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Abstract Klemens, Fabian

Combining computational fluid dynamics

and magnetic resonance imaging data using

lattice Boltzmann based topology optimisation

This thesis presents the combination of magnetic resonance imaging (MRI) measurements

and computational fluid dynamics (CFD) to reduce statistical measurement noise and

identify objects and finer structures in the MRI data. Using a lattice Boltzmann based

topology optimisation approach, the method allows those solutions that best match the

measured flow field but satisfy the macroscopic conservation laws of fluid flow, here mass

and momentum conservation. This combination is formulated as a distributed control

problem that minimises the distance between measured and simulated flow field, the latter

being the solution of a parametrised Boltzmann equation with Bhatnagar–Gross–Krook

collision operator, where the controls represent the porosity distributed in the domain.

The problem is solved with an adjoint lattice Boltzmann method using the open source

software OpenLB.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI), in particular phase contrast MRI, which is capable

of imaging fluid flows in complex geometries, is a very versatile and important tool not

only in medical but also in technical applications. In medical applications it can help

to identify severe health problems such as heart disease much more accurately, e.g. by

locating arterial stenoses or by identifying plaque in the arteries. In technical applications,

the identification of problems in filtration processes is of great importance, for example in

water treatment, in order to detect the accumulation of organic and inorganic substances

in filters, which lead to productivity losses and increasing maintenance and operating

costs.

These measurements, however, are corrupted by noise, especially in time-critical imaging.

Therefore, in time-dependent processes, e.g. filtration processes, where the development

of membrane fouling is of importance, or the imaging of patients, where time is certainly a

limiting factor, noise becomes a major challenge for the analysis of the data. In addition,

there is no explicit method to determine other properties such as wall shear stresses or

pressure gradients as they are not directly observable by MRI.

Computational fluid dynamics (CFD) is a highly valuable addition and even alternative

to measurements, as it is not time-sensitive, cheap and can provide a lot of additional

information. It is also very easy and inexpensive to track and monitor the effects of

changes, like the influence of different shapes on drag in aerodynamics. However, flow

simulations are always only an image of reality, a model in which many simplifications

have to be made. In the medical and technical applications mentioned above, this includes

above all the true inner geometries and structures of the observed objects.

Therefore, a combination of measurement and simulation promises a great benefit, which

can combine the strengths of both methods to depict complex, realistic flow processes, to
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be free of noise and make a multitude of analyses possible.

The combination of observations and model is called data assimilation [4]. A prominent

example of data assimilation is numerical weather forecasting [5], where observations

such as e.g. temperature and pressure measurements are fed into the model to improve

the forecast. The coupling of flow models, such as the Navier–Stokes equations, and

MRI data is mainly used in medical applications [6–8]. Data assimilation is used here

to support e.g. finding aneurysms in 4D flow MRI data [9]. However, these methods

are mostly limited to boundary control problems where the underlying inner and outer

geometry is already known, mostly by computer tomography (CT) imaging. But taking

the information from the MRI to build a simulation can be difficult or impossible, for

example if the internal structure of the flow domain is not known. This is certainly the

case with noisy images of a filter, where the outer geometry is known, e.g. a pipe flow,

but the geometry of the complex accumulation on the filter is not.

In this thesis a method is presented which combines simulation and measurement using a

topology optimisation approach, called CFD-MRI [1]. Here objects and geometries of the

MRI measurement are found automatically [2], with simultaneous noise reduction [3].

Topology optimisation for fluid flows was first presented by Borrvall and Petersson [10]

to minimise the power dissipation in a Stokes flow. This was extended to incompressible

Navier–Stokes problems by Gersborg-Hansen [11]. Both were using finite element meth-

ods to discretise the problem. For lattice Boltzmann methods the first to use topology

optimisation were Pingen et al. [12]. Since then the methods have been improved [13–16]

and the area of application has been widely extended, for example minimising pressure

in non-Newtonian flow [15], in transient flow [17–20], or improving qualities of multi-

phase [21–23] and thermal flows [24, 25]. The first to use adjoint lattice Boltzmann

methods were Tekitek et al. [26] who solved parameter identification problems. They

used the first-discretise-then-optimise procedure [27, 28], where the adjoint problem is

derived after discretising the problem. The other way, first-optimise-then-discretise, was

first proposed by Krause et al. [29]. In 2016 Krause et al. [30] applied topology optimisa-

tion to domain identification problems, where a known, simulated velocity field was used

for the identification of a cubic object in the flow, which is the basis of this work.

This thesis is structured as follows. The first chapters shall provide a basis for the meth-

ods and equations used. The aim is to standardise the terms and methods used and to

help to cover all necessary basics within this thesis. First, different approaches for mod-

elling fluid flows and the governing equations are presented in Chapter 2. The chapter

concludes with the numerical algorithm to simulate fluid flows as well as its validation by

means of numerical experiments of flow in porous media, which is needed to set up the
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proposed optimisation problem. For this, an analytical solution for flow in porous media

in three dimensions is derived. Chapter 3 then gives a brief introduction to MRI, the

physical basics and equations of how to measure flows, as well as the problem of mea-

surement noise and its mathematical description. The latter is used for the validation of

the presented method with regard to noise reduction. Since the aim of this thesis is the

coupling of CFD and MRI data by means of topology optimisation, Chapter 4 presents

the basics of optimisation theory, such as the explanation of the terminology, concepts,

existence statements and also the methods used for the numerical computation of optimal

control problems. This includes a line search method with Wolfe conditions, which is im-

plemented to improve the stability of the optimisation, and was validated using a simple

optimisation problem. The detailed description of the CFD-MRI method takes place in

Chapter 5. The idea and implementation are motivated and the necessary equations are

derived and discretised. The derivation of the needed adjoint problem is done here with

a formal Lagrange technique. A proof of concept for CFD-MRI with real data is shown

in Chapter 6. For this, the implementation is extended to use differently available data,

that is data with lower dimension, fewer velocity components and arbitrary location. The

method is then numerically validated. Chapter 7 analyses the CFD-MRI method to iden-

tify objects based only on velocity data in the observed domain. Thereby a simple and a

complex object to be identified are considered and the velocity data is gradually reduced

to determine the applicability of the method, and binary classification is used for the

validation of the object identification. The ability of the method to reduce measurement

noise is analysed in Chapter 8. For this, synthetic data is created based on real MRI

data in order to allow the evaluation of the CFD-MRI results. Finally, in Chapter 9 the

method is applied to data of a flow through a porous structure as they appear in filtration

applications. Here, the object identification of the porous structure and noise reduction

of the flow data are analysed in combination. Additionally, the implementation is im-

proved with regard to performance by employing the steady state solution and explicit

time marching for the adjoint problem. The main contribution of this thesis is therefore

the extension, improvement and thorough analysis of the method to use MRI data.

3



4



Chapter 2

Fluid dynamics

In this chapter the basics of fluid dynamics are shown. The behaviour of fluids can

be described in different ways. Macroscopically, which leads to the famous Navier–Stokes

equations, and statistically, which leads to the equally famous Boltzmann equation. A dis-

cretisation strategy that combines these two descriptions is the lattice Boltzmann method

which discretises a certain form of the Boltzmann equation to approximate solutions to

the Navier–Stokes equations. This chapter concludes with a numerical experiment to

validate the used model.

2.1 Navier–Stokes equations

The Navier–Stokes equations describe fluid flow by fundamental physical conservation

laws, here mass, momentum and energy conservation. Often, the conservation of energy

is not explicitly given, and it is also not shown here. For a detailed introduction to the

topic the works of Wesseling [31], Feistauer [32], or Ferziger [33] are recommended.

Let Ω ⊂ Rd be the domain with dimension d ∈ {2, 3} and I = [0, T ] the time interval

with T > 0. The most important quantities of hydrodynamics are density ρ : I ×Ω→ R,

velocity u : I × Ω→ Rd and pressure p : I × Ω→ R.

For the derivation of the Navier–Stokes equations presented here, two fundamental theo-

rems of are needed. The general Leibniz theorem, also called Reynolds transport theorem,

and the Gauss, or divergence theorem.
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Theorem 2.1 (Reynolds transport theorem). Let φ(t,x) be a sufficient smooth function

in a time-varying connected domain of Rd for d ∈ {2, 3}, then it holds

d

dt

∫
V (t)

φ(t,x) dx =

∫
V (t)

∂tφ(t,x) dx+

∫
∂V (t)

φu · n ds, (2.1)

where u is the Eulerian velocity of the boundary ∂V and n its unit outward normal.

Proof. See for example Theorem 1.3.1 in [31], or Theorem 1.5 in [32].

Theorem 2.2 (Divergence Theorem). For any volume V ⊂ Rd with piecewise smooth

boundary ∂V , it holds∫
V

∇ · φ dx =

∫
∂V

φ · n ds, (2.2)

where φ is a continuously differentiable vector field and n is the unit outward normal on

the boundary ∂V .

Proof. See [31], Theorem 1.2.2.

2.1.1 Mass conservation

The first property of fluids and a fundamental law of physics is the conservation of mass,

where it is assumed that mass is neither created nor destroyed. Mathematically this reads

d

dt

∫
V

ρ(t,x) dx = 0, (2.3)

where V ⊂ Ω is an arbitrary control volume.

Applying Reynolds transport theorem and Gauss divergence theorem, it follows

d

dt

∫
V

ρ(t,x) dx =

∫
V

∂tρ(t,x) dx+

∫
∂V

u(t,x)ρ(t,x) · n ds

=

∫
V

(
∂tρ(t,x) +∇ ·

(
u(t,x)ρ(t,x)

))
dx

= 0.

(2.4)

The control volume V can be chosen arbitrarily and thus

∂tρ+∇ · (ρu) = 0 in I × Ω. (2.5)
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This is called the continuity equation and describes the conservation of mass. Although

the derivation was technical, its properties have a physical meaning. After rewriting (2.4)

it follows∫
V

∂tρ(t,x) dx = −
∫
∂V

u(t,x)ρ(t,x) · n ds, (2.6)

which describes that a change of mass in an observed volume can only occur when there

is a flux of mass through its boundary.

2.1.2 Momentum conservation

The next important conservation law, which corresponds to Newton’s second law of mo-

tion [34], is the conservation of momentum. It states that the momentum only changes if

there is a force acting and reads

d

dt

∫
V

ρ(t,x)u(t,x) dx = F (t,x). (2.7)

The net force F : I ×Ω→ Rd can be split into internal and external forces [35], i.e. F =

F external + F internal. The external forces, such as gravity, buoyancy or electromagnetic

forces, act on the volume [33] by

F external =

∫
V

ρ(t,x)f(t,x) dx, (2.8)

where f : I × Ω → Rd describes the body forces per unit mass [36]. The internal, or

contact forces, such as pressure or shear stresses, which act on the boundary [33] can be

described by

F internal =

∫
∂V

σ(t,x) · n(x) ds, (2.9)

where σ : I × Ω→ Rd×d is the so-called stress tensor.

For the left hand side of (2.7) and in the same way as for the continuity equation it follows

∫
V

(
∂t
(
ρ(t,x)u(t,x)

)
+∇ ·

(
ρ(t,x)u(t,x)⊗ u(t,x)

))
dx, (2.10)

where ⊗ : Rm × Rn → Rm×n for m,n ∈ N denotes the outer product.
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For the right hand side of (2.7) we employ again the divergence theorem and thus∫
∂V

σ(t,x) · n ds =

∫
V

∇ · σ(t,x) dx. (2.11)

With this, and the again using that V can be chosen arbitrarily, the equation of momentum

conservation now reads

∂t(ρu) +∇ · (ρu⊗ u) = ∇ · σ + ρf in I × Ω. (2.12)

The external forces f are given by the observed problem, e.g. if gravity or coriolis forces

are acting, but the exact form and the properties of the stress tensor σ are still unknown.

Stress tensor

In order to get an explicit form of the stress tensor, some assumptions have to be made,

called Stokes postulates (cf. [32]).

The first assumption is that the stress tensor is composed of the pressure forces, and the

shear stresses acting on the fluid, and thus

σ = −pI + S, (2.13)

where the shear stress S ∈ Rd×d should be a continuous function f of the deformation

tensor D(u) = 1
2
(∇u + ∇u>). Additionally, if the deformation tensor is zero, it is

assumed that only pressure acts on the surface.

If the fluid is assumed to be isotropic the shear stress is invariant for transformations in

space, i.e.

ASA−1 = f
(
AD(u)A−1

)
, (2.14)

for every orthonormal matrix A ∈ Rd×d.

If additionally the relation of deformation and stress is linear, then the stress tensor can

be derived to have following form [32, 37]

σ(t,x) = −p(t,x)I + 2µD(u)(t,x)− λ∇ · u(t,x)I, (2.15)

where λ, µ ∈ R are material constants, and µ is called dynamic viscosity.
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With this, for the right hand side of (2.12), the divergence of the stress tensor reads

∇ · σ(t,x) = −∇p(t,x) + µ∆u(t,x)− (λ+ µ)∇
(
∇ · u(t,x)

)
, (2.16)

and the Navier–Stokes equations can be derived as

∂t(ρu) +∇ · (ρu⊗ u)− µ∆u+ (λ+ µ)∇(∇ · u) +∇p = ρf in I × Ω, (2.17a)

∂tρ+∇ · (ρu) = 0 in I × Ω. (2.17b)

For incompressible fluids, i.e. ∂tρ = 0, it follows ∇ ·u = 0 for the continuity equation and

thus

ρ(∂tu+ u · ∇u)− µ∆u+∇p = ρf in I × Ω, (2.18a)

∇ · u = 0 in I × Ω. (2.18b)

For (2.18) to be well posed, boundary and initial condition have to be defined, for example

u(0, ·) = 0, i.e. a fluid at rest in the beginning. Here only Dirichlet boundary conditions

are considered to define function values on the boundary. These are used for example

for constant pressure, given velocity profile at the inflow, or no-slip boundary condition,

i.e. u(·,x) = 0 (x ∈ ∂Ω).

Showing the existence, uniqueness and smoothness of solutions to the Navier–Stokes equa-

tions with suitable initial and boundary conditions in three dimensions is still an open

problem, and is one of the Millennium Prize Problems stated by the Clay Mathematics

Institute. A good overview of existing proofs and the official problem statement can be

found in [38].

2.1.3 Flow in porous media

Flow in porous media is a very important problem in sciences, engineering and even

medicine, for example to investigate groundwater flows, air flow in lungs or filtration

processes in water treatment. In this thesis, porous media flow is important for the use

of topology optimisation problems to ensure continuous functions, see Chapter 4.

A porous medium can be described, on a very small scale, by a structure with holes, or

by solid objects distributed in a domain. On a larger scale, these structures appear as

continuous medium with quantities like porosity, which is the fraction of fluid to whole

volume, and permeability, which is a measure for the ability of the medium to transmit
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fluid (cf. Figure 2.1).

Ω

Ωi
s

Ωf

(a) Small scale

Ω

K

(b) Large scale

Figure 2.1: Scheme of a porous medium. Left, the small scale of a porous medium with
solid, non-permeable objects distributed in the domain. Right, the large scale of the
porous medium with permeability as averaged quantity.

Let’s consider a domain Ω, called porous medium, which is composed of Ns ∈ N solid,

non-permeable objects denoted by Ωi
s for i = 0, 1, . . . , Ns−1 and fluid domain Ωf , see

Figure 2.1a. Assuming low velocity and a steady state solution the convective term

(u · ∇)u and the time derivative ∂tu can be neglected. Additionally, a no-slip boundary

condition on the boundaries of the objects, here denoted as ∂Ωi
s, is assumed and thus this

system reads

−µ∆u+∇p = 0 in Ωf , (2.19a)

∇ · u = 0 in Ωf , (2.19b)

u = 0 on ∂Ωi
s, i = 0, 1, . . . , Ns−1. (2.19c)

In 1856 Darcy [39] did experiments on flow of water through beds of sand and found the

following empirical one-dimensional relationship

Q = −K
µ

4P
L
, (2.20)

where Q is the volumetric flow rate, 4P the pressure difference along a characteristic

length L, and K the permeability.

Many approaches have been developed to derive Darcy’s law (2.20) from the Stokes equa-

tions (2.19). One of them is called the method of volume averaging [40]. For this the

10



superficial and intrinsic volume averages are defined as

〈φ〉 def
=

1

V

∫
Ωf

φ dx, 〈φ〉f def
=

1

Vf

∫
Ωf

φ dx, (2.21)

where V = |Ω| and Vf = |Ωf |. Thus the relation between superficial and intrinsic average

is 〈φ〉f = ε〈φ〉, i.e. ε =
Vf
V

, which is the porosity of the medium. Using the spatial

averaging theorem [40, 41]

〈∇ · φ〉 = ∇ · 〈φ〉+
1

V

∫
∂Ωs

n · φ ds, (2.22)

Whitaker was able to derive Darcy’s law by averaging the Stokes equations as follows

〈u〉+
K

µ
∇〈p〉f = 0 in Ω, (2.23a)

∇ · 〈u〉 = 0 in Ω. (2.23b)

Here K ∈ Rd×d is the symmetric, positive definite permeability tensor. For an in-depth

derivation of the above equations, see the work of Whitaker [40, 41].

In another approach, based on homogenisation theory [42, 43], the domain is defined

by periodically placed solid objects. Here, the periodicity of the objects is defined by

a parameter ε and is thus different to the volume averaging method, where the domain

is fixed. The idea is that the heterogeneous structure of the porous domain will be

homogenised by taking the limit of ε to zero. This is done using a two-scale asymptotic

expansion

φε(t,x) =
∞∑
i=0

εiφi

(
t,x,

x

ε

)
, (2.24)

where φi(t,x,y) is periodic in y with period Y
def
= (0, 1)d. This expansion is used for

velocity and pressure, i.e φi ∈ {u, p}, in the Stokes or Navier–Stokes equations. After

arranging the terms according to their order of ε the resulting homogenised equations

can be derived. Using this, it is possible to derive Darcy, Stokes and the Brinkman

equations depending on critical sizes of the obstacles with respect to the whole domain.

For a detailed description of the method and derivation of the equations see the work of

Allaire [44, 45].

The Brinkman equations [46, 47] are thereby intermediate between Stokes equations and
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Darcy’s law and read

−µeff∆u+ µK−1u+∇p = 0 in Ω, (2.25a)

∇ · u = 0 in Ω, (2.25b)

where µeff is the effective viscosity, and used to model the transition phase between porous

medium and fluid [48], and is often assumed to be equal to the fluid viscosity. If the porous

medium is isotropic, the permeability tensor K ∈ Rd×d reduces to a scalar K ∈ R>0 [49].

For the Brinkman equations it holds that for K →∞ this results in the Stokes equations

and for K → 0 in Darcy’s law. Borvall and Peterson [10] were the first to use (2.25) for

topology optimisation in fluid dynamics.

The nonlinear, instationary Brinkman equations, here called Brinkman-type Navier–

Stokes equations, were derived by Mikelić [50] through homogenisation as

ρ
(
∂tu+ (u · ∇)u

)
− µeff∆u− µK−1u+ ∆p = 0 in I × Ω, (2.26a)

∇ · u = 0 in I × Ω. (2.26b)

If the fluid velocity is high, additionally to the linear Darcy term, µK−1u, a quadratic

Forchheimer term

Fe = cFK
− 1

2ρ|u|u, (2.27)

is added to (2.26) [51]. Ergun [52] did experiments with packed beds of spheres where the

following relations were found [53]

cF =
1.75√
150φ3

, K =
φ3d2

p

150(1− φ)2
. (2.28)

Here, φ ∈ [0, 1] is the porosity, and dp ∈ R>0 the diameter of the spheres. For an overview

of models the work of Nield [49] is recommended.

2.2 Boltzmann equation

Since fluids are composed of a vast number of atoms and molecules, it is clear that the

Navier–Stokes equations can not paint the whole picture. On the other hand, if considering

every interaction of every molecule in some volume of fluid by basic Newton laws, the

computation time of even a cubic centimetre of water would be infeasible [54]. The

Boltzmann equation is much more general as the Navier–Stokes equations as it combines
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the microscopic behaviour of fluids in a statistical manner. By this, the Boltzmann

equation is valid not only for continuum mechanics but also for free molecular flow [55].

This section is based on the work of Babovsky [56], Cercignani [54], Hänel [55], Saint-

Raymond [57] and Villani [58].

The basic quantity of the Boltzmann equation is the nonnegative distribution function

f(t,x, ξ), which gives the mass density of particles, e.g. atoms or molecules, with velocity

ξ ∈ Ξ ⊂ Rd at time t ∈ I = [0, T ] for T > 0 and position x ∈ Ω ⊂ Rd with dimension

d ∈ {2, 3}. We further define the phase space as Ω× Ξ.

Per definition one can derive, at least formally, macroscopic quantities like density ρf or

velocity uf by integrating the distribution function over the microscopic velocity space,

i.e.

ρf =

∫
Ξ

f(t,x, ξ) dξ, ρfuf =

∫
Ξ

ξf(t,x, ξ) dξ. (2.29)

These quantities are called moments Mφ and can be summarised by using

Mφ(t,x) =

∫
Ξ

φ(ξ)f(t,x, ξ) dξ, (2.30)

where φ(ξ) is some continuous function of the microscopic particle velocity. Higher order

moments can be used to derive energy and temperature [56, 59].

The evolution of the distribution function f is described by the Boltzmann equation,

which is a balance equation for transportation and collision of microscopic particles in

phase space

df

dt
= Q(f, f) in I × Ω× Ξ. (2.31)

The left hand side of (2.31), the transport term, considers the change of particles in some

control volume of the phase space, due to time and velocity, which can be written as

df

dt
= ∂tf + ξ · ∇xf. (2.32)

This also means that f(t,x, ξ) = f(0,x− tξ, ξ) is a weak solution to

∂tf + ξ · ∇xf = 0, (2.33)

i.e. free transport [58], which will be a convenient property for the discretisation done in

Section 2.3. Note, if a macroscopic force F is acting on the particles with mass m, an
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additional term of F
m
· ∇ξf is added to (2.32).

The right hand side of (2.31), the collision term, considers particles which are gained

and lost in the control volume, due to collisions. To derive the complex collision term,

some assumptions have to be made [54, 55, 57, 58]. Let’s assume that the collisions are

binary, i.e. the collision of more than two particles can be neglected, and the collision

happens exactly at (t,x) ∈ I × Ω, i.e. the collision time is small compared to the time

scale. Further, it is assumed that the collisions are elastic, meaning the momentum and

energy are conserved, i.e.

