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A B S T R A C T

The search for the pair-production of the Higgs boson and the precise study of its
properties are among the corner stones of the physics programme of the Large Hadron
Collider and its High-Luminosity upgrade.

This thesis focuses on the evaluation of higher-order corrections to Higgs boson pair
production: the effective two-Higgs boson–gluon coupling at four loops and next-to-next-
to-leading order corrections to the total inclusive cross-section including finite top-quark
mass effects.

In addition, finite top-quark mass effects in the Higgs boson–gluon vertex are studied
at the four-loop order and four-loop corrections to the Higgs boson decay into photons
are obtained.
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1
I N T R O D U C T I O N

In 2012 the two general purpose experiments at the Large Hadron Collider (LHC), ATLAS
and CMS, announced the discovery of a scalar boson with a mass of approximately
125 GeV [1, 2]. Since the Higgs boson’s discovery, measurements of its properties in
all production and decay channels accessible at the LHC have been carried out with
all evidence pointing towards the particle being the long-sought Higgs boson of the
Standard Model of elementary particle physics (SM) [3–14].

the state of the art : higgs boson production and decay As the Brout-
Englert-Higgs mechanism might not be realized in its minimal form, scrutinizing the
properties of the Higgs boson might reveal the existence of new particles. In addition, it
might shed light on unsolved problems in particle physics, such as the dominance of
matter over anti-matter in the universe, neutrino masses or the existence of dark matter.

To this end, precise measurements of all production and decay channels accessible at
the LHC are carried out by ATLAS and CMS. In the past years all four major production
mechanisms have been established experimentally. In addition to the dominant gluon-
fusion mechanism, also the production in vector-boson-fusion, associated production
with a vector boson and recently even the production in association with a pair of top
quarks have been observed. Furthermore, all major decay channels, the decays into
third-generation fermions, τ-leptons and bottom quarks, pairs of W- or Z-bosons, as
well as the loop-induced decay into photons have been observed. Recently, CMS even
found evidence for the decay into two muons [15] indicating that the Higgs boson also
couples to second-generation fermions. With the upcoming high-luminosity extension of
the Large Hadron Collider (HL-LHC) program, the statistical uncertainties on all of the
above processes will decrease, allowing for percent-level measurements.

To fully exploit the experimental precision, equally precise theoretical predictions
need to be available. Generally, predictions at next-to-next-to-leading order (NNLO) or
even next-to-next-to-next-to-leading order (N3LO) are required to accomplish this task.
Computations of corrections at this order are extremely challenging, but in recent years
all of the aforementioned production channels except the associated production with a
pair of top quarks have become available at NNLO. For a recent summary see e.g. [16].
The inclusive total cross-section for the production of a Higgs boson in gluon-fusion is
even known at N3LO [17, 18] in the limit of an infinitely heavy top quark.
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2 introduction

the scalar potential Despite the successes of the Higgs programme at the LHC,
the nature of the scalar potential remains elusive. In the unbroken phase of the SM, it
takes the form

V (Φ) = −µ2Φ†Φ + λ
(

Φ†Φ
)2

, (1.1)

where µ2 > 0, λ > 0 and Φ is a doublet under SU(2)L with weak hypercharge Y = 11.
The minimum of V (Φ) is located at

Φ0 =
1√
2

(
0

v

)
, where v =

√
µ2

λ
. (1.2)

This minimum breaks the gauge symmetry of the SM from SU(3)c × SU(2)L ×U(1)Y
to SU(3)c ×U(1)Q leading to masses for the W- and Z-bosons and all fermions except
neutrinos. The vacuum expectation value v is related to Fermi’s constant by

v =
1√√
2GF

≈ 246.22 GeV . (1.3)

Expanding the scalar potential around its minimum yields the potential for the physical
Higgs boson field H

V (H) =
m2

H
2

H2 + vλH3 +
λ

4
H4 . (1.4)

The mass of the Higgs boson is related to the parameters of the unbroken phase by

m2
H = 2µ2 . (1.5)

As a consequence, the self-coupling λ is given by

λ =
v2

µ2 =
2v2

m2
H
≈ 0.13 (1.6)

and thus the cubic and quartic terms in Eq. (1.4) are fixed within the SM.
In many Beyond the Standard Model (BSM) theories, the cubic and quartic coupling are

not directly related to mH and v, but also recieve other contributions. As a consequence,
a precise measurement of the cubic and quartic Higgs boson interaction strength can
either severely constrain BSM theories or, in case a deviation from the SM expectation is
found, hint towards BSM phenomena.

accessing the cubic self-coupling indirectly The cubic self-coupling can be
constrained by comparing precise measurements of the different Higgs boson production
and decay channels with precise theoretical predictions. Higher-order corrections, such
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Figure 1.1: Higher-order contributions to Higgs boson production in gluon-fusion involving the
cubic Higgs boson self-coupling. Dashed, solid and curly lines denote Higgs bosons,
top quarks and gluons, respectively.

as the ones depicted in Fig. 1.1, involve the cubic self-coupling and are sensitive to
modifications of it. Based on the results presented in Ref. [19], the cubic self-coupling
is constrained within the range of −4.7 and 12.6 times the SM value [20] under the
assumption that no other Higgs boson couplings deviate from their SM value. Since in
BSM theories this is not the case in general, the constraint that can be obtained crucially
depends on assumptions about deviations in other Higgs boson couplings. To overcome
this issue, differential distributions of processes involving Higgs bosons have to be taken
into account in the future.

higgs boson pair-production A direct way to access the cubic Higgs boson
coupling is the process of Higgs boson pair-production. As in the case of single Higgs
boson production, gluon-fusion is the dominant production channel. Sample diagrams at
leading order (LO) can be found in Fig. 1.2, where only the diagram on the right involves
the cubic Higgs boson coupling. The two contributions interfere negatively with each

Figure 1.2: The two LO contributions to Higgs boson pair-production in gluon-fusion. Only the
diagram on the right involves the cubic Higgs boson self-coupling.

other, leading to a significant reduction of the production cross-section in the SM. Taking
both contributions into account, the total Higgs boson pair production cross-section is
approximately three orders of magnitude smaller than the single Higgs boson production
cross-section. As a consequence, Higgs boson pair-production has not been observed to
date and current measurements allow the cubic self-coupling to lie between −5.0 and 12
times the SM value [21], which is comparable to the aforementioned constraint obtained
by measurements of processes with a single Higgs boson. Significant improvements will
be made with the HL-LHC and the significance of the observation might reach 4.0σ [22].
This corresponds to upper and lower bounds of the cubic self-coupling of 0.1 and 2.3

1 Here, Q = T3L + Y/2 with Q being the electric charge and T3L the third Pauli matrix.
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times the SM value, respectively. This is comparable to the constraint that can be obtained
by measuring processes involving a single Higgs boson [20]. Combining both ways to
access the cubic self-coupling will provide an even stronger constraint.

Proposed future proton-proton colliders such as the hadron option of the future circular
collider are expected to reach a sensitivity on λ of up to 5% [22].

On the theoretical side, computing higher-order corrections to Higgs boson pair-
production involves the challenge of evaluating four-point functions with an internal
massive particle. As a consequence the computation of exact next-to-leading order (NLO)
corrections was achieved only recently by employing numerical methods [23–25]. Before
exact NLO results became available, approximation methods were used. Two prominent
examples are the expansion in a large top-quark mass [26] and the combination of the
exact LO corrections with the exact real-radiation contributions and the virtual corrections
in the limit Mt → ∞ [27]. Both methods have been extended to NNLO [28, 29] where
they supersede predictions based on the infinitely heavy top-quark limit [30]. N3LO

corrections in the limit of an infinitely heavy top quark also became available recently
[31, 32].

improving the current predictions The remainder of this thesis is divided
into two parts. In the first part, we discuss computations based on the large mass
expansion (LME) at four-loop order. We start with the computation of the effective
coupling of two Higgs bosons to gluons [33] in chapter 2, which served as an important
ingredient in the recent N3LO computation of the Higgs boson pair-production cross-
section [31, 32]. In chapter 3, we perform a LME of the Higgs boson–gluon vertex at four
loops [34] as a first step towards including finite top-quark mass effects at N3LO to the
production of a single Higgs boson. We conclude the first part by computing the N3LO

corrections to the Higgs boson decay into photons.
In the second part of this work we focus on the process of Higgs boson pair-production

and compute real-radiation contributions at NNLO in the limit s � 4M2
t . In order to

process the phase-space integrals arising in this context efficiently, we introduce the
versatile program LIMIT in chapter 5 and highlight its other applications. As the first
step towards the full real-radiation contributions including top-quark mass suppressed
terms, we consider the subset of contributions where both Higgs bosons couple to
different top-quark loops. We expand this subset through O(1/M8

t ) [35] and combine
them with the corresponding virtual corrections, as described in chapter 6. In chapter
7 we discuss the remaining contributions and outline the full calculation, which is still
work in progress.

Appendices A and B of this thesis introduce several concepts relevant to the afore-
mentioned computations. Using the methods outlined in chapter 2 we computed further
quantities to four-loop order. They can be found in appendix C.
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further results obtained during these doctoral studies As the afore-
mentioned topics are all centered around the phenomenology of the Higgs boson, we
refrain from discussing further results that were obtained in the course of these doctoral
studies. These additional results do not fit with the other topics discussed in this thesis,
as they are centered around the computation of higher-order beta functions in the SM

and beyond.
As a major result, we obtained the four-loop gauge coupling beta functions in the full

SM [36]. Previous attempts to compute the top-quark Yukawa coupling contribution to
the beta function of the strong gauge coupling at this order were plagued by ambiguities
related to the treatment of γ5 in dimensional regularization [37, 38]. We extended the
novel approach introduced in Ref. [39], relating the ambiguous contributions to certain
terms of the three-loop Yukawa coupling beta functions, to the full SM and combined it
with an explicit four-loop computation of all remaining contributions.





Part I

I N T E R A C T I O N S B E T W E E N H I G G S B O S O N S A N D G L U O N S

In this part we compute two quantities at four-loop order, relevant to the
production and decay of Higgs bosons: the effective coupling of two Higgs
bosons to gluons and corrections to the Higgs boson–gluon vertex for a finite
top quark mass.

As by-products we also obtain the N3LO corrections to the Higgs decay rate
into photons, as well as several decoupling and renormalization constants at
four loops. The latter are presented in Sec. C.





2
T H E E F F E C T I V E C O U P L I N G O F T W O H I G G S B O S O N S T O G L U O N S

Since the top quark is the heaviest particle of the SM with a mass of 172.76 GeV [40], its
coupling to the Higgs boson is larger than for all other particles of the SM. For many
phenomenological applications it is a sufficiently good approximation to consider the
top-quark mass to be much larger than all energy scales involved in the process under
consideration. This has several advantages, the most obvious being that the top quark
does not appear as a dynamical degree of freedom. This is advantageous for calculating
higher-order corrections to the production of one or two Higgs bosons in gluon fusion
where loops involving top quarks get replaced by Higgs boson–gluon couplings in the
effective theory. As a consequence one has to deal with one scale and one loop less in
such calculations.

In this chapter we compute the effective coupling of two Higgs bosons to gluons in a
diagrammatic approach through four loops, following [33]. This effective coupling enters
cross-section predictions for Higgs boson pair-production at N3LO. In the course of this
computation we also encounter the effective coupling of one Higgs boson to gluons,
which we compute in a diagrammatic approach.

structure of the chapter We introduce the effective Lagrangian governing
interactions between Higgs bosons and gluons in Sec. 2.1 and derive relations for
extracting the effective couplings from amplitudes in the full theory in Sec. 2.2. In Sec. 2.3
we introduce the computational setup used for evaluating the necessary amplitudes. We
present the result for the effective coupling of two Higgs bosons to gluons in Sec. 2.4 and
compare it to a relation between the effective coupling and the decoupling constant ζαs .

Furthermore, in App. C we provide the on-shell wave-function renormalization con-
stant for gluons through four loops, higher order terms in the dimensional regulator for
the effective Higgs boson–gluon coupling CH, as well as the effective coupling C2 of a
Higgs boson to light quarks expressed through SU (N) colour factors . These results
have been obtained in the course of the computations of Ref. [33], but not explicitly given
there.

2.1 integrating out the top quark

In the following we discuss Quantum Chromodynamics (QCD), which is the full theory
in the context of this chapter, only briefly. A more detailed discussion of several technical
aspects can be found in App. A. We then introduce the effective theory with its effective
Higgs boson–gluon couplings, commonly called Higgs effective field theory (HEFT) [41].

9



10 the effective coupling of two higgs bosons to gluons

2.1.1 The full theory

The Lagrangian density describing QCD with a massive top quark t and nl = 5 massless
quarks qi at the classical level is given by 1

L(n f )

QCD = −1
4

Ga,µνGa
µν +

nl

∑
f

q f i /Dq f + t (i /D−Mt) t . (2.1)

Here, n f = nl + 1 is the number of active quark flavours, Mt is the mass of the top quark
and the field strength tensor Ga

µν is related to the gluon field Ga
µ by

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν , (2.2)

where the f abc are the structure constants of SU (3) and gs is related to the strong
coupling constant αs by

αs =
g2

s
4π

. (2.3)

The covariant derivative is given by

Dµ = ∂µ − igsGa
µTa , (2.4)

where the Ta are the generators of the fundamental representation of SU (3).
The kinetic term of the Higgs boson H and its self-interactions are given by

LH =
1
2
(∂µH)

(
∂µH

)
− 1

2
m2

H H2 − vλH3 − λ

4
H4 , (2.5)

where mH is the mass of the Higgs boson, v its vacuum expectation value and λ the
quartic coupling. It couples to the top quark via

LYukawa = −Mt

v
ttH . (2.6)

Several modifications to the above discussion need to be made for a correct description
at the quantum level. Fields and parameters in Eqs. (2.1) to (2.6) need to be replaced
by so-called bare quantities and a gauge fixing term and ghost fields need to be added.
Since they are not relevant for the qualitative understanding of the following, we refrain
from explicitly discussing them here but refer to Sec. A.1 and Sec. A.2.

1 The definitions in this section can be found in most quantum field theory (QFT) textbooks. Here, we follow
the conventions of [42].
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2.1.2 Effective Higgs boson–gluon couplings

All fields and parameters in the previous section are defined in the full theory with
n f quark flavours. In the following, they will carry a label to make this explicit. By
integrating out the top quark one obtains an effective Lagrangian Leff, given by

Leff = L(nl)
QCD

(
G(nl), q(nl)

f , α
(nl)
s

)
+ LH (H, mH, λ, v) + LO , (2.7)

where L(nl)
QCD is the QCD Lagrangian in Eq. (2.1) without the top quark. Furthermore,

G(n f ), q
(n f )

f and α
(n f )
s are replaced by effective nl-flavour versions. The relations between

fields and parameters in the full and effective theories are encoded in the so-called
decoupling constants, introduced in Sec. A.3. The Higgs boson Lagrangian LH, as well
as its parameters and the Higgs field remain as in Eq. (2.5), since we do not consider
electroweak corrections.

effective interactions The effective Lagrangian LO contains an infinite set of
effective operators built from quark, gluon and Higgs fields. In the following we will
only focus on the effective coupling of one or two Higgs bosons to gluons at O(1/v),
thus the infinite set is restricted to just

LO ⊃ −
H
v

C0
HO0

1 +
1
2

(
H
v

)2

C0
HHO0

1 , (2.8)

where the operator O0
1 gives rise to interactions involving two to four gluons and is

constructed from gluon field-strength tensors:

O0
1 =

1
4
(G0)a,µν(G0)a

µν . (2.9)

All radiative contributions of the top quark are encoded in the two Wilson coefficients
C0

H and C0
HH. These coefficients govern the interaction strength between Higgs bosons

and gluons in the limit Mt → ∞.
For X ∈ {H, HH} the renormalized operators and Wilson coefficients can be obtained

by

C0
XO0

1 =
C0

X
ZO1

ZO1O0
1 = CXO1 , (2.10)

where the renormalization constant ZO1 is related to the QCD beta function through all
orders in perturbation theory [43]:

ZO1 =
ε

ε− β
(

α
(nl)
s

) . (2.11)
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low-energy theorems The Wilson coefficient CH was computed at two loops
almost forty years ago [41, 44]. Three loop results have been obtained by direct calculation
of the Higgs boson–gluon vertex [45], as well as by relating CH to ζαs , the decoupling
constant of αs, via a so-called low-energy theorem [46]:

CH = −Mt

ζαs

∂

∂Mt
ζαs . (2.12)

The derivation of this relation is non-trivial and requires the introduction of further
operators that do not contribute to physical matrix elements. In Ref. [46] this low-
energy theorem was combined with the QCD beta function and quark mass anomalous
dimension to obtain CH at four loops. Similarly, with the five loop mass anomalous
dimension and beta function available, the five loop result has been derived [47–49].

CHH has been obtained at three loops only recently [50]. At one and two loops it
coincides with CH but starts to differ at three loops. In contrast to CH, no low-energy
theorem existed until recently a relation between the decoupling constant of αs and CHH

was obtained [51]:

CHH =
M2

t
ζαs

∂2

∂M2
t

ζαs − 2
(

Mt

ζαs

∂

∂Mt
ζαs

)2

. (2.13)

In analogy to CH, five-loop results can be obtained by combining Eq. (2.13) with the
five-loop mass anomalous dimension and beta function.

2.2 matching full and effective theories

To compute the Wilson coefficients we need to compare observables or amplitudes
in a kinematical limit where the full and the effective theories are both valid. In the
case at hand we are only interested in operators that are not suppressed by inverse
powers of the top-quark mass, thus we choose the infinitely heavy top quark limit.
Furthermore, we have to work with on-shell gluons and both gluon momenta unequal
to avoid contributions from unphysical operators appearing in LO . In the following, we
will derive matching formulae, relating CH and CHH to amplitudes in the full theory.

2.2.1 Matching for CH

the amplitude The simplest amplitude involving gluons and the Higgs boson is
the amplitude for Higgs boson production in gluon-fusion. This amplitude has a rather
simple structure, given by

= δabε
µ
1 εν

2 Aµν

(
p1, p2, M2

t
)

, (2.14)
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where the εi and pi are the polarization vectors and momenta of the two gluons. The
amplitude Aµν can be decomposed into three terms:

Aµν
(

p1, p2, M2
t
)
= gµν A1

(
p1, p2, M2

t
)
+ pµ

2 pν
1 A2

(
p1, p2, M2

t
)

+ εµνρσ p1,ρ p2,σ A3
(

p1, p2, M2
t
)

. (2.15)

Any other combination of the external momenta does not contribute, since the gluon
polarization vectors are transversal and thus ε

µ
i pi,µ = 0. The third term in Eq. (2.15) does

not contribute, since the Higgs boson is a scalar particle and perturbative QCD is a parity
conserving theory. Eq. (2.15) can be further simplified employing gauge invariance,
pµ

1 Aµν = pν
2 Aµν = 0. As a consequence A1 = −A2(p1 p2), leading to

= δab ((ε1 · ε2)(p1 · p2)− (ε1 · p2)(ε2 · p1))A
(
s, M2

t
)

, (2.16)

where s = (p1 · p2)/2. The above discussion only depends on the external particles,
hence Eq. (2.14) is valid for the full theory as well as the effective one. To obtain CH we
need to compute A

(
s, M2

t
)

in both theories, taking the limit Mt → ∞.

effective theory In the effective theory the amplitude is independent of Mt and,
at LO, is simply given by CH/v. Higher-order corrections lead to single scale three-point
integrals with trivial dependence on s and can be written as 2

Aeff
(
s, M2

t
)
= ZO1

CH

v

1 + ∑
l

(
α
(nl)
s

π

)l (
µ2

−s

)lε

Aeff,l

 . (2.17)

Here, we renormalized the strong coupling constant in the modified minimal subtraction
(MS) scheme with nl active flavours

α0
s = µ2εZαs

(
α
(nl)
s , nl

)
α
(nl)
s , (2.18)

where the renormalization constant Zαs is known through five loops [52–55]. The Aeff,l
still contain ultraviolet (UV) divergences which are cancelled by ZO1 as well as infrared (IR)
divergences which remain. Since all quarks in the effective theory are massless, the on-
shell (OS) wavefunction renormalization constant of the gluons is simply 1. Sample
diagrams contributing to Aeff,l are shown in Fig. 2.1.

2 The s dependence can be derived by rescaling loop and external momenta by p → √
sp̃. Each loop

integration measures scales as
√

s−2ε
= s−ε and the resulting integrals do not depend on any kinematic

scale.
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Figure 2.1: Sample diagrams contributing to Aeff through three loops. The black dot denotes the
effective Higgs boson–gluon coupling. Straight, dashed and curly lines denote light
quarks, Higgs bosons and gluons respectively.

full theory To compute the amplitude in the full theory while taking the limit
Mt → ∞, we perform an asymptotic expansion [56] in the large mass, also called LME.
The LME simplifies loop integrals by splitting each loop integral into a hard region,
in which the respective loop momentum scales like Mt, and a soft region, where the
loop momentum scales like the external momenta and the Higgs boson mass. In each
region we can perform a Taylor expansion in the soft scales, simplifying the calculation
tremendously. Loop momenta flowing through massive lines are always hard, since for
a soft loop momentum the Taylor expansion would lead to vanishing integrals. The
method of expansion by subgraph allows one to perform the separation algorithmically
at the level of Feynman diagrams. Each diagram is decomposed into a sum of hard
subgraphs, which have to be Taylor expanded in all of their external momenta and then
re-inserted into their respective co-subgraphs. The procedure is illustrated in Fig. 2.23.

