. Provided the wire cross sections s1 and s2
differ strongly the plasmon velocities  also differ
considerably. Assume, for instance, that the first wire is much
thinner than the second one. In this limit we have v1 ≪ v2 and,
hence, the QPT condition (Equation 17) in the first wire
remains almost unaffected for any capacitive coupling strength.
If, on the contrary, the first wire is much thicker than the second
one, then one has v1 ≫ v2 and the condition (Equation 17)
reduces to  demonstrating that the criti-
cal value λ1 can exceed 2 considerably for sufficiently large Cm
values.

It is obvious that the strength of capacitive coupling depends on
the distance between the wires. At large distances this coupling
is negligible Cm → 0. However, as the wires get closer to each
other the value Cm increases and, hence, their mutual influence
increases as well. Let us choose the wire parameters in such a
way that for Cm = 0 both these wires remain in the supercon-
ducting phase being relatively close to SIT. In this case the pa-
rameters λ1 and λ2 should be just slightly larger than 2. Moving
the wires closer to each other we ”turn on” the capacitive cou-
pling between them, thus, decreasing both values λ1 and λ2 to
less than 2. As a result, two superconducting wires become
insulating as soon as they are brought sufficiently close to each
other. This remarkable physical phenomenon is illustrated by
the phase diagram in Figure 2b.

In order to complete this part of our analysis, we point out that
transport properties can be investigated in exactly the same
manner as was done in [5] in the case of a single nanowire.
Generalization of the technique [5] to the case of two capaci-
tively coupled superconducting nanowires is straightforward.
For a linear resistance of the ith wire Ri(T) and for λii > 2 (or
for any λii at sufficiently high temperatures) we obtain

(18)

Extension to other geometries
The effects discussed here can be observed in a variety of struc-
tures involving superconducting nanowires. For instance, super-
conducting nanowires in the form of a meander (see Figure 1b)
are frequently employed in experiments [30]. In this case differ-
ent segments of the wire are parallel to each other being close
enough to develop electromagnetic coupling. Having in mind
the above analysis, one expects that the wire of such a geome-
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try would be ”less superconducting” than the same wire that has
the form of a straight line.

For illustration, let us mimic the behavior of the wire depicted
in Figure 1b by considering three identical capacitively coupled
superconducting nanowires parallel to each other. For simplicity
we will assume the nearest neighbor interaction, that is, the
second (central) nanowire is coupled to both the first and the
third nanowires via the mutual capacitance, Cm, whereas the
latter two are decoupled from each other. We again assume that
the wires are thin enough and quantum phase slips may prolif-
erate in each of these wires.

The quantum properties of this system are described by the
same effective action (Equation 11) where the inductance and
capacitance matrices now take the form

(19)

and the summation runs over the indices i,j = 1,2,3. Proceeding
along the same lines as in the previous section we again arrive
at Equation 14, where the diagonal elements of the matrix 
now read

(20)

(21)

and the QPS interaction parameter λ is defined in Equation 9.
We again arrive at the RG equations of the form (Equation 16)
(now with i = 1,2,3). Being combined with Equation 20 and
Equation 21 these RG equations demonstrate that in the pres-
ence of capacitive coupling SETs occur at λii = 2 implying
λ > 2 for each of the three wires. This observation is fully
consistent with our previous results derived for two coupled
nanowires.

Furthermore, the RG equation (Equation 16) with i = 2
combined with Equation 20 also describes the effect of inter-
acting quantum phase slips and QPTs in the wire having the
form of a meander (Figure 1b). In this case, within the approxi-
mation of the nearest neighbor, capacitive interaction between
the wire segments QPT occurs at

(22)

that is, the critical value of the parameter λ exceeds 2 as soon as
the mutual capacitance Cm differs from zero. As it is clear from
Equation 20 and Equation 21, the approximation of the nearest
neighbor interaction appears to be well justified in the limit
Cm ≪ C. For stronger interactions with Cm ≈ C this approxima-
tion most likely becomes insufficient for a quantitative analysis.
However, on a qualitative level our key observations should
hold also in this case: A nanowire in the form of a straight line
with λ slightly exceeding the critical value 2 should demon-
strate superconducting-like behavior with R(T) ∝ T2λ−3 [5]
whereas a wire with exactly the same parameters may turn insu-
lating provided it has the form of a meander with capacitive
coupling between its segments.

Conclusion
We have analyzed the effect of quantum fluctuations in capaci-
tively coupled superconducting nanowires. We have demon-
strated that plasma modes propagating in one such nanowire
play the role of an effective quantum environment for another
one, modifying the logarithmic interaction between quantum
phase slips in this wire. As a result, the superconductor–insu-
lator quantum phase transition gets shifted in a way to increase
the parameter range for the insulating phase. Hence, supercon-
ducting nanowires may turn insulating provided they are
brought close enough to each other. It would be interesting to
observe this effect in forthcoming experiments with supercon-
ducting nanowires.
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