ξ′ + ξ′∗ = ξ + ξ∗, |ξ′|2 + |ξ′∗|2 = |ξ|2 + |ξ∗|2, (2.34)

where ξ, ξ∗ and ξ′, ξ′∗ are the velocities before and after collisions, respectively. These

collisions are assumed to be time-reversible and the particles that collide are assumed to

be uncorrelated. These assumptions are not further discussed here, but the interested

reader is referred to the works of Cercignani [54] and Villani [58].

Using above assumptions, the collision term can be derived as [57]

Q(f, f)(t,x, ξ) =

∫
Sd−1

∫
Rd
k(|ξ − ξ∗|, s)(f ′f ′∗ − ff∗) dξ∗ ds, (2.35)

where f
def
= f(t,x, ξ), f ′

def
= f(t,x, ξ′), f∗

def
= f(t,x, ξ∗), f

′
∗

def
= f(t,x, ξ′∗). Additionally,

k(|ξ − ξ∗|, s) is defined as the collision kernel, where s is the unit vector on the unit

sphere Sd−1 in which the collisions are observed.

Summarised, the Boltzmann equation reads

∂tf + ξ · ∇xf =

∫
Sd−1

∫
Ξ

k(|ξ − ξ∗|, s)(f ′f ′∗ − ff∗) dξ∗ ds. (2.36)

2.2.1 Equilibrium distribution function

The Boltzmann equation (2.36) is a complex, nonlinear integro-differential equation, but

it is possible to derive interesting properties. One of them are the existence of collision

invariants.

Definition 2.1 (Collision invariant). A local integrable function φ : Rd → R is a collision

invariant if for all f ∈ L1(Rd) with integrable φf , it holds∫
Rd
φ(ξ)Q(f, f) dξ = 0. (2.37)
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For these collision invariant, the following can be derived.

Lemma 2.1. For a collision invariant φ it follows

φ(ξ) + φ(ξ∗) = φ(ξ′) + φ(ξ′∗). (2.38)

Proof. This can be shown by using the symmetric structure of the collision operator and

interchanging the role of ξ and ξ∗, see e.g. Lemma 2.18 in [56].

As it can be directly seen, the moments of density and momentum (2.29), are collision

invariants. Also, one implication of Lemma 2.1 is that every collision invariant can be

expressed by φ(ξ) = a+ b · ξ + c|ξ|2, for a, c ∈ R and b ∈ Rd, see e.g. [56].

Definition 2.2 (Equilibrium distribution function). A distribution function f > 0 is

called equilibrium distribution function, if

Q(f, f) = 0. (2.39)

Taking a look at the collision term (2.35), it can be seen that

Q(f, f) = 0 ⇔ f ′f ′∗ = ff∗ a.e., (2.40)

and thus

ln f ′ + ln f ′∗ = ln f + ln f∗. (2.41)

Therefore it follows from Lemma 2.1 that ln(f) is a collision invariant if ln(f)Q(f, f) ∈
L1(Ξ). With this, and using the assumptions of the elastic collision in (2.34) and the

conservation of mass it follows that the equilibrium distribution function can be derived

as

f eqρ,u,T (t,x, ξ) =
ρ(t,x)

(2πRT )d/2
exp

(
−(ξ − u(t,x))2

2RT

)
, (2.42)

where T is the absolute temperature, and R the universal gas constant, which can be

derived from the energy conservation [55, 56].
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H theorem

A very important feature of the Boltzmann equation is that it satisfies the second law of

thermodynamics. For this Boltzmann’s H functional is defined as

H(f)
def
=

∫∫
Ω×Ξ

f ln(f) dx dξ, (2.43)

where f solves the Boltzmann equation. The H functional can be linked to the entropy

which is stated in the famous H theorem of Boltzmann (cf. [58]).

Theorem 2.3 (H theorem). For the H functional (2.43) it holds

d

dt
H
(
f(t, ·, ·)

)
=

∫
Ω

∫
Ξ

(
Q(f, f) ln(f)

)
(t,x, ·) dξ dx ≤ 0, (2.44)

i.e. it is decreasing in time. And d
dt
H = 0 if and only if f = f eq.

Proof. See for example [60, p. 137ff.].

One consequence of the H theorem is the intrinsic irreversibility, which connects the Boltz-

mann equation to continuum mechanics [58]. This irreversibility is especially interesting

since reversibility is one of the assumptions to derive the Boltzmann equation [54].

BGK collision operator

Bhatnagar, Gross and Krook [61] introduced a collision operator that is considerably sim-

pler than the original one, while retaining the important properties, including the validity

of the H theorem and the conservation of macroscopic quantities. The BGK collision

operator J(f) is essentially a relaxation of the distribution function to the equilibrium

and reads

J(f)
def
= −1

τ
(f − f eq), (2.45)

where τ is the relaxation time, which is related to the transport coefficients, like the

viscosity of the underlying fluid [59].

With this, the BGK-Boltzmann equation reads

∂tf + ξ · ∇xf = −1

τ
(f − f eq) in I × Ω× Ξ. (2.46)
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2.2.2 Conservation laws

Let f be a solution of the Boltzmann equation (2.31), then it follows

d

dt

∫
Ξ

φ(ξ)f(t,x, ξ) dξ =

∫
Ξ

φ(ξ)Q(f, f)(t,x, ξ) dξ. (2.47)

Using the Reynolds transport theorem 2.1 for the left hand side, and if φ(ξ) is a collision

invariant, it follows

∂t

∫
Ξ

φ(ξ)f(t,x, ξ) dξ +∇ ·
∫

Ξ

ξφ(ξ)f(t,x, ξ) dξ = 0. (2.48)

Thus, for the collision invariant φ ≡ 1 one gets

∂tρf +∇ · (ρfuf ) = 0, (2.49)

which is the continuity equation (2.5) from Navier–Stokes equations. For φ ≡ ξ it follows,

at least formally (cf. [57, 58]),

∂t(ρfuf ) +∇ ·
(
ρf (uf ⊗ uf ) + σ

)
= 0. (2.50)

This is the conservation of momentum as in (2.12), and like for the Navier–Stokes equa-

tions, the exact form of the stress tensor σ is not known [55].

In order to find the exact form of the stress tensor, and to derive the (incompress-

ible) Navier–Stokes equations (2.18) directly from the Boltzmann equation (2.36), the

Chapman-Enskog expansion [62] has become an established method [54, 58, 59].

The fundamental idea of the Chapman-Enskog expansion is the perturbation of the dis-

tribution function for small deviations to the equilibrium, written as

fε = f eq +
N∑
i=1

εif (i), (2.51)

where ε is related to the Knudsen number, which describes the ratio of microscopic to

macroscopic length scales, and f (i) for i = 1, . . . , N is the i-th order perturbation of the

equilibrium. This expansion is then used in the Boltzmann equation and solved for the

different orders N of the perturbation function [55, 56, 59]. This procedure is similar

to the asymptotic expansion in homogenisation theory of porous media done by Allaire,

see Section 2.1.3. Note that although the Chapman-Enskog expansion is a widely used

procedure, it is not rigorously mathematically justified, see for example [58]. Nonetheless

it is an important tool and for example used to derive an explicit form of the stress
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tensor, see Section 2.3. A more rigorous way to derive Navier–Stokes equations from the

BGK-Boltzmann equation was shown for example by Saint-Raymond [63].

2.2.3 Boundary conditions

Again, for the system to be complete, boundary conditions need to be defined. For this,

let ∂Ω be the smooth boundary of the stationary spatial domain Ω ⊂ Rd, with n the unit

outward normal on ∂Ω.

One boundary condition, called specular reflection, assumes that microscopic particles

hitting the boundary rebound at the same angle, like billiard balls hitting a wall. Math-

ematically, this reads

f(·,x, ξ) = f(·,x, ξn) on ∂Ω, (2.52)

where ξn = ξ − 2 (ξ · n)n. Although this is a very natural condition, as it assumes a

perfectly smooth boundary this can lead to problems as particle interactions are not taken

into account, see e.g. [58].

Another boundary condition, called bounce back, assumes that particles which collide with

the boundary will reverse their velocity, and thus

f(·,x, ξ) = f(·,x,−ξ) on ∂Ω. (2.53)

In contrast to the specular reflection boundary condition, this does not seem natural.

But it has some very useful properties, namely the no-slip condition, when regarding the

discretised version, see Section 2.3.2.

For more informations about boundary conditions for the Boltzmann equation, see for

example Cercignani [54], or Villani [58].

2.2.4 Existence of solutions

The global existence of solutions of the BGK-Boltzmann equation have been shown for

example by Perthame in [64] and [65]. For a more general overview on solutions to the

Boltzmann equation the work of Cercignani [60] is recommended.
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Let’s consider the BGK-Boltzmann equation with Dirichlet-type boundary conditions in

a bounded domain

∂f

∂t
+ ξ · ∇xf + f − f eq

ρ,u,T = 0 in I × Ω× Ξ, (2.54a)

f(t,x,x) = φ(x, ξ) on I × ∂Ω× Ξ, (2.54b)

f(0,x, ξ) = f0(x, ξ) in Ω× Ξ, (2.54c)

with equilibrium distribution function

f eq
ρ,u,T (t,x, ξ) =

ρ(t,x)(
2πT (t,x)

)3/2
exp

(
−|ξ − u(t,x)|2

2T (t,x)

)
. (2.55)

For (2.54) the following theorem holds

Theorem 2.4 (Existence of solutions of the BGK-Boltzmann equation). Let φ(ξ) ∈ L1(Ξ)

with |ξ|2φ(x, ξ) ≤ φ(ξ) for all x ∈ ∂Ω and ξ ∈ Ξ, and∫
Ω×Ξ

f0(x, ξ)
(
1 + |ξ|2 + | log f0|

)
dx dξ < +∞, f0(x, ξ) ≥ 0, (2.56)∫

∂Ω×Ξ

φ(x, ξ)|ξ · n|
(
1 + |ξ|2 + | log φ|

)
ds dξ < +∞, φ(x, ξ) ≥ 0, (2.57)

then there exist a solution to (2.54).

Proof. See the work of Perthame [65].

2.3 Lattice Boltzmann equation

The lattice Boltzmann method (LBM) is a numerical method which leads to efficient

and fast computational algorithms for the simulation of fluid dynamics. In contrast to

conventional methods, such as finite volume or finite element, the discretisation is based

on the BGK-Boltzmann equation and not on the classical Navier–Stokes or advection-

diffusion equations. But since the Boltzmann equation is more general, it is possible to

solve various fluid problems. This includes multiphase flows [59, 66, 67], thermal flows

[59, 67–69], flow in porous media [66, 67, 70–72], turbulent flows [67, 73, 74], fluid structure

interactions [59], particulate flows [75–77], sound waves [59, 78], and even light simulation

[79, 80].

For a comprehensive overview of the lattice Boltzmann method, the interested reader is
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referred to the work of Wolf-Gladrow [81], Sukop and Thorne [66], Guo and Shu [67], and

especially the work of Krüger et al. [59].

2.3.1 Discretisation

The discretisation of the BGK-Boltzmann equation in order to approximate the Navier–

Stokes equations is done here in three main steps. First, Taylor expansion of the equilib-

rium distribution function in order to use numerical integration. Second, Gauss–Hermite

quadrature of the moments, resulting in a velocity-discrete Boltzmann equation. Third,

forward Euler for the discretisation of time and space, leading to the lattice Boltzmann

equation.

Starting from the equilibrium distribution function, where here only the dependency on

the velocity is denoted, it follows

f eq(ξ) =
ρ

(2πRT )d/2
exp

(
−(ξ − u)2

2RT

)
=

ρ

(2πRT )d/2
exp

(
−ξ2

2RT

)
exp

(
ξ · u
RT

− u · u
2RT

)
= ω(ξ)ρ exp

(
ξ · u
RT

− u · u
2RT

)
,

(2.58)

with ω(ξ)
def
= 1

(2πRT )d/2
exp

(
−ξ2
2RT

)
. Using Taylor expansion for the second term, considering

|u|√
RT
� 1, also known as low Mach number expansion [82], this leads to

f eq(ξ) = ω(ξ)ρ

(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u · u

2RT

)
︸ ︷︷ ︸

def
= f̃eq(ξ)

+O(u3). (2.59)

Using Hermite polynomials the same as above can be derived, with two additional proper-

ties. First, using the Hermite polynomials for the expansion does not need the low Mach

number assumption, and second it can be shown that the first three moments, i.e. density,

velocity and energy are conserved, as they are directly linked to the coefficients of the

orthonormal Hermite basis [83].
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Velocity-discrete Boltzmann equation

Discretising the velocity space it must be ensured that following integrals, the moments,

hold ∫
Ξ

f eq dξ = ρ,

∫
Ξ

ξf eq dξ = ρu. (2.60)

A closer look at (2.59) reveals a structure that can be numerically integrated by Gauss–

Hermite quadrature

Theorem 2.5 (Gaussian quadrature). Let p ∈ PN , i.e. a polynomial function of degree

N , then

∫
Ω

ω(x)p(x) dx =

q−1∑
i=0

wip(xi), (2.61)

where q ≥ 2N + 1 and x ∈ Ω ⊆ Rd. The weights wi and the abscissae xi are found as the

zeroes of orthogonal polynomials pn(x) corresponding to the weight function ω(x). For

ω(x) = e−x
2

the orthogonal polynomials are the Hermite polynomials Hn(x).

Proof. See Davis and Rabinowitz [84].

In order to conserve the hydrodynamic moments, following must therefore hold

q−1∑
i=0

φ(ξi)f
eq(ξi)

!
=

∫
Ξ

φ(ξ)f eq(ξ) dξ =

ρ, φ ≡ 1

ρu, φ ≡ ξ
. (2.62)

Let p(ξ) be a polynomial defined as

p(ξ) = φ(ξ)

(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u · u

2RT

)
. (2.63)

Further, let ξ̂
def
= ξ√

2RT
, q(ξ̂)

def
= p(

√
2RTξ) and wi

def
= ŵi

(π)d/2
. Then, using the Gauss–
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Hermite quadrature, it follows∫
φ(ξ)f̃ eq(ξ) dξ =

∫
ρ

(2πRT )d/2
exp

(
−ξ2

2RT

)
p(ξ) dξ

=
ρ

(π)d/2

∫
exp

(
−ξ̂

2
)
q(ξ̂) dξ̂

=
ρ

(π)d/2

q−1∑
i=0

ŵiq(ξ̂)

=

q−1∑
i=0

φ(ξi)wiρ

(
1 +

ξi · u
RT

+
(ξi · u)2

2(RT )2
− u · u

2RT

)
︸ ︷︷ ︸

def
= feq(t,x,ξi)

.

(2.64)

Additional requirements on the weights wi can be formulated, for example as
∑q−1

i=0 f
eq
i

!
=

ρ, it follows

q−1∑
i=0

wi
!

= 1,

q−1∑
i=0

wiξi
!

= 0,

q−1∑
i=0

wiξiξi
!

= (RT )2I. (2.65)

Depending on the dimension d and the number of discrete velocities q the resulting set of

weights and abscissae is commonly denoted as DdQq. For D3Q19, which is used in this

thesis, the weights wi are

wi =


1
3
, i = 0

1
18
, i = 1, . . . , 6

1
36
, i = 7, . . . , 18

, (2.66)

and the abscissae, i.e. the discrete velocities ξi, are

ξi =


(
0, 0, 0

)>
for i = 0(

±
√

3, 0, 0
)>
,
(
0,±
√

3, 0
)>
,
(
0, 0,±

√
3
)>

for i = 1, . . . , 6(
±
√

3,±
√

3, 0
)>
,
(
±
√

3, 0,±
√

3
)>
,
(
0,±
√

3,±
√

3
)>

for i = 7, . . . , 18

. (2.67)

For a closer look at the derivation and further DdQq sets the work of Shan et al. [83]

is recommended. Note that for three dimensions a quadrature rule with twenty-seven

abscissae, i.e. D3Q27, would be needed to integrate the moments exactly, but using

symmetry properties the number of abscissae can be reduced to nineteen, i.e. D3Q19 [59,

83].

Defining ci
def
= ξi√

3
and using (2.65) it follows that RT = 1

3
. Further, RT

def
= c2

s, where
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cs can later be related to the speed of sound. With this the velocity-discrete equilibrium

distribution function can be written as

f eq
i (t,x) = wiρ(t,x)

(
1 +

ci · u(t,x)

c2
s

+

(
ci · u(t,x)

)2

2c4
s

− u(t,x) · u(t,x)

2c2
s

)
, (2.68)

with f eq
i (t,x)

def
= f eq(t,x, ci), and discrete velocity space Q

def
= {ci : i = 0, . . . , q− 1} ⊂ Ξ.

The discretisation of the velocity space Ξ ⊂ Rd leads to the velocity-discrete BGK-

Boltzmann equation

∂fi
∂t

+ ci · ∇xfi = −1

τ
(fi − f eq

i ) in I × Ω, (2.69)

for i = 0, . . . , q−1, and fi(t,x)
def
= wi

ω(ci)
f(t,x, ci) [59]. The weights wi and the abscissae ci

are thereby depending for example on the dimension and the order of the Gauss–Hermite

quadrature [82, 83]. With this, the moments can be computed by (cf. [59])

ρ(t,x) =

q−1∑
i=0

f eq
i (t,x) =

q−1∑
i=0

fi(t,x), (2.70)

ρu(t,x) =

q−1∑
i=0

cif
eq
i (t,x) =

q−1∑
i=0

cifi(t,x). (2.71)

Lattice Boltzmann equation

In order to obtain the fully discrete lattice Boltzmann equation, the time I = [0, T ], T > 0

and spatial domain Ω ⊂ Rd need to be discretised.

Considering the velocity-discrete BGK-Boltzmann equation and rewriting the transport

term as in (2.32), it follows for i = 0, . . . , q − 1,

dfi
dt

+
1

τ
fi =

1

τ
f eq
i in I × Ω. (2.72)

Recalling that f(t,x, ξ) = f(0,x − tξ, ξ) is a weak solution to the free transport equa-

tion (2.33) (cf. [55, 58]) and using the method of characteristics [59], (2.72) is transformed

into an ordinary differential equation which can be solved, resulting in (cf. [59, 82])

fi(t+4t,x+ci4t) = e−
4t
τ

(
fi(t,x) +

1

τ

∫ t+4t

t

e−
t′−t
τ f eq

i

(
t′,x+ ci(t

′ − t)
)

dt′
)
. (2.73)

Using forward Euler for the remaining integral and Taylor expansion for the exponential
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functions the lattice Boltzmann equation (LBE) can be derived as [59, 82]

fi(t+4t,x+ ci4t)︸ ︷︷ ︸
stream

= fi(t,x)− 4t
τ

(
fi(t,x)− f eq

i (t,x)
)︸ ︷︷ ︸

collide

. (2.74)

It can be shown that by using Crank–Nicolson for the integral term and second order

expansion of the exponential functions the exact same equation can be derived and thus

make the lattice Boltzmann method formally a second order method [85].

collide stream

Figure 2.2: Illustration of the collide and stream steps of the lattice Boltzmann equation.
The collision step is purely local, and the streaming step only depends on the direct
neighbours. This locality leads to highly parallelisable algorithms.

The discrete time space can now be defined as Ih
def
= {t ∈ I : t = t0 + n4t, n ∈ N} ⊂ I,

and due to the discrete velocity space Q it follows that the discrete spatial domain Ωh ⊂ Ω

is a regular grid, called lattice, where for x ∈ Ωh it follows that x+ ci4t ∈ Ωh.

The lattice Boltzmann equation (2.74) is conceptually parted into two steps, a local colli-

sion step (collide) and a subsequent streaming step (stream), which only depends on the

direct neighbouring nodes. This locality is the reason for the high parallelisable structure

of the LBE, making the lattice Boltzmann method an efficient and computationally fast

method [86, 87].

Using Chapman–Enskog analysis it is possible to obtain the Navier–Stokes equations

through (2.74) when following relations hold [55, 59, 67]

µ = ρc2
s

(
τ − 4t

2

)
, p = ρc2

s. (2.75)

Thus, the viscosity µ is related to the relaxation time τ , and cs can now be identified as

the speed of sound [55, 59]. The modelling error thereby is of second order in the Mach

number, which results in accuracy of first order in time and second in space [59].
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2.3.2 Initial and boundary conditions

One major difference for initial and boundary conditions in the lattice Boltzmann context

is that the macroscopic quantities are defined by the distribution functions. While in

other methods the macroscopic quantities can be set directly, here schemes are needed to

convert these quantities in values of the distribution functions.

One example for initial conditions is the definition of distribution functions by their local

equilibrium, i.e.

fi(0, ·) = f eq
i (0, ·), (2.76)

where f eq
i = wiρ

(
1 + ci·u

c2s
+ (ci·u)2

2c4s
− u·u

2c2s

)
for i = 0, . . . , q − 1 and with given density ρ

and velocity u. These are commonly set to ρ(0, ·) = 1 and u(0, ·) = 0 [59].

There are a variety of different schemes for the application of boundary conditions, the

most prominent being the so-called bounce back condition.

Bounce back

As already stated in Section 2.2.3 the bounce back condition can, in continuous setting,

be written as f(·, ·, ξ) = f(·, ·,−ξ), which holds on the boundary. In discrete setting this

condition will lead to the no-slip condition, i.e. zero velocity at the boundary.

The bounce back rule in discrete setting is thereby defined as (cf. [88])

fi′(t+4t,xf ) = f ci (t,xf ), (2.77)

where xs = xf + ci4t, i.e. the solid node xs is a direct neighbour of the fluid node xf in

direction ci for some i ∈ {0, . . . , q − 1}, and i′ the index of opposite direction of i, thus

ci′ = −ci. Also, f ci denotes the distribution function after collision. An illustration of the

scheme for D2Q19 is shown in Figure 2.3.

Because ci′ = −ci and by the bounce back rule it follows

q−1∑
i=0

cifi(t,x) = 0, (2.78)

and thus u(·,x) = 0 on the boundary ∂Ωh.

The bounce back rule is also the foundation of more sophisticated boundary conditions,
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t = t

fluid

solid

fluid

solid

f4
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t = t + ∆t

f8

f4f7

f8

f4

f7 f8

f4

f7

t = t + 2∆t

f8 f4 f7

bounce back

Figure 2.3: Illustration of the bounce back rule with D2Q9 model. At time t = 0 the
populations are shown after the collision step, they are then streamed to the neighbouring
nodes. If the nodes are solid the velocities are reversed and the distributions are streamed
back to the originating node at time t = t+24t. This illustration is based on the original
figure of Sukop and Or [89].

from which two are presented in the following.