By applying the LME and taking the limit Mt → ∞ we can write the full amplitude as

Afull
(
s, M2

t
)
= ZOS

3 ∑
l

l−1

∑
k

(
α
(n f )
s

π

)l (
µ2

M2
t

)(l−k)ε (
µ2

−s

)kε

A(l−k,k)
full,l , (2.19)

where ZOS
3 is the OS gluon wavefunction renormalization constant given in Sec. C.3. The

A(l−k,k)
full,l denote l-loop amplitudes with k soft-scaling loop momenta and l− k hard-scaling

ones. At one loop there only is a hard contribution, thus

CH = v
(

µ2

M2
t

)ε
α
(n f )
s

π
A(1,0)

full,1 . (2.20)

The prefactor v cancels against a factor of 1/v in the full theory amplitude which
originates from the top-quark Yukawa coupling. Starting from two loops, also soft
contributions appear, which come with a prefactor of M−2ε

t s−ε and thus scale exactly like

3 Examples of the LME at four loop order an be found in Fig. 3.1 in the next chapter.
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⊗

=

= Tqi

Tqi ⊗

+Tqi,l1 ⊗

Tqi ⊗=

+Tqi,l1 ⊗

⊗+ Tqi,l1,l2

Figure 2.2: Expansion by subgraph of sample diagrams contributing to Afull through three loops.
T denotes Taylor expansion w.r.t. momenta and the hard subgraphs are re-inserted in
the co-subgraphs in the vertex denoted by the black dot. Straight, dashed and curly
lines denote top quarks, Higgs bosons and gluons respectively.
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the LO Wilson coefficient CH combined with the one-loop corrections in the effective field
theory (EFT). Indeed, these two contributions are equal and thus cancel when comparing
Aeff with Afull. To make this cancellation explicit, we renormalize αs and the top-quark
mass in the MS scheme:

α0
s = µ2εZαs

(
α
(n f )
s , n f

)
α
(n f )
s , (2.21)

M0
t = Zm

(
α
(n f )
s , n f

)
Mt , (2.22)

where the renormalization constant Zm is known through five loops [57–59]. Similarly at
higher orders the various soft contributions are equal to the higher-order corrections in
the EFT, when taking the different renormalization constants into account and translating

α
(n f )
s to α

(nl)
s . As a consequence, no higher-order corrections in the EFT and no soft

contributions in the full theory need to be considered for computing CH. An intuitive,
pictorial way of arriving at this conclusion is given by the method of expansion by
subgraph: each co-subgraph corresponds to a diagram in the EFT, while each hard
subgraph corresponds to contributions to CH. Since we do not need to consider soft
contributions in the full theory we can naively Taylor expand each integrand in the
external momenta.

matching both theories By combining Eq. (2.17) with Eq. (2.19) we thus obtain
the matching relation

ZO1

CH

v
= ZOS

3 ∑
l

(
α
(n f )
s

π

)l (
µ2

M2
t

)lε

A(l,0)
full,l . (2.23)

The integrals appearing in A(l,0)
full,l are single-scale vacuum integrals only depending on

Mt, so-called tadpole integrals.

2.2.2 Matching for CHH

structure Deriving the matching relation for CHH proceeds in a similar way as in
the case of CH. Thus, we only have to take tree-level contributions in the EFT, as well as
hard contributions in the full theory into account. However, in contrast to the case of CH

more than one contribution in the EFT has to be taken into account. The first contribution,
Aeff,1PI, is one-particle irreducible (1PI) and involves the coupling of two Higgs bosons to
gluons and thus the Wilson coefficient CHH . The other two contributions are one-particle
reducible (1PR) and either involve a gluon propagator or a Higgs boson propagator. The
first of the 1PR contributions, Aeff,1PR,λ=0, is proportional to C2

H, while the second one,
Aeff,1PR,λ 6=0, involves the trilinear Higgs boson self coupling λ and thus is proportional
to CHλ. The three different contributions are shown in Fig. 2.3.
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Figure 2.3: The three different contributions to the Higgs boson pair-production amplitude in
the EFT. The first one involves the sought-after two-Higgs boson–gluon coupling CHH ,
while the other two involve CH .

= ⊗ ⊗+Tqi Tqi,l1

Figure 2.4: Three-loop diagram contributing to, both, CHH and C2
H .

contributions with a trilinear coupling Naively one might expect that
we only have to compute the hard part of the 1PI amplitude A(l,0)

full,1PI,l in the full theory
and can neglect all 1PR contributions. This is only true for diagrams involving the
Higgs boson self coupling, since in pure QCD they always match the corresponding EFT

diagrams. Thus the required calculation is exactly the same as in the previous section,
except for the Higgs propagator and the trilinear coupling, which do not affect the loop
integration, leading to

ZO1

CH

v
λ

s−m2
H

= ZOS
3 ∑

l

(
α
(n f )
s

π

)l

M−2lε
t A(l,0)

full,1PR,λ 6=0,l . (2.24)

contributions without a trilinear coupling The second 1PR contribution
only contributes from two loops, where it exactly matches the EFT diagram proportional
to C2

H . From three loops, the distinction between 1PI and 1PR contributions is not straight-
forward, as can be seen from the diagram in Fig. 2.4. The hard part of this diagram
clearly contributes to the 1PI contribution in the EFT, while the soft part is captured by
a one-loop correction to the 1PR contribution. As a consequence, we need to keep both
contributions for the computation of CHH, since otherwise we would be left with UV

divergences.
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renormalization of an operator product One further complication, first
pointed out in Ref. [60]4, arises from the appearance of the product of two operators O1

in the 1PR contribution. Naively, one would renormalize this product by

[O1O1] = Z2
O1

[
O0

1O0
1
]

. (2.25)

However, in Ref. [60] it was shown, with a similar derivation as for the case of only one
operator O1 [43], that an additional term, linear in O1 has to be taken into account:

[O1O1] = Z2
O1

[
O0

1O0
1
]
+ ZL

11O0
1 . (2.26)

The renormalization constant ZL
11 can be related to the QCD beta function [60]

ZL
11 =

1
ε

(
1− βαs

ε

)−2

α2
s

∂

∂αs

(
βαs

αs

)
(2.27)

= − α2
s

(4π2)2
β1

ε
+O

(
α3

s
)

, (2.28)

where β1 is the two-loop contribution to the QCD beta function. Thus, starting from
four loops in the full theory and O

(
α2

s C2
H
)

in the EFT, this non-trivial renormalization
contribution has to be taken into account.

matching formula Applying Eq. (2.26) to our computation leads us to the final
matching formula for CHH:(

ZO1

CHH

v
+ ZL

11
C2

H
v2

)
Aeff,1PI + Z2

O1

C2
H

v2 Aeff,1PR,λ=0

= ZOS
3 ∑

l

(
α
(n f )
s

π

)l

M−2lε
t

(
A(l,0)

full,1PI,l +A
(l,0)
full,1PR,λ=0,l

)
. (2.29)

As CH is known to four-loop order, we can insert the corresponding expression and
solve for CHH. Let us emphasize again, that the additional contribution due to the
renormalization of the operator product only starts to contribute at four loops. As a
consequence, the three loop results for CHH computed in Ref. [50] are not affected.

One more comment concerning the evaluation of the relevant amplitudes is in order.
While it would be tempting to take one of the external momenta to be equal to 0 to
simplify the evaluation, this would lead to additional complications in the matching
procedure. With all external momenta on-shell and different from each other, only O1

contributes, but for unphysical choices, three additional operators, discussed in Ref. [43],
would contribute. As a consequence, they also would affect the renormalization of the

4 While the topic studied in Ref. [60] was not directly connected to Higgs boson pair-production, the author
noticed that this issue also will arise here.
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operator product and an extension of Eq. (2.26) would be required. However, keeping all
momenta different from 0 leads to an additional tensor structure, discussed in Sec. A.5.
Thus, we need to apply the projector in Eq. (A.20) which correctly projects on the
tensor structure of interest. After applying the projector and performing Lorentz and
Dirac algebra, as well as the integrations, we can simplify the resulting expressions by
expanding around q3 ≈ 0, as no divergences in the limit q3 → 0 occur. The second tensor
structure does not contribute to CHH, since it vanishes in the limit Mt → ∞.

2.3 calculational setup

To evaluate the hard parts of the relevant amplitudes through four loops tens of thou-
sands of Feynman diagrams need to be calculated. Each of these diagrams leads to
multiple Feynman integrals and thus hundreds of thousands of integrals need to be
computed. This situation calls for an efficient and highly automatized computational
setup that can handle diagram generation, algebraic manipulations and the reduction of
the number of integrals to a small set. An overview of the general workflow is depicted
in Fig. 2.5. In the following we will discuss the general structure of the computation, as
well as its key element: the use of superdiagrams.

2.3.1 General setup

generating diagrams We start by generating all relevant Feynman diagrams with
the program QGRAF [61]. In the next step Feynman rules are inserted by q2e and the
diagrams are mapped onto underlying graph topologies by exp [62, 63]. Using the FORM

[64] package COLOR [65] we compute the colour factors of each diagram, which are then
expressed in terms of the quadratic Casimir invariants and symmetric tensors of SU (N).
The individual diagrams are then grouped together into so-called superdiagrams, which
will be discussed in Sec. 2.3.2. One exception is the Green’s function involving two
Higgs bosons and two gluons. Since multiple independent tadpole integrals appear in
each 1PR diagram, they are not grouped together but computed individually. The 1PI

contributions are treated as for all other Green’s functions. The number of diagrams
and superdiagrams contributing to the individual Green’s functions at the relevant loop
orders can be found in Tbl. 2.1. Albeit modifications to suit the task at hand are necessary,
most of the steps are also relevant for chapters 3, 6 and 7

computing diagrams The superdiagrams are processed using FORM, which projects
onto the tensor structure of interest, and performs Lorentz and Dirac algebra. In the
next step the external momenta are nullified and all Feynman integrals are rewritten
in terms of scalar functions, which only depend on the heavy quark mass. The scalar
integrals are then reduced to a set of so-called master integrals (MIs) using integration by
parts (IBP) relations [66, 67]. For one- to three-loop tadpole integrals this is performed by
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QGRAF

q2e

exp COLOR

Create superdiagrams

Algebraic manipulations
in FORM

MATAD FIRE

Insert master integrals

Figure 2.5: General workflow of the computation. Steps in ellipses are performed in parallel for
the individual diagrams, superdiagrams or integral topologies.

Green’s function 1-loop 2-loop 3-loop 4-loop

ggh 2 1 23 3 657 23 23251 112

gghh 1PI 6 1 99 3 3192 23 124149 112

gghh 1PR 0 - 8 - 216 - 7200 -

cc 0 0 1 1 25 6 765 27

qq 0 0 1 1 25 6 765 27

gg 1 1 7 3 189 23 6245 112

ccg 0 0 5 1 228 9 10118 74

Table 2.1: Number of Feynman diagrams and superdiagrams contributing to the relevant Green’s
functions. At each loop order the first column shows the number of regular diagrams
and the second one the number of superdiagrams. We also list the number of diagrams
contributing to the amplitudes relevant to the computation of decoupling constants,
discussed in App. C.
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the program MATAD [68], while at four loops the implementation of Laporta’s algorithm
[69] in the program FIRE [70] is used together with symmetries provided by LiteRed [71,
72]. The final step is the insertion of the four loop master integrals, which are known to
sufficiently high order in ε [73–76].

2.3.2 Building superdiagrams

A crucial element in the organization of our computational setup is the use of superdia-
grams. They are the sum of individual Feynman diagrams with similar properties, such
as colour factors and underlying graph topology.

advantages The most obvious advantage of this approach is the case of diagrams
cancelling exactly or becoming identical up to a prefactor at some stage during the
calculation. In the latter case, all manipulations after this step only take as much comput-
ing resources as in the case of a single diagram. Generally, this happens after applying
projecting operators and expanding in the external momentum, as demonstrated in the
following example.

Example 1 (Superdiagrams)

In the computation of the two gluon amplitude the following two diagrams share the same
colour factor and underlying topology:

In Feynman gauge their Dirac structure is given by

D1 ∝
∫ dDl

(2π)D

Tr
(
γµ(mQ − /p1)γ

ρ(mQ − /p2)γρ(mQ − /p1)γ
ν(mQ − /p3)

)(
m2

Q − p2
1

)2 (
m2

Q − p2
2

) (
m2

Q − p2
3

)
p2

4

,

D2 ∝
∫ dDl

(2π)D

Tr
(
γµ(mQ − /p3)γ

ν(mQ − /p1)γ
ρ(mQ − /p2)γρ(mQ − /p1)

)(
m2

Q − p2
1

)2 (
m2

Q − p2
2

) (
m2

Q − p2
3

)
p2

4

,

where the line momenta are given by

p1 = l1 , p2 = l1 − l2 , p3 = l1 + q , p4 = l2 .
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After applying the projector (A.18) and expanding in the external momentum q, both diagrams
simplify to

D ∝
∫ dDl

(2π)D q2 Tr
(
γµ(mQ − /p1)γ

ρ(mQ − /p2)γρ(mQ − /p1)γµ(mQ − /p1)
)(

m2
Q − p2

1

)3 (
m2

Q − p2
2

)
p2

4

+
∫ dDl

(2π)D

Tr
(
/q(mQ − /p1)γ

ρ(mQ − /p2)γρ(mQ − /p1)/q(mQ − /p1)
)(

m2
Q − p2

1

)3 (
m2

Q − p2
2

)
p2

4

In the superdiagram approach, this simplification already occurs in a very early stage of the
computation. Thus, the computation time is only slightly longer than for computing one of two
diagrams alone, leading to a reduction of total computation time by roughly 50%.

While this example is rather simple, analogous cases appear at the three- and four-
loop level, where the impact of these simplifications is much larger. Another possible
simplification is connected to the gauge parameter ξ. Individual Feynman diagrams
might contain higher powers of ξ than the final result, however in the superdiagram
approach ξ already cancels in intermediate steps.

There are further advantages of more technical nature to superdiagrams. The most
simple one being the reduction of batch scheduling overhead. The number of superdia-
grams is several orders of magnitude smaller than the number of diagrams, see e. g.Tbl.
2.1, and thus the batch system has to deal with a few, longer running, jobs instead of
many short jobs. This also reduces network usage, since fewer input expressions are
read and less result files are written.

Furthermore, FORM is optimized to manipulate a large number of terms with each
instruction and capable of efficiently using multiple cores on a computing node. Hence,
applying the same manipulation to all diagrams in a superdiagram at once is more
efficient on a multi-core machine than subsequently processing batches of diagrams in
parallel on the same machine. In the task at hand and other calculations such as the
four-loop beta functions in the full SM [36], computing a single diagram typically only
requires a few Megabytes of memory. Thus most of the memory of a computing node is
unused, if diagrams are processed by single core jobs in parallel. Superdiagrams on the
other hand, allow to make use of the available memory and thus make far better use of
available computing resources.

Generally, the advantages of superdiagrams are more pronounced at higher loop
orders. While for the computation of the 1PI ggHH amplitude at three loops 3192
diagrams get grouped into 23 superdiagrams, at four loops 124149 diagrams get grouped
into 112 superdiagrams. Thus, while the number of diagrams grows by a factor of 39,
the number of superdiagrams only grows by a factor of five when going from three to
four loops in this case. The picture is similar for all other Green’s functions considered
in this chapter.
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caveats However, there is one drawback to this approach. In situations with a large
number of diagrams, such as the amplitude involving two gluons and two Higgs bosons,
individual superdiagrams might contain too many terms to fit into the memory of one
machine. Thus they have to be split up and the cancellation at intermediate stages is
partially lost. In our current setup a maximum number of diagrams contributing to a
superdiagram can be specified and if this limit is reached, all further diagrams will be
added up in an additional superdiagram.

As simplifications and cancellations generally do not occur between all diagrams with
the same underlying topology and colour factor, but subsets thereof, a possible solution
to this problem would be to group diagrams not only by topology and colour factor, but
also by the number of fermion, ghost or gluon propagators.

2.4 CH H to O (α4
s )

We are now in the position to present our result for the four-loop Wilson coefficient CHH .
The results for CH , as well as the decoupling constants through four loops can be found
in App. C.

Some comments regarding the correctness of our results are in order. Our result is free
of the gauge parameter ξ in the sum of 1PI and 1PR contributions. In addition, taking
into account the nontrivial renormalization of the product of two insertions of O1, as
discussed in Eq. (2.26), leads to a finite result.

Furthermore, we computed the 1PR contributions in two different ways yielding the
same result: by directly evaluating all contributing diagrams, as well as by constructing
them out of the Higgs boson-two-gluon–vertex with an off-shell gluon [77]. Finally, we
find agreement with the known three-loop result [50].

Our result for CHH can be cast into the form

CHH = −2
3

TF ∑
i

C(i)
HH

(
α
(nl)
s

π

)i

(2.30)

where

C(1)
HH = 1 , (2.31)

C(2)
HH =

5
4

CA −
3
4

CF , (2.32)

C(3)
HH =

1567
576

C2
A −

83
24

CACF +
27
32

C2
F + nlTF

[
− 47

144
CA +

11
16

CF

]

+

[
− 11

16
C2

A +
7
16

CACF +
1
2

nlTFCF

]
ln
(

µ2

M2
t

)
, (2.33)

C(4)
HH =

(
253537
41472

− 1567
3072

ζ3

)
C3

A +

(
− 161687

6912
+

5105
512

ζ3

)
C2

ACF
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+

(
− 4615

1152
+

1
384

ζ3

)
C2

ATF +

(
4943
384
− 407

128
ζ3

)
CAC2

F

+

(
10969
1728

− 115
64

ζ3

)
CACFTF +

(
31

216
− 7

64
ζ3

)
CAT2

F −
471
128

C3
F

+

(
− 23

12
+

13
32

ζ3

)
C2

FTF +

(
161
432
− 7

32
ζ3

)
CFT2

F +

(
− 2

3
+

13
2

ζ3

)
dabcd

A dabcd
F

NATF

+

(
11
12
− 2ζ3

)
dabcd

F dabcd
F

NATF
+ nlTF

[(
− 16381

10368
− 51

256
ζ3

)
C2

A

+

(
17525
2592

− 1145
384

ζ3

)
CACF +

(
29
54
− 7

64
ζ3

)
CATF +

(
− 577

288
+

127
96

ζ3

)
C2

F

+

(
47
144
− 7

32
ζ3

)
CFTF +

(
11
6
− 4ζ3

)
dabcd

F dabcd
F

NAT2
F

]
+ n2

l T2
F

[
19

2592
CA −

533
1296

CF

]

+

[
3841
1152

C3
A −

913
144

C2
ACF −

391
576

C2
ATF +

99
64

CAC2
F +

55
72

CACFTF + nlTF

(
− 223

288
C2

A

+
77
18

CACF +
5

144
CATF −

5
8

C2
F −

11
18

CFTF

)
+ n2

l T2
F

(
5

144
CA −

11
18

CF

)]
ln
(

µ2

M2
t

)

+

[
77

192
C3

A −
121
192

C2
ACF + nlTF

(
− 7

48
C2

A +
11
6

CACF

)
− 1

6
n2

l CFT2
F

]
ln2
(

µ2

M2
t

)
.

(2.34)

Here, Mt is the OS renormalized top-quark mass and

ζn =
∞

∑
i=1

1
in (2.35)

is the Riemann Zeta function. The numerical values for the SU (N) colour factors are
given in Sec. A.4. Expressions for CHH in terms of the MS renormalized top-quark mass

or α
(n f )
s are given in Ref. [33].

The result presented in Eq. (2.34) is in agreement with the prediction of the low-energy
theorem given in Eq. (2.13), thus confirming this relation through four loops. Under the
assumption that Eq. (2.13) also holds for higher orders, C(5)

HH can be constructed with
the help of the five-loop QCD beta function and mass anomalous dimension. As the
proper renormalization of operator products in the matching procedure has been taken
care of, we do not expect that further modifications to the Eq. (2.29) are necessary and,
as a consequence, that Eq. (2.13) is indeed valid also for higher orders. The five-loop
expressions can be found in the ancillary files of [33].
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Virtual corrections to the Higgs boson–gluon form factor are an important building
block for predictions of the Higgs boson production cross-section in gluon fusion.
In contrast to the previous chapter, we are interested in contributions beyond the
infinitely heavy top quark approximation. While exact analytic results for the form
factor are available through two loops [78–80], at three loops contributions with a closed
light quark loop [81], as well as the leading-colour contributions [82] became available
analytically only recently. To this end, two approaches to address the top-quark–mass
dependence at three loops are studied in the literature. First, a LME of the form factor
[83, 84] was performed, providing an analytic approximation in the phenomenologically
interesting kinematic regime for the production of a single Higgs boson. Furthermore,
these results were combined with a LME of the real radiation contribution [85–87]. The
second approach is based on numerical techniques, which allow one to describe the
full mass dependence. One numerical approach studied in the literature combines the
results of the aforementioned LME, including terms through O(1/M14

t ) [88] with an
expansion of the form factor around the top-quark threshold using Padé approximants
[89]. The second approach performs an IBP reduction of the form factor, evaluating
all MIs numerically [90]. At four loops however, only the infinitely heavy top quark
approximation exists.

In this chapter we will, based on [34], provide the first ingredient for calculations of
the Higgs boson production cross-section in gluon fusion at N3LO beyond the infinitely
heavy top quark limit: the four-loop virtual corrections to the Higgs boson–gluon form
factor.

structure of the chapter In Sec. 3.1 we introduce the technical setup of the
calculation, followed by the discussion of the expected IR pole structure of the form factor
in Sec. 3.2. We present analytic results and discuss the numerical impact of higher-order
terms in the LME in Sec. 3.3.

3.1 large mass expansion of the higgs boson–gluon form factor

The computation of the Higgs boson–gluon form factor follows similar steps as the
computation of CH, described in Sec. 2.2.1. However, we are now also interested in soft
contributions and terms suppressed by 1/Mt. To this end, we can not naively Taylor
expand all integrands, but have to perform a full LME of the amplitude. In the following,

25
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we will describe the computation while focusing on the differences w.r.t. Sec. 2.2.1.
Furthermore, we will assemble the leading order term in the top-quark–mass expansion
in the EFT where the top quark has been integrated out.

3.1.1 Structure of the computation

generating diagrams We generate all contributing diagrams and process them as
described in Sec. 2.3 with the difference that exp performs an asymptotic expansion in
the top-quark mass instead of a naive Taylor expansion. As a consequence, we obtain
one or more subdiagrams for each original diagram, including the information about
the scaling of the loop momenta. Examples of the diagramatic LME through three loops
are shown in Fig. 2.2 and four-loop examples are shown in Fig. 3.1.

=T ⊗

+T ⊗

+T ⊗

+T ⊗

=T ⊗

⊗+T

+T ⊗

+T ⊗

Figure 3.1: Expansion by subgraph of sample diagrams contributing to the form factor at four
loops. T denotes a Taylor expansion in the momenta and the hard subgraphs are
re-inserted into the co-subgraphs in the vertices, denoted by the black dots. Straight,
dashed and curly lines denote top quarks, Higgs bosons and gluons, respectively.

differences w.r .t. the previous chapter In contrast to the computation of
the Wilson coefficients, we can not simply build superdiagrams, since diagrams with
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the same colour factor might lead to different subdiagrams with different momentum
assignments. We would need to construct the superdiagrams out of the subdiagrams
instead, which is more complex since a subdiagram might involve up to four different
loop integrals. While technically possible, we proceed without creating superdiagrams.
Computing each subdiagram individually was sufficiently fast in this case. Each subdia-
gram is processed by FORM. The main differences w.r.t. the computation of the Wilson
coefficients are the deeper expansion depth in terms of Mt, increasing the number of
terms in each diagram, and the massless three-point integrals appearing.

tensor reduction As a consequence of the expansion tensor integrals need to be
evaluated1, as shown in the following example.

Example 2 (LME leading to tensor integrals)

Let us consider the following two-loop diagram, where also the soft region contributes in the
LME:

= Tqi ⊗

+ Tqi,k ⊗

After projecting onto the scalar form factor and performing the numerator algebra, we are
left with scalar integrals I (ρ) where ρ = s/M2

t . As shown in the figure above, the LME splits
these integrals into two-loop tadpole integrals and the product of one-loop tadpole and massless
three-point integrals:

I (ρ)→∑
j

ρj
∫

k,l

Pj(qi · k, qi · l)
(k2)aj

(
(k− l)2 −M2

t
)bj
(
l2 −M2

t
)cj

+ ∑
j

ρj
∫

k

1

(k2)aj ((k + q1)2)bj ((k− q2)2)bj

∫
l

Qj(qi · l, k · l)(
l2 −M2

t
)dj

.

Here, the indices aj to dj are, possibly negative, integers which depend on the expansion depth.
The numerator polynomials Pj and Qj generally depend on scalar products between the loop
momenta and momenta which do not arise in propagators of the respective integrals. As a
consequence, for the two-loop tadpole integral in the first line, we need to perform a tensor
reduction. For the integrals in the second line, we could either perform the tensor reduction for
the one-loop three-point function or for the one-loop tadpole.

1 This is already the case in the computations of chapter 2. However, the efficient treatment of tensor integrals
is more relevant when considering higher order terms in the LME.
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Since, in general, tensor integrals are rather cumbersome to evaluate, we perform a
so-called tensor reduction of the integrand. The method is based on the fact that the result
of the loop integration can only be a function of the external momenta present in the
denominators and numerators, as well as two Lorentz covariant tensors: the metric gµν

as well as the totally antisymmetric tensor εµνρσ. Since QCD is parity invariant, the latter
can not occur.

In the case at hand, it is advantageous to perform the tensor reduction for the
tadpole integrals for two reasons. Firstly, since no external momenta are present in
their denominators, the tensor structure can only be composed out of metric tensors
and thus only tensors with even rank contribute. Secondly, since the tensor reduction
needs to be performed for the tadpole integrals in the fully hard subgraph anyway, the
routines can simply be used for all other subgraphs too.

tensor reduction for tadpole integrals At one-loop order, a closed formula
for tensor-tadpole integrals with arbitrary rank is known [56]. For two-loop tadpole
integrals an algorithm for arbitrary tensor rank is known [91] and implemented in MATAD

[68]. At the three- and four-loop order, we derive relations reducing tensors through
rank eight using the program of [92]. This program derives relations by constructing
projectors onto the different tensor structures at each rank, which are then used to
decompose generic tensors. An explicit example for rank two and rank four tensors is
given below.

Example 3 (Tensor reduction)

As a warm up excercise, consider a rank two tensor tadpole integral Iµν, which can be written
as

Iµν = Igµν .

To relate Iµν to I we contract both sides of the equation with the metric tensor, obtaining

gµν Iµν = dI .

Thus, to obtain I we have to apply the projector Pµν = gµν/D to the integrand.
Now, consider the rank four tensor tadpole integral Iµνρσ. This integral can be decomposed

into three terms

Iµνρσ = I1Tµνρσ + I2Tµρνσ + I3Tµσνρ ,

where Tαβγδ = gαβgγδ . To relate the Ii to the original tensor integral, we contract both sides
of the equations with the three different versions of T:

Tµνρσ Iµνρσ =D2 I1 + D (I2 + I3) ,

Tµρνσ Iµνρσ =D2 I2 + D (I1 + I3) ,

Tµσνρ Iµνρσ =D2 I3 + D (I1 + I2) .
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This linear system of equations can be solved leading to the three projection operators

P1,µνρσ =
1

D(D− 1)(D + 2)
(
(D + 1)Tµνρσ − Tµρνσ − Tµσνρ

)
,

P2,µνρσ =
1

D(D− 1)(D + 2)
(
−Tµνρσ + (D + 1)Tµρνσ − Tµσνρ

)
,

P3,µνρσ =
1

D(D− 1)(D + 2)
(
−Tµνρσ − Tµρνσ + (D + 1)Tµσνρ

)
,

with Pi,µνρσ Iµνρσ = Ii.

scalar integrals After the tensor reduction, we are left with scalar tadpole
integrals up to four loops and massless three point integrals up to three loops. While
some diagrams, for example the second diagram in Fig. 3.1, also yield massless two-point
integrals, they can be simply treated as three-point integrals, with one denominator
power equal to zero.

application of ibp tables Due to the deeper expansion in 1/Mt, each diagram
yields more tadpole integrals, as well as tadpole integrals with higher denominator
powers, compared to the calculation of CH and CHH. As a consequence, each diagram
requires a significant amount of storage space, posing a non-negligible challenge2.
To reduce the required disk space, as well as the algebraic complexity arising when
summing up all diagrams and inserting the IBP reduction tables, we do not perform
the LME up to O(1/M4

t ) directly. Instead, we compute the O(M0
t ) contribution first

and perform the reduction of the required integrals. We then compute the expansion
through O(1/M2

t ) but already apply the IBP tables which we generated for the O(M0
t )

contribution at the level of each subdiagram. Thus, each subdiagram is already smaller
than it would have been, had we not have inserted the already existing tables. In the
next step, we perform the reduction for the missing integrals only and add them to our
tables. The same procedure is repeated at O(1/M4

t ). In total more than 40 million three-
and four-loop tadpole integrals are reduced.

bookkeeping of integrals To perform the IBP reduction without re-reducing
already known integrals, we implement a simple but powerful bookkeeping system,
depicted in Fig. 3.2. In a first step, the list of required integrals is compared with the list
of already reduced integrals to determine which integrals are actually unknown. The
next step is the reduction of the unknown integrals using FIRE, followed by converting
the output of FIRE to fill statements for FORM tablebases. Next, the new integrals are
appended to the list of known integrals and the fill statements are added to a file

2 Even after applying the optimization described here, all diagrams together require more than one Terabyte
of storage space.
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Required integrals

Unknown integrals

Reduction
output

Reduction output converted to FORM

Reduced
integrals

FORM

tablebase

Figure 3.2: Bookkeeping system for tadpole reduction. Only the list of known integrals and their
reduction tables are stored in the end.

containing all of them. The final step is building a FORM tablebase from the generated
fill statements. Bookkeeping is done for each three- and four-loop tadpole integral
family independently, allowing us to speed up the computation by processing all families
in parallel. The largest table generated for the computaton at O(1/M4

t ) contains more
than eleven million entries. During its generation a previously unknown bug in FORM

was uncovered and subsequently fixed. All MIs are known at sufficiently high orders in
ε [73–76].

massless three-point functions The massless three-point functions through
three loops are also reduced to MIs with FIRE. In total, three million three-loop three-
point integrals appear through O(1/M4

t ) with, in contrast to the tadpole integrals, lower
denominator powers, but higher numerator powers. All master integrals are known, to
sufficiently high order in the ε-expansion [93–97].

3.2 the infrared structure of the higgs boson–gluon form factor

The resulting expression for the form factor A
(
s, M2

t
)

still contains UV, as well as IR

singularities. We can remove the UV singularities by renormalizing the strong coupling
constant using Eq. (2.21), the top-quark mass using Eq. (2.22), as well as the external
gluon fields by multiplying the form factor with ZOS

3 . Note that, ZOS
3 also contains finite

terms and we thus need higher-order terms in its ε expansion. These terms have been
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computed in the course of the computations described in chapter 2 and we provide them
in Sec. C.3.

In the following we investigate the IR pole structure of the form factor. To this end we
discuss the expectation for the form of the IR poles in Sec. 3.2.1. Next, in Sec. 3.2.2 we
compare the expectation to our explicit calculation.

3.2.1 Expected infrared pole structure

In Quantum Electrodynamics (QED) the infrared pole structure is determined by the
emission of soft photons and can be obtained at higher-orders by exponentiating the
LO contribution [98]. For amplitudes in QCD the situation is more complicated, as
also collinear singularities appear and soft gluon emissions recieve higher-order loop
corrections [99, 100]. Still, in Refs. [101, 102] an all-order formula describing the IR

singularities of amplitudes in QCD was conjectured. In the following we briefly discuss
this conjecture and apply it to the Higgs boson–gluon form factor.

general structure of the ir divergences In Refs.[101, 102] the IR singularities
of an n-parton amplitude in QCD were related to the anomalous dimension matrix of
n-jet operators in soft-collinear effective theory and thus related to their UV singulari-
ties. Following [101, 102] we introduce a renormalization constant, which we call ZIR,
subtracting all IR poles from an amplitudeM:

M̃ = Z−1
IR M . (3.1)

Here M̃ is finite in the limit ε→ 0.
The key conjecture of [101, 102] is that the anomalous dimension Γ, related to ZIR by

Γ ({p}, µ) = −Z−1
IR (ε, {p}, µ)

d
dµ

ZIR (ε, {p}, µ) , (3.2)

is given by

Γ ({p}, µ) = ∑
(i,j)

Ti ·Tj

2
γcusp ln

µ2

−sij
+

n

∑
i

γi . (3.3)

Here {p} denotes the set of all parton momenta with sij = 2σij pi pj + i0 and σij = 1 for
both momenta in- or outgoing and −1 for one ingoing and one outgoing momentum.
The (i, j) are all distinct pairs of partons, Ti is the SU (N) colour generator for the
respective parton i, γcusp is the cusp soft anomalous dimension and γi is the collinear
anomalous dimension of parton i. In Refs. [101, 102] it is conjectured that Eq. (3.3) holds
to all loop orders and any number of external partons. For the case of two partons at
three loops Eq. (3.3) is proven to be valid.
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Specifying Eq. (3.3) to the case of the Higgs boson–gluon form factor yields

ΓggH (p1, p2, µ) = −CAγcusp ln
µ2

−s
+ 2γg . (3.4)

The relation between Γ and ZIR in Eq. (3.2) can be inverted, resulting in

ZIR = exp
[
−
∫ αs

0

dα

β (α, ε)

(
Γ(α) +

∂Γ(α)
∂ ln µ

∫ α

αs

dα′

β (α′, ε)

)]
, (3.5)

thus exponentiating all IR singularities. Note, that βαs (αs, ε) = β (αs)− 2εαs where β (αs)
denotes the regular four-dimensional QCD beta function.

explicit form of the infrared counterterm The expression for ZIR for the
Higgs boson–gluon form factor in the infinitely heavy top quark limit is explicitly given
in Ref. [95]. Taking the logarithm we obtain

log ZIR =

(
α
(nl)
s

4π

)[
− CAγ

cusp
0

2ε2 +
γ

g
0

ε

]

+

(
α
(nl)
s

4π

)2 [
3CAβ0γ

cusp
0

8ε3 − 1
2ε2

(
β0γ

g
0 +

CAγ
cusp
1

4

)
+

γ
g
1

2ε

]

+

(
α
(nl)
s

4π

)3 [
− 11CAβ2

0γ
cusp
0

36ε4 +
1

3ε3

(
5CAβ0γ

cusp
1

12
+ β2

0γ
g
0 +

2CAβ1γ
cusp
0

3

)

− 1
3ε2

(
β0γ

g
1 +

CAγ
cusp
2

6
+ β1γ

g
0

)
+

γ
g
2

3ε

]
. (3.6)

Here βl , γ
cusp
l , γ

g
l are the (l − 1)-loop terms of the QCD beta function, the cusp soft

anomalous dimension and the gluon collinear anomalous dimension, respectively. Both
anomalous dimensions are known up to three loops [102, 103]. They are given by

γ
cusp
0 = 4 ,

γ
cusp
1 = CA

(
268
9
− 4

3
π2
)
− 40

9
nl ,

γ
cusp
2 = C2

A

(
490

3
− 536

27
π2 +

44
45

π4 +
88
3

ζ3

)
+ CAnl

(
−836

27
+

80
27

π2 − 112
3

ζ3

)
+ CFnl

(
−110

3
+ 32ζ3

)
− 16

27
n2

l (3.7)

and

γ
g
0 = −11

3
CA +

2
3

nl ,
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γ
g
1 = C2

A

(
−692

27
+

11
18

π2 + 2ζ3

)
+ CAnl

(
128
27
− 1

9
π2
)
+ 2CFnl ,

γ
g
2 = C3

A

(
−97186

729
+

6109
486

π2 − 319
270

π4 +
122
3

ζ3 −
20
9

π2ζ3 − 16ζ5

)
+ C2

Anl

(
30715
1458

− 599
243

π2 +
41
135

π4 +
356
27

ζ3

)
+ CACFnl

(
1217

27
− 1

3
π2 − 4

45
π4 − 152

9
ζ3

)
− C2

Fnl + CAn2
l

(
− 269

1458
+

10
81

π2 − 56
27

ζ3

)
− 11

9
CFn2

l . (3.8)

While the highest pole of the l-loop contribution to log ZIR is of O(ε−l−1) the highest
pole of ZIR is of O(ε−2l).

3.2.2 Comparison with the explicit calculation

In the following we normalize the form factor to 1 at leading order in αs

F =
A
(
s, M2

t
)

A(1)
(
s, M2

t
) ≈ 1 +O (αs) , (3.9)

where A(1) (s, M2
t
)

is the one-loop contribution to the Higgs boson–gluon form factor.
Note that we also expand A(1) (s, M2

t
)

in 1/Mt. In the following F plays the role ofM
in Sec. 3.2.

Taking the limit Mt → ∞ we observe that, as expected, the two-, three- and four-loop
contributions of F start at O(ε−2), O(ε−4) and O(ε−6), respectively. This is in agreement
with the expectation in Sec. 3.2, as in the infinitely heavy mass limit all top-quark
contributions are encapsulated in CH, and we thus deal with one-, two- and three-loop
effective diagrams. When taking the logarithm of F we find that the IR poles are indeed
given by Eq. (3.6).

The higher-order contributions in the LME of F at two-, three- and four-loop order
start at O(ε0), O(ε−2) and O(ε−4), respectively. As the discussion in Refs. [101, 102]
does only rely on the external particles present, these poles should be products of lower
order terms of F and ZIR in Eq. (3.1) and thus should not be present in log F. Taking the
logarithm indeed shows that the poles of log F are free from higher-order terms in the
LME and, as a consequence, in agreement with the conjecture of [101, 102].

3.3 results

Having discussed the calculational details and the infrared pole structure of the result,
we are now in the position to present analytic results for the top-quark–mass suppressed
terms of the Higgs boson–gluon form factor. Our result passes several checks. Through
three loops we agree with the results available in the literature [83, 84, 88]. Furthermore,
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we project on the two terms in Eq. (2.16) individually and find full agreement between
both results.

comparison to the effective field theory result As discussed in Sec. 2.2.1
the form factor is given by Eq. (2.17) in the EFT. In contrast to Sec. 2.2.1 however, we are
now interested in all contributions to Aeff

(
s, M2

t
)

and thus we also need the higher-order
contributions Aeff,l in the EFT through three loops. We can extract the contributions in the
EFT in terms of α

(nl)
s from [93, 95]. Here, the renormalization of O1 is already included

and thus we only need to combine the results with the Wilson coefficient CH through
four loops. Note that, as in the case of ZOS

3 , we need to include higher-order ε terms in
CH. They can be found in Sec. C.1.

By replacing α
(n f )
s = ζ−1

αs
α
(nl)
s in the leading term in the LME we find agreement with

the EFT result. When expressed in terms of α
(nl)
s , the dependence on the top-quark mass

is fully determined by logarithms of the renormalization scale over the top-quark mass
stemming from CH.

In the following we present the analytic result for the finite part of log F in Sec. 3.3.1
and discuss the numerical impact of top-quark–mass corrections in Sec. 3.3.2.

3.3.1 Analytic results

In the following we write

log F = log F|poles + log F|finite , (3.10)

where log F|poles = − log ZIR as given in Eq. (3.6). We provide the result for log F|finite
with the top-quark mass renormalized in the OS scheme, Nc = 3 and µ = Mt. Note
that in order to convert from the MS renormalized mass to the OS renormalized mass,
higher-order ε terms in the conversion relation are needed, which we take from Ref.
[104]. The finite part of log F is given by

log F|finite =

(
α
(nl)
s

π

)[
11
4

+
3
4

ζ2 −
3
4

l2
tH +

17
135

ρ +
3553

226800
ρ2

]

+

(
α
(nl)
s

π

)2 [
6793
288

+
201
32

ζ2 −
143
16

ζ3 + ltH

(
− 5

3
+

33
8

ζ2 +
9
8

ζ3

)
+ l2

tH

(
− 67

16

+
9
8

ζ2

)
− 11

16
l3
tH + ρ

(
− 49160591

2488320
+

7
30

ζ2 +
7
90

ζ2a1 +
1909181
110592

ζ3 −
1

16
ltH

)

+ ρ2

(
− 340842656767

78033715200
+

857
25200

ζ2 +
857

75600
ζ2a1 +

267179777
70778880

ζ3 +
1663

403200
ltH

)
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+ nl

[
− 3239

864
− 5

16
ζ2 +

(
− 19

36
− 1

4
ζ2

)
ltH +

5
24

l2
tH +

1
24

l3
tH + ρ

(
14563
97200

− 7
180

ζ2 +
1441

51840
ltH

)
+ ρ2

(
4565713

571536000
− 857

151200
ζ2 −

7
24

ζ3 +
80231

43545600
ltH

)]]

+

(
α
(nl)
s

π

)3 [
48557965

124416
+

165289
3456
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3072
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2477
128
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693
32
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8
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3
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8
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48
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8
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27
4
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− 8375

384
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)
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tH

(
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48
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33
16
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+
13719599
27993600

ltH +
135427

3732480
l2
tH

)
+ ρ2

(
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. (3.11)

Here, ρ = m2
H/M2

t , ltH = log
(

M2
t /m2

H
)
+ iπ, ζn is the Riemann Zeta function as

defined in Eq. (2.35) and an = Lin(1/2). Note that a1 = ln 2. Results for F and log F
expressed in terms of SU (N) colour factors and for arbitrary µ can be found in the
ancillary files of [34].