Interpolated bounce back

Because the grid in lattice Boltzmann methods is uniformly spaced, curved boundaries

can only be approximated by a so-called stair case when using bounce back which limits

the accuracy of the simulations [90]. In order to take into account the exact position

of curved boundaries Bouzidi et al. [91] have proposed an interpolation scheme for the

bounce back rule which has second order accuracy.

Let xf ∈ Ωh be a fluid node, xs ∈ Ωh a solid node, and xb the exact position of the

boundary, which is does not need to be in Ωh. The distance between the boundary and

the nearest fluid node is denoted as

q =
|xb − xf |
4x

, (2.79)

where 4x is the spacing between nodes. Since the distribution functions will always

travel exactly a distance of ci4t, taking the exact position of the wall into account will

lead to particle distributions which are not defined on the grid after colliding with the

boundary, see Figure 2.4. This reflected position is denotes as xr.
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q

boundary
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(a) q ≥ 1/2
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(1)
f

xf xsxr

q

xb

boundary

(b) q < 1/2

Figure 2.4: Illustration of the two cases of the interpolated bounce back scheme. Here
xf and x

(1)
f denote fluid nodes and xs a solid node. Distribution functions which are

streamed from xf and get reflected at the exact position of the boundary xb will travel
to a node xr which is not on the grid. The interpolated bounce back scheme then uses
interpolation to give values for the distribution functions at xf . This illustration is based
on the original figure of Bouzidi et al. [91].

In order to get the value of the distribution function at xr, Bouzidi et al. used an interpo-

lation scheme with the information of the distribution functions at the nearest fluid node

xf and its direct neighbour x
(1)
f , together with the bounce back rule (2.77). This leads

to following scheme, which depends on the the distance q (cf. [91])

fi′(t+4t,xf ) =

2qf ci (t,xf ) + (1− 2q)f ci (t,x
(1)
f ) q < 1

2

1
2q
f ci (t,xf ) + 2q−1

2q
f ci′(t,xf ) q ≥ 1

2

. (2.80)

Non-equilibrium bounce back

In order to use Dirichlet boundary conditions Zou and He [92] proposed a scheme which

has third-order accuracy [59]. Here, the scheme for velocity boundary conditions is shown,

but the method can also be used for pressure boundary conditions by using the ideal gas

law in LBM, i.e. p = c2
sρ.

Let the distribution functions at the boundary, fi(·,xb), be unknown for some i ∈
{0, . . . , q − 1}. The number of unknown distribution functions thereby depend on the

number of discrete velocities, for example with D2Q9 three distribution would be un-

known, as shown in Figure 2.5.

For Zou–He boundary conditions the first step is to compute the density at the boundary

by rearranging the moments, i.e.

q−1∑
i=0

fi(·,xb) = ρ(·,xb),
q−1∑
i=0

cifi(·,xb) = ρu(·,xb), (2.81)

according to the unknown distributions and solve for the density. If the density is known,
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boundary
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Figure 2.5: Illustration of unknown distribution functions for boundary conditions. For
D2Q9 and a boundary on the right side, three distribution functions are unknown, here
f1, f5, and f8.

then every equilibrium distribution function f eq
i (·,xb) is known, as the velocity is given

as boundary condition. Using the non-equilibrium bounce back rule [59, 92]

fi(·,xb)− f eq
i (·,xb) = fi′(·,xb)− f eq

i′ (·,xb), (2.82)

where again ci = −ci′ , the system can then be solved for the unknown distribution

functions.

2.3.3 Porous media flow

As shown in Section 2.1.3, the flow in porous media can be described by Brinkman-type

Navier–Stokes equations. Recalling the momentum equation of (2.26) it follows

ρ
(
∂tu+ (u · ∇)u

)
− µeff∆u+∇p = −µK−1u

def
= fpor.

(2.83)

Thus the presence of porous media can be seen as a forcing term in the Stokes equations

with fpor = −µK−1u.

In lattice Boltzmann methods, there exists a number of schemes to consider body forces.

For an overview and analysis of different schemes, see for example [59] and [93]. In the

context of porous media flow, the work of Spaid and Phelan [70], and Guo and Zhao [71]

will be considered here.
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Spaid and Phelan model

Spaid and Phelan [70] were the first to propose a method to model porous media flow in

lattice Boltzmann methods. They used a forcing scheme proposed by Shan and Shen [94],

which was initially considered to simulate multiphase flow, but can also be used as general

forcing scheme.

The basic idea of this scheme is that a force f : I × Ω→ Rd, changes the velocity of the

fluid by Newton’s second law of motion, thus

ueq(t,x) =
1

ρ(t,x)

q−1∑
i=0

cifi(t,x) +
τ

ρ(t,x)
f(t,x)

= u(t,x) +4u(t,x),

(2.84)

where ueq enters the equilibrium distribution function by

f eq
i (ρ,ueq) = wiρ

(
1 +

ci · ueq

c2
s

+
(ci · ueq)2

2c4
s

− u
eq · ueq

2c2
s

)
. (2.85)

Here only the dependency on the moments is shown. Using the force of the porous medium

f = −µK−1u, it follows

ueq = u− τ

ρ
µK−1u

= (1− τνK−1)u

= du,

(2.86)

with ν
def
= µ

ρ
the kinematic viscosity. Here d(·,x)

def
= 1 − τνK−1(·,x) has a value of

d ∈ [0, 1]. For d(·,x) = 0 this results in a pure solid node. And for d(·,x) = 1, i.e. stan-

dard equilibrium distribution function, this results in pure fluid node. Because of these

properties d is called lattice-porosity, although it should not be seen as physical poros-

ity [2]. Additionally, an extension of the method was presented by Martys [48] to account

for the usage of different effective viscosities.

Based on the fact that this forcing only needs to change the velocity of the equilibrium

distribution function makes this scheme fast and easy to implement, and has thus been

used also for particle simulations [76] or topology optimisation [12].
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Guo and Zhao model

Another method was proposed by Guo and Zhao [71], who used a different forcing scheme,

also proposed by Guo et al. [95], where the equilibrium distribution function gets updated

by

ueq(t,x) =
1

ρ(t,x)

q−1∑
i=0

cifi(t,x) +
4t

2ρ(t,x)
f(t,x). (2.87)

In addition to the force entering the equilibrium distribution function, the collision term

is also adjusted, reading

fi(t+4t,x+ ci4t) = fi(t,x)− 4t
τ

(
fi(t,x)− f eq

i (t,x)
)

+ Fi(t,x), (2.88)

where Fi is proposed as [95]

Fi(t,x) = 4t
(

1− 4t
2τ

)
wi

(
ci − u(t,x)

c2
s

+

(
ci · u(t,x)

)
ci

c4
s

)
· f(t,x). (2.89)

For the application to porous media another difference to the model of Spaid and Phelan

is that now the equilibrium velocity is implicitly given. Thus, the force is described by

f = −µK−1ueq, and it follows

ueq =
1

ρ

q−1∑
i=0

cifi −
4t
2ρ
µK−1ueq

=
u

1 + 4t
2
νK−1

,

(2.90)

where u = 1
ρ

∑q−1
i=0 cifi is a temporal velocity [71].

This model is more general than the one of Spaid and Phelan, as it can account for

different porosities, and include the Forchheimer term [71].

2.4 Numerical experiments of porous media flow

Here the porous media models above will be tested for accuracy and performance, as

these models will be the basis for the topology optimisation used in this thesis. For this

purpose, a test case of the flow of porous media in a pipe will be constructed, for which

an analytical solution is derived here.
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Figure 2.6: Pipe flow with velocity in cylindrical coordinates, i.e. u = (ur, uφ, uz)
>.

2.4.1 Test case and analytical solution

Here a steady state, low Reynolds number flow through porous media with no-slip bound-

ary condition is considered, and thus

−µ∆u+∇p+ µK−1u = 0 in Ω, (2.91a)

∇ · u = 0 in Ω, (2.91b)

u = 0 on ∂Ω. (2.91c)

Without the porous medium, i.e. µK−1u ≡ 0, this case reduces to a Poiseuille flow.

In order to obtain an analytical solution in three dimensions (2.91) is transferred to

cylindrical coordinates, i.e. for x =
(
x, y, z

)>
it follows

x = r sin(φ), y = r cos(φ), z = z, (2.92)

where r =
√
x2 + y2 + z2 is the radius, and φ the angle. Let u = (ur, uφ, uz)

> be the

velocity in cylindrical coordinates (cf. Figure 2.6). For a flow in z-direction it follows

ur = uφ = 0 and thus

∇ · u = 0 ⇒ ∂zuz = 0. (2.93)

With this it follows ∂rp = ∂φp = 0, and the momentum equation reduces to

−µ
(

d2

dr2
uz(r) +

1

r

d

dr
uz(r)

)
+ µK−1uz(r) +

dp

dz
= 0, (2.94)

where the velocity is therefore only dependent on the radius and has only the z-component.

An ansatz to this differential equation is

uz(r) = C1I0

(
r√
K

)
+ C2Y0

(
ir√
K

)
− K

µ

dp

dz
, (2.95)
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with C1, C2 ∈ R constants of integration, and I0 and Y0 the Bessel functions of first

and second kind, respectively. For r = 0 it follows I0(r) = 1 and limr→0 Y0(r) = −∞,

and hence C2 = 0. And with u(R) = 0, i.e. no-slip at the boundary, it follows for the

analytical solution

uz(r) =
K

µ

dp

dz

1−
I0

(
rK−

1
2

)
I0

(
RK−

1
2

)
 , (2.96)

with modified Bessel function of first kind I0

I0(z) =
∞∑
k=0

(
1
4
z2
)k

(k!)2
. (2.97)

Note, for the analytical solution in two dimensions the modified Bessel function is replaced

by the hyperbolic cosine function [71, 96].

The test case considered has following properties. Viscosity of µ ∈ {1.0, 0.1} Pa s, density

of ρ = 1.0 kg
m3 , length of L = 2.0 m, radius of R = 0.5 m (cf. Figure 2.6) and inflow

velocity of U = 1.0 m
s
, which results in a Reynolds number of Re ∈ {1.0, 10.0}. For LBM

a relaxation time of τ = 0.8 is chosen. The problem is considered in three dimensions, and

for the numerical experiment the modified Bessel function of first kind is approximated

here by

I0(z) ≈ cosh(z)

(1 + 1
4
z2)

1
4

1 + 0.24273z2

1 + 0.43023z2
, (2.98)

which was shown to have a maximum relative error of less than 6.0× 10−3 (cf. [97]).

2.4.2 Results

The results of the test case are analysed using a convergence test with L1, L2 and L∞

norm, with

||u||L1(Ω) =

∫
Ω

|u| dx, ||u||L2(Ω) =

(∫
Ω

|u|2 dx

) 1
2

, ||u||L∞(Ω) = max
Ω
|u|.

The error measured is the relative difference of the analytical u∗ to the numerical velocity

field uf for two different permeability values and Reynolds numbers, shown in Figure 2.7.

The results show similar results for the Spaid and Phelan, as well as, the Guo and Zhao
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model, with second order convergence for the error measured in L1 and L2 norm, as

expected for the interpolated bounce back boundary condition used here.
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Figure 2.7: Convergence test for the porous media test case for different Reynolds numbers
and permeabilities.

In Figure 2.8 the results for different permeability values are presented. As expected,

the error is lowest for Poiseuille flow, i.e. K → ∞, and grows larger the more solid the

porous medium becomes, i.e. K → 0. Although the model of Guo and Zhao can simulate

lower permeability values than the model of Spaid and Phelan these have high errors.

The comparison of numerical and analytical flow profiles shows a very high agreement for

different permeability values, see Figure 2.8b.

The results in this case are nearly identical for the Spaid and Phelan and the Guo and

Zhao model, which was also shown by Huang et al. [93] albeit for a different application

using the underlying forcing schemes of Shan and Chen [94] and Guo et al. [95]. The

performance however, is much higher for the Spaid and Phelan model with only half the

simulation time. Thus, for this thesis the Spaid and Phelan model is very well suited.
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Figure 2.8: Error analysis for porous media test case with respect to the permeability of
the medium for a Reynolds number of Re = 1. Comparison between Spaid and Phelan
and Guo and Zhao model for resolutions of N = 41 and N = 91 for different permeabilities
on the left. And comparison of analytical to numerical velocity profiles for the Spaid and
Phelan model with N = 91 on the right.
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Chapter 3

Magnetic resonance imaging

Magnetic resonance imaging is a highly valuable diagnostic tool, especially known in

medical imaging to visualise the organs, tissues, bones, etc. of patients. MRI is based

on the effect of nuclear magnetic resonance (NMR), where nuclei with non-zero spin, like

e.g. 1H, 19F, or 31P have a magnetic moment. If these nuclei are placed inside a strong

magnetic field they can absorb and emit radio frequency which can be measured. Since

objects with different properties emit to different degrees, an image of the interior can be

created. For a deep insight into the functioning and underlying physical laws, the books

of Callaghan [98] and Reiser et al. [99] are recommended.

In this chapter, the basics of MRI for the measurement of fluid flows, as well as the

problem of measurement noise and its mathematical description are briefly introduced.

The latter in particular is important for the generation of synthetic data to validate the

method with regard to noise reduction in Chapter 8.

3.1 Flow MRI

MRI is able to image velocity fields, which is called magnetic resonance velocimetry [100],

or flow MRI [101]. With this it is possible to diagnose cardiac diseases by measuring the

blood flow [101], and it is even capable to image turbulent and multiphase flows [100, 102].

Another application is the analysis of flow in porous media [100, 103, 104], which is often

used in oil recovery industry or water purification [102]. For an overview of flow MRI

applications the works of Elkins and Alley [100], and Gladden [102] are recommended.

One technique of flow imaging is thereby the phase contrast MRI, which can be used with

conventional MRI scanners without the use of tracers, particles or the like [100, 102, 105].
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The basic idea of phase contrast MRI is the usage of bipolar gradients, which have a

different effect on spins of moving nuclei and was proposed by Moran in 1982 [105].

The phase shift Φ of the nuclei can be calculated by [100, 106–108]

Φ = γ

∫ t+4t

t

G(t′) · x(t′) dt′, (3.1)

where G is the magnetic field gradient, and γ the gyromagnetic ratio of the observed

nucleus. Expanding the time dependent position vector it follows

x(t′) = x0 + v0t
′ +O(t′2), (3.2)

where x0 and v0 are the position and velocity of the nucleus, respectively. Defining the

gradient moments as M i
def
=
∫
tiG(t) dt, and omitting the second order terms in the

expansion, it follows

Φ ≈ γM 0 + v0 · γM 1. (3.3)

Using two inverse, bipolar gradients, such that M 0 = 0 (cf. [100, 108]), it follows that the

phase difference 4Φ can be calculated as

4Φ ≈ v0 · γ4M 1, (3.4)

where 4M 1 = 2M 1 due to the bipolar field [108]. The measurable phase difference is

therefore proportional to the velocity.

In measurements it is common to use a parameter, called velocity encoding venc, which is

the velocity that results in a phase shift of π radians (or 180◦) [109]. This parameter should

be set to the highest expected velocity, as it will otherwise lead to aliasing effects [107, 109],

but as low as possible to reduce measurement noise (cf. Section 3.2). Using a gradient

in one direction and let v and M1 be the corresponding components in this direction it

follows that the velocity can be calculated by

v ≈ venc

π
4Φ, (3.5)

where

venc
def
=

π

γ4M1

. (3.6)
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3.2 Measurement noise

A major problem with MRI measurements is the presence of statistical measurement

noise [110]. There are many reasons for this noise, including inhomogeneities of the

magnetic fields, movements of the observed objects or thermal noise of the electrical

components [110, 111]. However, it is possible to describe the noise by certain probability

functions [110–115].

In general, the noise of MR images has been shown to be governed by a Rician distribu-

tion [112]

pRice(x) =
x

σ2
exp

(
−(x2 + S2)

2σ2

)
I0

(
xS

σ2

)
, (3.7)

where S is the (noise free) signal, σ the noise, and I0 the Bessel function of the first kind.

In the absence of a signal, i.e. S = 0, the Rician distribution simplifies to the Rayleigh

distribution

pRayleigh(x) =
x

σ2
exp

(
− x2

2σ2

)
. (3.8)

A common parameter in MRI that quantifies the image quality is the signal-to-noise ratio

(SNR) defined as

SNR
def
=
S

σ
. (3.9)

The higher the SNR the better the quality of the image. Also, it can be shown that

the Rician distribution (3.7) tends to be a Gaussian, or normal distribution for higher

SNR [110–113]

pGauss(x) =
1√

2πσ2
exp

(
−(x−

√
S2 + σ2)2

2σ2

)
, (3.10)

with mean of
√
S2 + σ2 and variance of σ. This tendency is shown in Figure 3.1, where a

SNR of two approximates the Gaussian distribution very well. This relation will be used

in Chapter 8.

It can be shown that the SNR of an MRI measurement is determined by at least two

factors [98, 113]. First, by the spatial resolution

S

σ
∝ VS, (3.11)
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Figure 3.1: Comparison of Rician (3.7) to Gaussian distribution (3.10) for different signal-
to-noise ratios (SNR) with mean at zero. The higher the SNR the more the Rician
distribution follows a Gaussian one.

which depends on the voxel size VS, which is the three-dimensional equivalent to a pixel,

i.e. the smallest discrete element of the image. And second, by the measurement time,

i.e. number of acquisitions

S

σ
∝
√
Nacc. (3.12)

If the resolution is increased, i.e. voxel size reduced, the MRI is able to identify smaller

structures, but with the consequence of a decreased SNR and thus an increase in noise.

If, on the other hand, the number of acquisitions and hence the SNR is increased, the

measurement time is longer, which is often a limiting factor for the observation of certain

processes, e.g. filtration and fouling [116]. Further dependencies on the SNR are the

magnetic field strength, which should be chosen as strong as possible. Or the number of

spins, which explains the common use of 1H for imaging, because of its high abundance in

nature, but also due to its intrinsically high SNR thanks to its gyromagnetic factor [100].

The signal-to-noise ratio in flow MRI, SNRv, is related to the SNR of the stationary MRI

by [107, 108, 117]

SNRv =
π√
2

v

venc

SNR. (3.13)

Due to this relation the velocity encoding parameter in flow MRI should be set as low as

possible, but not too low because of velocity aliasing effects (cf. Section 3.1).
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Chapter 4

Optimal control

Optimisation is used in almost all parts of science and industry. It is used to reduce weight

while at the same time increasing stability of parts in aircrafts or cars, to reduce time and

distances of deliveries in logistics, or to increase the accuracy of weather forecasts. And

it is used in artificial intelligence and machine learning.

In the following, a general definition of optimisation problems, its solutions and its char-

acterisation, i.e. necessary conditions, are given. This information can then be used for

solving strategies, like gradient based methods, for which different conditions are needed,

namely the choice of step sizes, and search directions. The section will conclude with an

algorithm, which is used in the numerical validation and applications considered in this

thesis. A major part is the calculation of gradients, for which different techniques are

presented, the most important for this work being the adjoint approach.

This chapter is mainly based on the work of Tröltzsch [118], Hinze et al. [27], De los

Reyes [119], and Nocedal and Wright [120].

4.1 General optimisation problems

Here, the general definition of an optimisation problem, optimal solutions and their exis-

tence are presented. In order to keep these definitions general, they are defined in function

spaces, but if suitable and helpful for understanding, they are also transfereed to finite

dimensional problems.

Let J : Y × U → R, R : Y × U → Z be operators between Banach spaces Y, U, Z. A
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general constrained optimisation problem is given by

min
(f,α)∈Yad×Uad

J(f, α) subject to R(f, α) = 0, (4.1)

where J is called goal or objective function, R(f, α) = 0 side condition or state equation,

f ∈ Y the state and α ∈ U the control or design variable, with Uad ⊂ U and Yad ⊂ Y

called admissible sets. If the side condition is governed by a partial differential equation,

this problem is called optimal control problem.

Assuming there exists a solution operator for the side condition R(f, α) = 0 which gives

a unique solution f(α) ∈ Y for every α ∈ U , and defining J(f, α) = J (f(α), α)
def
= J(α),

the reduced problem

min
α∈Uad

J(α) (4.2)

can be considered.

Now the question arises, what is an optimal solution and how can it be characterised?

This is addressed in the following.

4.1.1 Optimal solutions and optimality conditions

Next, the definition of an optimal solution of the reduced problem (4.2), i.e. a minimum,

is given.

Definition 4.1 (Optimal solution). For a (global) optimal solution ᾱ ∈ Uad it holds

J(ᾱ) ≤ J(α) ∀α ∈ Uad. (4.3)

For a local optimal solution ᾱ the above is true for some neighbourhood N (ā) ⊂ Uad of

ᾱ.

In order to characterise such solutions, a necessary condition for an optimal solution

is presented. This will be especially helpful for finding optimal solutions numerically

(cf. Section 4.2).

For this, definitions for derivatives in function spaces must first be introduced. Let F :

U ⊂ X → Y be an operator between Banach spaces X, Y and U 6= ∅ open.

Definition 4.2 (Directional derivative). F is called directionally differentiable at u ∈ U
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if the limit

δF (u, h)
def
= lim

t→0

1

t

(
F (u+ th)− F (u)

)
(4.4)

exists for all h ∈ X. Then δF (u, h) is called directional derivative of F in direction h.

Definition 4.3 (Gâteaux derivative). F is called Gâteaux differentiable at u ∈ U if F is

directionally differentiable at u and there exists A ∈ L(U, V ) with h 7→ Ah
def
= δF (u, h).

Then F ′(u)
def
= A is called Gâteaux derivative of F at u.

Definition 4.4 (Fréchet derivative). F is called Fréchet differentiable at u ∈ U if F is

Gâteaux differentiable at u and following holds

F (u+ h) = F (u) + F ′(u)h+ r(u, h), (4.5)

with ||r(u,h)||V
||h||U

→ 0, for ||h||U → 0.

Then F ′(u) is called Fréchet derivative of F at u.

Note, every Fréchet differentiable operator is also Gâteaux differentiable and the deriva-

tives are identical [118]. Also, every linear, bounded operator A ∈ L(X) is Fréchet

differentiable and the derivative is the operator itself, as A(x+ h) = A(x) +A(h) +A(0)︸︷︷︸
=0

.

For Fréchet derivatives the chain rule holds [118].

Definition 4.5 (Chain rule). Let X ⊂ U, Y ⊂ V be open sets and F : X → Y and

G : X → Z Fréchet differentiable at x ∈ X and F (x) for Banach spaces U, V, Z. Then

H = G ◦ F is Fréchet differentiable at x and

H ′(x) = G′(F (x))F ′(x). (4.6)

If F in the above definition is only Gâteaux differentiable it follows that H is Gâteaux

differentiable. Therefore, the sum rule holds for Fréchet and Gâteaux differentials [27].