3.3.2 Numerical impact of mass corrections

We are now in the position to discuss the numerical impact of the mass suppressed
terms of the Higgs boson–gluon form factor. Since, in contrast to the form factor itself,
only the finite part of log F contains mass suppressed terms, we discuss log F|finite in the
following.

numerical input quantities In the following we study the impact of the mass
suppressed terms for the top-quark mass renormalized in the OS scheme as well as
the MS scheme. Furthermore, we will investigate the size of the corrections for several
different renormalization scales. To this end, we use the program (C)RunDec version 3

[105] to convert the top-quark mass between OS and MS scheme, as well as to evaluate the
MS renormalized mass at different renormalization scales. For the numerical evaluation
of Eq. (3.11) we use the default values in (C)RunDec:

mH = 125.09 GeV , Mt = 173.21 GeV , α
(5)
s (MZ) = 0.1181 , (3.12)

where MZ = 91.1876 GeV.
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In a first step, we compute α
(6)
s (Mt) employing the five-loop QCD beta function [52–

55] and the four-loop decoupling constant of the strong coupling [33, 47, 48]. With Mt

and α
(6)
s (Mt) available, we can compute the scale-invariant top-quark mass using the

four-loop MS-OS relation [104]. As a result, we obtain

α
(6)
s (Mt) = 0.107732 , mt (mt) = 163.382 GeV . (3.13)

The scale-invariant top-quark mass, together with the five-loop quark mass anomalous
dimension [57–59], can be used to obtain mt at any renormalization scale µ.

renormalization scale dependence : os scheme First, we consider log F|finite
with the top-quark mass renormalized in the OS scheme and µ = Mt. Through four
loops the real part of log F|finite is given by

Re (log F) |OS,µ=Mt =

(
α
(nl)
s

π

)(
11.0681|ρ0 + 0.065677|ρ1 + 0.004261|ρ2

)

+

(
α
(nl)
s

π

)2 (
22.6025|ρ0 + 1.01519|ρ1 + 0.0654393|ρ2

)

+

(
α
(nl)
s

π

)3 (
−73.0929|ρ0 + 7.6059|ρ1 + 0.694711|ρ2

)
. (3.14)

The expansion in ρ converges rapidly. While at two and three loops the O
(
ρ1) contri-

butions are less than 5% of the leading term, at four loops the O
(
ρ1) contributions are

more than 10% of the leading term, indicating that the impact of higher-order corrections
in the LME of the form factor is larger for higher loop orders. However, even at four
loops, the O

(
ρ2) are less than 1% of the leading contribution.

For different values of the renormalization scale, the relative impact of the higher-order
corrections in the LME changes considerably. In Fig. 3.3 we show the dependence of the
four-loop contribution to log F|finite, renormalized in the OS scheme, as a function of µ

for the expansion through O(ρ0), O(ρ1) and O(ρ2) respectively. The relative size of the
higher-order ρ corrections rapidly increases for µ > Mt and decreases for smaller values
of µ. However, even for the commonly chosen renormalization scale µ = mH/

√
2 the

mass corrections do not become smaller than 3%. Below µ = 200 GeV, the relative size of
ρ2 contributions w.r.t. those of ρ1 do not exceed 2.5% as can be seen in the lower panel
of Fig. 3.3. Thus the ρ1 contribution has, depending on the chosen renormalization scale,
an impact of O(10%), the ρ2 contribution stabilizies the convergence of the LME.

renormalization scale dependence : MS scheme Taking µ = mt (mt) and
using the MS renormalized top-quark mass we obtain

Re (log F) |MS,µ=mt
=

(
α
(nl)
s

π

)(
11.1719|ρ0 − 0.017369|ρ1 − 0.002407|ρ2

)
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Figure 3.3: Four-loop contribution of the real part of log F|finite renormalized in the OS scheme as
a function of µ. The impact of higher-order 1/Mt corrections grows with increasing
µ. The upper panel shows the four-loop contribution including different order in the
LME. In the lower panel, the ratios between the result including the ρ1 term and the
leading order, as well as between the result including both, the ρ1 and ρ2 term and
the leading order are shown.

+

(
α
(nl)
s

π

)2 (
20.976|ρ0 + 0.557998|ρ1 + 0.0312618|ρ2

)

+

(
α
(nl)
s

π

)3 (
−90.2709|ρ0 + 1.31135|ρ1 + 0.158557|ρ2

)
. (3.15)

As in the OS case, the convergence of the ρ expansion is very good. At all considered loop
orders, the O

(
ρ2) are approximately an order of magnitude smaller than the O

(
ρ1)

contributions. Contrary to the OS case however, the four loop O
(
ρ1) contributions

only amount to 1.5% of the leading order contribution, while the three-loop O
(
ρ1)

contributions amount to 2.6% of the leading term. In both cases, the LME of the imaginary
part of log F|finite converges faster than the real part.

The case of log F|finite with the top-quark mass renormalized in the MS scheme is
shown in Fig. 3.4. Overall, the convergence of the LME is better than in the OS case
and more stable w.r.t. to changes of µ. For mH < µ < 200 GeV the relative impact of
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Figure 3.4: Four-loop contribution of the real part of log F|finite renormalized in the MS scheme
as a function of µ. The convergence of the LME is better than for the OS case.

the ρ1 contribution does not exceed 4% w.r.t. to the leading term. Furthermore, the ρ2

contribution remains below 0.5% throughout the whole range.

ρ dependence : os scheme For the on-shell production of a single SM Higgs boson
the center-of-mass energy is

√
s = mH, however there are processes where the Higgs

boson–gluon form factor enters at higher center-of-mass energies. Examples are:

• processes with an off-shell Higgs boson propagator, such as Higgs boson or Z-
boson pair-production,

• production of BSM scalar particles with masses larger than mH.

It is thus instructive to study up to which value in ρ our expansion shows a convergent
behaviour.

In Fig. 3.5 we fix µ = Mt and vary ρ. The value for on-shell Higgs boson production is
indicated by the vertical red line. Around

√
ρ ≈ 0.5 the real part of log F|finite crosses zero

and thus the relative size of higher-order corrections in the LME diverges. For
√

ρ ≈ 1.04
which corresponds to the threshold for Z-boson pair production, the relative size of
the ρ1 contribution amounts to 12.5% and the ρ2 contributions are as big as 2.5% w.r.t.
those of ρ1. Going to values such as

√
ρ ≈ 1.44, corresponding to the threshold for Higgs

boson pair production, increases the relative sizes to 15.5% and 4.5% respectively.
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Figure 3.5: Four-loop contribution of the real part of log F renormalized in the OS scheme with
µ = Mt as a function of

√
ρ. The red line indicates the value for on-shell Higgs boson

production.

ρ dependence : MS scheme As in the case of the µ-dependence, higher-order
corrections in the LME with the top-quark mass renormalized in the MS scheme are less
sensitive to variations of ρ than for the OS scheme. In Fig. 3.6 we show the four-loop
contribution to the real part of log F|finite with µ = mt. For

√
ρ ≈ 1.1, corresponding to

the Z-Boson pair production threshold, the mass corrections are below 2% and 0.5%
respectively. At the Higgs boson pair production threshold,

√
ρ ≈ 1.53, the corrections

grow to 3% and 1.5% respectively.

summary In summary, the LME of the Higgs boson–gluon form factor through
O(1/M2

t ) is sufficiently precise for the describtion of on-shell Higgs boson production
in gluon fusion, as well as the decay of a Higgs boson into gluons. Even for applications
with an off-shell Higgs boson, such as Z-boson or Higgs boson pair production near
the production threshold, the O(1/M4

t ) contributions are below 5% and thus the LME

shows a good convergence in the region where it is valid. Overall, the MS scheme for the
top-quark mass shows better convergence behaviour than the OS scheme.

Note, that our discussion is purely based on the logarithm of the form factor, which
by itself is not directly linked to physical observables. To assess the real impact of
higher-order terms in the LME, we would need to combine the form factor with real
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Figure 3.6: Four-loop contribution of the real part of log F|finite renormalized in the MS scheme
with µ = mt as a function of

√
ρ. The red line indicates the value for on-shell Higgs

boson production.

radiative corrections to the process under consideration. This however, is beyond the
scope of this work.





4
T H E H I G G S B O S O N D E C AY I N T O P H O T O N S AT F O U R L O O P S

In this chapter, we investigate a process which shares similarities with the Higgs boson–
gluon form factor, but can be directly linked to a physical quantity: the QCD correction
to the Higgs boson–photon form factor. Despite the small branching fraction of 0.23%
[40], the decay into photons played a crucial role in the discovery of the Higgs boson [1,
2]. Due to the excellent mass resolution, it is one of the most precise channels for Higgs
boson mass measurements, see e.g. [106].

theoretical status Numerical [107] and analytical NLO QCD [78, 80, 108] are
available. NNLO QCD corrections have been computed in the LME in [109], where only
contributions with photons coupling to top-quark loops have been considered, and in
Ref. [110], where also the contributions with photons coupling to massless quark loops
have been taken into account. Recently, also numerical results with the full quark mass
dependence have become availabe [111].

Furthermore, NLO electroweak corrections are known in a combination of LME and
exact results [112, 113], as well as fully numerical [114, 115].

what we can learn at n3lo While the NNLO QCD corrections are probably
sufficient for phenomenological applications, the N3LO corrections we present in the
following allow the assessment of the impact of top-quark mass suppressed terms at
N3LO for a physical quantity. In addition to the convergence of the LME it is instructive
to study the convergence of the perturbative series in αs itself. As the perturbative series
is expected to behave like an asymptotic series [116], higher order corrections should
start diverging starting from some order. Not many observables are known at N3LO or
higher, especially including finite quark mass effects. As a consequence investigating
the convergence of higher-order corrections to the Higgs boson decay into photons is of
interest in its on right.

In Sec. 4.1 we briefly describe the computation of the N3LO corrections and in Sec. 4.2
we discuss the results.

4.1 computation of the four-loop corrections

The Higgs boson–photon form factor can be rewritten as

= ε
µ
1 εν

2 Aγγ
µν (p1, p2)

43



44 the higgs boson decay into photons at four loops

= ((ε1 · ε2)(p1 · p2)− (ε1 · p2)(ε2 · p1))Aγγ (s) , (4.1)

in analogy to Eq. (2.16). The scalar form factor Aγγ (s) is directly related to the decay
rate Γ of the Higgs boson into photons

Γh→γγ =
M3

h
64π3

∣∣Aγγ
(

M2
h
)∣∣2 (4.2)

and, when only considering QCD corrections1, can be decomposed into diagrams with
W-boson loops, as well as top-quark loops

Aγγ = Aγγ
W +Aγγ

t . (4.3)

Sample one-loop diagrams are shown in Fig. 4.1.

Figure 4.1: Leading order Feynman diagrams contributing to the Higgs boson–photon form
factor. External wavy lines represent photons, internal wavy lines W-bosons, solid
lines fermions and dashed lines Higgs bosons.

differences w.r .t. the higgs boson–gluon case The computation of the
four-loop corrections to the Higgs boson–photon form factor proceeds in the same way
as for the case of external gluons as described in Sec. 3.1.1. In general, the computation
is less involved than in the gluonic case, since photons do not directly couple to gluons
and thus fewer Feynman diagrams contribute to the form factor. Furthermore, at one-
and two-loop order, only fully hard subgraphs contribute. As a consequence, the form
factor is real through two loops.

additional quark loops Starting from three loops also diagrams where the
photons do not couple to the same quark loop as the Higgs boson, such as the second
diagram in Fig. 4.2, appear. This second quark loop can be either a top-quark loop

Figure 4.2: Three-loop diagrams contributing to the form factor. In the second diagram, the
quark loop coupling to the photons can be massless.

and thus massive, or a light quark loop. For the light quark case, we have to take into

1 Here we neglect the Yukawa couplings of all quarks except the top quark.
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account the differing electric charges of up- and down-type quarks. At three loops the
first diagram in Fig. 4.3 also appears, involving a top-quark loop with one photon and
the Higgs boson coupling to it and a second, possibly massless, quark loop to which
the second photon couples to. Diagrams of this type involve fermion loops with an odd

Figure 4.3: The two Feynman diagrams in the first line vanish due to Furry’s theorem. The
diagram in the second line leads to a non-vanishing contribution.

number of gauge bosons attached to it. Due to charge conservation, the sum of such
diagrams, involving at most two gluons, add up to zero according to Furry’s theorem
[117]. At four loops, diagrams with an even number of attached gauge bosons, such
as the one in the second line of Fig. 4.3, appear. These diagrams lead to a non-zero
contribution and, in case the second quark loop is massless, terms proportional to the
electric charge of the top quark multiplied by the sum of light quark charges. The second
diagram in the first line of Fig. 4.3 with each external particle coupling to a different
quark loop add up to zero following Furry’s theorem.

4.2 results

We are now in the position to discuss the results obtained for the Higgs boson–photon
form factor at four loops. To this end we decompose Aγγ

t into four different contributions:

Aγγ
t = Ãγγ

t

(
e2

t At
t + e2

t A�,t
t + ∑

q
e2

q Al
t + et ∑

q
eq A�,l

t

)
. (4.4)

Here et = 2/3 is the electric charge of the top quark, eq are the charges of the light
quarks and the sum over q runs over all five massless quark flavours. The quark charges
sum up to

∑
q

eq =
1
3

and ∑
q

e2
q =

11
9

. (4.5)
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The overall factor is given by

Ãγγ
t =

2α

3π
Nc

√√
2GF , (4.6)

where Nc = 3, α is the fine-structure constant and GF is Fermi’s constant. Furthermore,
At

t denotes the contributions where both photons couple to the same top-quark loop and
Al

t denote contributions where both photons couple to the same massless quark loop.
Finally the contributions arising at the four-loop level with only one photon coupling
to a different loop than the Higgs boson and the second photon, such as the one in the
second row of Fig. 4.3, are denoted as A�,t/l

t .

4.2.1 Analytic results

checks We perform several checks of the result. First, through three loops, we find
agreement with [109, 110]. At four loops, the leading terms of At

t and A�,t
t in the LME

are known [118] with which we find agreement. As in the case of the Higgs boson–gluon
form factor, we project on both terms of the tensor structure in Eq. (4.1) individually,
obtaining the same result. Finally, we explicitly check the cancellation of diagrams with
both photons and the Higgs boson coupling to different quark loops.

analytic results For the four terms in Eq. (4.4) we obtain

At
t = 1 +

7
120

ρ +
1

168
ρ2

+

(
α
(5)
s

π

)[
− 1 +

61
270

ρ +
554

14175
ρ2

]

+

(
α
(5)
s

π

)2 [
− 7

6
+ ρ

(
− 4904561

622080
+

7
180

ζ2 +
7

90
a1ζ2 +

206951
27648

ζ3

)

+ ρ2

(
− 14134687057

10450944000
+

1
126

ζ2 +
1
63

a1ζ2 +
18180533
13271040

ζ3 +
1

360
ltH

)]

+

(
α
(5)
s

π

)3 [
− 7229

288
+

2195
96

ζ3 + ρ

(
− 1662825322699

51732172800
+

2800187
388800

ζ2 −
895
324

a1ζ2

+
62283356969
1277337600

ζ3 −
90069911
26127360

a4
1 +

88771607
4354560

a2
1ζ2 −

90069911
1088640

a4 +
1475256743
34836480

ζ4

− 46
2835

a5
1 +

92
567

a3
1ζ2 +

19133
1512

a1ζ4 −
10073
4320

ζ2ζ3 +
368
189

a5 −
839243
18144

ζ5

)

+ ρ2

(
− 159076957488068267

4842131374080000
+

2029217
1360800

ζ2 −
44311
85050

a1ζ2 +
712744062504367
23911759872000

ζ3
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− 914726935901
512394854400

a4
1 +

6366714842507
597793996800

a2
1ζ2 −

914726935901
21349785600

a4

+
106092752802611

4782351974400
ζ4 +

32309
277992

a5
1 −

161545
138996

a3
1ζ2 −
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370656

a1ζ4

− 1439
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ltH +
23

4320
l2
tH

)]
, (4.7)

A�,t
t =

(
α
(5)
s

π

)3 [
55

216
− 5

9
ζ3 + ρ

(
24226021

114960384
− 59351603

76640256
ζ3 −

151
2592

a4
1 +

151
432

a2
1ζ2

− 151
108

a4 +
7445
6912

ζ4

)
+ ρ2

(
1234082295799
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5991575341
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23224320
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, (4.8)

Al
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α
(5)
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π
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2
3
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6
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194400
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180
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8709120
ζ2

− 352361479
696729600

ζ3 +
23
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23
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17418240
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as well as

A�,l
t =

(
α
(5)
s

π

)3 [
55

108
− 10

9
ζ3 + ρ

(
3545
10368

+
245
648

ζ3 −
85

108
ζ4

)

+ ρ2

(
9222149

100776960
+

2129
15552

ζ3 −
3137
12960

ζ4

)]
. (4.10)



48 the higgs boson decay into photons at four loops

Here the top-quark mass is renormalized in the OS scheme, µ = Mt and nl = 5. Note
that both A�,t

t and A�,l
t , contain ltH = log(M2

t /m2
H) + iπ and thus have an imaginary

part, whereas A�,t
t and A�,l

t are real at four loops. The massless cut of the contributing
diagrams vanishes, since the only external scale involved in the box-type contribution is
an on-shell photon momentum.

4.2.2 Numerical results

In the following we discuss the impact of the N3LO corrections on Γh→γγ as well as the

convergence of the LME at four loops. To this end, we expand Γh→γγ in α
(nl)
s making use

of the fact that the one- and two-loop contributions are real:

Γh→γγ =
M3

h
64π

( (
Aγγ

LO

)2
+ 2

α
(nl)
s

π
Aγγ

LOA
γγ
t,NLO

+

(
α
(nl)
s

π

)2 ((
Aγγ

t,NLO

)2
+ 2Aγγ

LORe
(
Aγγ

t,NNLO

))

+

(
α
(nl)
s

π

)3 (
2Aγγ

t,NLORe
(
Aγγ

t,NNLO

)
+ 2Aγγ

LORe
(
Aγγ

t,N3LO

)))
. (4.11)

Here we only take QCD corrections to Aγγ
t into account. The exact expression for the LO

amplitude defined in Eq. (4.3) is taken from [110]. For the numerical evaluation we use
the values as in Eq. (3.12), as well as [40]

α = 1/137.036 , GF = 1.1663787× 10−5 GeV−2, MW = 80.379 GeV, (4.12)

where MW is the W-Boson mass. For the Higgs boson decay rate into photons at N3LO

with the top-quark mass renormalized in the MS scheme and µ = Mh we obtain

Γh→γγ × 106 GeV = 9.11767 + 0.16423 + 0.00697− 0.000199 = 9.28867 . (4.13)

Clearly, the N3LO corrections are too small to have any phenomenological impact. The
N3LO contribution can be decomposed into

Γh→γγ|N3LO × 109 GeV = 0.05608|NLO×NNLO − 1.72666|t + 1.27532|l
+ 0.09738|�,t + 0.09914|�,l , (4.14)

where the subscripts of the last four terms refer to the four terms in Eq. (4.4). It is worth
noting, that there is a large cancellation between the N3LO contribution to At

t and all
other terms. Compared to the approximation in Ref. [118], where only contributions
where both photons couple to top quark loops are taken into account, our result for the
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four-loop corrections is an order of magnitude smaller. Adopting the OS scheme for the
top-quark mass leads to

Γh→γγ × 106 GeV = 9.12998 + 0.15635 + 0.00300− 0.00107 = 9.2883 (4.15)

and

Γh→γγ|N3LO × 109 GeV = 0.01995|NLO×NNLO − 2.3858|t + 1.10544|l
+ 0.0973|�,t + 0.09894|�,l , (4.16)

showing the same convergence and cancellation patterns as for the top-quark mass
renormalized in the MS scheme.

For the top-quark mass renormalized in the MS scheme, the N3LO contribution to
Γh→γγ shows a different convergence pattern as log F, w.r.t. higher-order terms in the ρ

expansion. The three terms contribute as

Γh→γγ|N3LO × 1010 GeV = −3.72262|ρ0 + 1.75822|ρ1 − 0.02468|ρ2 (4.17)

and thus the next-to-leading term in the expansion is half as big as the leading one but
opposite in sign. However, as in the case of log F, the ρ2 contribution is smaller than 1%,
signaling a good convergence.

As in the case of log F the convergence for the top-quark mass renormalized in the OS

scheme is not as good as when renormalized in the MS scheme. The N3LO contributions
renormalized in the OS scheme are given by

Γh→γγ|N3LO × 1010 GeV = 0.936|ρ0 − 10.004|ρ1 − 1.585|ρ2 . (4.18)

In this case, the ρ1 contribution is an order of magnitude larger than the leading term
and has a different sign. The ρ2 contribution is still 50% larger than the leading term. A
similar behaviour can be observed at NNLO, where the ρ2 and the ρ1 contributions are of
similar size and have an opposite sign w.r.t the ρ0 term [110].

As a consequence, we would need to compute more terms in the ρ expansion to
have a stable prediction for the size of the N3LO contributions with the top-quark mass
renormalized in the OS scheme. The major bottleneck for computing more terms in the ρ

expansion is the tensor reduction. As the tensor rank of the involved tadpole integrals
increases with the expansion depth, we need to implement reduction routines for tensors
of rank ten to compute the ρ3 contribution. While this is, in principle, possible, for the
program of [92] to generate the relevant rules, we would need to split the tensors by the
number of equal loop-momenta. This means, we would derive separate rules for, e.g.,
tensors composed of ten equal loop momenta and tensors composed of five copies of
two different loop momenta, and so on, making it a rather daunting task.
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conclusion The N3LO corrections to the Higgs decay into photons amount to
O(10−5) times the LO contribution when the top-quark mass is renormalized in the MS

scheme and is more than an order of magnitude smaller than the NNLO corrections. Thus
there is no sign of divergence of the asymptotic series at N3LO. Individual contributions
amount to O(10−4) times the LO contribution, however they cancel largely against each
other. While the ρ1 amounts toO(50%) of the ρ0 term, the LME shows a good perturbative
behaviour and the ρ2 term is clearly negligible.

With the top-quark mass renormalized in the OS scheme, the N3LO contributions
amount to O(10−4) times the LO contribution. As the ρ2 contribution is larger than the
ρ0 contribution however, higher-order terms in the LME would be required for a stable
answer.

In both renormalization schemes, top-quark–mass corrections seem to have a bigger
impact than for log F in the previous chapter. In both quantities however, the suppressed
mass terms have a larger impact in the OS scheme than in the MS scheme.

A final comment regarding possible IR divergences is in order. As the three-point
integrals entering Al

t contain soft singularities, one might expect them to not be finite.
On the other hand, since the external photons are not carrying colour charge Eq. (3.3)
implies that there are no IR divergences. Our explicit calculation shows that there are
indeed no IR divergences.



Part II

H I G G S B O S O N PA I R P R O D U C T I O N

A prime objective of the HL-LHC and also of future hadron colliders is the
study of Higgs boson pair production. This process enables a direct measure-
ment of the trilinear Higgs boson self-coupling and thus a direct probe of
electroweak symmetry breaking.

The dominant channel for the production of a pair of Higgs bosons is gluon
fusion and thus, as in the case of single Higgs boson production, higher
order QCD corrections are necessary to make reliable predictions and unveil
possible deviations from the SM expectations.

To this end, we compute the inclusive Higgs boson pair-production cross-
section at NNLO in the LME, improving upon existing results in the literature.
In particular, we compute the real radiative contributions beyond the limit of
an infinitely heavy top quark using the method of reverse unitarity.
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A P P LY I N G M U LT I - L O O P T E C H N I Q U E S T O P H A S E S PA C E

I N T E G R A L S

To obtain the fully inclusive hadronic cross-section for pp → HH + X we need to
compute the individual inclusive partonic cross-sections for the different initial states
contributing at NNLO in QCD. The various contributions at NNLO can be split into the
following subsets:

• Double-virtual corrections: three-loop amplitudes contributing to the partonic
process gg→ HH. They are known at O(1/M8

t ) in the LME [88].

• Real-virtual corrections: two-loop amplitudes contributing to the partonic processes
gg→ gHH, qg→ qHH and qq→ gHH. Example diagrams are shown in the first
row of Fig. 5.1.

• Double-real corrections: one-loop amplitudes contributing to the partonic processes
gg → ggHH, gg → qqHH, qg → qgHH, qq → ggHH, qq → qqHH, qq → qqHH
and qq′ → qq′HH. Example diagrams are shown in the second and third row of
Fig. 5.1.

The real-virtual corrections can further be split into contributions with both Higgs bosons
coupling to different top-quark loops and contributions with both Higgs bosons coupling
to the same loop. We discuss the former set of corrections in chapter 6 and the remaining
real-virtual, as well as all double-real contributions, in chapter 7.

goal The goal of this chapter is to discuss the application of techniques developed
for multi-loop integrals to phase-space integrals, arising in the computation of the
contributions of the real-virtual and double-real amplitudes to the total cross-section.

In the following we employ the EFT introduced in Chap. 2, as the mass-suppressed
terms in the LME, which are discussed in chapters 6 and 7, only change the numerator
structure of the involved integrals which does not matter for the present discussion.
Furthermore, we focus on the two-gluon initial state, since it exhibits all relevant features.

the inclusive cross-section The inclusive partonic cross-section for the two-
gluon initial state can be written as

σgg→HH+X =
1
2s

∫
dPS2

∣∣Agg→HH
∣∣2 + 1

2s

∫
dPS3

∣∣Agg→HHg
∣∣2

+
1
2s ∑

x=gg,qq

∫
dPS4

∣∣Agg→HHx
∣∣2 , (5.1)

53
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Figure 5.1: Sample diagrams of real-virtual and double-real corrections. The last diagram in
the first row belongs to the subset discussed in chapter 6. All others are discussed in
chapter 7.

where averaging over the initial state gluon polarization and colours as well as summa-
tion over the final state particle polarization and colours is implied. The D-dimensional
phase-space integration measures are given by

dPSi = (2π)D
i+2

∏
j=3

dD−1 pj

(2π)D−1
1

2Ej
δ(D)

(
q1 + q2 −

i+2

∑
k=3

pk

)
. (5.2)

Here, q1 and q2 are the momenta of the ingoing gluons with q2
i = 0 and 2q1 · q2 = s, p3

and p4 are the momenta of the Higgs bosons with p2
3/4 = m2

H, while the other pi are
massless. The D-dimensional delta function δ(D) ensures total energy and momentum
conservation. The (D− 1)-dimensional integrations are over the spatial components of
the four vectors.

By rewriting

1
2Ej

=
∫

dpj,0
1

2Ej
δ
(

pj,0 − Ej
)
=
∫

dpj,0θ
(

pj,0
)

δ
(

p2
j −m2

j

)
≡
∫

dpj,0δ(+)
(

p2
j −m2

j

)
(5.3)

Eq. (5.2) becomes

dPSi = (2π)(1−i)D+i
i+2

∏
j=3

(
dD pj

)
δ(+)

(
p2

j −m2
j

)
δ(D)

(
q1 + q2 −

i+2

∑
k=3

pk

)
, (5.4)
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where m4 = m5 = 0. Thus we are left with the evaluation of i-fold D-dimensional
integrals of the squared amplitudes. These integrals seem to have a completely different
structure than the loop integrals arising in the previous chapter. In Sec. 5.1 we, however,
show that they can be treated using similar methods and in Sec. 5.2 we introduce a
program capable of simplifying calculations involving phase-space integrals.

5.1 computing phase space integrals by reverse unitarity

To apply the tools developed in the context of loop integrals to the problem at hand, we
need to relate Eq. (5.4) to a form in which methods like IBP reduction can be directly
applied. An example of such a relation is the optical theorem, relating the total inclusive
cross-section of two particles with momenta pi to the imaginary part of the forward-
scattering amplitude of the two particles:

σp1,p2→X =
1
s

Im
(
Ap1 p2→p1 p2

)
. (5.5)

Thus the sum of all phase-space integrals arising in the computation of σp1,p2→X can be
rewritten as the imaginary part of a loop integral.

reverse unitarity Since we are only interested in contributions coming from the
production of a pair of Higgs bosons and massless partons, we need a way to select these
contributions. To this end, we follow the so-called method of reverse unitarity introduced
in the context of the production of a single Higgs boson at NNLO [119]. First, we perform
one of the phase-space integrations and resolve the energy-momentum conserving delta
function:

dPSi = (2π)(1−n)D+n
i+1

∏
j=3

(
dD pj

)
δ(+)

(
p2

j −m2
j

)

×δ(+)

(q1 + q2 −
i+1

∑
k=3

pk

)2

−m2
i+2

 . (5.6)

In the next step, we replace each remaining delta function by a cut propagator

2πiδ(+)
(

p2 −m2)→ 1
p2 −m2 + i0

− 1
p2 −m2 − i0

≡ 1
[p2 −m2]c

. (5.7)

For the application of methods based on IBP relations, these can be treated as regular
propagators with one exception. In case the power of a cut propagator becomes zero
or negative, the integral vanishes and we can discard it. Powers greater than one are
treated as in the case of regular loop integrals, however in this case we can not directly
apply Eq. (5.7) to re-write them as phase-space integrals again. As a consequence, we
choose our MIs to not have cut propagators raised to higher powers.
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application to higgs boson pair-production The method thus turns phase-
space integrals for n final states into (n− 1)-loop integrals. The procedure is illustrated
in the following example:

Example 4 (NLO real radiation correction to gg → HH)

Let us consider the following contribution to
∣∣Agg→HHg

∣∣2:∣∣∣∣ ∣∣∣∣2 ⊂ ∣∣Agg→HHg
∣∣2 .

The phase-space integral for this contribution is, after integrating over the final-state gluon
momentum, given by

∫
dPS3

∣∣∣∣ ∣∣∣∣2
= (2π)3−2D

∫
dD p3dD p4

δ(+)
(

p2
3 −m2

H
)

δ(+)
(

p2
4 −m2

H
)

δ(+)
(

p2
5
)

(q1 − p3 − p4)
4 [...] ,

where the numerator structures have been omitted and p5 = q1 + q2 − p3 − p4. Applying
Eq. (5.7) leads to

∫
dPS3

∣∣∣∣ ∣∣∣∣2
=
∫ dD p3dD p4 (2π)3−2D [...][(

p2
4 −m2

H
)]

c

[(
p2

3 −m2
H
)]

c

[
(q1 + q2 − p3 − p4)

2
]

c
(q1 − p3 − p4)

4

= ,

where the blue dashed line denotes the cut. The resulting integral can be treated as a normal
loop integral and reduced to master integrals.

As a consequence of Eq. (5.7), Eq. (5.1) turns into

σgg→HH+X ∝ D̃isc
(
Agg→gg

)
, (5.8)

where D̃isc denotes the discontinuity associated with the two Higgs boson threshold,
indicating that exactly two cut Higgs bosons and possibly cut massless parton progators
are present. Example diagrams contributing to D̃isc

(
Agg→gg

)
in the EFT are shown in

Fig. 5.2.
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Figure 5.2: Forward-scattering diagrams for σgg→HH+X. The first row contains LO, the second
row NLO and the other rows NNLO diagrams. Some diagrams have multiple possible
cuts.

generating diagrams To generate and evaluate the diagrams contributing to
σgg→HH+X we can now resort to the tools used in the previous chapters. We generate
all diagrams contributing to the relevant forward-scattering amplitude using QGRAF [61]
and select only those diagrams with a valid cut, following the algorithm presented in
Ref. [120, 121]. In the next step we use q2e to insert Feynman rules and use exp [62, 63]
to map onto integral families. Since exp can not handle forward-scattering kinematics,
we need to define proper four-point integral families with three independent external
momenta, q1, q2 and q3. Then, we use FORM [64] to perform algebraic manipulations
and identify the momentum q3 with −q2. Thus, we turn the four-point families into
forward-scattering families. However, before performing an IBP reduction and evaluating
the MIs, we first need to resolve two issues arising in the context of reverse unitarity:
linearly dependent propagators and the minimization of integral families. These two
topics are discussed in Sec. 5.1.1 and Sec. 5.1.2.

5.1.1 Linear dependence among propagators

As a result of applying the method of reverse unitarity, many of the forward-scattering
Feynman integral families contain linearly dependent denominators. Since, in the context
of IBP reduction, it is crucial to have a linearly independent set of denominators to
uniquely express scalar products between loop momenta and external momenta, we
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thus have to find and eliminate such linear dependencies by partial fractioning. The
procedures described in this section are loosely based on the methods discussed in
Ref. [121].

finding linear dependencies To this end, we start with a four point integral
family used by exp and set q3 = −q2 in the definition of its propagators and irreducible
scalar products 1. In the following we choose all irreducible scalar products to be of the
same form as propagators, i.e. to be squared linear combinations of momenta, and refer
to them as numerators. Next, we derive a n×m dimensional matrix Msp, relating the
vector of denominators ~D = (D1, ..., Dn) with the vector containing all m possible scalar
products~s = (li · lj, li · qj) by:

~D = Msp~s +O (mH, s) , (5.9)

where terms involving the Higgs boson mass or s are neglected. The terms of O (mH, s)
can be easily reconstructed, as briefly discussed at the end of example 5.

If Rank
(

Msp
)
= r ≤ n, then there are n− r independent linear relations among the Di.

To find these relations, we construct the augmented matrix Nsp = (Msp|1n×n) allowing
us to write Eq. (5.9) as

0 = Nsp

(
~s
~D

)
. (5.10)

By performing Gaussian elimination on Nsp we cast it into upper reduced row echelon
form. As a consequence, its last n− r rows only contain entries for the denominators,
thus revealing linear relations among them up to terms involving s and mH, which can
be easily restored.

An explicit example is given in the following:
Example 5 (Linear dependence at NLO)

Let us consider the following contribution to
∣∣Agg→HHg

∣∣2:

2Re

(
×
( )∗)

⊂
∣∣Agg→HHg

∣∣2 .

Using the method of reverse unitarity, the phase-space integral can be written as

∫
dPS3 2Re

(
×
( )∗)

=
∫ dD p3dD p4 (2π)3−2D [...]

[D1]c[D2]c[D3]cD4D5D6
.

The six propagators appearing in the integral are given by

D1 = p2
3 −m2

H , D2 = p2
4 −m2

H , D3 = (q1 + q2 − p3 − p4)
2 ,

1 Note, that the described procedure also works for incomplete sets of denominators.
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D4 = (q1 − p3 − p4)
2 , D5 = (q2 − p3 − p4)

2 , D6 = (p3 + p4)
2 −m2

H

and are not linearly independent.
The matrix relating the denominators and scalar products is given by

~D =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 1 2 −2 −2 −2 −2

1 1 2 −2 −2 0 0

1 1 2 0 0 −2 −2

1 1 2 0 0 0 0


~s ,

where~s = (p2
3, p2

4, p3 · p4, p3 · q1, p4 · q1, p3 · q2, p4 · q2) . Its rank is 5 and thus we have one
linear relation among the Di.

To find it, we construct Nsp = (Msp|16×6) and perform Gaussian elimination. The last row
of the manipulated Nsp yields

0 = D3 − D4 − D5 + D6 .

Setting

x = D3 − D4 − D5 + D6 .

and inserting the definitions of the Di gives x = s−m2
H.

eliminating linear dependencies In the next step, we need to eliminate the
linear dependencies. They are of the form

x = ∑
i∈I

ciDi , (5.11)

where the ci are rational numbers and x is either 0 or a linear combination of s and m2
H.

The set I denotes the indices involved in the linear relation. We have to consider two
distinct cases: x = 0 and x 6= 0.

In the case that x 6= 0 we can divide both sides of Eq. (5.11) by x and all the Di. We
thus arrive at the partial fractioning relation

1
∏i∈I Di

=
1
x ∑

i∈I

ci

∏j∈I\{i} Dj
. (5.12)

By employing Eq. (5.12) we can express every integral involving all denominators present
in the linear relation as a sum of integrals with one denominator fewer. In case a linear
relation involves one or more cut denominators, one or more of the integrals resulting
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from applying the partial fractioning relation will vanish. In the following we continue
the previous example by employing this method.

Example 6 (Linear dependence at NLO, continued)

The linear relation among denominators in the previous example is given by

s−m2
H = D3 − D4 − D5 + D6 .

Hence, we can divide by all denominators and obtain

1
D3D4D5D6

=
1

s−m2
H

(
1

D4D5D6
− 1

D3D5D6
− 1

D3D4D6
+

1
D3D4D5

)
.

Representing the integrals involved in a pictorial way, this equation becomes

= −

− +

Note that the momentum q1 enters all diagrams through the lower-left line and leaves it
through the upper-right one. The first diagram on the right-hand side can be discarded, since it
does not have a valid cut. The other three diagrams only have linearly independent propagators.

The case x = 0 requires more care. In this case Eq. (5.11) can be re-written as

0 = ∑
i∈I

ci

∏j∈I\{i} Dj
, (5.13)

showing that, in contrast to the case of x 6= 0, there is no unique way of eliminating the
linear dependence. A choice has to be taken of which combination of denominators to
eliminate.

The implementation in a program of the described procedure and its applications are
discussed in Sec. 5.2.

5.1.2 Minimization of integral families

As a result of partial fractioning, we are left with a large set of possibly equivalent,
incomplete integral families. We thus introduce additional propagators appearing only
as numerators to complete each family. Furthermore, it is advantageous to minimize the
set of families to a minimal set before performing IBP reduction and other manipulations.
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finding equivalent families To identify equivalent integral families, we follow
the method outlined in Ref. [120] with minor modifications. First we compute the two
graph polynomials U and F for the top-level sector of each family. In the next step,
we form the Lee-Pomeransky Polynomial G = F + U [122] and canonically order the
variables by employing the algorithm described in Ref. [120]. Next, we compare the
canonically ordered polynomials G of all families and search for identical ones. Thus,
we are left with sets of identical integral families.

Finally, we identify shifts of the loop momenta to map all members of a set of identical
families onto one representative family. I.e. for the loop momenta li of an n-loop family
we need to find a shift

li → l̃i =
n

∑
j=1

cijlj +
2

∑
j=1

dijqj (5.14)

such that all denominators match a denominator of the representative family. The cij and
dij can, in principle, be arbitrary rational numbers. In the cases considered in this work,
they are either 1, −1 or 0. This task is simplified by the presence of cut denominator
factors which drastically reduce the possible momentum shifts, since each cut denomi-
nator has to map onto another cut denominator. Massive factors furthermore need to
map onto massive factors. Thus, we first constrain the cij and dij by demanding that
denominators which are both cut and massive map onto cut and massive denominators.
Then we further constrain them by demanding massless cut denominators mapping
onto massless cut denominators, followed by uncut massive denominators mapping
onto uncut massive ones. Finally, if some freedom remains, we deal with massless uncut
denominators. Once all momenta have been fixed, the remaining factors are checked for
compatibility of the transformation.

external momentum symmetries Not all families with the same canonically
ordered polynomials can be mapped onto each other by this procedure, however. The
reason for this is symmetry transformations of the external momenta, i.e. transformations
which leave all kinematic invariants appearing in the problem unchanged. In the case at
hand, the only invariant is s = 2q1 · q2 and thus transformations such as

(q1, q2)→ (−q1,−q2) , (q1, q2)→ (q2, q1) , (q1, q2)→ (−q2,−q1) (5.15)

leave s unchanged. Thus, we can find a valid mapping by first applying a symmetry
transformation of the external momenta followed by the search for a loop momentum
shift.
Example 7 (Minimization at NLO)

One such example is given by the second and the third family on the right-hand side of the
partial fractioning relation of the previous example. Neglecting numerators, their denominators
are given by

D1 = p2
3 −m2

H , D2 = p2
4 −m2

H , D3 = (q1 + q2 − p3 − p4)
2 ,
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D4 = (q1 − p3 − p4)
2 , D5 = (p3 + p4)

2 −m2
H

D̃1 = p̃2
3 −m2

H , D̃2 = p̃2
4 −m2

H , D̃3 = (q1 + q2 − p̃3 − p̃4)
2 ,

D̃4 = (q2 − p̃3 − p̃4)
2 , D̃5 = ( p̃3 + p̃4)

2 −m2
H .

Here the Di belong to the first and the D̃i to the second family. The denominators with
i ∈ {1, 2, 3} are cut. The requirement of the cut, massive denominators being equal fixes all dij
to vanish. Combining this with the requirement for the massless, cut denominator leaves two
solutions:

1. p̃3 = p3 and p̃4 = p4

2. p̃3 = p4 and p̃4 = p3

Both solutions are compatible with D̃5 = D5 but do not lead to D̃4 = D4. This situation
is resolved by first applying the transformation (q1, q2) → (q2, q1) to the D̃i. This leads to
D̃4 = (q1− p̃3− p̃4)

2 while all other denominator factors remain the same. Thus, both possible
solutions for the p̃i are valid shifts in this case and we can pick either of them.

Having identified a valid momentum shift for a family, we now can re-write all
numerators. First we apply the relevant symmetry transformation, as well as momentum
shift to them and then re-express the terms as linear combination of denominators and
numerators of the representative family.

As a result of the above procedure, we arrive at a small set of integral families.
However, this might not yet be a minimal set. It is possible that some families have more
numerators than others, as a consequence of the involved linear relations. In this case,
these families might be embeddable into the families with fewer numerators. To this end,
try to identify the top-level sector of families with more numerators with subsectors of
families with a lower amount of numerators. Thus we can find mappings to identify
families with subsectors of other families.

As in the case of finding linear relations and partial fractioning, this procedure has
been implemented in the program described in Sec. 5.2.

5.2 limit

In this section we discuss the implementation of the methods discussed in Sec. 5.1 in the
Mathematica package LIMIT (Linearly Independent and MInimal Toplogies). First, we
briefly describe its structure in Sec. 5.2.1, followed by an in-depth example focusing on
Higgs boson pair production in Sec. 5.2.2. We conclude by presenting applications of
LIMIT to different problems.
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5.2.1 Structure of the program

The program package is divided into two independent modules. The first deals with
partial fraction decomposition and the second with the minimization of families.

partial fraction decomposition The first module is centered around the
function ProcessTopology which performs all operations described in Sec. 5.1.1 in an
automated manner.

input It takes the following eight arguments:

1. orig: list of denominators of the original family.

2. name: name of the original family, used in the code generation only.

3. cut: list of cuts that should be taken into account. Each of them has to be a list
with the same length as orig, where a 0 indicates an uncut propagator and a 1 a
cut one.

4. int: list of internal (loop) momenta.

5. ext: list of external momenta.

6. mass: list of masses of internal lines.

7. kinrep: list of replacements for products of external momenta.

8. numerators: list of numbers indicating denominators only appearing as numerators.
Each entry is a position of a denominator in the orig list.

workflow To find the linear relations, the function ProcessTopology now performs
the following steps:

1. Form all possible scalar products between momenta in int and ext.

2. Compute Msp using the propagators in orig following Eq. (5.9).

3. Following Eq. (5.10) construct Nsp and apply the built-in Mathematica function
RowReduce, resulting in linear relations among denominators.

4. Restore the masses and external invariants involved in the linear relations.

Instead of directly eliminating linear dependencies by deriving partial fractioning
relations of the form Eq. (5.12), two more intermediate steps are applied first:

5. Pick all linear relations which involve at least one numerator and solve them for
one of those numerators.
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6. Select linear relations relating exactly two denominators and no masses or external
invariants. These directly map one denominator onto another one.

These two steps reduce the set of linear relations for which partial fractioning relations
of the form Eq. (5.12) need to be derived. In both steps FORM code is generated that
applies the relations found in each step to scalar integrals of the form name(n1,...,nx)

where x is the number of elements of orig and the nx are the powers of the individual
denominators in orig.