With the above definitions, a necessary condition for an optimal solution can be derived.

Lemma 4.1 (Optimality condition). Let U be a real Banach space, Uad ⊂ U a convex set

and J a Gâteaux differentiable real valued functional on an open subset of Uad. Suppose

ᾱ ∈ Uad is a solution of

min
α∈Uad

J(α),
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then the following variational inequality, called optimality condition, holds

J ′(ᾱ)(α− ᾱ) ≥ 0 ∀α ∈ Uad. (4.7)

Proof. For an arbitrary t ∈ (0, 1] define α(t) = ᾱ + t(α − ᾱ), with α(t) ∈ Uad because

of convexity of Uad. Further, as ᾱ is the optimal solution, it holds J(ᾱ) ≤ J(α) for all

u ∈ Uad. Therefore, it follows

1

t

(
J(ᾱ + t(α− ᾱ))− J(ᾱ)

)
≥ 0.

Taking the limit for t to zero completes the proof.

If J is a convex function, the optimality condition (4.7) is also sufficient, see for example

Tröltzsch [118], Lemma 2.21. Note that for Uad = U , and especially Uad = Rn, the well

known optimality condition

J ′(ᾱ) = 0 (4.8)

holds true [119].

4.1.2 Existence of optimal solutions

The requirements which have to be imposed on the optimisation problem in order to

make statements about the existence of optimal solutions, can be very different in their

complexity. This depends not only on the objective function and the constraints, but also

on whether the problem is considered in finite or infinite dimensional spaces.

First, a finite dimensional problem is considered.

Theorem 4.1 (Existence of optimal solutions in Rn). Let Uad ⊂ Rn nonempty, closed

and bounded, J : Rn → R continuous, then the problem min
α∈Uad

J(α) has an optimal solution.

Proof. The set Uad is closed and bounded and therefore compact, following the Weierstraß

extreme value theorem the continuous function J attains a minimum (and a maximum)

on Uad.

For optimisation problems in function spaces the existence of optimal solutions is much

more complex, due to the fact that from closed and boundedness does not follow com-

pactness of the set and therefore the extreme value theorem can not be applied. Thus,
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the following definition of weak convergence is needed, see for example Tröltzsch [118]

and Hinze et al. [27].

Definition 4.6 (Weak convergence). Let X be a real Banach space and X∗ its dual space.

A sequence (xk)
∞
k=1 ∈ X is called weakly convergent to x ∈ X, if for k →∞ it holds

F (xk)→ F (x) ∀F ∈ X∗.

The weak convergence is written as xk ⇀ x.

With this, statements can now be made about the existence of optimal solutions for

non-linear optimisation problems.

Theorem 4.2 (Existence of optimal solutions). Let J : Y × U → R, R : Y × U → Z be

continuous with Banach space Z, reflexive Banach spaces U, Y and

a) Uad ⊂ U is convex, closed and bounded

b) Yad ⊂ Y is convex and closed

c) Uad 3 α 7→ f(α) ∈ Y is a bounded solution operator

d) Y × U 3 (f, α) 7→ R(f, α) ∈ Z is continuous under weak convergence

e) For αk ⇀ α it follows lim inf
k→∞

J(αk) ≥ J(α), i.e. J is weakly semicontinuous.

Then there exists an optimal solution for (4.1).

Proof. The proof can be found in Hinze et al. [27], Theorem 1.45.

Note, if the side condition R(f, α) = 0 is governed by a linear problem, the assumptions

of Theorem 4.2 can be significantly reduced (cf. [27]). The main difficulty comes from the

non-linearity of the side condition in PDE-constrained optimisation problems.

Next, solution strategies for optimal control problems are considered.

4.2 Gradient based optimisation

Many methods have been developed to solve optimisation problems. Most efficient meth-

ods are gradient based, like trust-region, sequential quadratic problem (SQP), or line

search [120]. Here, the focus lies in the gradient based line search methods.

For the sake of simplicity, only finite dimensional problems are considered in this section.

Let Y ⊂ Rm, U ⊂ Rn and Z ⊂ Rl, and J sufficiently smooth for the optimisation

problem (4.2). Further, let ∇J(α) = J ′(α)> be the column vector gradient.
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4.2.1 Line search method

The line search method is a family of iterative algorithms to find local minima. The basic

idea is to start from an initial guess α0 and find a sequence (αk)k∈N0 , for which holds

J(αk+1) < J(αk), (4.9)

where the next control αk+1 is found searching along a line

αk+1 = αk + λk pk. (4.10)

Here λk ∈ R is called step size and pk ∈ Rn the search direction.

There exists an optimal step size

λopt = argmin
λ>0

Φ(λ)
def
= J(αk + λpk),

but since the calculation of the optimal step size can be as complex as finding the optimal

solution, the inexact line search method has developed. It uses a predefined initial step

size and checks certain conditions that the step size must fulfil. If this is not the case, the

step size is increased or decreased depending on the step condition.

The general algorithm of an inexact line search is given as

Algorithm 1 Inexact line search

Set k = 0
Choose initial guess α0 and tol > 0
repeat

Compute search direction pk
Choose λk fulfilling a step condition
Set αk+1 ← αk + λkpk
Set k ← k + 1

until ||∇J(αk)|| < tol

The condition ||∇J(αk)|| < tol of Algorithm 1 is the numerical version of the necessary

condition (4.8) of the optimisation problem.

Next, the choices of the step condition and the search direction are investigated.
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4.2.2 Step condition

The simplest step condition is checking if the objective function is decreasing, i.e. J(αk+1) <

J(α), but this condition can be to weak, as a small step size can result in a very slow

convergence [120]. Therefore, more sophisticated step conditions have evolved, one of

them being the famous Wolfe conditions [121, 122].

The Wolfe conditions consist of two conditions, namely the Armijo condition

J(αk + λk pk) ≤ J(αk) + c1 λk∇J(αk)
> pk, (4.11)

which checks sufficient decrease of the objective function, and the curvature condition

∇J(αk + λk pk)
> pk ≥ c2∇J(αk)

> pk, (4.12)

which ensure that the step length is large enough. The curvature condition has more

positive properties, which will be presented in Section 4.2.3. For the constants c1 and c2,

which help tuning the Wolfe conditions, it must hold 0 < c1 < c2 < 1. Typical values are

c1 = 10−4 and c2 = 0.9 [120].

Figure 4.1 illustrates the Wolfe conditions for an arbitrary function J . Each point of the

plot shown would fulfil the condition that the function value should be reduced. The

Wolfe conditions, on the other hand, reduce the range of admissible step sizes to a smaller

and more meaningful range.

α

J(α)

admissible step size

Armijo condition

Curvature condition

admissible step size

Figure 4.1: Illustration of the Wolfe conditions, consisting of the Armijo condition (suf-
ficient decrease) and curvature condition (large enough step). If only a decrease of the
function would be required, every point on the shown axis would be admissible. This
illustration is based on the original figure of Nocedal and Wright [120].
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4.2.3 Search direction

The search direction pk is usually selected so that the function is reduced along this

direction. Therefore, most line search methods require the search direction to be a descent

direction.

Definition 4.7 (Descent direction). Let J : Rn → R and α ∈ Rn. If there exists a λ0 > 0

with J(α+ λp) < J(α) for all λ ∈ (0, λ0], then p ∈ Rn is called descent direction.

The easiest and simplest descent direction is the choice of the gradient −∇J(αk), which

can be seen after using the Taylor expansion J(αk + λkpk) ≈ J(αk) + λk∇J(αk)
>pk and

∇J(αk)
>pk = −∇J(αk)

>∇J(αk) = −||∇J ||2 ≤ 0.

Thus, a descent direction can be characterised by ensuring ∇J(αk)
>pk < 0. Generally, a

search direction has the following form

pk = −B−1
k ∇J(αk), (4.13)

with Bk symmetric and invertible. Then a descent direction

p>k∇J(αk) = −∇J(αk)
>B−1

k ∇J(αk) ≤ 0, (4.14)

can be ensured for B−1
k positive definite.

Depending on Bk different methods can be defined. If Bk = I, i.e. the simplest case of

the descent direction being the gradient, the method is called gradient or steepest descent.

If Bk = H, where H is the Hessian matrix, the method is the Newton method. The last

family of methods are the quasi-Newton methods, where an approximation of the Hessian

Bk ≈ H is used.

All of the mentioned methods have its advantages and disadvantages. The steepest de-

scent is the easiest to implement, as it only needs the gradient of the function, but it has

only linear convergence. The highest convergence can be ensured by the Newton method,

which is quadratic in the best case. But it has the downside that it needs not only the

gradient but also the complete Hessian. This can lead to a massive increase of compu-

tational complexity. The quasi-Newton methods are in between by having a superlinear

convergence rate and only needing the gradient, which is also used for the approximation

of the Hessian, as shown in the next section. For a deeper comparison of the methods

and proofs to the mentioned convergence rates, the book of Nocedal and Wright [120] is

recommended.
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Quasi-Newton methods and BFGS update

Since quasi-Newton methods have a higher convergence as the steepest descent, without

the need to explicitly calculate the Hessian like in the Newton method, they have be-

come one of the most used methods. The basic idea for quasi-Newton methods is the

approximation of the Hessian, i.e. Bk ≈ H using the secant equation (cf. Figure 4.2)

α

∇J(α)

αk+1 αk

∇J(αk)

∇J(αk+1)

Bk+1

Figure 4.2: Illustration of the secant equation, used for the approximation of the Hessian
in quasi-Newton methods. This illustration is based on the figure of De los Reyes [119].

Bk+1sk = yk, (4.15)

where

sk = αk+1 −αk, (4.16)

yk = ∇J(αk+1)−∇J(αk). (4.17)

Under these quasi-Newton methods the BFGS method, which is named after its inventors

Broyden, Fletcher, Goldfarb, and Shanno [123–127], has become the most popular [120].

The Hessian approximation can thereby be iteratively found solving a minimisation prob-

lem under a special weighted Frobenius norm, subject to certain constraints for the update,

like being symmetric. With this the BFGS update reads

Bk+1 = Bk −
Bksks

>
k Bk

s>k Bksk
+
yky

>
k

y>k sk
. (4.18)

To ensure the descent direction of the BFGS update the initial approximation B0 needs to

be positive definite and it must hold that s>k yk > 0. The latter can be seen when (4.15)

is multiplied with s>k , from which follows that s>k Bk+1sk = s>k yk
!

≥ 0. If the Wolfe

conditions (4.12) are used, then the condition s>k yk > 0 is implicitly given, which can be
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seen in the following Lemma.

Lemma 4.2. (Positive definiteness of the BFGS update) If the curvature condition (4.12)

holds, then BFGS update is positive definite, i.e. condition s>k yk > 0 holds.

Proof. Let ∇J(αk)
def
= ∇Jk and use the curvature condition ∇J>k+1pk ≥ c2∇J>k pk with

0 < c2 < 1 and pk a descent direction, i.e. ∇J>k pk < 0. It follows

y>k sk = (∇Jk+1 −∇Jk)>(αk+1 −αk)

= (∇Jk+1 −∇Jk)>λkpk
≥ λkc2∇J>k pk − λk∇J>k pk
= λk∇J>k pk(c2 − 1)

> 0.

The search direction pk = −B−1
k ∇Jk uses the inverse of the approximative Hessian, but

since this would be too expensive to be calculated in every step, the update of the inverse

is used directly. This is derived using Sherman–Morrison formula as follows

B−1
k+1 = (I− λksky>k )B−1

k (I− λkyks>k ) + λksks
>
k , (4.19)

where λk = 1
y>k sk

[128].

There have also been made improvements to the BFGS formula to cope with high memory

requirements of large problems, called limited-memory BFGS or L-BFGS [129].

4.2.4 Algorithm

The following algorithm combines the line search method with Wolfe conditions and BFGS

update. This algorithm will be used in the numerical experiments of this thesis. Typical

start values are B0 = I, λ0 = 1, c1 = 10−4, c2 = 0.9, ρ1 = 0.1 and ρ2 = 2.1.
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Algorithm 2 Inexact line search with Wolfe conditions

Choose tol,B−1
0 ,α0, λ0, c1, c2, ρ1, ρ2

repeat
Compute pk = −B−1

k ∇Jk . Gradient based method
Set αk+1 = αk + λk pk . Line search
while (False) do

if Jk+1 ≤ Jk + c1∇J>k pk then . Armijo condition
λk ← λkρ1

return False
else if ∇J>k+1pk ≥ c2∇J>k pk then . Curvature condition

λk ← λkρ2

return False
else

return True
end if

end while
Compute ∇Jk+1

Set sk = αk+1 −αk, yk = ∇Jk+1 −∇Jk
Compute B−1

k+1 using (4.19) . Quasi-Newton method
k ← k + 1

until ||∇Jk|| < tol
return

4.2.5 Numerical experiment

In order to test Algorithm 2 the non-convex Rosenbrock function [130] f : Rn → R is

used, which is defined as [120, 131]

f(x) =

n/2∑
i=1

(
α
(
x2i − x2

2i−1

)
+
(
1− x2i−1

)2
)
, (4.20)

with x = (x0, x1, . . . , xn−1)>, α ∈ R and n ∈ N. The minimum of the Rosenbrock function

is f(x∗) = 0 for x∗ = (1, 1, . . . , 1)>, and the gradient ∇f(x) = ( ∂f
∂x0
, ∂f
∂x1
, . . . , ∂f

∂xn−1
)> is

given by

∂f

∂x2i

= 2α
(
x2i − x2

2i−1

)
, (4.21)

∂f

∂x2i−1

= −4α
(
x2i − x2

2i−1

)
x2i−1 − 2(1− x2i−1). (4.22)

In the following the Rosenbrock function with n = 10, α = 100, and start values x0 =

(1.0 × 103, . . . )> and x1 = (1.5 × 103, . . . )> is investigated. Further, the results are

tested with Armijo condition and Wolfe conditions, i.e. with and without the curvature
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condition. The results are shown in Figure 4.3, and it can be seen that for start value x0

the optimisation method using Armijo condition and Wolfe conditions converges to the

minimal value of f ∗ = 0, with Armijo condition even faster than with Wolfe conditions.

For start value x1 only the optimisation method using Wolfe conditions converges to

zero, while for the Armijo condition the optimiser gets stuck after 50 steps with a value

of around 7031. These results indicate that the optimisation method works very well, and
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Figure 4.3: Minimising the Rosenbrock function using Algorithm 2 with (Wolfe) and
without (Armijo) the curvature condition for different start values.

using the Wolfe conditions increases the stability of the method.

4.3 Gradient calculation

Unlike in the numerical example above, where the derivative of the Rosenbrock function

is known, or can easily be derived, the computation of the gradient is one of the hardest

parts of optimal control problems. Many different methods have evolved to tackle this

challenge. The easiest and most basic maybe, being the finite difference method, which

has its roots in Taylor’s theorem. A more advanced method, in the sense of computer

science at least, is automatic differentiation, also known as algorithmic differentiation,

which manipulates the computer code in order to get the gradient in machine precision.

The last method investigated and also used in this thesis, is the adjoint approach that

uses the Lagrangian formalism and has a strong background in mathematical theory and

is the most efficient method.
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4.3.1 Finite difference method

The finite difference method belongs to algorithms of numerical differentiation, which

approximately calculate the derivative from given function values. Let J : R → R be

twice continuous differentiable with α ∈ R and use a Taylor expansion of J at α+h. This

leads to

J ′(α) =
J(α + h)− J(α)

h
+O(h), (4.23)

also known as forward difference approximation. As can be seen, in order to get the

derivative of J at point α, one needs to know the function value at α+h, where h is some

length. The error produced by this method is O(h), i.e. linear in h. This can be improved

to quadratic error term, when combining forward and backward difference approximation,

where the latter is basically the same as the first, only with an expansion at J(α − h).

This then leads to the central difference approximation

J ′(α) =
J(α + h)− J(α− h)

2h
+O(h2). (4.24)

Now the error produced is only O(h2), but at the expense of now having to evaluate the

function at two additional points.

The big advantage of finite differences are its very easy implementation. The disadvan-

tages are performance and accuracy. If α ∈ R1,000,000, which is common for topology

optimisation problems, then one needs an extra two million function evaluations with

the central difference approximation. For optimal control problems, this means solving a

partial differential equation for this amount, which is not feasible. Another problem lies

in numerical errors, which are produced if too small values for h are used, thus at some

point round-off errors predominate [132], which is illustrated in Figure 4.4.

4.3.2 Automatic differentiation

The basis of automatic differentiation lies in the fact that in a computer program every

function evaluation is a finite sequence of elementary operations [133]. Thus, all the

computer needs to know are the chain rule and the rules to differentiate elementary

operations. These are for example binary operations, such as addition, multiplication and

unary operations like the sine function, and so on. This allows an almost exact evaluation

of derivatives up to machine precision.

There are two main modes for automatic differentiation, called forward and reverse mode.
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Figure 4.4: Absolute error from exact to approximated gradient for the function J(α) =
α3 + sin(α) at α = 1.4. Used are the forward and central difference approximation. The
central starts with lower errors as the forward difference approximation, as expected, but
at some point both experience round-off errors which then predominate.

The forward mode gives the derivative of each output with respect to the input variables

and can run at the same time as the function evaluation. The reverse mode, as the

name suggests, first computes all function evaluations, stores them and propagates the

derivatives backward from a given output. Thus, the reverse mode is much more suitable

for optimisation problems where the objective function maps from Rn to R, as the gradient

can be calculated by only one sweep. But at the same time the storage demands become

infeasible for large n. There have been made many advances to overcome the issues, like

checkpointing strategies [134], but this increases the complexity of the usage.

The implementation of automatic differentiation can be realised in different ways. One

of them is the so-called source transformation, which takes the given program code and

returns new code [135]. Another method uses the possibility of many programming lan-

guages, like for example C++, for operator overloading. This makes it possible to extend

the elementary operations such as the exponential function or the multiplication so that

not only the operation is executed, but also a new defined operation. In the case of

automatic differentiation, this would then mean to calculate the analytical derivative of

the operation together with the operation itself. If only the forward mode is used, which

is feasible for smaller optimisation problems, the implementation is very straightforward.

One such implementation for automatic differentiation in forward mode with C++, used

in the lattice Boltzmann context, was presented by Krause et al. [136, 137].

A very related approach to the reverse mode automatic differentiation is the adjoint

approach [134], which is based on a mathematically rigorous foundation.
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4.3.3 Adjoint approach

The adjoint approach is the most efficient method, as the computational complexity stays

constant [9], but it is the most complicated to derive and implement [118].

Here, first the general idea for finite dimensional case, then the formulation for function

spaces are given, where similar to the automatic differentiation approach the chain rule

is used. Let J : Rm ×Rn → R and R : Rm ×Rn → Rm, and f(α) be the unique solution

of R(f,α) = 0.

Using the objective function J(f(α),α) and the side condition R(f(α),α) = 0 and apply

the chain rule

dJ

dα
=
∂J

∂f

df

dα
+
∂J

∂α
, (4.25)

dR

dα
=
∂R

∂f

df

dα
+
∂R

∂α
= 0. (4.26)

Thus, if ∂R
∂f

is invertible, then (4.26) can be solved for df
dα

and used for the gradient of J

dJ

dα
= −∂J

∂f

∂R

∂f

−1∂R

∂α
+
∂J

∂α
.

With this, the quite complicated operator df
dα

, which is the total derivative of the solution

operator with respect to the control, can be substituted to relatively easy to derive partial

derivatives.

Now, defining ϕ>
def
= −∂J

∂f
∂R
∂f

−1
leads to

dJ

dα
= ϕ>

∂R

∂α
+
∂J

∂α
, (4.27)

where ϕ is the solution of the adjoint equation

∂R

∂f

>
ϕ = −∂J

∂f

>
. (4.28)

This is a linear equation in ϕ, and the computationally expensive inversion of ∂R
∂f

is

avoided. The function ϕ is called Lagrangian multiplier. This allows that for α ∈ Rn

only two equations need to be solved, regardless of the number of variables n ∈ N. More

complicated are derivation and discretisation, see Chapter 5. Another advantage is the

similar structure of the adjoint equation and the side condition. This can lead to a similar

discretisation and solving strategies, see for example Krause et al. [29].
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Adjoint approach in function spaces

For the optimal control problem considered in this thesis, the concept of the adjoint

approach is transferred to a function space setting (cf. [27]). For this, consider the optimal

control problem (4.1), with J : Y × U → R, R : Y × U → Z, continuous Fréchet-

differentiable operators between Banach spaces, with Wad ⊂ W
def
= Y × U nonempty

and closed. Further, let DfR (f(α), α) ∈ L(Y, Z) be continuously invertible. Taking the

derivative of R(f(α), α) = 0 yields

DyR (y(α), α) f ′(α) +DαR(f(α), α) = 0. (4.29)

Using the duality pairing 〈·, ·〉X∗,X for Banach space X and its dual space X∗, then the

directional derivative of J in direction h ∈ U reads

〈
J ′(f(α), α), h

〉
U∗,U

=
〈
DfJ(f(α), α), f ′(α)h

〉
Y ∗,Y

+
〈
DαJ(f(α), α), h

〉
U∗,U

(4.30)

=
〈
f ′(α)∗DfJ(f(α), α), h

〉
U∗,U

+
〈
DαJ(f(α), α), h

〉
U∗,U

. (4.31)

Thus, as the direction h is arbitrary, the derivative of J reads

J ′(f(α), α) = f ′(α)∗DfJ(f(α), α) +DαJ(f(α), α). (4.32)

Using (4.29) and (4.32), the derivative of J can be determined using

J ′(f(α), α) = DαR(f(α), α)∗ϕ(α) +DαJ(f(α), α), (4.33)

where ϕ = ϕ(α) ∈ Z∗ solves

DfR(f(α), α)∗ϕ = −DfJ(f(α), α). (4.34)

With this the following optimality system can be derived.