Finally, for one of the remaining linear relations the partial fractioning relation, as
well as replacement rules for cases where some of the denominators arise with negative
powers, are derived and FORM code is generated. The way denominators with negative
powers are treated is based on [120, 121]. In the case of x = 0 discussed in Sec. 5.1.1, solve
the linear relation to eliminate cut propagators if possible, as this reduces the number
of generated terms. If none of the involved propagators is cut, we simply eliminate the
lexicographically highest propagator.

Since only one of the remaining linear relations is eliminated, the resulting families
might still be linearly dependent. Instead of also eliminating these linear dependen-
cies in the same step the output of ProcessTopology might need to be processed by
ProcessTopology again. While this requires several calls of ProcessTopology on the
user side, it keeps the involved Mathematica code simple and the generated FORM code
transparent, due to its iterative nature.

output The output of ProcessTopology is a list with the following entries:

1. names: list of names of the resulting families, based on the original name of the
input family.

2. props: list of denominators of the resulting families.

3. cuts: list of cuts of the resulting families.

4. numerators: list of numerators of the resulting families.

5. form: FORM code string with all replacement rules.

6. done: 0 in case one ore more of the resulting families is still linearly dependent, 1
otherwise.

Both cuts and numerators are in the same format as for the input.
After performing partial fractioning the function DeleteZeroTopos can discard all

families from the returned list which do not possess a valid cut. To this end, the output
of ProcessTopology as well as the input cut are passed to DeleteZeroTopos, which then
checks if the cuts of the output families contain the same number of cut line as the input
ones. In case none of the cuts agree with the input cut, the family is discarded and a
FORM statement which nullifies the family is appended to the code string.

As an example consider the family of example 6:
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Example 8 (Application of LIMIT I)

To demonstrate the partial fractioning module of LIMIT we take the integral family defined by
the denominators in example 6 as an input and add three more numerators

D7 = (q1 − p3)
2 , D8 = (q2 − p4)

2 , D9 = (q2 − p3)
2 .

To perform partial fractioning we load LIMIT and define the input as

Get["LIMIT.m"];

props = {p3^2 - mh2, p4^2 - mh2, (q1 + q2 - p3 - p4)^2,

(q1 - p3 - p4)^2, (q2 - p3 - p4)^2, (p3 + p4)^2 - mh2,

(q1 - p3)^2, (q2 - p4)^2, (q2 - p3)^2};

cuts= {{1, 1, 1, 0, 0, 0, 0, 0, 0}};

nums = {7, 8, 9};

loopmom = {p3, p4};

externalmom = {q1, q2};

masses = {mh2};

kinrep = {q1^2 -> 0, q2^2 -> 0, q1*q2 -> s/2};

Here, mh2 is m2
H. Finally we call ProcessTopology by

ret = ProcessTopology[props, "examplefam", cutorig,

loopmom, externalmom, masses, kinrep, nums];

LIMIT finds two linear relations:

0 = s + D1 + D2 − D3 + D4 + 2D5 − 2D6 − D8 − D9 ,

0 = s−m2
H − D3 + D4 + D5 − D6 .

The first relation involves two numerators and thus is solved to generate the replacement rule

D9 → s + D1 + D2 − D3 + D4 + 2D5 − 2D6 − D8 .

The FORM code generated in this case reads

repeat id

examplefam(n1?,n2?,n3?,n4?,n5?,n6?,n7?,n8?,n9?neg_) =

(-1)*(examplefam(n1,n2,n3-1,n4,n5,n6,n7,n8,n9+1)) +

(-1)*(examplefam(n1,n2,n3,n4,n5,n6,n7,n8-1,n9+1)) +

(2)*(examplefam(n1,n2,n3,n4,n5-1,n6,n7,n8,n9+1)) +

(-2)*(examplefam(n1,n2,n3,n4,n5,n6-1,n7,n8,n9+1)) +

examplefam(n1-1,n2,n3,n4,n5,n6,n7,n8,n9+1) +

examplefam(n1,n2-1,n3,n4,n5,n6,n7,n8,n9+1) +

examplefam(n1,n2,n3,n4-1,n5,n6,n7,n8,n9+1) +

(s)*(examplefam(n1,n2,n3,n4,n5,n6,n7,n8,n9+1));
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In the next step the second relation is transformed to partial fraction integrals involving the
denominators D3 through D6 by

repeat id

examplefamno0(n1?,n2?,n3?pos_,n4?pos_,n5?pos_,n6?pos_,n7?,n8?) =

(-Den(mh2 - s)*examplefamno0(n1,n2,n3-1,n4,n5,n6,n7,n8)) +

(Den(mh2 - s)*examplefamno0(n1,n2,n3,n4-1,n5,n6,n7,n8)) +

(Den(mh2 - s)*examplefamno0(n1,n2,n3,n4,n5-1,n6,n7,n8)) +

(-Den(mh2 - s)*examplefamno0(n1,n2,n3,n4,n5,n6-1,n7,n8));

id examplefamno0(n1?,n2?,0,n4?,n5?,n6?,n7?,n8?) =

examplefamno0p1(n1,n2,0,n4,n5,n6,n7,n8);

id examplefamno0(n1?,n2?,n3?,0,n5?,n6?,n7?,n8?) =

examplefamno0p2(n1,n2,n3,0,n5,n6,n7,n8);

id examplefamno0(n1?,n2?,n3?,n4?,0,n6?,n7?,n8?) =

examplefamno0p3(n1,n2,n3,n4,0,n6,n7,n8);

id examplefamno0(n1?,n2?,n3?,n4?,n5?,0,n7?,n8?) =

examplefamno0p4(n1,n2,n3,n4,n5,0,n7,n8);

Thus we are left with the four families shown in example 6.

minimization The second module uses the Mathematica package LiteRed [71, 72]
to perform the minimization of the integral families.

generating input for litered To this end, the function GenerateLiteRedData

generates all information relevant to find mappings between families with LiteRed. Its
arguments are

1. fam: list with the following four entries:

a) name: string with the name of the family.

b) propagators: list of propagators in LiteRed format, i.e. with scalar products
denoted by sp.

c) cut: list of cut propagators. Note that in contrast to the partial fractioning,
LiteRed can only handle one cut per family.

d) numerators: list of positions of numerators in Propagators.

2. loopmoms: list of loop momenta.

3. dir: string with the directory name to hold all files.

4. sym: external momenta symmetries. If omitted, built-in LiteRed routines are used
to search for them instead.
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finding equivalent families After calling GenerateLiteRedData for all families
under consideration, the function GroupTopologiesBySignature can compute the canon-
ically ordered Lee-Pomeransky polynomial G for the top-level sectors and group the fam-
ilies by them. The input should be a list of all fam lists passed to GenerateLiteRedData.
Its output takes the form

{{signature,topsectors,numerators},...}

where signature is an internal identifier for the polynomial G of each set of equivalent
families, topsectors is a list containing the top-level sector of each family in the group
in LiteRed notation and numerators is the number of numerators.

mapping equivalent families Based on this output, the function MapTopoGroups

takes a group of equivalent families and calls the LiteRed function FindExtSymmetries to
map all families onto one representative family. The second argument of MapTopoGroups
is a list of symmetry relations between external momenta, such as the ones in Eq. (5.15).
Its output takes the form

{{signature,NameOfFirstEntry,NumberOfNumerators},

{signature,UnmappedFamilies,NumberOfNumerators}}

and an example is shown in example 9. Here NameOfFirstEntry is the name of the repre-
sentative family, NumberOfNumerators is the number of numerators and UnmappedFamilies

is a list of all families which have the same signature as the representative family, but
could not be mapped onto it by FindExtSymmetries. There are two possible reasons for
UnmappedFamilies not being an empty list. Firstly, in most cases, a external momentum
symmetry is missing. The second problem might arise when dealing with cut propaga-
tors. In this case safety measures in FindExtSymmetries are active, such that no possibly
wrong mappings are done. This also excludes some correct mappings and thus some
families might remain unmapped. In this case, MapTopoGroups can be called again, with
the families in UnmappedFamilies as an input.

embedding families Should we only deal with families with the same number of
numerators, we could now generate FORM code for all mappings. In the case that there
are some families with more numerators than others, we can try to embed them into the
families with fewer numerators. To this end, we group the representative families for
each signature by the number of numerators by calling SortMappedTopos with the list of
all mapped groups as input. The output takes the form

{{NumberOfNumerators,Names},...}

where Names is the list of names of the representative families with the same number of
numerators. The output now can be passed to EmbedMappedTopos which tries to embed
the families with more numerators into the ones with fewer numerators.
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generating code Finally, after mapping all families onto a minimal set, FORM code
applying all mappings can be generated. For this purpose we provide several functions
converting LiteRed rules to FORM identification statements, each of them returning a
string for including the generated files:

• ReturnZeroFORM[fams_,dir_]: writes out rules for nullifying vanishing integrals
in the families fams into the directory dir.

• ReturnSymFORM[fams_, dir_, dirzero_]: writes out rules for mapping integrals
in equivalent sectors in each of the families in fams to minimize the number of
integrals before mapping. dir is the ouput directory and dirzero is the directory
where the rules generated by ReturnZeroFORM can be found.

• ReturnMappingFORM[group_, dir_]: writes out rules for mapping integrals from
families with the same signature into a representative family. group should be
an output group of MapTopoGroups and dir is the directory to hold the FORM

statements.

• ReturnSymandEmbedFORM[embeddedfams_, dir_, dirsym_, dirzero_]: writes out
rules for symmetrizing and embedding the representative families with more nu-
merators into families with fewer numerators. The rules generated by ReturnSymFORM

and ReturnZeroFORM need to be in dirsym and dirzero, respectively.

In the following we display the use of the minimization module on the example of the
families resulting from example 8

Example 9 (Application of LIMIT II)

In the first step, we load LIMIT which subsequently loads LiteRed and define the momenta
and variables appearing in the problem:

Get["LIMIT.m"];

SetDim[d];

Declare[{p3, p4, q1, q2}, Vector, {s, mh2}, Number];

sp[q1, q1] = 0;

sp[q2, q2] = 0;

sp[q1, q2] = s/2;

In the next step, we define two further integral families which do not appear in example 8:

{{"T1", {sp[p3, p3], sp[p4, p4], sp[p3 + q1, p3 + q1],

sp[p4 + q1, p4 + q1], -mh2 + sp[p3 + q1 + q2, p3 + q1 + q2],

-mh2 + sp[p4 + q1 + q2, p4 + q1 + q2],

-mh2 + sp[p3 - p4, p3 - p4]},

{0, 1, 0, 0, 1, 0, 1}, {}},

{"L2", {sp[p3 + q1, p3 + q1],
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sp[p4 + q1, p4 + q1], -mh2 + sp[p4 + q1 + q2, p4 + q1 + q2],

sp[p4 + q2, p4 + q2], sp[p3 + q2, p3 + q2],

sp[p3, p3], -mh2 + sp[p3 - p4, p3 - p4]},

{0, 0, 1, 0, 0, 1, 1}, {}}}

They can be depicted as

where solid lines are massive with mass mH and dashed lines are massless. The momentum
q1 enters and leaves via the lines with the arrows. In the next step we add the new and old
families together in one list fams and run all necessary LiteRed commands by

GenerateLiteRedData[#, {p3, p4}, "LR"] & /@ fams;

Now, we compute the signatures of each family and group them:

uniquefams = GroupTopologiesBySignature[fams];

The result is stored in uniquefams and given by

{{20216085449316752538415658696276286202,

{js[T1, 1, 1, 1, 1, 1, 1, 1]}, 0},

{118632354605253600004828853610037442495,

{js[L2, 1, 1, 1, 1, 1, 1, 1]}, 0},

{297847790944173985318275321513850848248,

{js[examplefamno0p2no0, 1, 1, 1, 1, 1, 0, 0],

js[examplefamno0p3no0, 1, 1, 1, 1, 1, 0, 0]}, 2},

{224975629750526536673378408099951220967,

{js[examplefamno0p4no0, 1, 1, 1, 1, 1, 0, 0]}, 2}}

showing that two of the three non-vanishing families of example 8 are actually equivalent. They
can be mapped onto each other by

mappedfams =

MapTopoGroups[#, {{q1 -> q1, q2 -> q2}, {q1 -> q2, q2 -> q1},

{q1 -> -q1, q2 -> -q2}, {q1 -> -q2, q2 -> -q1}}] &

/@ uniquefams;

Here the list containing the external momentum mappings contains all symmetries of Eq. (5.15).
As a result, examplefamno0p3no0 is mapped onto examplefamno0p2no0. In the next step,
we discard the empty information about unmapped families:
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cleanedfams = First[Drop[Transpose[mappedfams], -1]];

The output is given by

{{20216085449316752538415658696276286202, T1, 0},

{118632354605253600004828853610037442495, L2, 0},

{297847790944173985318275321513850848248, examplefamno0p2no0, 2},

{224975629750526536673378408099951220967, examplefamno0p4no0, 2}}

Next, we try to embed the two remaining families with two numerators into the two families
without numerators that we added above:

sortedfams = SortMappedTopos[cleanedfams];

finalfams = EmbedMappedTopos[sortedfams,

{{q1 -> q1, q2 -> q2}, {q1 -> q2, q2 -> q1},

{q1 -> -q1, q2 -> -q2}, {q1 -> -q2, q2 -> -q1}}];

As a consquence, examplefamno0p2no0 is embedded into T1 and examplefamno0p4no0 into
L2. The final output reads

{{0, {{20216085449316752538415658696276286202, T1, 0},

{118632354605253600004828853610037442495, L2, 0}}},

{2, {}}}

indicating, that there are no families with two numerators are left.

5.2.2 Application to Higgs boson pair production

In the following we discuss the application of LIMIT to the process of Higgs boson pair
production. There are three different sets of forward-scattering integral families with
one or more cuts which appear during the calculation:

• Two-loop families with one or two three-particle cuts that appear in the real
corrections at NLO and real-virtual corrections involving three top-quark loops at
NNLO.

• Three-loop families with a three particle cut, appearing in the remaining real-virtual
corrections at NNLO.

• Three-loop families with one or two four-particle cuts contributing to the double
real emission corrections at NNLO.

For each of these sets of integral families LIMIT is applied to the four-point families
required for exp to map all diagrams.
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Figure 5.3: Sample template integral family. Solid lines denote Higgs bosons and dashed lines
massless particles. The blue dashed lines indicate the cut.

generating four-point families To generate all four-point families for exp,
first a set of template families are chosen, such as the one depicted in Fig. 5.3. These
families have four external momenta r1, r2, r3 and r4. The template momenta enter the
family in an anti-clockwise manner, starting from the upper left leg. In the next step,
the template momenta are replaced by permutations of the momenta used by exp: q1,
q2, q3 and q4 = −q3 − q2 − q1. Only permutations which exchange q1 ↔ q2, q3 ↔ q4,
or q1, q2 ↔ q3, q4 are needed and thus we are left with eight versions of each template
family.

two-loop phase-space families The real corrections at NLO and the subset of
real-virtual corrections at NNLO with either three effective Higgs boson–gluon vertices
and LO Wilson coefficients, as discussed in chapter 6, or two effective vertices with one
LO and one NLO Wilson coefficient, as discussed in Sec. 7.2.2, each lead to two-loop
phase space integral families with three-particle cuts.

The required template families are depicted in the leftmost column of Fig. 5.4. Note
that eight copies are required only for the first template family. The second template
family is symmetric under r1, r2 ↔ r3, r4 and thus only four copies of it are needed.
Similarly, the last family is symmetric under r1 ↔ r2. Thus, 16 families are required in
total. After specifying forward-scattering kinematics by setting q3 = −q2 and partial
fractioning, the eight families resulting from the first template family are mapped onto
the three temporary families depicted in the middle column. Each of them has six
lines and one numerator. In the next step, the four copies of each of the other two
template families are minimized, resulting in the families T1, T2 and X1 in the rightmost
column. Finally the three temporary families can be embedded into the families T1

and T2, as well as the family L2. Thus, LIMIT mapps the 16 original families on four
final forward-scattering families. Note, that the families with two cuts are split into two
distinct families in intermediate steps, so that LiteRed can process them, and merged
again in the end.

three-loop phase space families , three-particle cuts The remaining real-
virtual corrections at NNLO with two effective vertices and LO Wilson coefficients lead to
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L2

T1

T2

X1

Figure 5.4: Integral families relevant for the two-loop phase-space contributions at NLO and
NNLO. Arrows on external lines indicate where q1 enters or leaves the integral. The
lines follow the conventions of Fig. 5.3.

three-loop integrals with three-particle cuts. In contrast to the previous case, we deal
with families involving one actual loop integration. All relevant template families are
depicted in the leftmost column of Fig. 5.5. While the first three template families yield
eight actual integral families each, the fourth one is symmetric under r1 ↔ r2 and thus
only yields four. In total, the four template families lead to 28 actual families. The partial
fractioning of the second and third group of families leads to three new families with
eight instead of nine lines. Two of each of them can be embedded into the two families
T3pt,1 and T3pt,2 resulting from the minimization of the first group of template families.
We keep the remaining two families with eight lines as they are and do not add extra
lines. As in the case of the two-loop families all non-planar four-point families map onto
one non-planar forward scattering family.

three-loop phase space families , four-particle cuts The integral families
with four-particle cuts can be divided into three subsets. Two of them contain planar
families and the third one non-planar ones.

The first planar subset contains four template families, depicted in Fig. 5.6. The second
template family is symmetric under r1, r2 ↔ r3, r4 and thus leads to only four distinct
four-point families. Overall, there are 28 four-point families resulting from this subset of
template families. Partial fractioning of the template families generates eight families
with one line fewer, of which seven are embedded into the families P1, P2 and P3. The
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T3pt,3

T3pt,5

T3pt,4

T3pt,2

T3pt,1

Figure 5.5: Integral families relevant for the three-loop real-virtual phase-space contributions at
NNLO. The lines follow the conventions of Fig. 5.3.



74 applying multi-loop techniques to phase space integrals

P5

P2

P3

P1

Figure 5.6: Subset of the planar, three-loop real-real phase-space contributions at NNLO. The
lines follow the conventions of Fig. 5.3.
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P4

P6

P7

P8

P9

Figure 5.7: Second subset of the planar, three-loop real-real phase-space contributions at NNLO.
The lines follow the conventions of Fig. 5.3.

one remaining eight-line family can not be embedded into any of the other families and
thus is chosen as one of the final forward-scattering families.

We start off with three template families in the second set of planar families, depicted
in Fig. 5.7. The first two template families are symmetric under r1, r2 ↔ r3, r4 and
r1, r3 ↔ r2, r4, thus leading to two four-point families each. In total, there are 12 four-
point families resulting from this set of template families. For LIMIT to perform the
minimization using LiteRed, we need to split up the families resulting from the first
template family, since they have two valid four-particle cuts. Thus, in the end we are
left with four final families resulting from the first template family. Partial fractioning
leads to four temporary families with one line fewer that can be embedded into the final
forward-scattering families. Furthermore, the last of the template families leads to the
final family P4.

Finally we have the four non-planar template families depicted in the first column
of Fig. 5.8. The first two of them are symmetric under r1 ↔ r2 and r1, r2 ↔ r3, r4

respectively, thus leading to four four-point families each. The other two possess no
external momentum symmetries and we are thus left with 24 non-planar four-point
families. Partial fractioning leads to two temporary families which can be embedded
into the final five non-planar forward-scattering families.
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X5

X3

X2

X1

X4

Figure 5.8: Non-planar, three-loop real-real phase-space contributions at NNLO. The lines follow
the conventions of Fig. 5.3.
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summary The application of LIMIT to all integral families contributing to the real
corrections for Higgs boson pair production at NLO and NNLO provides us with FORM

code to perform all mappings described and depicted above. In total, LIMIT maps
16 two-loop four-point families onto four forward-scattering families, 28 three-loop,
three-particle cut families onto five forward-scattering families, as well as 64 three-loop,
four-particle cut families onto nine forward-scattering families.

5.2.3 Further applications

In this section we briefly discuss the application of LIMIT to other problems requiring
the partial fractioning of integral families: matching coefficients for non-relativistic QCD

and the relation between the MS renormalized quark mass and the kinetic quark mass.

matching coefficients for non-relativistic qcd In Ref. [123], two-loop
matching coefficients between QCD and non-relativistic QCD of four-fermion operators
are computed. These operators are relevant e.g., for top-quark pair production close to
threshold in electron-positron collisions. To compute higher order corrections to these
operators, the scattering amplitude of a massive quark and its anti-quark needs to be
computed in the limit where both of them have the same momentum p and are on-shell:
p2 = m2. This kinematic setup can be obtained from the forward-scattering kinematics
relevant for phase-space integrals by also setting q1 = q2 = p. Furthermore, no cuts are
involved. Thus, the application of LIMIT is straightforward.

kinetic mass In Ref. [124] the relation between the kinetic quark mass, which is
commonly used to study semi-leptonic B-meson decays, and the MS renormalized quark
mass is computed through three loops. In this problem, forward-scattering amplitudes
of a heavy quark with mass m, as well as momentum p, and an external current with
momentum q need to be computed. Here, p2 = m2 and (p + q)2 = s. To simplify the
computation, a threshold expansion [56, 125] is performed and each loop momentum
either scales as m (hard) or as y/m (ultra-soft), where y = m2 − s. Only the purely
ultra-soft region is relevant and the expansion in y leads to linearly dependent integral
families. At three loops, performing partial fractioning of the 510 linearly dependent
families contributing to the purely ultra-soft region leads to 2650 linearly independent
families. Subsequently minimizing the linearly independent families leads to 14 three-
loop families in the purely ultra-soft region.
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Having established a powerful and flexible tool-chain for handling phase-space integrals
within the context of reverse unitarity in chapter 5, we are now in the position to compute
the partonic cross-sections contributing to the pair-production of Higgs bosons at NNLO.
In this chapter, we will focus on the interference contributions of amplitudes where both
Higgs bosons couple to different top-quark loops with amplitudes where both Higgs
bosons couple to the same top-quark loop as computed in Ref. [35]. Sample contributions
for the gluon-initiated channel at NLO and NNLO are shown in Fig. 6.1.