Theorem 4.3 (Optimality system). Let
(
f(ᾱ), ᾱ

)
∈ Wad be a local optimal solution

of (4.2) and DfR(f(ᾱ), ᾱ) ∈ L(Y, Z) be a bijection, then there exists ϕ ∈ Z∗ with

R(f(ᾱ), ᾱ) = 0, (4.35a)

DfR(f(ᾱ), ᾱ)∗ϕ = −DfJ(f(ᾱ), ᾱ), (4.35b)

DαR(f(ᾱ), ᾱ)∗ϕ = −DαJ(f(α), ᾱ). (4.35c)

Proof. See for example [119].
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Lagrangian formalism

Another and convenient way to derive the optimality system (4.35) is by defining a so-

called Lagrangian L : Y × U × Z∗ → R with

L(f, α, ϕ) = J(f, α) + 〈ϕ,R(f, α)〉Z∗,Z . (4.36)

With it, the adjoint equation is to find ϕ = ϕ(α) such that

DfL(f(α), α, ϕ) = 0, (4.37)

and thus using ϕ(α) from (4.37) the gradient of J reads

J ′(f(α), α) = DαL(f(α), α, ϕ(α)). (4.38)

For finite dimensional problems the biggest difference is that now the standard scalar

product is used and the dual operator is now a transposed vector. Thus,

L(f, α, ϕ) = J (f(α), α) + ϕ>R (f(α), α) , (4.39)

where the adjoint equation (4.28) is derived calculating ∂L
∂f

= 0 and the gradient (4.27)

by calculating ∂L
∂α

= 0.

Although it is very practical, the use of Lagrangian formalism must be well reasoned, as

it must be ensured that not only the prerequisites are met, but also that the functional is

differentiable and the adjoint operators exist in the correct spaces [118, 119]. Nonetheless,

the method is very easy applicable and can give some understanding or hint to the adjoint

equations. In Chapter 5 the formal Lagrange technique proposed by Tröltzsch [118] is used

to derive the adjoint equations beforehand and then choose the right corresponding spaces.
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Chapter 5

Combining measurement and

simulation

Here, first the equations of the CFD-MRI method are presented, that is objective function

and side condition. In order to solve the resulting optimisation problem the corresponding

adjoint problem and optimality condition, and with it the gradient, is derived. Using a

similar technique to the lattice Boltzmann method (cf. Section 2.3), the adjoint lattice

Boltzmann method [136] is applied to discretise the adjoint problem. Then a projection

method is proposed to link the control of the problem with the underlying porous me-

dia model of the side condition. Finally, the complete procedure for the CFD-MRI is

presented.

The method and its results, with the exception of the derivation of the equations, have

been published in [1–3, 30].

5.1 Objective function

The MRI data considered here is a time averaged image of a steady state flow denoted

as u∗ : Ω → Rn, where Ω ⊂ Rd is the observed flow domain and d, n ∈ N the dimension

of the spatial domain and velocity domain. The state, which will be the result of a

fluid simulation, is denoted by u : Ω → Rd. In applications it is possible that MRI

data are only available with one velocity component (n = 1), show only a section of the

entire measurement experiment (ΩMRI ⊂ Ω) or are only 2D spatially resolved (d = 2).

All different combinations of information being available will be studied by numerical

experiments in Chapters 6 to 8.
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To measure the difference between data and state, an objective function J : Uad → R is

sought. Here Uad denotes the set of admissible controls α ∈ Uad that determine the state

u. An intuitive approach of the measure is using∫
Ω

|u− u∗| dx, (5.1)

but the problem of this objective function is the L1 structure, which leads to a convex

but not necessarily differentiable functional [138]. A common choice is the use of a L2

norm, due to the Hilbert space structure of L2. Therefore the chosen objective function

measures the L2 distance from the measured flow field to the state

1

2

∫
Ω

(
u− u∗

)2
dx. (5.2)

The factor of one-half is only used for simplicity’s sake, such that it vanishes when con-

sidering the derivative, it does not change the optimisation process.

5.2 Side condition

Without any side condition, a solution to minimise the above objective function would be

u≡u∗. This is neither wanted nor suitable, as the measurement u∗ is contaminated by

noise. Therefore the side condition should consider this and at best not allow any noise

in the solution.

The MRI data is a measurement of fluid flow which can be described by conservation of

mass and momentum (cf. Chapter 2). The noise in the data on the other hand does not

fulfil these conservation laws, as it is mainly random fluctuation (cf. Chapter 3). Thus the

natural choice of the side condition is to allow only those solutions u that satisfy these

fundamental laws of fluid flow. Using this, noise can be eliminated and the procedure

can be seen as a Navier–Stokes filter for MRI data, in the sense that it only allows those

solutions that are close to the measured, noisy field but fulfil the macroscopic conservation

laws.

As seen in Chapter 2 there are different possible choices to model fluid flow. Here we

focus on the BGK-Boltzmann equation. Using the lattice Boltzmann method the BGK-

Boltzmann equation leads to very efficient and highly parallel algorithms, which numeri-

cally solve the underlying fluid flow problem and thus ensure the conservation laws in the

macroscopic setting [59].
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5.3 CFD-MRI optimal control problem

The CFD-MRI method is formulated as topology optimisation problem which minimises

the L2 distance from given to computed fluid field, where the latter is based on the porous

media BGK-Boltzmann equation.

Considering a domain Ω ⊂ R3, time interval I = [0, T ] for some T > 0, and velocity space

Ξ ⊆ R3, the CFD-MRI problem is written as

min J(f, α)
def
=

1

2

∫
Ω

(
uf (T,x)− u∗(x)

)2
dx (5.3)

subject to

∂f

∂t
+ ξ · ∇xf = −1

τ
(f − f eq

α ) in Σ
def
= I × Ω× Ξ, (5.4a)

f(t,x, ξ) = f(t,x,−ξ) on Γ
def
= I × ∂Ω× Ξ, (5.4b)

f(0,x, ξ) = f0(x, ξ) in Ω× Ξ, (5.4c)

with the Maxwellian distribution function

f eq
α (t,x, ξ) =

ρf (t,x)

(2πRT )3/2
e−

1
2RT
|ξ−α(t,x)uf (t,x)|2 . (5.5)

The macroscopic quantities of density and velocity can be derived by

ρf (t,x) =

∫
Ξ

f(t,x, ξ) dξ, uf (t,x) = ρ−1
f

∫
Ξ

ξf(t,x, ξ) dξ. (5.6)

The control α : I × Ω→ R thereby should satisfy

0 ≤ α(t,x) ≤ 1 a.e. in I × Ω, (5.7)

and enters the Maxwellian distribution function to be able to model porous media, as

shown in Section 2.3.3. The system (5.3)–(5.7) is the optimal control problem for CFD-

MRI and used in this thesis.

5.4 Adjoint CFD-MRI problem

In order to solve the optimal control problem (5.3)–(5.7), the adjoint approach presented

in Section 4.3.3, employing the formal Lagrange technique [118], is used.

59



Let α ∈ Uad
def
= {α ∈ L2(I × Ω) : 0 ≤ α(t,x) ≤ 1 a.e. in Σ} and Y

def
= {f ∈ L2(Σ) : ∂tf ∈

L2(Σ), ∇xf, ξ ·∇xf ∈ L2(Σ), f, ξf ∈ L1(Ξ), ξ ∈ Ξ}. Further, it is assumed that for any

α ∈ Uad there exists a unique solution f(α) ∈ Y with R(f, α) = 0, where the latter is the

residual form of (5.4).

Definition 5.1. For problem (5.3)–(5.4) the Lagrangian L : Y × Uad × Y → R is defined

as

L(f, α, ϕ) =
1

2

∫
Ω

(
uf (T,x)− u∗(x)

)2
dx

+

∫
Σ

ϕ1(t,x, ξ)
(
∂tf + ξ · ∇xf +

1

τ
(f − f eq

α )
)

(t,x, ξ) dt dx dξ

+

∫
Γ

ϕ2(t,x, ξ)
(
f(t,x, ξ)− f(t,x,−ξ)

)
dt ds(x) dξ,

(5.8)

with Lagrangian multiplier ϕ = (ϕ1, ϕ2).

From the Lagrangian principle it follows that for an optimal solution (f̄ , ᾱ) it holds that

DfL(f̄ , ᾱ, ϕ)(f − f̄) ≥ 0 for every sufficiently smooth f with f(0, ·, ·) = f0. Redefining

f
def
= f − f̄ it follows DfL(f̄ , ᾱ, ϕ)f = 0 for every f with f(0, ·, ·) = 0 (cf. [118]).

5.4.1 Derivation of the adjoint problem

The adjoint problem is derived by setting the partial derivative of the Lagrangian with

respect to the state to zero, i.e. DfL(f̄ , ᾱ, ϕ)f = 0, see Section 4.3.3.

Using the Lagrangian (5.8) it follows for h ∈ Y

DfL(f, α, ϕ)h = DfJ(f, α, ϕ)h

+

∫
Σ

(
Df (∂tf)h+Df (ξ · ∇xf)h

)
dt dx dξ

+

∫
Σ

1

τ

(
Dffh−Dff

eq
α h
)

dt dx dξ

+

∫
Γ

Df

(
f(t,x, ξ)− f(t,x,−ξ)

)
h dt ds(x) dξ.

(5.9)

In the following the needed partial derivatives with respect to the state of certain quan-

tities, like the moments, the equilibrium distribution and the objective functions are

derived.
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Proposition 5.1 (Linear derivatives). For h ∈ Y the derivatives of the linear terms of

the Lagrangian (5.9) are

Dffh = h, (5.10)

Dfρfh =

∫
Ξ

h dξ, (5.11)

Df (ρfuf )h =

∫
Ξ

ξh dξ, (5.12)

Df

(
∂tf + ξ · ∇xf

)
h = ∂th+ ξ · ∇xh. (5.13)

Proof. The moments ρf and ρfuf are linear operations and thus the derivative is the

operator itself (cf. Chapter 4). To see this, let ρ(f)
def
= ρf =

∫
Ξ
f dξ be the density

moment depending on the distribution function f . Using the definition of the directional

derivative (4.4) yields

Dfρfh = lim
t→0

1

t

(
ρ(f + th)− ρ(f)

)
= lim

t→0

1

t

(∫
Ξ

f + th dξ −
∫

Ξ

f dξ

)
= lim

t→0

1

t

(∫
Ξ

th dξ

)
=

∫
Ξ

h dξ.

Similar, using ρu(f)
def
= ρfuf =

∫
Ξ
ξf dξ, i.e. the momentum moment with respect to f

and thus

Df (ρfuf )h = lim
t→0

1

t

(
ρu(f + th)− ρu(f)

)
= lim

t→0

1

t

(∫
Ξ

ξ(f + th) dξ −
∫

Ξ

ξf dξ

)
=

∫
Ξ

ξh dξ.

The same holds for the time and convective derivative, i.e.

Df

(
∂tf + ξ · ∇xf

)
h = ∂th+ ξ · ∇xh,

Dffh = h.

With this the derivatives of the non-linear terms can now be computed, which are sum-

marised in the following Lemma.
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Lemma 5.1 (Non-linear derivatives). For h ∈ Y the derivatives of the non-linear terms

of the Lagrangian (5.9) are

Dfufh =

∫
Ξ

ξ − uf
ρf

h dξ,

DfJh =

∫
Ω

∫
Ξ

(uf − u∗)>(ξ − uf )
ρf

h dξ dx,

Dff
eq
α h =

∫
Ξ

f eq
α

ρf

(
1 +

α

RT
(ξ − αuf )>(ξ̂ − uf )

)
h dξ̂.

Proof. For the velocity it holds uf =
ρfuf
ρf

and thus

Dfufh = Df

(
ρfuf
ρf

)
h

=
Df (ρfuf )hρf − ρfufDfρfh

ρ2
f

=

∫
Ξ

ξ − uf
ρf

h dξ.

With the derivative of the velocity above it follows

DfJh = Df

(
1

2

∫
Ω

(uf − u∗)2 dx

)
h

=

∫
Ω

(uf − u∗)>Dfufh dx

=

∫
Ω

∫
Ξ

(uf − u∗)>(ξ − uf )
ρf

h dξ dx.

For the equilibrium distribution function the derivative of the density and velocity are

needed and therefore

Dff
eq
α h = Df

(
ρf

(2πRT )3/2
e−

1
2RT
|ξ−αuf |2

)
h

= Dfρfh
f eq
α

ρf
+ f eq

α Df

(
− 1

2RT
|ξ − αuf |2

)
h

= Dfρfh
f eq
α

ρf
+ f eq

α

1

RT
(ξ − αuf )>αDfufh

=

∫
Ξ

f eq
α

ρf

(
1 +

α

RT
(ξ − αuf )>(ξ̂ − uf )

)
h(ξ̂) dξ̂.
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Using the derivatives presented in Lemma 5.1 it follows

DfL(f̄ , ᾱ, ϕ)f =

∫
Ω

∫
Ξ

(
uf̄ (T )− u∗

)>(
ξ − uf̄ (T )

)
ρf̄ (T )

f(T )

+

∫
Σ

(
ϕ1∂tf + ϕ1(ξ · ∇xf) +

1

τ
ϕ1f

)
− 1

τ

∫
Σ

∫
Ξ

ϕ1(ξ̂)
f̄ eq
ᾱ (ξ̂)

ρf̄

(
1 +

α

RT
(ξ̂ − αuf̄ )>(ξ − uf̄ )

)
dξ̂︸ ︷︷ ︸

def
= ϕeq

α (ξ)

f(ξ)

+

∫
Γ

ϕ2

(
f(t,x, ξ)− f(t,x,−ξ)

)
.

(5.14)

Here the differentials were omitted for better readability. Using integration by parts and

Greens formula, the time and the convective differential operator can be transferred to

the Lagrangian multiplier. The other operations are linear and therefore do not need to

be modified. With a collection of matching integration domains this then leads to

DfL(f̄ , ᾱ, ϕ)f =

∫
Ω

∫
Ξ

(
uf̄ (T )− u∗

)>(
ξ − uf̄ (T )

)
ρf̄ (T )

f(T )

+

∫
Ω

∫
Ξ

ϕ1(T )f(T )

+

∫
Σ

(
−∂tϕ1 − (ξ · ∇xϕ1) +

1

τ
(ϕ1 − ϕeq

α )

)
f

+

∫
Γ

(
ξ · nϕ1f + ϕ2

(
f(t,x, ξ)− f(t,x,−ξ)

))
.

(5.15)

For an optimal solution it follows that (5.15) must be equal to zero for every f . Now

assuming that f ∈ C∞0 (Σ), it follows f |Γ = 0 on and f(T ) = 0, and thus∫
Σ

(
−∂tϕ1 − ξ · ∇xϕ1 +

1

τ
(ϕ1 − ϕeq

α )

)
f = 0 ∀f.

Assuming C∞0 (Σ) is dense in L2(Σ) it follows

−∂tϕ1 − ξ · ∇xϕ1 = −1

τ
(ϕ1 − ϕeq

α ) in I × Ω× Ξ.

Now, let f(T ) 6= 0, this leads to

∫
Ω

∫
Ξ

(
ϕ1(T ) +

(
uf̄ (T )− u∗

)>(
ξ − uf̄ (T )

)
ρf̄ (T )

)
f(T ) = 0 ∀f.

As f(T ) is arbitrary, and assuming the possible values are dense in L2(Ω×Ξ) (cf. [118]),
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it follows

ϕ1(T ) = −
(
uf̄ (T )− u∗

)>(
ξ − uf̄ (T )

)
ρf̄ (T )

in Ω× Ξ.

With the same arguments and for f |Γ 6= 0 the remaining term leads to (cf. Krause [136])

ϕ1 = ϕ2
def
= ϕ and

ϕ(t,x, ξ) = ϕ(t,x,−ξ) on I × ∂Ω× Ξ.

Now the adjoint system of the optimal control problem for CFD-MRI is derived. This is

summarised in the next theorem.

Theorem 5.1 (Adjoint problem). The adjoint problem of (5.3)–(5.4) is

−∂ϕ
∂t
− ξ · ∇xϕ = −1

τ
(ϕ− ϕeq) in I × Ω× Ξ, (5.16a)

ϕ(t,x, ξ) = ϕ(t,x,−ξ) on I × ∂Ω× Ξ, (5.16b)

ϕ(T ) = −
(
uf (T )− u∗

)>(
ξ − uf (T )

)
ρf (T )

in Ω× Ξ, (5.16c)

with ϕeq
α (ξ) = ρ−1

f

∫
Ξ
ϕ(ξ̂)f eq

α (ξ̂)
(
1 + α

RT
(ξ̂ − αuf )>(ξ − uf )

)
dξ̂.

Note, if the objective function (5.3) would be a function of time, i.e. without a steady

state solution, the derivative of the objective function would not be a part of the initial

condition, but rather the adjoint equation (5.16a), with the initial condition (5.16c) then

being ϕ(T ) = 0, see Krause [136].

Now that the adjoint system is derived, the derivation of the optimality condition comes

next. This is not only one of the necessary conditions for optimal solutions, but also needed

to calculate the gradient in order to solve the optimal control problem, as demonstrated

in Chapter 4.

5.4.2 Derivation of the optimality condition

The optimality condition can be derived using the Lagrangian method, see Section 4.3.3,

and reads DαL(f̄ , ᾱ, ϕ)(α− ᾱ) ≥ 0. Again, from now on the differentials are omitted for

better readability.
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Since only the equilibrium distribution function depends on the control, it follows

DαL(f, α, ϕ)h = Dα

(∫
Σ

ϕ
(
∂tf + ξ · ∂xf +

1

τ
(f − f eq

α )
))
h

= −1

τ

∫
Σ

ϕDαf
eq
α h,

where the derivative of the equilibrium distribution function with respect to the control

is

Dαf
eq
α h = Dα

(
ρf

(2πRT )3/2
e−

1
2RT
|ξ−αuf |2

)
h

= −f eq
α Dα

(
1

2RT
|ξ − αuf |2

)
h

=
1

RT
f eq
α

(
ξ − αuf

)>
ufh.

Theorem 5.2 (Optimality condition). Using the above the optimality condition for system

(5.3)–(5.4) can be derived as

DαL(f̄ , ᾱ, ϕ)(α− ᾱ) = − 1

τRT

(∫
Σ

ϕf̄ eq
ᾱ

(
ξ − ᾱuf̄

)>
uf̄

)
(α− ᾱ) ≥ 0. (5.17)

With this the gradient of the objective function can be written as

J ′(f, α) = − 1

τRT

∫
Ξ

ϕ(ξ)f eq
α (ξ)

(
ξ − αuf

)>
uf dξ. (5.18)

Note that only the dependency on velocity is shown here, for easier readability.

5.5 Discretisation

In order to solve the adjoint system numerically, a discretisation scheme must be applied,

very similar to Section 2.3. This discretisation strategy is called adjoint lattice Boltzmann

method (ALBM) and proposed by Krause et al. [136, 137].

As seen in the previous section, the gradient of the objective function (5.3) with side

condition (5.4) can be calculated by

J ′(f, α) = − 1

τRT

∫
Ξ

ϕ(ξ)f eq
α (ξ)

(
ξ − αuf

)>
uf dξ,
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where ϕ is the solution of the adjoint problem

−∂ϕ
∂t
− ξ · ∇xϕ = −1

τ
(ϕ− ϕeq) in I × Ω× Ξ,

ϕ(t,x, ξ) = ϕ(t,x,−ξ) on I × ∂Ω× Ξ,

ϕ(T ) = −
(
uf (T )− u∗

)>(
ξ − uf (T )

)
ρf (T )

in Ω× Ξ,

with adjoint equilibrium distribution function ϕeq
α (ξ) = ρ−1

f

∫
Ξ
ϕ(ξ̂)f eq

α (ξ̂)
(
1 + α

RT
(ξ̂ −

αuf )
>(ξ − uf )

)
dξ̂.

Like for the BGK-Boltzmann equation a discrete space Ih × Ωh × Q has to be chosen,

denoted as DdQq with d the dimension and q the number of discrete velocities in Q ⊂ Ξ.

For the ALBM D3Q19 is used here, like for the LBM in Section 2.3. Note that by using

the first-optimise-then-discretise approach the discretisation model could also be used

differently to the forward problem [136].

In a very similar manner to the LBM in Section 2.3 an iterative algorithm can be derived,

which is executed step by step but for decreasing t ∈ Ih. With ϕi(t,x)
def
= wi

ω(ci)
ϕ(t,x, ci)

the adjoint lattice Boltzmann equation thus reads

ϕi(t−4t,x− ci4t) = ϕi(t,x)− 4t
τ

(
ϕi(t,x)− ϕeq

i (t,x)
)
, (5.20)

for all x ∈ Ωh and every i = 0, 1, ..., q − 1 and with adjoint initial condition for t = T

ϕi(T ) = −
(
uf (T )− u∗

)>(
ci − uf (T )

)
ρf (T )

.

Thereby the moments, uf , and ρf , are computed by the same quadrature rule as for the

forward problem, i.e. the LBE, and the microscopic velocity ξ is replaced by the quadra-

ture nodes ci for i ∈ {0, 1, . . . , q−1}. For the adjoint equilibrium distribution function ϕeq
α

the exponential function of f eq
α is employed to apply Gauss–Hermite quadrature, where

the remaining terms are combined to a polynomial function. This polynomial function

has the same degree as used for the moments of the LBE, thus the quadrature can be

expected to be of the same quality. The discrete adjoint equilibrium distribution function

ϕeq
i (t,x)

def
= ϕeq(t,x, ci) can therefore be derived as

ϕeq
i = ρ−1

f

q−1∑
j=0

ϕjf
eq
j,α

(
1 +

α

c2
s

(cj − αuf )>(ci − uf )
)
, (5.21)

with the quadrature weights collected in f eq
j,α as before and RT

def
= c2

s. The same can be
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applied for the gradient for which the discrete version is thus given by

J ′h = − 1

τc2
s

q−1∑
i=0

ϕif
eq
i,α

(
ci − αuf

)>
uf . (5.22)

Because the boundary conditions are all of Dirichlet type the bounce back condition is

employed which has the same formulation as for the LBE [136].

By comparing the LBE (2.74) with the adjoint equation (5.20), the similarity can be

seen immediately. The biggest differences are the temporal progression and the initial

condition. However, the structure is identical, like the locality of the collision, which

leads to the fact that the same highly parallelisable implementation can be used [139].

For a more detailed description of an efficient implementation [30] is recommended.

5.6 Projection

In topology optimisation problems of fluid flows, the porous medium is often introduced

by a force

f = −β(ρ)u, (5.23)

where β(ρ) ∈ R is modelled as inverse permeability, or porosity, and a function of the

density ρ. For this, most often interpolation functions are used [10, 16, 20, 140, 141],

where one caveat is the presence of many user-defined parameters which are not physically

motivated.

These aforementioned works consider the extreme cases, i.e. pure solid or fluid nodes, but

the intermediate values can also be linked to permeability of the domain. Here, a projec-

tion method is proposed which maps the control to the feasible set and at the same time

using the structure of the porous media BGK-Boltzmann equation (5.4). Consequently,

the unbounded optimisation method shown in Algorithm 2 can be used.

The results of this section have been published in [2].