Figure 6.1: Contributions under consideration. Diagrams in the first row show NLO, as well as
double-virtual NNLO contributions. The diagrams in the second row are real-radiative
contributions.

The main objective of this chapter is the computation of the real-radiative contributions,
i.e. diagrams like in the second row of Fig. 6.1, in the LME. To this end we introduce so-
called building blocks to perform the LME of the cut five-loop forward-scattering diagrams
in an efficient manner. Furthermore, the use of reverse unitarity allows us to apply IBP

reduction to the phase-space integrals, reducing them to a small set of MIs, which we
need to evaluate. These MIs are then computed as an expansion around the production
threshold δ ≈ 0 with

δ = 1− 4x with x =
m2

H
s

, (6.1)

as well as exact in x.
The real-radiative contributions then have to be combined with virtual contributions,

i.e. diagrams such as the ones in the first row of Fig. 6.1, and collinear counterterms to
cancel soft and collinear divergences, respectively.
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structure of the chapter We discuss the individual steps for the computations
of the real-virtual contributions under consideration in Sec. 6.1. The computation of the
phase-space master integrals is presented in Sec. 6.2. Finally we present analytical and
numerical results for the different partonic channels in Sec. 6.3.

6.1 contributions to the total cross-section

The subset with both Higgs bosons coupling to different top-quark loops arises first at
NLO. We can write their contribution to the total partonic cross-section for Higgs boson
pair production as

σij→HH+X(s, ρ)|n3
h
=

α
(5)
s (µ)

π
δigδjgσ

(1),n3
h

gg (s, ρ) +

(
α
(5)
s (µ)

π

)2

σ
(2),n3

h
ij (s, ρ) . (6.2)

Here ρ = m2
H/M2

t with the top-quark mass Mt renormalized in the OS scheme and

ij ∈ {gg, qg, qg, qq} denote the partonic sub-channels. Note, that since σ
(0),n3

h
ij is absent,

σ
(1),n3

h
gg effectively acts as a LO contribution.
In the following we introduce the different partonic channels in Sec. 6.1.1 and dis-

cuss the computational setup in Sec. 6.1.2. Furthermore, we briefly discuss the virtual
corrections entering the gluon-gluon initial state at NNLO in Sec. 6.1.3, as well as the
counterterms dealing with collinear singularities in Sec. 6.1.4.

6.1.1 Real-radiative corrections

To obtain the various contributions to σ
(2),n3

h
ij , as well as σ

(1),n3
h

gg , we need to average over
the possible colour and helicity states of the initial-state partons. For each initial-state
gluon we get a prefactor of

ag =
1

NA(2− 2ε)
, (6.3)

while for each initial-state quark we get

aq =
1

2Nc
. (6.4)

The flux factor is given by 1/(2s).
Since in the final state we always have two identical Higgs bosons we need to introduce

a factor of 1/2. This factor is, however, implicitly accounted for by the symmetry factor
of the forward-scattering Feynman diagrams we consider.
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the gluon-gluon initial state In order to simplify the treatment of external
gluons and handle the propagators of cut gluons on the same footing as regular gluon
propagators we use

∑
λ

ε
(λ)∗
µ (q1)ε

(λ)
ν (q2)→ −gµν (6.5)

as sum over polarizations. Since this choice of the polarization sum is not physical, we
also need to compute forward-scattering amplitudes with ghosts as external particles
and consider cuts involving ghosts.

At NLO the ghost channels do not contribute to the subset with both Higgs bosons
coupling to different top-quark loops. We can therefore write this contribution as

σ
(1),n3

h
gg =

a2
g

2s
D̃isc

(
A(1),n3

h
gg→gg

)
. (6.6)

D̃isc denotes the contributions to the discontinuity of A stemming from cuts involving
two Higgs bosons and possibly massless partons, but no cuts involving top quarks or

only one Higgs boson. In the case of σ
(1),n3

h
gg only one cut with exactly two Higgs bosons

contributes.
At NNLO we need to take into account all possible ghost forward-scattering amplitudes

and subtract their contributions from the gluon-gluon forward scattering amplitude

obtained with the polarization sum in Eq. (6.5). As a consequence, σ
(2),n3

h
gg is given by
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(6.7)

Note, that the averaging factor for ghosts is identical to the one for gluons and the
amplitudes A(2)

cc→cc and A(2)
cc→cc only contribute to the subset under consideration from

N3LO. All contributions with one external gluon and one external ghost or anti-ghost are
equal, since the amplitudes are invariant w.r.t. q1 ↔ q2 and relative signs between ghosts
and anti-ghosts cancel. Similarly, Acc→cc = Acc→cc.

Since we integrate over the full phase-space of the final-state particles, the real-radiative
contributions contain IR singularities stemming from the region of phase-space where
the massless final-state parton is soft, i.e. its energy is vanishing, or collinear to an
initial-state parton. As a consequence, the real-radiative contributions have explicit poles
in ε. The soft singularities lead to 1/ε2 poles, whereas the collinear singularity leads to
contributions starting at 1/ε. Soft singularities cancel against soft singularities present
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in the virtual corrections. To cancel the collinear singularity we need to introduce a
so-called collinear counterterm.

In the following we split σ
(2),n3

h
gg into three pieces:

σ
(2),n3

h
gg = σ

(2),n3
h

gg,virt + σ
(2),n3

h
gg,real + σ

(2),n3
h

gg,coll . (6.8)

The computation of the real-radiative corrections σ
(2),n3

h
gg,real are discussed in Sec. 6.1.2, the

virtual corrections σ
(2),n3

h
gg,virt are briefly discussed in Sec. 6.1.3 and the collinear counterterm

σ
(2),n3

h
gg,coll is introduced in Sec. 6.1.4.

the quark-gluon initial state Contributions to the subset under consideration
with a quark or anti-quark, as well as a gluon in the initial state first arise at NNLO. Due
to Eq. (6.5) we would also need to consider forward-scattering amplitudes with ghosts
and quarks in the initial state. However, these do not contribute to the subset with both
Higgs bosons coupling to different top-quark loops at this order. As a consequence,

σ
(2),n3

h
qg = σ

(2),n3
h

qg =
agaq

2s
D̃isc

(
A(2),n3

h
qg→qg

)
. (6.9)

While there are no virtual corrections we need to take into account for the quark-gluon
channel, it has collinear singularities and thus we need to take into account a collinear

counterterm σ
(2),n3

h
qg,coll as in the case of the gluon-gluon channel.

the quark-anti-quark initial state The third channel contributing to the
subset with both Higgs bosons coupling to different top-quark loops is the quark-anti-
quark channel. Its partonic cross-section is given by

σ
(2),n3

h
qq =

a2
q

2s
D̃isc

(
A(2),n3

h
qq→qq

)
(6.10)

and neither recieves contributions from virtual corrections nor has collinear divergences.

6.1.2 Computational setup for the real corrections

To compute the various partonic channels we need to consider five-loop forward-
scattering diagrams such as the one in Fig. 6.2. Directly applying the LME to five-loop
diagrams is very challenging since the LME leads to a large number of terms for each of
them.

building blocks To simplify this computation we introduce so-called building blocks
following [126]. First, we observe that the LME of all 1PI one-loop amplitudes with two
or three off-shell gluons and one or two Higgs bosons is local, i.e. polynomial in the
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→ ⊗

Figure 6.2: Sample contribution to the subset under consideration at NNLO. The hard subgraph
leads to three one-loop tadpole integrals and a two-loop phase space integral.

external momenta, since the co-subgraphs are tree-level graphs. As a consequence we
can write the LME of the Higgs boson–two-gluon vertex as

=
α
(6)
s
(
µ2)

vπ

(
µ2

M2
t

)ε

TFδab ∑
ij

ρicij(ε)T
µν
ij (q1, q2) (6.11)

=
α
(6)
s
(
µ2)

vπ

(
µ2

M2
t

)ε

TFδab

(
c01gµν(q1 · q2) + c02qν

1qµ
2

+ ρ

[
c11qν

1qµ
2 (q1 · q2) + c12qν

1qµ
2 (q

2
1 + q2

2) + c13qµ
1 qν

2(q1 · q2) + c14gµνq2
1q2

2

+ c15gµν(q1 · q2)(q2
1 + q2

2) + c16(q2
1qµ

2 qν
2 + q2

2qµ
1 qν

1) + c17gµν(q1 · q2)
2

]
+O(ρ2)

)
.

Here v is the Higgs vacuum expectation value and the momenta q1 and q2 are taken to
off-shell, since in the actual forward-scattering diagram they might correspond to a loop-
momentum. At LO in the LME the coefficients are given by c01 = −c02 = −8/3Γ(1 + ε),
leading to the well known result for CH. At higher orders the coefficients are rational
functions in ε, while the tensors Tij are polynomial in the external momenta. For the
cases with three gluons or two Higgs bosons the results take a similar form. We expand
each of the building blocks through ρ4.

As a consequence, we can precompute the LME of the four relevant off-shell amplitudes
and use them as a set of effective vertices to generate forward-scattering diagrams. This
means, that, instead of five-loop diagrams, we deal with two-loop forward-scattering
diagrams which resemble diagrams in the EFT introduced in chapter 2. Hence, the
phase-space integral families introduced in chapter 5 are sufficient for describing the
phase-space integrals appearing in the LME.

Not only does the use of building blocks reduce the number of loops, it also makes
cancellations of terms in the ρ-expansion with negative powers, that appear in individual
diagrams, but vanish in their sum, explicit at the level of each building block, thus
reducing the total number of terms. Furthermore, the number of diagrams is greatly
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reduced. As an example consider the diagram in Fig. 6.2. Once we account for all possible
inequivalent ways to attach gluons to the top-quark boxes and take into account the
different directions of the fermion line, we are left with 288 diagrams contributing to the
same effective diagram.

setup Having established an efficient way to handle the forward-scattering diagrams
relevant to the subset under consideration, we are now in the position to compute them.
To this end, we generate one-1 and two-loop four-point diagrams using QGRAF [61] and
select diagrams with a valid cut and non-vanishing colour factor using additional scripts.
The selected diagrams are then processed by q2e [62, 63] which inserts placeholders
for the building blocks for the various Higgs boson–gluon vertices and mapped onto
the permutations of the template families described in Sec. 5.2.2 by exp [62, 63]. The
one-loop tensor tadpole integrals appearing in the computation of the building blocks
are evaluated using MATAD [68]. In the next step, the output of exp is processed by FORM

[64] and the colour factors are computed by color [65].
As a result, we are left with expressions for the amplitude in terms of four-point

integrals depending on q1, q2 and q3. Next, we specify forward-scattering kinematics by
setting q3 = −q2 and perform the partial fractioning of the linearly dependent integrals
with the FORM code provided by LIMIT. We then discard all resulting linearly independent
integrals with negative powers of at least one cut propagator and map the remaining
integrals on the minimal set of families found by LIMIT. Graphical representations for
the two-loop families can be found in the rightmost column of Fig. 5.4.

The integrals in the resulting families are then reduced to a set of two MIs at one
loop and 16 MIs at two loops using FIRE5 [70]. We discuss the computation of the MIs in
Sec. 6.2.

6.1.3 Virtual corrections to gg→ HH

The double-virtual amplitudes Avirt
gg→HH for Higgs boson pair production are known at

NNLO in the LME through ρ4 [28, 88]. To compute σ
(2),n3

h
gg,virt we compute the square of the

absolute value of Avirt
gg→HH and select all contributions with three closed top-quark loops.

These contributions also contain diagrams where both Higgs bosons couple to the same
top-quark loop. However, these contributions do not have soft divergences at NNLO so
we can safely add them. As they are already included here, we do include them in the
subset discussed in chapter 7. In the next step, we need to perform the two-particle
phase-space integration

σ
(2),n3

h
gg,virt =

1
2s

(
1

NA(2− 2ε)

)2 ∫
dPS2

∣∣∣Avirt
gg→HH

∣∣∣2
n3

h

, (6.12)

1 We also recompute σ
(1),n3

h
gg .
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where dPS2 is defined in Eq. (5.2). All angular integrals but the integral over the angle
between one final-state Higgs boson and an initial-state gluon can be performed, since
the squared virtual amplitude depends on the Mandelstam variable t and thus has a
non-trivial dependence on this angle. The remaining angular integral can be re-written
as an integral over t [126]:

σ
(2),n3

h
gg,virt ∝

∫ t+

t−
dt
∣∣∣Avirt

gg→HH

∣∣∣2
n3

h

. (6.13)

The integration boundaries t± are given by

t± = − s
4

(
1 + δ∓ 2

√
δ
)

. (6.14)

Substituting

t = − s
4

(
1 + δ + 2

√
δ (1− 2ξ)

)
(6.15)

transforms the integration interval to ξ ∈ [0, 1] and allows one to perform a systematic
expansion in δ of the integrals involved. The remaining integrands are rational functions
and logarithms in ξ, allowing for a straight-forward evaluation.

6.1.4 Collinear counterterms

definition The collinear counterterms for the gluon-gluon and quark-gluon chan-

nels can be obtained by convoluting the effective LO contribution σ
(1),n3

h
gg with the one-loop

gluon or quark splitting functions2. These splitting functions can be found, e.g, in
Refs. [128, 129] and are given by

Pij(z) =
α
(5)
s (µ)

π
P(0)

ij +O
(
α2

s
)

, (6.16)

P(0)
gg (z) = CA

([
1

1− z

]
+

− 2 +
1
z
+ z− z2

)
+ β0δ(1− z) , (6.17)

P(0)
gq (z) = CF

(
1
z
− 1 +

z
2

)
, (6.18)

where β0 is the one-loop term of the QCD beta function and the plus distribution is
defined by∫ 1

0
dz
[

1
1− z

]
+

f (z) =
∫ 1

0
dz

f (z)− f (1)
1− z

(6.19)

for a function f (z) which has at most a logarithmic singularity for z→ 1.

2 See [119, 127] for the case of a single Higgs boson.
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The two collinear counterterms are given by

σ
(2),n3

h
gg,coll =

2
ε

(
µ2

µ2
f

)ε ∫ 1

0
dy dz θ(1/4− z)δ(x− yz)P(0)

gg (z)σ(1),n3
h

gg (y)

=
2
ε

(
µ2

µ2
f

)ε ∫ 1

1−δ
dz P(0)

gg (z)σ(1),n3
h

gg (x/z) , (6.20)

σ
(2),n3

h
qg,coll =

1
ε

(
µ2

µ2
f

)ε ∫ 1

0
dy dz θ(1/4− z)δ(x− yz)P(0)

qg (z)σ(1),n3
h

gg (y)

=
1
ε

(
µ2

µ2
f

)ε ∫ 1

1−δ
dz P(0)

gq (z)σ(1),n3
h

gg (x/z) , (6.21)

where µ is the renormalization scale, µ f the factorization scale and the factor of 2 in the

gluon-gluon counterterm comes from the two ways to convolute P(0)
gg with the effective

LO cross-section. The lower boundary of the remaining integration is set by the θ-function
and corresponds to the Higgs boson pair-production threshold s = 4m2

H, below which
the cross-section vanishes.

integration To perform the integration involving the plus distribution we re-write∫ 1

1−δ
dz
[

1
1− z

]
+

σ
(1),n3

h
gg (x/z) =

∫ 1

0
dz
[

1
1− z

]
+

σ
(1),n3

h
gg (x/z)

−
∫ 1−δ

0
dz
[

1
1− z

]
+

σ
(1),n3

h
gg (x/z) . (6.22)

Next, we apply Eq. (6.19) to the first integral on the right-hand side of the above equation.
Since the plus distribution regulates divergences in the limit z → 1, which is not part
of the integration interval of the second integral, we can treat the plus distribution as a
regular function. As a consequence we obtain

∫ 1

1−δ
dz
[

1
1− z

]
+

σ
(1),n3

h
gg (x/z) =

∫ 1

0
dz

σ
(1),n3

h
gg (x/z)− σ

(1),n3
h

gg (x)
1− z

−
∫ 1−δ

0
dz

σ
(1),n3

h
gg (x/z)

1− z

=
∫ 1

1−δ
dz

σ
(1),n3

h
gg (x/z)− σ

(1),n3
h

gg (x)
1− z

)−
∫ 1−δ

0
dz

σ
(1),n3

h
gg (x)
1− z

=
∫ 1

1−δ
dz

σ
(1),n3

h
gg (x/z)− σ

(1),n3
h

gg (x)
1− z

+ σ
(1),n3

h
gg (x) ln (δ) . (6.23)

The remaining integral can now be computed by substituting z = 1− δ (1− µ) [26]
and expanding in δ. Integrals over terms regular in the limit z → 1 can be computed
by simply performing the aforementioned substitution and expansion, whereas the
integration involving the delta distribution is trivial.
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Infinite series representations for the two counterterms are given in Ref. [35] and
results through δ199/2 can be found in the ancillary files.

6.2 computing the master integrals

The IBP reduction leads to two one-loop two-particle cut MIs, depicted in Fig. 6.3, and
16 two-loop three-particle cut MIs, depicted in Fig. 6.4. Both one-loop MIs have been
computed in an expansion around δ ≈ 0 in Ref. [26]. Out of the 16 two-loop MIs I1, I2 and

J1 J2

Figure 6.3: One-loop MIs contributing to σ
(1),n3

h
gg . The momentum q1 enters and leaves the di-

agrams through the external lines with an arrow. Dashed and solid lines depict
massless and massive lines, respectively.

I7 contribute to the NLO cross-section and have been computed in an expansion around
δ ≈ 0 in Ref. [26]. The remaining integrals have not been considered in the literature, to
the best of our knowledge. In the following, we discuss the computation of all 18 MIs.

I1 I2 I3 I4

I8

I12

I16I15

I11

I7I6

I10

I14I13

I9

I5

Figure 6.4: Two-loop MIs to the real radiative contributions with both Higgs bosons coupling to
different top-quark loops. Dots on lines denote squared propagators, whereas crosses
on lines denote propagators raised to a negative power.

In Sec. 6.2.1 we compute each MI in an expansion for δ ≈ 0 by direct integration of the
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final-state phase-space. Some of the results obtained in this section serve as boundary
conditions for the exact computation by means of differential equation in Sec. 6.2.2.

6.2.1 Expansion around the production threshold

setup To compute the 16 two-loop three-particle cut MIs3 in an expansion around the
Higgs boson pair-production threshold, we express them as phase-space integrals

Ii = C2ε
∫

dPS3Qi

= C2ε
∫ 5

∏
i=3
Dpi(2π)Dδ(D) (q1 + q2 − p3 − p4 − p5)Qi . (6.24)

Here, the pre-factor C is chosen to account for MS subtraction:

C =
eγE µ2

4π
. (6.25)

The momenta p3 and p4 are the momenta of the two final-state Higgs bosons and the
respective integration measures can be written as

Dp3/4 =
pD−2

3/4 dp3/4

2E3/4

dΩ(3/4)
D−1

(2π)D−1 , (6.26)

whereas p5 is the momentum of the massless final-state parton and the respective
integration measure is given by

Dp5 =
pD−3

5 dp5

2
dΩ(5)

D−1

(2π)D−1 . (6.27)

We express the D-dimensional angular integration measure dΩ(j)
D−1 as [130]

∫
dΩ(j)

D−1 =
2π

D−3
2

Γ
(D−3

2

) ∫ 1

−1
(1− cos2 θj)

D−4
2 d cos θj

∫ 1

−1
(1− cos2 φj)

D−5
2 d cos φj .

(6.28)

Each of the Qi is composed out of the uncut propagators of the Ii. As an example

Q1 = 1 , Q2 = m2
H − (p3 + p4)

2 , Q3 =
−1

(q2 − p4)2 , (6.29)

while the other 13 Qi can be found in Ref. [35].

3 The two one-loop integrals J1 and J2 can be computed along the same lines.
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simplifying and expanding the integrals We are now in the position to
perform the integrations over angles and momenta. First, we integrate over p4 by
exploiting the δ distribution:∫

Dp3Dp4Dp5(2π)Dδ(D) (q1 + q2 − p3 − p4 − p5)Qi

=
∫
Dp3Dp5

π

E4
δ
(√

s− E3 − E4 − |~p5|
)
Qi . (6.30)

Thus, we express the spatial components of p4 as ~p4 = −~p3 − ~p5. The four remaining
D-dimensional momenta can be written as

q1 =

√
s

2



1

0
...

0

1


, q2 =

√
s

2



1

0
...

0

−1


, p3 =



E3
...
...

k sin θ3 cos φ3

k cos θ3


, p5 =



l

0
...

l sin θ5

l cos θ5


.