5.6.1 Grid dependency of control

In the model used here, the parameter that controls the topology in the domain is porosity

dh ∈ [0, 1] [12], but as shown in Section 2.3.3 the porosity dh ∈ [0, 1] is related to the
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permeability K by

dh = 1− 4x
2ντ

K
def
= 1− Gh

K
,

(5.24)

and by this, the porosity is highly grid dependent (cf. Figure 5.1). Thus using the porosity
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Figure 5.1: Connection of permeability and porosity for the same setup as in Figure 5.2.
The same porosity will lead to different permeability values for different resolutions N =
1/4x, i.e. number of nodes per side length of 1 m.

as control can lead to unwanted parameter tuning. Porosity is only a design parameter in

porous media simulations, however, the permeability K is the grid-independent parameter

which determines the flow behaviour, as shown in the following test case.

5.6.2 Grid independency of permeability

In order to show the grid independence of the permeability a test case is constructed,

where the flow through a porous domain is analysed. The domain Ω ⊂ R3 is a cubic

domain from (0, 0, 0)>m to (1, 1, 1)>m, with a smaller porous domain D ⊂ Ω which has

a given permeability K and extents from (0.3, 0.3, 0.3)>m to (0.7, 0.7, 0.7)>m. For the

setup see Figure 5.2. The boundary conditions are set to constant flow with 1 m/s at the

front y = 0 and back y = 1. Bounce back is set on the remaining walls. The flow has

a kinematic viscosity of 0.1 m2/s. To analyse the flow for different permeabilities K, the

relative velocity, averaged in domain D, denoted as urel
K is considered, i.e.

urel
K

def
=
||uK ||L2(D)

||u∞||L2(D)

. (5.25)
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Here uK is the velocity in domain D with given permeability K, and therefore u∞ is the

flow for pure fluid domains, i.e. dh = 1.
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(a) Test case
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(b) Permeability grid independence

Figure 5.2: Test case for the grid independence study for the permeability. Left, the
setup is shown. Right, the results of the test case. The flow is analysed using the relative
velocity averaged inside the porous domain D for different resolutions N .

The test case shows that permeability determines the behaviour of the flow, and is grid

independent at that. The resulting plot (Figure 5.2a), also shows a symmetric behaviour in

logarithmic representation. Therefore, coupling the control to the permeability indicates

to be a more suitable choice, as it directly gives the sensitivity of the flow with respect to

the control.

5.6.3 Constructing a projection

By (5.24) for the porosity being between 0 and 1 the permeability K has to be in the

interval [Gh,∞). Thus to couple the control with the permeability a sub-projection is

needed for which p : R→ [0,∞) with K 7→ p(α) +Gh holds. Therefore the porosity value

depending on control can be written as

dh(α) = 1− Gh

p(α) +Gh

=
p(α)

p(α) +Gh

.

(5.26)

For the CFD-MRI method the following projection, P ∈ C∞(R), is proposed

P :

R→ (0, 1)

α 7→ Pα
def
=

eα

eα +Gh

,
(5.27)
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where Gh = 4x2νhτh.

Using this projection the control is now directly mapped to permeability and thus grid-

independent, see Figure 5.3.
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Figure 5.3: Connection of permeability and control.

Using the proposed projection an unbounded optimisation method can be used, and the

control now has a structure which is consistent with the porous media model. Note,

for Gh = 1 this projection is the sigmoid function often used as activation function in

artificial neural networks [142]. Since the sigmoid function and the proposed projection

are equivalent up to translation, the sigmoid function can be used if the start value is

chosen on the basis of permeability. This can be much easier since the grid term Gh does

not have to be computed and used.

5.7 CFD-MRI procedure

With the results of Section 2.3 and Section 5.5 and using a line search method with Wolfe

conditions (Algorithm 2) the procedure of CFD-MRI is presented as follows.

First an MRI measurement of the experimental setup is carried out, e.g. the flow around

or through an object in a pipe. The external geometry, here e.g. the pipe dimension,

as well as the properties of the fluid and the used inflow velocity, are then used for the

simulation. The internal structure is not known at first, but is found automatically by

the CFD-MRI method. Note that the same applies to the MRI measurement, where only

the object, the properties of the used fluid, and the inflow velocity is known. The interior

only becomes visible through the measurement itself. So the same knowledge is available
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for the setup of measurement and simulation.

For CFD-MRI, first a starting value for the optimisation is selected, which is sensitive with

regard to the underlying porous media model. Next, the simulation is carried out and the

resulting flow field is compared with the MRI data using the objective function. The result

of this evaluation then leads to a change in the starting value for a better approximation.

This is done using the line search method, which requires the gradient of the objective

function. To calculate the gradient, the adjoint problem is solved, which receives the

results of the simulation as input data. This loop of simulation, adjoint problem and line

search is repeated until the objective function is minimised. The procedure is summarised

in Algorithm 3.

Algorithm 3 CFD-MRI

Get MRI data
Set outer-geometry, inflow velocity, and viscosity for the simulation based on the ex-
perimental setup
repeat

Run simulation using a lattice Boltzmann equation (2.74)
Calculate difference from simulation and measurement by (5.3)
Solve an adjoint lattice Boltzmann equation (5.20) to get the gradient by (5.22)
Update the control using line search by Algorithm 2
Project control to porosity by (5.27)

until Simulation matches MRI data
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Chapter 6

Application of CFD-MRI to a flow

MRI measurement

In this chapter the proof of concept of the CFD-MRI method applied to MRI data is

presented. The aim is to demonstrate the feasibility of the method and to conduct pre-

liminary qualitative analyses.

This chapter is a revised version of [1] and summarises its main results.

6.1 MRI experimental setup

The experimental setup is a flow of isopropanol around a cylindrical object in a pipe using

a chromatographic pump with minimal pulsation to ensure a stationary flow field. The

experiment was performed by Pro2NMR of Karlsruhe Institute of Technology (KIT) on a

200 MHz super wide bore MRI instrument by Bruker, Biospin GmbH equipped with an

Avancce HDIII console and gradients up to 1 T/m for the imaging and flow encoding. To

greatly reduce the measurement time, only 2D spatially resolved flow images were acquired

in a measurement time of several minutes. The MRI data consists of 100×255 data points,

containing only the velocity component in the direction of the flow, see Figure 6.1.

6.2 Simulation setup

The simulation is set up to match the MRI experiment. The domain is a pipe with length

of 25.5 × 10−3 m and radius of 4.0 × 10−3 m. The fluid has a density of ρ = 768 kg/m2
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Figure 6.1: MRI data of a flow around a cylindrical object acquired by Pro2NMR at KIT.

and kinematic viscosity of ν = 2.798 × 10−6 m2/s corresponding to the properties of iso-

propanol. At the inflow a Poiseuille profile with maximum velocity of 3.6×10−3 m/s, and

at the outflow a constant pressure, i.e. free outflow, is chosen. The remaining boundaries

are set to bounce back boundary conditions, i.e. no slip. The simulation domain is dis-

cretised by 100× 255× 100 nodes, matching the MRI data in the plane. The relaxation

time for LBM is chosen to be τ = 0.57.

For the optimisation the controls are set to α = −19, which relates to a permeability of

around K = 5.68× 10−9 m2, in a cylindrical domain of length 4.0× 10−3 m and radius of

2.0× 10−3 m starting at y = 11.0× 10−3 m, see Figure 6.2, where the object is assumed,

and set to be fluid nodes else.

The MRI data being only 2D spatially resolved, and having only one velocity component

pose the two biggest challenges for the CFD-MRI method. For this, the objective domain

ΩJ is reduced to the location of the MRI data, i.e. the x–y plane at z = 4.0 × 10−3 m.

And the objective function is reduced to only account for the y−velocity of the flow, i.e.

J(α) =
1

2
||uy(α)− u∗||2L2(ΩJ ). (6.1)

Here uy denotes the y−component of the simulated velocity, and u∗ the corresponding MRI

data. The data is provided on the lattice nodes using trilinear interpolation. Additionally,

the implementation was extended to be able to handle data with arbitrary location and

degrees of freedom.

6.3 CFD-MRI results

The value of the objective function, J = 1
2
||uy − u∗||2L2(ΩJ ), starts at 8.63 × 10−2 and is

reduced to 1.56× 10−2 after only five optimisation steps and converges to 0.63× 10−2 at
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Figure 6.2: The simulation domain is a pipe with radius of 4.0 × 10−3 m and length of
25.5 × 10−3 m. The MRI data is located in the x–y plane (left) and indicated by the
dashed line (right). The objective domain ΩJ matches the MRI data. The design domain
D, shown in green, is placed where the object is assumed and starts with a permeability
of around K = 6.1× 10−9 m2.

only twenty-five steps, see Figure 6.3. When comparing the relative error from simulated
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Figure 6.3: Value of the objective function, 1
2
||uy−u∗||2L2(ΩJ ), of MRI data u∗ to CFD-MRI

result uy over the optimisation steps.

to measured velocity, i.e.

||uy − u∗||L2(ΩJ )

||u∗||L2(ΩJ )

, (6.2)

the error starts at 41.50%, is reduced to 22.47% after five steps and ends with 10.87%,

which is a fourfold reduction in relative error. Comparing MRI data with the CFD-MRI

result in Figure 6.4 there is a clear reduction of the measurement noise while at the

same time finding the object in the flow very well. In Figure 6.5 a plot in the middle of

the domain in the y–z plane is shown with simulated and measured velocity. It can be

seen that the measurement noise is significantly reduced and thus the 10.87% error could

indicate the measurement noise. Also, the CFD-MRI result does fulfil conservation laws as

it is the solution of the underlying porous media BGK-Boltzmann equation, which is not

the case for the MRI data. The result of the object identification is shown in Figure 6.6,
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Figure 6.4: Result of the CFD-MRI method applied to the MRI data shown in Figure 6.1.

Figure 6.5: Plot over line in the middle of the long side of the pipe with MRI data and
CFD-MRI result.

with the MRI data in the background and the contour of the object shown as white line.

After only two steps the basic area of the object is found, which gets more precise after

ten steps. The outline of the object in the MRI data is found very precisely after only

twenty-five steps.

(a) Step 0 (b) Step 2 (c) Step 10 (d) Step 25

Figure 6.6: Visualisation of the object identification after 0, 2, 10 and 25 optimisation
steps. In the background the MRI data is shown, the white line is a contour plot of the
object found by the CFD-MRI method.
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6.4 Conclusion

The results of this chapter indicate that the method is able to identify objects in the flow

and at the same time reducing the measurement noise. In order to analyse the method

and validate these results, in Chapter 7 the object identification capabilities are further

studied using simulation data. In Chapter 8 the method is analysed with regard to noise

reduction using synthetic MRI data.

77



78



Chapter 7

Object identification in fluid flow

In this chapter the proposed method is analysed with respect to its object identification

capabilities. The goal is to identify objects present in the flow based only on the velocity

data. Here, two different objects are considered, one with a simple, symmetric and one

with a more complex, asymmetric geometry. Further, the available data will be gradually

reduced in order to analyse the quality of the identification based on the given data.

This is a revised version of [2]. In addition, the Stanford bunny object [143] and the

analysis using binary classification are presented.

7.1 Test case

The test cases consist of a cubical domain Ω of 1 m side length, filled with a fluid with

a density of ρ = 1 kg/m3 and kinematic viscosity of ν = 0.1 m2/s. Boundary conditions

are set to Dirichlet velocity boundaries with 1 m/s in y−direction. The to be identified

solid objects are placed in the middle of the domain. The domain is discretised with

a resolution of N = 104 nodes per 1 m length, resulting in a space discretisation of

4x = 9.62 × 10−3 m and thus 1, 124, 864 lattice nodes. The relaxation time was chosen

as τ = 0.8.

To be able to analyse the method, first a simulation is carried out with a to be identified

solid object, O ⊂ Ω, in the middle of the domain Ω. The lattice-porosities in the domain

are set to solid, i.e. dh(x) = 0 for x ∈ O, and to fluid in the remaining domain, i.e. dh(x) =

1 for x ∈ Ω\O. The resulting flow field uf is then saved as u∗ to be the artificial MRI data.

The CFD-MRI method is then applied to the artificial data as shown in Algorithm 3. For

this the object is discarded and a start value α0 is chosen. Using the proposed projection
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P in (5.27) this control maps to a lattice-porosity value of dh(x) = Pα0 for x ∈ D. For

the remaining domain the lattice-porosity is set dh(x) = 1 for x ∈ Ω \ D. A detailed

description of the test cases are found in Figures 7.1 and 7.11.

The procedure is summarised in Algorithm 4.

Algorithm 4 Object identification test case

Create artificial data
Simulate fluid flow with dh(x) = 0 for x ∈ O and dh(x) = 1 for x ∈ Ω \O
Save the resulting flow data as the solution flow field u∗

Apply CFD-MRI
Choose start value α0 and set dh(x) = Pα0 for x ∈ D and dh(x) = 1 for x ∈ Ω \D
Solve optimisation problem using Algorithm 3 where the MRI data is replaced by u∗

7.2 Classification

Here the binary classification [144] is used to evaluate the performance of object identi-

fication. As the result of the optimisation method is a continuous control, a threshold

is chosen for which the lattice-porosities are either considered solid or fluid [145]. Con-

sidering the predicted versus the actual class of a node, following four outcomes can be

determined, see Table 7.1.

True positive (TP ) Identified as solid is actual solid node
True negative (TN) Identified as fluid is actual fluid node
False positive (FP ) Identified as solid is actual fluid node
False negative (FN) Identified as fluid is actual solid node

Table 7.1: Binary classification outcomes.

For the evaluation of the performance of the classification there exists several mea-

sures [146]. Accuracy is the percentage of right prediction from all outcomes

TP + TN

TP + TN + FP + FN
. (7.1)

Recall measures how many of the actual solid nodes were correctly identified

TP

TP + FN
. (7.2)

Precision is the measure of correct from all predicted solid nodes

TP

TP + FP
. (7.3)
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The Jaccard index is the measure of intersection over union, i.e. for two sets A and B

the Jaccard index is defined as J(A,B)
def
= |A∩B|
|A∪B| [147, 148]. For binary classification this

equals

TP

TP + FP + FN
, (7.4)

and describes the similarity between the identified and the actual object [149, 150]. Note

that all measures above have a range of [0, 1].

7.3 Simple object

x

y

z

1m

0.4m

O

D

0.2m

Ω

Figure 7.1: Setup for the cube identification test case. The object to be identified is a
cube with side length of 0.2 m placed inside the middle of the domain Ω. The design
domain D, where the porosity will be changed, is a cube with side length of 0.4 m.

In this test case (cf. Figure 7.1) the to be identified object O ⊂ D ⊂ Ω is a small cube

with side length of 0.2 m located in the middle of the domain Ω. The design domain

D ⊂ Ω, where the lattice-porosity is changed, is a larger cube with side length of 0.4 m.

The objective value, J(α) = 1
2
||uf (α)− u∗||2L2(Ω), decreases clearly, as seen in Figure 7.2.

Starting from J = 7.23× 10−3 in the first step, the objective value is reduced by a factor

of 635 after only ten steps. And after sixty steps the objective function has value of

J = 7.97 × 10−8 and is thus reduced by the order of 105 in total. For a more intuitive

comparison the relative error from simulated to given flow field

||uf − u∗||L2(Ω)

||u∗||L2(Ω)

, (7.5)

is used. Here, the error starts at 12% and decreases to 0.4% after only ten steps, and
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Figure 7.2: Plot of the objective value, 1
2
||uf − u∗||2L2(Ω), over the optimisation steps.

decreases even further to 0.04% after sixty steps. This shows the clear matching of

simulated to given flow field.

In order to evaluate the object identification performance, first the L2 error in the true

object domain, i.e. ||dh||L2(O), is measured. Since the object was initialised with d∗h = 0

for the data generation, it can be assumed that if the identification is successful, the norm

within the object domain, should tend towards zero. As shown in Figure 7.3, the porosity

0 10 20 30 40 50 60
Optimisation step

10 2

10 1

||d
h||

L2 (
O

)

Figure 7.3: Plot of the porosity norm inside the object domain, ||dh||L2(O), over the
optimisation steps. Note, the true object has a norm of ||d∗h||L2(O) = 0.

norm inside the object domain does indeed decrease but not as fast as the objective value.

The visual representation of the object for different optimisation steps is shown in Fig-

ure 7.4, where the outline of the true object is marked in black. For the graphical visuali-

sation of the numerical results of porosity threshold value of dh = 0.99 is chosen, meaning
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(a) 5 steps (b) 10 steps (c) 25 steps (d) 50 steps

Figure 7.4: Visualisation of the cube identification after 5, 10, 25 and 50 optimisation
steps. The original cube is marked by a black outline. The colour represents lattice-
porosities for dh ≤ 0.99.

every porosity value greater than the threshold is considered fluid and not shown. The

cube can be clearly identified in only ten optimisation steps, with a precise identification

after fifty steps with very low porosity values, indicating a very clear separation between

solid and fluid points. In order to visually evaluate the result in the inside of the domain

Figure 7.5 shows a slice in the y–z plane. It can be seen that even the inside of the cube

is getting more solid not only the outer shell.

(a) 5 steps (b) 10 steps (c) 25 steps (d) 50 steps

Figure 7.5: Results of the cube identification inside the object, shown in a slice of the
cube in the y–z plane after 5, 10, 25 and 50 optimisation steps. The colour represents
lattice-porosities for dh ≤ 0.99.

For a more detailed analysis of how well the object identification works, the above men-

tioned classification measures are used. First, a threshold has to be chosen, which treats

a given porosity value as either solid or fluid. Figure 7.6 shows the classification mea-

sures with respect to the threshold from dh = 0.001 to dh = 0.999. Table 7.2 shows the

measures for selected thresholds in detail. The maximum Jaccard index is found at a

Threshold 0.1 0.5 0.9 0.99 ∅
Accuracy 0.9998 0.9998 0.9998 0.9998 0.9998
Recall 0.9909 0.997 0.9978 0.9987 0.9952
Precision 0.978 0.9778 0.9774 0.9752 0.9776
Jaccard index 0.9694 0.9749 0.9753 0.9740 0.9730

Table 7.2: Classification measures for the object identification with different thresholds
of lattice-porosities for which the resulting object is considered to be solid. And the mean
of 100 threshold values from dh = 0.001 to dh = 0.999.
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Figure 7.6: Classification measures for the cube identification case. The porosity threshold
indicates the value from which the lattice-porosity is considered solid, i.e. dh = 0 for
dh < threshold.

threshold of dh = 0.9 with 97.53%. Recall is highest for a high threshold with 99.87% at

dh = 0.99 in contrast to 99.09% at dh = 0.1. For precision the opposite applies, with the

highest value of 97.80% at dh = 0.1 in contrast to 97.52% for dh = 0.99. Although the

results are very similar for the different thresholds, they show an expected trend. The

higher the threshold is, the more of the object is found, and the lower the threshold is, the

more certain the method is that a given node is solid. For the threshold dh = 0.9, which

corresponds to the highest Jaccard index, the method was able to correctly identify 9241

out of 9261 solid nodes, i.e. a recall of 99.78%. Also, 214 nodes which where identified as

solid were actual fluid, which corresponds to 0.02% with respect to the total number of

nodes. Note that the accuracy is expected to be very high because fluid nodes make up

99.98% of all nodes.

7.3.1 Partial data objectives

It is often the case with MRI that only partial data is available. To analyse the method

in this respect, the objective domain ΩJ ⊂ Ω, i.e. the domain where the objective func-

tional is being evaluated, is gradually reduced. The domains are selected to analyse the

importance of the total available data compared to the localisation of the data. Three

cases are considered here, with 50 percent of the total information being available (Half),

25 percent (Quarter), and 6.4 percent (Object), see Figure 7.7. In the Half and Quarter

cases, the objective domain is located behind the object in flow direction. For the Object

case, the objective domain is reduced to the design domain, which includes the object.

84



z

y

ΩJ

O

0.5m

(a) Half

ΩJ

O

0.25m

(b) Quarter

ΩJ

O

0.4m

0.4m

(c) Object

Figure 7.7: Test cases for partial data objectives. The information for the objective
functional is reduced to a) 50 percent (Half), b) 25 percent (Quarter), and c) 6.4 percent
(Object). Thereby the Half and Quarter domains are behind the object in flow direction,
and the Object domain is around the to be identified object and corresponds to the design
domain.

In [2] also different objective domains can be found.
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Figure 7.8: Left, the objective value and right, the porosity norm in the object domain, for
all partial information cases. The results of the full information case is shown as dashed
line for comparison.

The comparison of objective value and porosity norm for the different cases are shown in

Figure 7.8. The reduction of the objective value for the Half and Object cases follows a

very similar trend to the Full case. In the Quarter case, the objective value falls much

slower at the beginning, but reaches the lowest value among the reduced cases, but it also

starts with the lowest value. The Object case starts and ends with the highest value. This

difference in the objective value for the Object and Quarter case is due to the fact that

in the Quarter case only the flow field outside the Object is available for the calculation

where no major changes are expected. For the Object case, however, exactly that area is

covered where the topology changes. The consideration of the objective value is therefore

a useful indicator for the quality of the optimisation algorithm, but not for the object

identification.
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The porosity norm allows for an easier comparison because the changes are tracked in the

same domain and thus also start with the same values. Here, the Object case has the

lowest value among the partial cases, but is still above the Full case. Although the porosity

norm decreases faster in the Half case than in the Quarter case, the value increases again

after step 43 and both cases end at a similar value after 60 steps.
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Figure 7.9: Classification measures for the partial information cases.

The classification measures for the different partial cases are shown in Figure 7.9. The

Object case has the highest measures over all thresholds. For the Half and Quarter case

precision rises from high to low thresholds and recall decreases. This is expected and was

also found for the Full case above. For the Quarter case the Jaccard index stays around

the same value, where for the Half case it drops for low thresholds.

∅ Half Quarter Object Full
Accuracy 0.9978 0.9966 0.9999 0.9998
Recall 0.783 0.8758 0.9918 0.9952
Precision 0.9355 0.7348 0.9948 0.9776
Jaccard index 0.7237 0.6623 0.9868 0.9730

Table 7.3: Mean classification measures for all information cases over 100 thresholds from
dh = 0.001 to dh = 0.999. The highest measures (bold) are found for the Object and the
Full information cases, and the lowest for the Quarter information case.

Considering the mean values for the classification measures (cf. Table 7.3), the Object case

is above 98% for all measures, and even higher than the Full case, only with the exception

of recall. The Half and Quarter cases have a similar, high mean Jaccard index of 72.37%

and 66.23%, respectively. The Quarter case has the lowest precision with 73.48%, where

the Half case has the lowest recall with 78.83%. For the Half case the highest Jaccard

index was found for dh = 0.57 with 86.67%, for the Quarter case 69.71% for dh = 0.02

and for the Object case 99.08% for dh = 0.78.

In Figure 7.10 the visual representation of the different cases are shown for the last

optimisation step and the highest Jaccard index, where the true object is marked by the

black outline. In the Half case the cubical form of the object is found very well where
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(a) Half (b) Quarter (c) Object

Figure 7.10: Visualisation of the identification results for the partial information cases
with threshold of highest Jaccard index, as shown in Figure 7.9, with a) 86.67% for
dh ≤ 0.57, b) 69.71% for dh ≤ 0.02, and c) 99.08% for dh ≤ 0.78.

the information is available, but in the front, where no velocity information is given, the

geometry is not accurately identified. The same can be found for the Quarter case, where

the method does not identify the correct geometry of the object, but nonetheless classifies

nodes within the correct domain as solid, although no information in that area was given.

The Object case identifies the true shape of the object very well, as was shown by the

classification measures.

This results indicate that the method only finds the correct shape of the object where

information is available, which was expected. But for the cases considered, the method

is also able to detect the approximate position of an object to match the given flow field,

even if information for the object itself is missing. Next, the same analysis is applied to

a more complex object.

7.4 Complex object

The previous section has dealt with a simple, symmetric object. To further investigate the

findings done there, a more complex, asymmetric object is now considered. This object

is the Stanford bunny [143], which is an 3D scan of a ceramic rabbit figurine done by the

Stanford University Computer Graphics Laboratory.

The Stanford bunny is placed in the middle of the same domain Ω as used in the previous

section, but with a larger design domain, consisting of a cube with side length of 0.6 m,

see Figure 7.11. The boundary conditions are the same as above.

The objective value, as shown in Figure 7.12, starts at 5.12 × 10−2 and is reduced by

five-fold after five steps and reaches 4.68×10−6 after sixty steps. This relates to a relative

error for the velocity field, measured in L2 norm, which starts at 32.00% and ends with
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Figure 7.11: Setup for the Stanford bunny identification test case. The object to be
identified is a 3D model of a ceramic rabbit [143], O ⊂ Ω placed inside the middle of the
domain Ω. The design domain D, where the porosity will be changed, is a cube with side
length of 0.6 m.
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Figure 7.12: Plot of the objective value, 1
2
||uf − u∗||2L2(Ω), over the optimisation steps.

0.30% and thus a huge reduction of the error and a clear matching of velocity fields. The

porosity norm inside the true object, ||dh||L2(O), starts at 1.95 × 10−1 and is reduced to

6.99× 10−2 (cf. Figure 7.13), and is a clear reduction.

Figure 7.14 shows the visualisation of the object identification, and after only 5 steps

the outline of the Stanford bunny can be seen, with a clear representation after 50 steps.

Again, like for the Cube identification case, a slice of the inside in the y–z plane is shown

in Figure 7.15. The inside of the domain is getting low porosity values, but in contrast to

the Cube case, there a still high porosity values behind the object in flow direction.

The classification measures (cf. Figure 7.16) show this trend, as high values are given

for high porosity thresholds, which decrease with lower thresholds. This is expected, as
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Figure 7.13: Plot of the porosity norm inside the object domain, ||dh||L2(O), over the
optimisation steps. The true object has a norm of ||d∗h||L2(O) = 0.

(a) 5 steps (b) 10 steps (c) 25 steps (d) 50 steps

Figure 7.14: Visualisation of the Stanford bunny identification after 5, 10, 25 and 50
optimisation steps. The colour represents lattice-porosities for dh ≤ 0.99.

low thresholds would consider the area behind the object in flow direction as fluid nodes.

Comparing the different classification measures for selected porosity thresholds, given in

Threshold 0.1 0.5 0.9 0.99 ∅
Accuracy 0.9798 0.9963 0.9993 0.9987 0.993
Recall 0.4243 0.9003 0.9948 0.9977 0.8087
Precision 0.9888 0.9923 0.984 0.9651 0.9883
Jaccard index 0.4222 0.8941 0.9790 0.9629 0.8002

Table 7.4: Classification measures for the object identification with different thresholds
of lattice-porosities for which the resulting object is considered to be solid. And the mean
of 100 threshold values from dh = 0.001 to dh = 0.999.

Table 7.4, a similar trend to the Cube case can be seen. The highest Jaccard index is given

for dh = 0.9 with 97.90% showing a clear identification of the Stanford bunny. Here, 42455

of 42675 are correctly identified as solid nodes and 689 nodes are falsely classified as solid

nodes, which is 0.06% of all nodes. Higher recall is again present for higher thresholds,

where higher precision is found for lower thresholds. The low recall and Jaccard index for
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(a) 5 steps (b) 10 steps (c) 25 steps (d) 50 steps

(e) 5 steps (f) 10 steps (g) 25 steps (h) 50 steps

Figure 7.15: Results of the Stanford bunny identification inside the object, shown in a
slice of the cube in the y–z plane for a) - d) and in the x–z plane for e) - h) after 5, 10,
25 and 50 optimisation steps. The colour represents lattice-porosities for dh ≤ 0.99.
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Figure 7.16: Classification measures for the Stanford bunny case. The porosity threshold
indicates the value from which the lattice-porosity is considered solid, i.e. dh = 0 for
dh < threshold.

dh = 0.1 are due to the high porosity values in the slipstream of the object.

7.4.1 Partial data objectives

Again the object identification is tested for partially available data. The Half case, where

the objective domain ΩJ is reduced to 50 percent, the Quarter case, where it is reduced to

25 percent and the Object case with 21.6 percent of the total domain, shown in Figure 7.17.
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Figure 7.17: Test cases for the Stanford bunny partial data objectives. The information
for the objective functional is reduced to a) 50 percent (Half), b) 25 percent (Quarter),
and c) 21.6 percent (Object). Thereby the Half and Quarter domains are behind the
object in flow direction, and the Object domain is around the to be identified object and
corresponds to the design domain.
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Figure 7.18: Left, the objective value and right, the porosity norm in the object domain,
for all partial information cases. The results of the full information case is shown as
dashed line for comparison.

The results for the objective function and the porosity norm are very similar to the Cube

identification case. The Objective value is reduced by the same amount for every case,

showing that the optimisation method works very well. For the porosity norm inside the

true object domain, the lowest porosity-values are given for the Object case, followed by

the Full, Half and Quarter case. In contrast to the Cube identification case where Half

and Quarter case had about the same porosity values in the last optimisation step, here

the Half case has clearly lower porosity values than the Quarter case.

Figure 7.19 shows the classification measures based on the thresholds for the partial

objective cases. A similar trend is seen for the three cases, where recall and Jaccard index

decrease for lower porosity thresholds. Precision stays roughly constant but at different

values, but is significantly lower for the Quarter case. The Object case has the highest
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Figure 7.19: Classification measures for the partial information cases.

measures of all cases, as expected.

∅ Half Quarter Object Full
Accuracy 0.9837 0.9667 0.9936 0.993
Recall 0.5524 0.1249 0.8312 0.8087
Precision 0.972 0.5974 0.9844 0.9883
Jaccard index 0.5396 0.1098 0.8798 0.8002

Table 7.5: Mean classification measures for all information cases over 100 thresholds from
dh = 0.001 to dh = 0.999. The highest measures (bold) are found for the Object and the
Full information cases, and the lowest for the Quarter information case.

Considering the mean of the measures for the partial and full cases (cf. Table 7.5), the

object case has the highest values with the exception of precision, which is highest for the

Full case. The Quarter case has the lowest measures, with a mean Jaccard index of only

10.98%. The highest Jaccard index for the Half case was 90.24% for dh = 0.98, 53.06%

for dh = 0.99 for the Quarter case, and 97.97% for dh = 0.88 for the Object case .

The low Jaccard index of the Quarter case can be seen in the visualisation, see Figure 7.20.

Here the shape of the Stanford bunny can not be identified, but the location is found

reasonable well. The Half case shows the same behaviour for the Stanford bunny as for

the Cube case. Where information is available the shape is found very well, and where no

information is available, i.e. in the front, the method identifies the location but nearly all

details are lost. The Object case, which has the lowest total information available, but

covers the true object, performs best. Here, the shape and localisation of the true object

are found very precisely.

7.5 Conclusion

The aim of this chapter was to identify objects in a flow using only given flow data.

A simple, symmetrical and a more complex, asymmetrical object were investigated for
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(a) Half - Front (b) Quarter - Front (c) Object - Front

(d) Half - Side (e) Quarter - Side (f) Object - Side

Figure 7.20: Visualisation of the identification results for the partial information cases
with front view on top and side view on the bottom. The threshold is chosen for the
highest Jaccard index, as shown in Figure 7.19 with a) 90.24% for dh ≤ 0.98, b) 53.06%
for dh ≤ 0.99, and c) 97.97% for dh ≤ 0.88.

different given data. For the analysis the objective functional, the L2 norm of porosity,

and the binary classification were used. The objective functional showed the quality

of the optimisation algorithm very well, since its value decreased very fast and almost

identically in all observable cases. However, it was not a good measure for the quality of

the object identification. More suitable there was the porosity norm. Although a strong

decrease of the value was a good indicator for the identification quality, a qualitative

statement about it could only be made by employing binary classification. Using different

measures, here accuracy, recall, precision and Jaccard index, the outcome of the object

identification could be quantified. Accuracy was very high in all cases, as the objects

occupied only a small percentage of the total domain. Generally, recall, the measure of

correctly identified solid of all nodes, increased for high thresholds. Precision, the measure

of correctly identified solid nodes, increased for low thresholds. This suggests that the

porosity value is a measure of the certainty of the method to identify the solid nodes,

i.e. the lower the porosity value, the less of the object is found but the more certain

the method is that the object occupies this area. The Jaccard index is the measure of

intersection over union of the identified and true object. For the full information cases

the simple object had a Jaccard index of 97.53%, and the complex object 97.93%. For

the partial cases it was found that the simple object has higher Jaccard indexes than the

complex object. Also, details of the objects are lost, were no information is available,

which was clearly seen in the complex object with 10.98% mean Jaccard index in contrast

to 66.23% for the simple object.
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Chapter 8

Noise reduction of flow MRI

measurements

Noise reduction in MRI is a very active field of research and has produced a vast amount of

different techniques to tackle that challenge. Classical methods are, for example, filtering

methods like spatial and temporal [151], anisotropic diffusion [152], or nonlocal means

filtering [153]. Other methods are transformation methods like the wavelet [154] and the

curvelet transform [155], or statistical methods like maximum likelihood estimation [156]

to only name a few. Even deep neural networks have been used to denoise images [157].

For a very good overview of advantages and limitations of classical methods, the work of

Mohan et al. [110] is recommended.

In flow MRI many methods try to consider the underlying flow dynamics, for example by

projecting the MRI data onto divergence-free wavelets [158], or by regularising curl and

divergence-free solutions [159]. In order to consider mass and momentum conservation,

i.e. the Navier–Stokes equations, proper orthogonal decomposition projects the solutions

on a noise-free basis by sampling computational fluid dynamic simulations [160, 161].

Another method is the use of Tikhonov regularisation to apply Navier-Stokes equations

to the measurement results [162]. Direct coupling of Navier-Stokes equations and MRI

via data assimilation is primarily used for medical applications [6–9]. In these methods a

boundary control problem is applied in which the geometry is known a priori. In other

applications, the MRI data is used to obtain velocity profiles or to reconstruct geometries

in patient data to set up CFD simulations [163–166].

However, in applications where the geometry of the imaged objects is complex, for example

in filter applications, these methods can either be applied with difficulty or only with the

help of computer tomography (CT), as either the flow is too noisy to use it as inflow
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parameter, or the imaged objects are too complex to replicate it in the simulation.

This chapter has been published in [3].

8.1 Data generation

In order to test the CFD-MRI method, synthetically generated data is used, where noise

is added to a simulation result. This way, the noise-free data is known and an extensive

analysis can be performed. To not lose generality, the data is matched with MRI data,

which was acquired by Pro2NMR at KIT.

8.1.1 MRI data

The velocity noise σvelocity can be estimated from the two images, which are usually

measured to calculate the velocity image. First, an area where no signal is expected has

to be chosen to get the typical statistical noise in an image. In this noise area the mean

value SNRmean has to be calculated, which represents the noise in the intensity image.

With SNRmean and venc the velocity noise σvelocity can be estimated by (cf. Section 3.1):

SNRmean =
I

nmean

, σvelocity =

√
2venc

π SNRmean

,

with pixel intensity I and mean noise nmean [107, 167, 168]. Another way to calculate

the velocity noise is to pick a line in the velocity image, where the velocity is constant.

Along this line, the standard deviation vstd is calculated and used for the velocity noise

estimation. In these experiments, the outlet of the measurement object was chosen, where

an almost constant volume flow is expected. In Section 8.1.3 these velocity noise values

(cf. Table 8.2) are used to generate synthetic data.

High Noise Low Noise

x−Resolution 62.5µm 62.5µm
y−Resolution 62.5µm 62.5µm

Slice Thickness 1 mm 1 mm
Number of Acquisitions 2 16

Scan Time 0 h 13 min 3 h 24 min
vstd 4.197× 10−3m/s 0.729× 10−3m/s

Table 8.1: Properties of the MRI data, for the setup see Figures 8.1 and 8.2

For the properties of the MRI data see Table 8.1.
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8.1.2 Simulation data

In order to generate the synthetic data a three-dimensional simulation was carried out

which matches the physical setup of the MRI measurement. The geometry of the domain

is therefore a pipe with 5.7 mm diameter and length of 17 mm, with cylindrical object

at position 7 mm in y direction, 2.3 mm in x direction, and with a diameter of 1 mm,

see Figure 8.1. The fluid is isopropanol with kinematic viscosity of 2.798 × 10−6 m2/s

and density of 786 kg/m3. The simulation has a Poiseuille inflow with 0.75 × 10−2 m/s

mean velocity, free outflow and no-slip condition at the wall. Here, a start value for the

permeability in the domain (cf. [1]) of K = 1.0 × 10−7 m2 was chosen, which showed a

sensitive behaviour for the simulation of porous media [70], see also Sections 2.3.3 and 5.6.

If the initial value is chosen too low or too high, the sensitivity is reduced and the gradients

required for the optimisation are too small to achieve real changes (cf. [2]). Although a

step condition, here the Wolfe conditions, can prevent too small step sizes and gradients

for the optimisation method, a start value should be chosen so that the underlying porous

medium simulation is valid [2]. The grid contains around 2 million lattice nodes with a

spatial resolution of 62.5µm, matching the MRI data. It is important to note that the

experimental measurement was performed in the middle of the pipe. In general, however,

the method also works for data with any position, size and dimension (cf. [1, 2]). Thus the

simulation domain is independent on the available data, as seen in the following numerical

experiments.

z

y
2.3mm7mm

5.7mm

y

x

17mm

5.7mm
1mm

5mm

12mm 2.85mm

Figure 8.1: Setup for the simulation, matched to the MRI setup, with cylindrical object
placed inside a pipe. The location of the MRI data is indicated by the dashed lines.

8.1.3 Comparison of MRI and synthetic data

In order to generate synthetic data, Gaussian noise (cf. Section 3.2) with mean zero and

standard deviation corresponding to the velocity noise values of Table 8.1 is added to the

simulation result, and compared to the MRI data. In Section 8.2, this synthetic data is

then used in the objective function to apply the CFD-MRI method to it (cf. Algorithm 3).
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Figure 8.2: Slice of the simulation result in the x–y plane in the middle of the domain.
The location of the MRI data is indicated by the white rectangle (cf. Figure 8.1)

Figure 8.3: On top, visual comparison of MRI data and synthetic data, both with low
noise. The magnitude velocities along the white line with mean and standard deviation,
at the bottom.

In Figures 8.3 and 8.4 the comparison of MRI data and synthetic data for the given noise

power is shown, where the white line represents the measurement of the velocity noise,

as discussed in Section 8.1.1. The calculated mean and standard deviation for synthetic,

MRI and simulation data is shown in Table 8.2. The noise power values match very well,

with 1.0 × 10−3 m/s to 0.9 × 10−3 m/s for the low noise data and 5.4 × 10−3 m/s for the

high noise data. The mean velocity ranges from 1.45 × 10−2 m/s to 1.51 × 10−2 m/s in

all cases. Thereby, the difference from synthetic to MRI data for low and high noise data
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Figure 8.4: On top, visual comparison of MRI data and synthetic data, both with high
noise. The magnitude velocities along the white line with mean and standard deviation,
at the bottom.

is 0.04× 10−2 m/s, which is very close to the difference between low and high noise MRI

data of 0.02 × 10−2 m/s. This small difference in mean velocities from synthetic to MRI

data may be due to the object in the flow, which is a perfect cylinder in the simulation,

but not in the MRI data. The synthetic data also poses an additional challenge to the

method, as there is noise in the area of the object, which is not the case with MRI data,

especially seen in the high noise data (cf. Figure 8.4). Here, it was chosen not to remove

the additional noise in order to see how the method handles this.

Noise Power Data Mean Std

MRI 0.0151 0.0010Low
Synthetic 0.0147 0.0009
MRI 0.0149 0.0054High
Synthetic 0.0145 0.0054

None Simulation 0.0147 0.0006

Table 8.2: Mean and standard deviation in m/s of MRI and synthetic data for low and
high noise along the white line in Figures 8.3 and 8.4.
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8.2 Analysis of noise reduction using CFD-MRI

The CFD-MRI method is applied to the synthetically generated data (cf. Section 8.1).

Thereby, the data has low and high noise power with incremental reduction of available

spatial and velocity information. The analysis is performed using visual representation,

comparison of velocity plots and error norms. Thereby, the L2
h norm || · ||L2

h(Ωh) is used,

defined as

||u||L2
h(Ωh) =

(∑
u∈u

|u|2
)1/2

, (8.1)

for velocity data u in domain Ωh. The data corresponds to simulation result, synthetic

data, MRI data, or a combination. The relative error between two velocity data u and v

is defined as

||u− v||L2
h(Ωh)

||u||L2
h(Ωh)

, (8.2)

where the subtraction is considered to be pointwise.

The optimal control problem was solved on the high-performance computer ForHLR II

at KIT for three days on 200 cores with Deca-Core Intel Xeon E5-2566 v3, which led to

about 30 optimisation steps for every test case. Note that the computation time does not

change for different data, i.e. if low or high noise data is used, but only by the resolution

of the simulation.

8.2.1 Low noise data

Synthetic data with low noise corresponding to a measurement time of 3 h and 24 min

(cf. Section 8.1), is considered first. The data has an error of 13.44%, measured as

relative error of synthetic data to simulation data in L2
h norm (Table 8.3). The CFD-MRI

result, i.e. the synthetic data after being applied to CFD-MRI, reaches an error of only

0.17%, which is nearly eighty times less than the original data. The lowest error is in the

main flow component of 0.12%. In Figure 8.5 velocity plots along the x and y axes in

the middle of the domain are shown, with synthetic data, noise-free data and CFD-MRI

result. The noise-free data and the CFD-MRI result thereby coincide almost exactly.
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Error Total X Y Z

Synthetic data 13.44 % 56.75 % 07.86 % 97.26 %
CFD-MRI 00.17 % 00.93 % 00.12 % 03.38 %

Table 8.3: Relative error, measured in L2
h norm, of low noise synthetic data before and

after being applied to CFD-MRI, to noise-free data. Shown is the total error and the error
for each velocity component. The high errors in the x and z components in the synthetic
data is due to the small velocity magnitudes compared to the added noise power.

(a) (b)

Figure 8.5: Plots for synthetic data, CFD-MRI result and noise-free data along x and y
axes in the middle of the domain. The noise in the data is almost completely removed,
with a 0.12% relative error between result and noise-free data.

8.2.2 High noise data

To provoke the limits of CFD-MRI, the method was applied to the synthetic data with

an unreasonably high noise figure, corresponding to a measurement time of only 13 min.

Here, the difference from synthetic data to noise-free data is very high, up to 61.51 %

Error Total X Y Z

Synthetic data 61.51 % 96.94 % 41.28 % 99.91 %
CFD-MRI 00.68 % 03.52 % 00.50 % 12.86 %

Table 8.4: Relative error, measured in L2
h norm, of high noise synthetic data and its CFD-

MRI result to noise-free data. Shown is the total error and the error for each velocity
component. The high errors in the x and z components in the synthetic data is due to
the small velocity magnitudes compared to the added noise power.

(cf. Table 8.4 and Figure 8.6). After applying the CFD-MRI method, the total error is

only 0.68%, which is about ninety times less than the noisy input data (cf. Table 8.4). For

the main flow component in y direction it is even less with 0.5 %. When comparing the

results visually (cf. Figure 8.7), it can be clearly seen how the high noise in and around

the object will be completely removed.
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(a) c (b) c

Figure 8.6: Plots for synthetic data, CFD-MRI result and noise-free data along x and y
axes in the middle of the domain. The extreme noise in the data is almost completely
removed, with a 0.68% relative error between result and noise-free data.

Figure 8.7: From left to right, visual representation of synthetic data, CFD-MRI result
and noise-free data with a zoomed in image around the object below. Even with high
noise in the object the difference of CFD-MRI result and noise-free data is very low with
only 0.68% relative error.

8.2.3 Reduced information

Here, the information available to the CFD-MRI method will be reduced gradually. First,

full information, i.e. 3D spatially resolved with all three velocity components, here called

Full is used. Next, the data is reduced to 2D spatially resolved data, corresponding to

the MRI plane (cf. Figure 8.2), called Plane. The last reduction will match the MRI

data, by having 2D spatially resolved data with only the y velocity component, i.e. the

main component along the long axis of the pipe, called PlaneY. In all cases, the error is

measured with data locating in the MRI plane with y component of the velocity.
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As expected, in all test cases the error for the low noise data is lower than in the high

noise data. Furthermore, and as well expected, the less information available, the higher

the error. In the low noise data, the error is between 0.13% and 0.42%, whereas the high

noise data does not have much larger errors, between 0.56% and 1.21%. In all cases the

Data Full Plane PlaneY

Low noise 0.13% 0.16% 0.42%
High noise 0.56% 0.66% 1.21%

Table 8.5: Relative error, measured in L2
h norm, for the different information cases with

low and high noise data. The less information available and higher the noise, the greater
the error, as expected. In all cases, the error is calculated in the MRI plane (cf. Figure 8.1)
for the y velocity, i.e. the main component of the flow.

highest errors are around the object, which can be seen in Figure 8.8.

(a) Low noise data (b) High noise data

Figure 8.8: Plot along the y axis, i.e. through the object along the diameter of the pipe,
with zoomed in sections around the object on top. And the visual representation of the
absolute error to noise-free data for the information test cases Full, Plane and PlaneY on
the bottom.

When comparing the total error, i.e. for three dimensions and all velocity components,

a similar result can be seen. For the high noise test the results are 3.55% if only the

information in the plane is used as comparison data and 9.38% if only the information in

the plane and additionally only the y-velocity are known. This is an enormous reduction

compared to the 78.02% error of the noisy data. Very similar are the results for the

low-noise data, where the error is 2.86% if only the data in the plane is given, and 7.36%

for the data in the plane and the y-component. Note again that these errors are in the

entire simulation domain and for all velocity components, not just where the information

was given.
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8.3 Application to real MRI data

In this section, the method is applied to the real data. By comparing the results for MRI

data with different noise power, the performed analysis for synthetic data (cf. Section 8.2)

is investigated.

Figure 8.9: MRI images and CFD-MRI result for different acquisition times. The results
of the CFD-MRI method differ by only 1.73%, even with six times difference in noise
power of the input data.

The relative error between the two results of the CFD-MRI method is only 1.73%, even

with approximately six times difference in noise power of the input data. This is a good

indication that the results from Section 8.2 are applicable to real data. It should also be

noted that the scan time for the MR images differs by more than three hours, here about

16 times (cf. Table 8.1). Thus, scan time can be dramatically reduced without having a

significant impact on the result (cf. Figures 8.9 and 8.10).
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Figure 8.10: Plot over lines along x and y axes of the data for different acquisition times.
At the top, the different MRI data, and on the bottom the corresponding CFD-MRI result.
The two results differ by only 1.73% in the whole plane, even with six times difference
in noise power of the MRI data. Note that the simulation can be performed on a larger
domain, as shown in the plot along the x axis of the CFD-MRI result compared to the
MRI data.

8.4 Conclusion

In this chapter the CFD-MRI method was analysed for its ability to reduce noise. In

order to analyse the method, MRI data was used to generate synthetic data. With it,

the noise-free, true data was available and analysis for different given spatial and velocity

information as well as noise power was carried out. As a result, it was found that the

method is not very dependent on intensity of the noise for the given data. With less noisy

data the error was as low as 0.17%, which was eighty times less than the original noisy

data. And even with limited information available and high noise in the data, the error to

noise-free data did not exceed 1.5%. A comparison with real data indicates thereby the

correctness of the analysis with artificial data. Here, the results of the method differed by

only 1.73%, despite a six-fold difference in the noise power of the MRI data. Thus, one

advantage of the combined method is that much faster MRI scans can be performed with

less effort on increasing the SNR. Therefore a clean image can be derived by only having

minutes of scan time, in contrast to hours. Another application is using highly spatially
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resolved images, with a low SNR in the flow field. These images have a much clearer

representation of the object or objects in the flow, and the noise can still be removed

using CFD-MRI.

106



Chapter 9

CFD-MRI applied to flow through a

porous structure

In this chapter the CFD-MRI method is applied to flow through a porous structure,

i.e. an object which contains voids and is able to transmit fluids (cf. Section 2.1.3). In

the previous chapters only simple objects or simple flows were considered. To investigate

the method to be usable in real-world applications, like filtration in water treatment or

pollution control, or blood flow in arteries, a complex object with resulting complex flow

and added noise is used here for the analysis of object identification and noise reduction.

The structure thereby is a reconstruction based on a flow MRI measurement done by

Mojtaba Mirdrikvand, Department of Chemistry, University of Bremen.

9.1 Setup

The setup is a pipe flow with radius of r = 5.2×10−3 m and length L = 29.6×10−3 m. The

fluid is water with density of ρ = 998 kg/m3 and kinematic viscosity of ν = 1.0×10−6 m2/s.

The design and objective domain for the optimisation correspond to the location of the

porous structure as shown in Figure 9.1. The boundaries are set to Poiseuille inflow with

maximum velocity of 1.0 × 10−3 m/s at z = 0 m, free outflow, i.e. constant pressure, at

z = 29.6×10−3 m, and bounce back to the remaining boundary. The domain is discretised

with 4x = 0.1 × 10−3 m resulting in more than three million lattice nodes total. The

relaxation time is chosen to be τ = 0.56. And for the optimisation a start value of

K = 1.0× 10−8 m2 is used.

Since the adjoint problem is solved using the same framework as the forward problem,

the moments can be computed in the same way. Here the performance of the method
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Figure 9.1: Simulation setup of the flow through the porous structure.

was increased by employing the steady state solution of the forward problem and the

explicit time marching scheme of the LBM. This ensures that a convergence check of the

adjoint moments, here the adjoint velocity, can be employed which massively reduces the

computation time. Here convergence is claimed if the standard deviation of the maximum

adjoint velocity is smaller than 1.0× 10−4 times its average.

The problem was solved on 60 cores of Intel® Xeon® Silver 4114 with 2.20GHz.

9.2 Data preparation and analysis

For the data acquisition, first a simulation was performed with flow through a porous

structure. The resulting flow field was then saved as synthetic data as done in Chapters 7

and 8. The visualisation of this data is shown in Figure 9.2. The flow field has a mean

(a) Flow field (b) Porous structure

Figure 9.2: Visualisation of the true data of a) the flow field and b) the object.

velocity of 0.38× 10−3 m/s with standard deviation of 1.09× 10−3 m/s. The total number

of nodes is 3, 274, 425 with 2, 683, 993 fluid and 590, 432 solid nodes. The design domain,

which corresponds to the outline of the structure, consists of 1, 261, 715 nodes, i.e. the

object has a porosity of around 46.80%.
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9.2.1 Synthetic noise

Here, synthetic noise is added to the simulation result. As seen in the previous chapters

Gaussian noise can be used if the SNR is high enough (cf. Section 3.2), and also matches

real data very accurately (cf. Chapter 8). Here, Gaussian noise with mean zero and

standard deviation of 0.5× 10−3 m/s is added to every velocity component, resulting in a

relative L2 error between true and noisy flow field of 38.55%. A visual comparison of the

noisy and true flow field is shown in Figure 9.3.

(a) True data (b) Noisy data

Figure 9.3: Slice in the x–z plane of a) the true data and b) the noisy data.

9.3 Results

The optimisation works very well with a fast decrease in the objective value, as shown

in Figure 9.4. Starting from J = 3.88 × 10−1 the objective value drops fast for the first

ten optimisation steps and converges to 0.4× 10−1 after 50 steps. The same results were

found without using the adjoint convergence check. Here, the objective values differed

by less than 0.06%, but the performance increased more than five-fold with only 14 min

compared to 75 min per optimisation step. It should also be noted that without using the

curvature condition, i.e. only using the Armijo rule in the line search, it was found that

the optimisation did not converge, and got stuck after only two optimisation steps at the

starting value of 3.88× 10−1.

Since the noise-free flow and the geometry of the true object is known the results can be

analysed with regard to noise reduction and object identification, which is done in the

following.
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2
||uf − u∗||2L2(ΩJ ), of noisy data u∗ to CFD-

MRI result uf over the optimisation steps.

9.3.1 Noise reduction

In Figure 9.5 the velocity profiles along a line through the middle of the domain in x−,

y− and z−direction are shown with all three velocity components for true data, noisy

data, and CFD-MRI result. The results show a significant reduction in noise, while at

the same time corresponding very well to the true data, in all directions and for every

component of the velocity. The relative L2 error from CFD-MRI result to the true data

is 4.58%, which is a more than eight-fold reduction of the 38.55% error of the noisy data.

9.3.2 Object identification

To evaluate the object identification of the porous structure the binary classification is

employed as done in Chapter 7. Note that for identification of the object only the noisy

velocity field is given, but no information about the object itself. The highest Jaccard

index of 86.74% was found at a lattice-porosity threshold of dh = 0.98 (cf. Figure 9.6). At

that threshold 96.03% of solid nodes were correctly identified with only 1.91% incorrectly

as solid identified nodes, see Table 9.1. The accuracy, which measures correctly identified

solid and fluid nodes, is also very high with 97.38%. The precision is still high, but

significantly lower with 89.97%. This could be due to the fact that there is no flow at

some locations, as may be the case with enclosed cavities in the object. Thus there is

no sensitivity for the optimisation and shows the challenge with complex flows. Despite

these difficulties, all classification measures are above eighty-six percent (cf. Table 9.2).
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Figure 9.5: Velocity plots along a line in the middle of the domain in a) x−, b) y−, and
c) z−direction. Shown are all three velocity components of true data, noisy data, and
CFD-MRI result.

9.4 Conclusion

In this chapter the CFD-MRI method was applied to a complex flow through a porous

structure. The data was the result of a simulation with added noise. The results showed
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Figure 9.6: Classification measures for different lattice-porosity thresholds.

Outcome Nodes Percentage

True positive 561, 944 96.03% of true solid
True negative 2, 626, 607 97.67% of true fluid
False positive 62, 641 01.91% of total
False negative 23, 233 00.71% of total

Table 9.1: Binary classification outcome for threshold of dh = 0.98.

Measure Percentage

Accuracy 97.38%
Recall 96.03%
Precision 89.97%
Jaccard index 86.74%

Table 9.2: Classification measures for threshold of dh = 0.98.

an accurate characterisation of the true flow, with reduction in the noise and a precise

identification of the porous object. The velocity field was found with 4.58% error to

the true field, which is a more than eight-fold reduction in error of the noisy field. The

porous structure was found with Jaccard index of 86.74% without any knowledge of the

object itself, only with the noisy flow field given. These results are very promising as this

indicates that expensive and invasive µCT scans could be avoided. Additionally, the use

of the adjoint convergence check massively reduced the computation time, and using the

Wolfe conditions with the BFGS method increased the stability of the CFD-MRI method

for complex applications.
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Chapter 10

Summary and outlook

In this thesis the combination of computational fluid dynamics and magnetic resonance

imaging measurements, called CFD-MRI, was presented. This combination is formulated

as topology optimisation problem with porous media BGK-Boltzmann equation as side

condition to minimise the distance from simulated to measured flow field. The problem is

discretised using an adjoint lattice Boltzmann method. This combination, its validation,

analysis, and application is the mathematical contribution of this thesis.

In a first proof of concept the method was applied to an MRI measurement of a flow

around a cylindrical object and indicated that the method was able to find the object in

the data and at the same time reduce the measurement noise, even if only very limited

information was available

To analyse and validate the method various numerical test cases were constructed. Using

simulation data of a flow around a simple, symmetrical and a more complex, asymmetrical

object, the results of the object identification were analysed. For this, binary classification

measures were used and showed high Jaccard indexes, a measure of similarity, of above

97% for both cases. As expected, if the information in the area of the object was reduced,

the Jaccard index was found lower. Also, the simple object was identified more precisely

than the complex object. Nonetheless, even if no information of the flow in the object

domain was given, the rough location of the object was still found with Jaccard indexes

of 69.71% for the simple object and 53.06% for the complex object. It was also found

that the total percentage of data was not as important as its location.

In order to analyse the method with regard to noise reduction, synthetic MRI data with

low and high noise power was created based on real MRI data. With this the true data,

i.e. data without any noise, was available and the CFD-MRI results could be quantified.

This showed a significant noise reduction, with an error of less than 1% to the real data
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if the full information of the flow field was known, which was a more than eighty-fold

reduction in measurement error. The flow information was reduced to only providing

velocity data in a plane, and further to the main component of the flow. Even with such

limited information available the error was below 1.5% in the given data, and below 10%

compared to the whole data, i.e. the three-dimensional domain with all three velocity

components. Further, the method was applied to real MRI data, where the high noise

image was acquired in thirteen minutes, compared to three hours and twenty-four minutes

of the low noise image. Still, the results of the CFD-MRI method for both images differed

by less than 2%.

The CFD-MRI method was then applied to a porous structure, where the analysis of

noise reduction and object identification done previously were applied to a complex flow

that appears in e.g. filtration applications. The porous structure was artificially created

based on a real MRI measurement. The result of a flow simulation was then saved and

noise was added with 38.55% error to the noise-free data. The results of the CFD-MRI

method showed a large decrease in the error to 4.58% with a significant reduction of

measurement noise. Further, the complex porous structure was found with a Jaccard

index of 86.74% and an accuracy for the domain identification of 97.38%. Additionally,

an adjoint convergence check was used to greatly reduce the computation time, and the

use of the Wolfe conditions ensured stability of the optimisation.

The presented combination of measurement and simulation shows that a much more

precise characterisation of flows and underlying objects and structures can be expected.

These improved results promise an extension of the area of application and also make

it possible to save costly and limited resources or to improve the overall effectiveness of

their use.

In the future, the method could be extended to more complex flow measurements, such

as the 4D flow MRI, which is capable of measuring time-resolved flows and is often used

in medical applications. Checkpointing strategies could be used to cope with the high

memory requirements of time-dependent problems. Since the method is based on a model

for porous media, the identification of the permeability of homogenised media could also

be investigated. The use of regularisation methods, such as Thikonov regularisation, could

be of interest for complex applications that may be ill-posed, or to incorporate knowledge

about a specific application. Another approach would be to use automatic differentiation

to derive the adjoint equations for a variety of different applications, such as thermal flow

in porous media.
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principes à suivre et des formules à employer dans les questions de distribution d’eau, etc,
Dalamont, Paris, 1856.

[40] S. Whitaker, The method of volume averaging, Vol. 13, Springer Netherlands, 2013. doi:
10.1007/978-94-017-3389-2.

[41] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law, Transport
in porous media 1 (1) (1986) 3–25. doi:10.1007/BF01036523.

117

http://dx.doi.org/10.1016/j.jcp.2018.03.040
http://dx.doi.org/10.1016/j.compfluid.2005.07.015
http://dx.doi.org/10.1016/j.compfluid.2005.07.015
http://dx.doi.org/10.1007/978-1-4020-8839-1
http://dx.doi.org/10.1016/j.camwa.2012.08.007
http://dx.doi.org/10.1016/j.camwa.2012.08.007
http://dx.doi.org/10.1007/978-3-319-47066-5_23
http://dx.doi.org/10.1007/978-3-642-05146-3
http://dx.doi.org/10.1007/978-3-540-68228-8
http://dx.doi.org/10.1007/978-3-319-31619-2
http://dx.doi.org/10.1007/978-3-319-27760-8
http://dx.doi.org/10.1007/978-94-024-1217-8
http://dx.doi.org/10.1007/978-94-017-3389-2
http://dx.doi.org/10.1007/978-94-017-3389-2
http://dx.doi.org/10.1007/BF01036523


[42] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures,
North Holland, Amsterdam, 1978.

[43] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Vol. 127 of Lecture
Notes in Physics, Springer, Berlin, 1980. doi:10.1007/3-540-10000-8.

[44] G. Allaire, Homogenization of the Navier–Stokes equations in open sets perforated with
tiny holes I. Abstract framework, a volume distribution of holes, Archive for Rational
Mechanics and Analysis 113 (3) (1991) 209–259. doi:10.1007/BF00375065.

[45] G. Allaire, Homogenization of the Navier–Stokes equations in open sets perforated with
tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface dis-
tribution of holes, Archive for Rational Mechanics and Analysis 113 (3) (1991) 261–298.
doi:10.1007/BF00375066.

[46] H. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm
of particles, Flow, Turbulence and Combustion 1 (1) (1949) 27. doi:10.1007/BF02120313.

[47] H. Brinkman, On the permeability of media consisting of closely packed porous particles,
Flow, Turbulence and Combustion 1 (1) (1949) 81. doi:10.1007/BF02120318.

[48] N. S. Martys, Improved approximation of the Brinkman equation using a lattice Boltzmann
method, Physics of Fluids 13 (6) (2001) 1807–1810. doi:10.1063/1.1368846.

[49] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, 2017. doi:10.1007/

978-3-319-49562-0.
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entifiques de l’École Normale Supérieure Ser. 4, 36 (2) (2003) 271–317. doi:10.1016/

S0012-9593(03)00010-7.

[64] B. Perthame, Global existence to the BGK model of Boltzmann equation, Journal of
Differential Equations 82 (1) (1989) 191–205. doi:10.1016/0022-0396(89)90173-3.

[65] B. Perthame, A. P. N. Dinh, The Dirichlet boundary value problem for BGK equation,
in: Advances in Kinetic Theory and Continuum Mechanics, Springer, 1991, pp. 13–18.
doi:10.1007/978-3-642-50235-4_2.

[66] M. C. Sukop, D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscien-
tists and Engineers, Springer, 2006. doi:10.1007/978-3-540-27982-2.

[67] Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering, World
Scientific, 2013. doi:10.1142/8806.
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Appendix A

Publications

The articles [1–3] have been published in the last years and form the basis for parts of this
thesis. They are listed below, including a description where they are included in this work, and
the contributions of each author based on the CRediT 1 statements.

CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow
characterisation and domain identification
Fabian Klemens, Sebastian Schuhmann, Gisela Guthausen, Gudrun Thäter, Mathias J. Krause

Abstract
This article presents the coupling of magnetic resonance imaging (MRI) measurements and
computational fluid dynamics (CFD) for accurate characterisation of fluid flow and identification
of flow domains. Currently, MRI measurements are averaged over time and space, assuming a
certain smoothness of the velocity and pressure space. However, a possible solution of a fluid
problem must fulfil the Navier–Stokes equations, which sets up a condition that is much more
restrictive than the usual smoothness assumptions in e.g. curve fitting. The novel CFD-MRI
method uses this insight to reduce the statistical noise and to identify finer structures of the
underlying domain. The problem is formulated as a distributed control problem which minimises
the distance between measured and simulated flow field. Thereby, the simulated flow field is
the solution of a parametrised porous media BGK-Boltzmann equation which approaches a
homogenised Navier–Stokes equation in the hydrodynamic limit. The parameters represent the
porosity distributed in the domain which yields a domain and a fluid flow that fits best to the
measured data. This enables the method they locate an obstacle and the flow field from limited
2D spatially resolved MRI data with one velocity component. The problem is solved with an
adjoint lattice Boltzmann method (ALBM) using the open source software OpenLB.

Contribution
Fabian Klemens: Conceptualisation, Methodology, Software, Validation, Formal analysis, In-
vestigation, Data curation, Writing - original draft, Writing - review & editing. Sebastian
Schuhmann: Investigation, Resources, Data curation. Gisela Guthausen: Supervision,
Project administration, Funding acquisition. Gudrun Thäter: Supervision. Mathias J.
Krause: Supervision, Project administration, Funding acquisition, Software, Writing - review
& editing.

1https://www.elsevier.com/authors/journal-authors/policies-and-ethics/

credit-author-statement
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Comment
This paper partially forms Chapter 6.

Solving fluid flow domain identification problems with adjoint lattice Boltzmann
methods
Fabian Klemens, Benjamin Förster, Márcio Dorn, Gudrun Thäter, Mathias J. Krause

Abstract
In this article, the adjoint lattice Boltzmann method (ALBM) for solving fluid domain identi-
fication problems for incompressible fluids, proposed by Krause et al. (2016), is improved and
validated. The problem is formulated as a distributed control problem which minimises the dis-
tance between a given, e.g. from measurements like MRI, and a simulated flow field. Thereby, the
simulated flow field is the solution of a parametrised porous media BGK–Boltzmann problem,
where the parameters represent porosity distributed in the domain. The proposed parametrisa-
tion consists of linking the variables representing a lattice-dependent porosity with the control
variables. Hereby, it is paid attention that a given control parameter set yields results which are
independent of the underlying grid resolution. It enables solving an optimisation problem with
different resolutions without adapting the initial set of control variables.

Contribution
Fabian Klemens: Conceptualisation, Methodology, Software, Validation, Formal analysis, In-
vestigation, Data curation, Writing - original draft, Writing - review & editing. Benjamin
Förster: Conceptualisation, Methodology, Software, Validation, Formal analysis, Investiga-
tion, Data curation, Writing - original draft. Márcio Dorn: Supervision. Gudrun Thäter:
Supervision. Mathias J. Krause: Conceptualisation, Methodology, Supervision, Project ad-
ministration, Funding acquisition, Software, Writing - review & editing.

Comment
This paper partially forms Section 5.6 and Chapter 7.

Noise reduction of flow MRI measurements using a lattice Boltzmann based topol-
ogy optimisation approach
Fabian Klemens, Sebastian Schuhmann, Roland Balbierer, Gisela Guthausen, Hermann Nirschl,
Gudrun Thäter, Mathias J. Krause

Abstract
In a previous work, the feasibility of coupling magnetic resonance imaging (MRI) measurements
and computational fluid dynamics (CFD) was presented, called CFD-MRI. Using a lattice Boltz-
mann based topology optimisation approach, the method can be described as a Navier–Stokes
filter for flow MRI measurements. The main objective of this article is the analysis and quantifi-
cation of CFD-MRI for its ability to reduce statistical measurement noise. For this, MRI data
was analysed and used as basis for synthetic data, where noise was added to a simulation result.
Thus, the noise-free data is known and a thorough analysis can be performed. The results show
a very high agreement with the original data, even with high statistical noise in the input data
and limited information available.
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Contribution
Fabian Klemens: Conceptualisation, Methodology, Software, Validation, Formal analysis, In-
vestigation, Data curation, Writing - original draft, Writing - review & editing. Sebastian
Schuhmann: Investigation, Resources, Data curation. Roland Balbierer: Investigation, Re-
sources, Data curation. Gisela Guthausen: Supervision, Project administration, Funding
acquisition. Hermann Nirschl: Supervision. Gudrun Thäter: Supervision. Mathias J.
Krause: Supervision, Project administration, Funding acquisition, Software.

Comment
This paper forms Chapter 8, and was published with a CRediT authorship contribution state-
ment.
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Appendix B

Implementation

The here presented methods were implemented in the open-source software OpenLB1. The fol-
lowing table lists the presented test cases and the related commit hashes on the master branch
of the OpenLB git repository2.

Description Usage Commit hash Folder name in apps/fabiank/

Porous media simulation Section 2.4 864a88cfe porousPoiseuille3d

Minimising the Rosenbrock function Section 4.2.5 0fb6a3c35 testRosenbrock

CFD-MRI pipe flow Chapter 6 3df7e0cab nmrValve3d

Cube identification Section 7.3 98628060c testDomain3d

Stanford bunny identification Section 7.4 957da351d bunny3d

Synthetic noise reduction Chapter 8 267d13c13 noise3d

Porous structure application Chapter 9 5c9396ae2 porousNMR3d

1https://www.openlb.net/
2https://gitlab.com/openlb/olb
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