(6.31)

With this parametrization of the momenta, Eq. (6.30) becomes

Ii =
C2ε

4(2π)2D−3

∫ kD−2dk dΩ(3)
D−1lD−3dl dΩ(5)

D−1

E3E4

×δ

(√
s−

√
m2

H + k2 −
√

m2
H + k2 + 2kl cos γ + l2 − l

)
Qi ,

(6.32)

where cos γ = cos θ3 cos θ5 + cos φ3 sin θ3 sin θ5.
The l-integration can now be performed by exploiting the remaining δ distribution

and we obtain

Ii =
C2ε

4(2π)2D−3

∫
dk
∫ kD−3lD−3QidΩ(3)

D−1 dΩ(5)
D−1√

m2
H + k2

(
l + k cos γ +

√
m2

H + k2 + 2kl cos γ + l2
)∣∣∣

l=lδ
,

(6.33)

where lδ is the value of l for which the argument of the δ distribution vanishes. It is
given by

lδ =

√
s
[
−2k2 − 2m2 + k cos γ

(√
s− 2

√
k2 + m2

)
−√s

√
k2 + m2 + s

]
2
[
s + 2

√
sk cos γ−m2 + k2 (cos2 γ− 1)

] (6.34)

Up to this point no expansion has been performed. The remaining integrations in
Eq. (6.33) depend on the exact form of the Qi and are in general too complicated to be
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performed without any approximation. To perform an expansion around δ ≈ 0 we first
notice that the upper boundary of the k-integration is determined by the value of k for
which E3 is maximal. The energy E3 is maximal when both Higgs bosons are produced
back-to-back and given by

√
s/2. Exploiting energy momentum conservation we thus

find k ≤
√

sδ/2.
As a result we substitute k→ ξ

√
sδ/2 and expand the integrand in δ. The ξ-integration

and the remaining angular integrals are now straightforward, since the resulting inte-
grand is polynomial in ξ, cos θ3, cos θ5 and cos φ3. As an example, the leading term in
the δ expansion of the first two integrals is given by

I1 = N 2s

[
22(3ε−4)π2ε− 5

2 Γ(1− ε)

Γ
( 7

2 − 3ε
)
)

δ
5
2−3ε +O

(
δ

7
2

) ]
,

I2 = −N 2s2

[
3 22(3ε−4)π2ε− 5

2 Γ(1− ε)

Γ
( 7

2 − 3ε
)
)

δ
5
2−3ε +O

(
δ

7
2

) ]
, (6.35)

where

N =

(
eγE µ2

4πs

)ε

. (6.36)

The remaining 14 integrals can be found in Ref. [35]. As the number of terms in the
integrand at higher orders in δ quickly grows we resort to a more efficient approach in
Sec. 6.2.2.

6.2.2 Exact computation by differential equations

canonical basis of master integrals To compute the two one-loop and the 16
two-loop integrals exactly in δ, we employ the method of differential equations [131–133].
In a first step, we take the derivative of the MIs w.r.t. to x. The result of taking the
derivative is a linear combination of Feynman integrals. These can be reduced to MIs

again and we obtain a closed set of differential equations (DEs) of the form

∂x~I = M (x, ε)~I . (6.37)

Here, M is rational in x and ε and takes a lower block-triangular form. Furthermore, in
our case ~I = (J1, J2) or ~I = (I1, · · · , I16).

While Eq. (6.37) can be solved with various different methods, we are aiming at finding
a new basis of MIs, a so-called canonical basis ~J [134], in which the DEs take the form

∂x ~J = ε ∑
i

M̃(i)

x− xi
~J ≡ εM(x) ~J . (6.38)
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The formal solution of Eq. (6.38) is given by

~J(x) = U(x, x0, ε)~J(x0) , (6.39)

where the evolution operator U is defined as

U(x, x0, ε) = P exp
(

ε
∫

dxM(x)
)

≈ 1 + ε
∫ x

x0

dyM(y) + ε2
∫ x

x0

dy
∫ y

x0

dzM(y)M(z) +O
(
ε3) . (6.40)

Thus, the MIs can be computed to any order in ε in terms of iterated integrals if a
canonical basis ~J is found and suitable boundary conditions ~J(x0) are known. In our case,
the δ-expanded MIs can serve as boundary conditions. In the following we discuss the
procedure of finding a canonical basis. The class of functions arising from the iterated
integrations in Eq. (6.40), the so-called Goncharov polylogarithms (GPLs), are discussed
in Sec. A.6.

reducing the system to fuchsian form A change of the basis of MIs can be
written as a, in general x- and ε-dependent, transformation matrix T:

~I = T(x, ε)~J . (6.41)

Under such a basis change, the matrix M transforms as:

M̃ = T−1MT − T−1∂xT . (6.42)

An algorithm for finding a rational transformation T, such that the system of DEs is in
normal Fuchsian form, i.e. only has simple poles in x, has been introduced in Ref. [135].
We apply its implementation in the program EPSILON45 [137] to arrive at

∂x~J = ∑
i

M(i) (ε)

x− xi
~J . (6.43)

The residues M(i) only depend on ε. In our case the letters xi are given by

xi ∈ {0, 1/4, 1, r1 = eiπ/3, r2 = e−iπ/3,−1/3} . (6.44)

The first three letters correspond to the kinematic limits s→ ∞, s→ 4m2
H and s→ mH,

respectively. In the DEs for I1 through I6 as well as the one-loop MIs only the first two
letters appear. In the DE of I7 also x3 = 1 appears, which is due to the uncut massive line.
In the DEs for I8 through I14, in addition to the first three letters, also the fourth and fifth
letter are present, whereas the last letter only appears in the DEs of the non-planar MIs

I15 and I16.

4 The example in the manual is sufficiently detailed for our case.
5 We re-derived the canonical basis using LIBRA [136] as a test for its use in chapter 7.
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normalizing the eigenvalues Next, we want to find a transformation relating
the basis ~J for which the system of DEs is in normal Fuchsian form to the canonical basis
~J . To this end, we observe that for a matrix which is proportional to ε, all its eigenvalues
need to be proportional to ε. In our case, the eigenvalues take the form a + bε where b
is an integer and a is either integer or half-integer. Thus, to find a canonical basis, we
need to find transformations nullifying the non-ε-dependent part of the eigenvalues of
all residues.

Due to the block-triangular structure of the DEs, we only need to focus on the eigen-
values of the blocks along the diagonals of the residues. In Ref. [135] a second algorithm
is discussed which constructs so-called balance transformations. These transformations
take the form

B(xi, xj) = P +
x− xi

x− xj
P , (6.45)

where P depends on ε and projects onto the subspace of the eigenvalues under consid-
eration, P2 = P and P = 1−P. The projection operator P is constructed based on the
diagonal block under consideration. Applying such a balance transformation lowers the
eigenvalue of M(i) by 1 and raises the one of M(j) by 1. By successively applying balance
transformations all eigenvalues of the residues of the DEs can be either brought to the
form b̃ε or ± 1

2 + b̃ε.
An explicit example is given in the following.

Example 10 (Normalizing eigenvalues)

Consider the following system of two DEs:

M =

 6−7ε
x−1 − ε

x − 6(ε−1)
x−1

−ε−2
6x + 7ε−6

2(x−1)
3(ε−1)

x−1 − 2ε
x

 .

It has three singular points: x = 0, x = 1 and x = ∞. The eigenvalues of the corresponding
residues are given by

M(0) : −ε,−2ε ,

M(1) : 0, 3− 4ε ,

M(∞) : −2 + 4ε,−1 + 3ε .

To lower the second eigenvalue of M(1) and raise the first eigenvalue of M(∞) by one, we
need to compute the left eigenvector v of M(1) and the right eigenvector u of M(∞) to the
corresponding eigenvalues. They are given by

v =

(
7ε− 6
6ε− 6

, 1
)

and u =

(
− 3

2

1

)
.
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As v† · u = (2− 3ε)/(4ε− 4) 6= 0, we can construct a balance transformation. To this end
we can construct the projector P = uv†/(v† · u) and thus the balance transformation reads

B(1, ∞) =
1

(3ε− 2)

(
−4(ε− 1) −6(ε− 1)
2
3 (7ε− 6) 7ε− 6

)

+
(x− 1)
3ε− 2

(
7ε− 6 6(ε− 1)

− 2
3 (7ε− 6) −4(ε− 1)

)

changing the variable To also reduce the eigenvalues of the form ± 1
2 + b̃ε to be

proportional to ε we need a different kind of transformation. So far, all basis changes T
have been rational functions of x. One way of rendering half-integer eigenvalues fully
integer would be to allow square roots of the form

√
x− xi in the transformations. This

however, would introduce square roots in addition to the simple poles in x in Eq. (6.38)
and as a consequence, the iterated integrals would no longer evaluate to GPLs.

Another possibility is to change the variable in which we differentiate. Such a variable
change y(x) should have the property that it transforms all

√
x− xi to functions rational

in y. Let us start with the system of the two one-loop MIs. Here we only have one letter,
for which the corresponding residue has half-integer eigenvalues: x = 1/4. Choosing

y =

√
1− 4x− 1√
1− 4x + 1

↔ x = − y
(y− 1)2 (6.46)

renders all ε-independent parts of the eigenvalues of the system integer. The pair-
production threshold in y is at y = −1 and for s→ ∞ y approaches 0. As a consequence
the set of letters of the one-loop system is now given by yi = {0, 1,−1} and a transfor-
mation to a canonical basis can be found using EPSILON. Note, that this variable change
increases the numbers of letters, e.g. xi ∈ {0, 1/4} is mapped onto yi = {0, 1,−1}.

The variable change in Eq. (6.46) also is sufficient to rationalize the system of DEs

for I1 through I14. In addition to the letters appearing in the one-loop case, x3 = 1 is
mapped onto y4 = r1 and y5 = r2. Furthermore, x4 and x5 are mapped onto the roots
of the polynomial y4 − 3y3 + 5y2 − 3y + 1. The two MIs I15 and I16 require special care.
In the original variable x not only the residue at 1/4 but also the residues at −1/3
and 1 in the homogeneous part of the DE of I15 have half-integer eigenvalues. We were
not able to find a variable change rationalizing all three square roots at once, even by
applying the algorithm of [138]. Instead, we keep the variable y and factor out ε in the
homogeneous part of the DE of I15 by a non-rational basis change. As a consequence
the inhomogeneous part contains the root

√
y4 − 6y3 + 7y2 − 6y + 1. The homogeneous

part of the DE of I16 does not contain half-integer eigenvalues other than at 1/4 thus,
no special care is needed. However, the inhomogeneous part proportional to I15 also
contains the aforementioned square root.
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In the contributions to the Higgs boson pair-production cross-section studied in this
chapter, iterated integrals involving the aforementioned square root only enter the
cross-section starting from O(ε) and thus do not contribute at NNLO.

One more comment regarding the change of variables is in order. Instead of partial
fractioning the polynomials P2 = y2 − y + 1 and P4 = y4 − 3y3 + 5y2 − 3y + 1, which
would give rise to simple poles at r1/2 and the roots of P4, we instead define the
integration kernels

f (r(n); y) =
∂n

y P2

P2
, and f (s(k); y) =

∂k
yP4

P4
. (6.47)

By partial fractioning the above integration kernels, iterated integrals involving them
can be re-written to linear combinations of GPLs:

G(· · · , r(n), · · · ; y) =
2

∑
i=1

c(n)i G(· · · , ri, · · · ; y) ,

G(· · · , s(k), · · · ; y) =
4

∑
i=1

c(k)i G(· · · , si, · · · ; y) . (6.48)

In the following we give an explicit example:
Example 11

Iterated integrals In the case of r(n) the constants c(n)i are given by

c(1)1 = c(1)2 = 1 and c(2)1 = −c(2)2 = − 2i√
3

.

As a consequence, we can write the iterated integrals G(0, r(1), 1; y) and G(r(2), r(1); y) as

G(0, r(1), 1; y) = G(0, r1, 1; y) + G(0, r2, 1; y)

G(r(2), r(1); y) = G(r(2), r1; y) + G(r(2), r2; y)

=
2i√

3
(G(r2, r1; y)− G(r1, r1; y) + G(r2, r2; y)− G(r1, r2; y))

While all iterated integrals involving the letters {0, 1,−1, r(n), s(k)} are real-valued for
−1 ≤ y < 0, the individual GPLs on the right-hand side of Eq. (6.48) are not.

fixing the boundary conditions Finally, we need to fix the boundary conditions
~J (y0). To this end, we choose y0 = −1, corresponding to δ = 0. Studying the poles of
the inverse of the transformation matrix between the original basis ~I and ~J allows us to
determine which of the original integrals is required to which order in δ. This is due to
the fact, that expanding the canonical MIs around y ≈ −1 leaves us with

Ji(y) ≈ (y + 1)niε ∑
j=0

εj~cij +O(y + 1) , (6.49)
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where the ni are integers and the cij, possibly complex, numbers. When transforming
the expansions of the original MIs for δ ≈ 0 to the canonical basis by

~J = T̃−1~I , (6.50)

only contributions of the form in Eq. (6.49) are relevant. As a consequence, the highest
pole in (y + 1) in the ith column of T̃−1 determines to which power in δ Ii is needed. In
the case at hand, the highest pole in (y + 1) is 5 and is present in the first two columns.
Thus, the δ

5
2 contributions of I1 and I2 given in Eq. (6.35) are required, but no higher

order terms of them. Furthermore, the δ expansions of I3 through I16 are not needed,
since the respective columns are either finite, such as in the case of MIs I7 through I16,
or the poles are lower than the respective starting power, such as in the case of MIs I3

through I6.

results for the mis We computed all MIs to sufficiently high order in the ε-
expansion exactly in y. The maximum weight of the GPLs contributing to the three
partonic cross-sections is 3. An exception are the integrals I9 and I12. Both integrals are
required through O(ε2) where they contain weight-4 GPLs. However, only their difference
I9 − I12, which only contains weight-3 GPLs, is required through O(ε2), whereas their
sum only contributes through O(ε). Exact expressions for the MIs can be found in
Ref. [35].

To obtain expansions of the MIs around δ ≈ 0 the Mathematica package PolyLogTools

[139] can be used. While this approach is sufficient for obtaining expansions up to δ21/2

in a moderate amount of time, obtaining more expansion terms is cumbersome. To
overcome this obstacle and provide an additional cross-check of the exact solutions, in
Ref. [35] a second approach for obtaining expansions up to δ219/2 is used. Instead of
transforming the system of DEs to a canonical form, the variable is changed from x to δ

and an ansatz for the MIs of the form

Ii = ∑
jkl

cijklε
jδ(k+1)/2 lnl δ (6.51)

is made. Plugging this ansatz in the DEs leads to recurrence relations for the coefficients
c. As boundary conditions the leading terms in the δ-expansion are required, which are
computed in Sec. 6.2.1.

We are now in the position to discuss the convergence of the δ-expansion of the MIs. To
this end, we consider the finite parts of the MIs I6 and I10, which are shown as a function
of δ in Fig. 6.5. The exact result is evaluated using a implementation of GPLs in GINAC

[140, 141] and is depicted as a solid line. The various expansion orders are shown as
dashed lines.

Since for δ < 0.8 the difference between the exact result and the expansions is below
1%, we focus on the higher energy region. Starting from δ ≈ 0.8, the expansion up to
δ10 deviates from the exact solution by more than 1%, whereas the expansion up to
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Figure 6.5: Finite parts of the MIs I6 and I10 as a function of δ. The exact solution is shown as a
solid line, whereas the dashed lines show the different expansion depths. Taken from
[35].

δ20 agrees with the exact result up to δ ≈ 0.9. This already corresponds to
√

s ≈ 800
GeV and thus a region where the parton distribution functions are already rather small.
Increasing the expansion depth to δ100 is sufficient to describe the δ-dependence up to
δ ≈ 0.97. This convergence pattern is similar for all 16 MIs and can be traced back to the
fact that the DEs do not have any singular points between y = −1 and y = 0. Thus, the
expansion around y = −1 is expected to converge well in the physical y-range.

6.3 results

We are now in the position to present results for the NNLO contributions to the total
Higgs boson pair-production cross-section with both Higgs bosons coupling to different
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top-quark loops. In Sec. 6.3.1 we present the leading terms in the ρ and δ expansion for
the three channels and discuss their numerical impact.

6.3.1 Partonic cross-sections

In the following we present the leading terms in the δ and ρ expansion for the three
partonic channels. In all three cases the leading term in the δ expansion only arises
starting from O(ρ), showing the significance of mass-suppressed contributions directly
at threshold. This is in agreement with the observations made at NLO [26]. The leading
terms are given by

σ
(2),n3

h
gg =

a4
s G2

Fm2
H

π

[
δ

3
2

(
− 2053

62208
+

1
27

a1 −
1

54
a2

1 +
5

82944
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H
+

1
216

Lm2
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1
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(
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, (6.52)

σ
(2),n3

h
gq =

a4
s G2

Fm2
H

π

[
δ
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(
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1620
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9720

Lm2
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, (6.53)



98 contributions with both higgs bosons coupling to different top-quark loops at nnlo

σ
(2),n3

h
qq = − a4

s G2
Fm2

H
π

[
64

2525985
δ

11
2 + ρ

{
32

688905
δ

9
2 +

1552
12629925

δ
11
2

}]
+O

(
δ

13
2 , ρ2

)
,

(6.54)

where a1 = ln 2, ζ3 is the Riemann Zeta function evaluated at three, as = α
(5)
s /π,

Lm2
H

= ln(µ2/m2
H), LM2

t
= ln(µ2/M2

t ) and we set µ f = µ. Terms through ρ4 and
δ219/2 for general renormalization and factorization scale can be found in Ref. [35]. We
expanded the virtual corrections through δ18, which is sufficient for the center-of-mass
energies under consideration in the following discussion.

numerical results We are now in the position to discuss the convergence of the
ρ expansion in the subset under consideration. The individual partonic channels are
shown in Fig. 6.6 together with the known LO and NLO results [26] which we reproduced
in the course of this computation. The gluon-gluon initiated NNLO correction follows
the convergence pattern of the LO and NLO results. Above the top-quark threshold
we observe no convergent behaviour, as expected. However, up to

√
s ≈ 340 GeV the

result shows a converging behaviour. The ρ2, ρ3 and ρ4 lines agree well with each other,
signaling a stabilization of the LME.

In Fig. 6.7 the ratio of the higher order terms and the LO contribution in the ρ expansion
is shown. Higher-order terms are sizeable, even at moderate center-of-mass energies,
such as

√
s ≈ 300 GeV. The expansion up to ρ4 is more than 40% larger than the leading-

order term in the range between 250 GeV and 340 GeV. Closer to the Higgs boson
pair-production threshold, higher-order ρ terms have an even bigger impact. This is due
to the ρ0 contribution vanishing as δ3/2 for δ→ 0, whereas the mass-suppressed terms
vanish as δ1/2.

For the quark-gluon initial state a similar pattern is observed as for the gluon-gluon
initial state. The quark-anti-quark initial state shows no sign of convergence, as at NLO.
However, the contributions coming form initial states with quarks are much smaller than
the pure gluon-gluon contributions.

A final comment about the size of the partial NNLO discussed in this chapter are in
order. At NLO, the contributions with both Higgs bosons coupling to different top-quark
loops are much smaller than the other contributions. Thus, we expect the remaining
contributions, which are discussed in chapter 7, to have a bigger numerical impact.
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Figure 6.6: LO, NLO and NNLO partonic cross sections as a function of
√

s. The renormalization
scale is µ = mH and the vertical black line shows the top-quark pair-production
threshold.
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7
T O WA R D S H I G G S B O S O N PA I R P R O D U C T I O N AT N N L O W I T H
F I N I T E T O P - Q UA R K – M A S S E F F E C T S

In this chapter we discuss the computation of the double-real radiation contribution
to Higgs boson pair production in the LME at NNLO, as well as the computation of the
remaining real-virtual corrections which have not been discussed in chapter 6.

In chapter 5 we laid the groundwork for the computations in this chapter by partial
fractioning the linearly dependent three-loop phase-space families arising in this context
and their minimization. Furthermore, most methods and concepts necessary for the
computation of the contributions in this chapter are already introduced in chapter 6. As
a consequence, we focus on differences w.r.t. the contributions discussed in chapter 6 in
the following.

additional partonic channels In addition to the gluon-gluon, quark-gluon
and quark-anti-quark initial states at NLO and in the subset under consideration in
chapter 6, two additional quark initiated partonic channels contribute. Furthermore, we
also need to take into account additional ghost initial states.

Starting from NNLO also quark-quark initial states with same or different flavour
quarks contribute to Higgs boson pair production. A sample diagram is shown in
Fig. 7.1. There are no real-virtual corrections to the two partonic channels and both are
UV finite. Their respective contribution is given by

σ
(2)
qq =

a2
q

2s
D̃isc

(
A(2)

qq→qq

)
, (7.1)

σ
(2)
qq′ =

a2
q

2s
D̃isc

(
A(2)

qq′→qq′

)
. (7.2)

Figure 7.1: Contribution with two quarks in the initial state. In case of different-flavour quarks
only the first diagram appears.
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Furthermore, we need to take into account collinear counterms for both channels which
coincide and are given by

σ
(2)
qq,coll = σ

(2)
qq′,coll =

2
ε

(
µ2

µ2
f

)2ε ∫ 1

1−δ
dzP(0)

gq (z)σ(1)
gq (x/z)

+
1
ε

(
µ2

µ2
f

)2ε ∫ 1

1−δ
dy
∫ 1

1−δ
dzP(0)

gq (y)P(0)
gq (z)σ(0)

gg (x/(zy)) . (7.3)

In addition to the quark-quark contributions, new ghost contributions arise. At NNLO,
also ghost-ghost and quark-ghost initial states contribute and thus we have to modify
Eq. (6.7) and Eq. (6.9) to

σ
(2)
gg =

a2
g

2s

[
D̃isc

(
A(2)

gg→gg

)
− D̃isc

(
A(2)

gc→gc

)
− D̃isc

(
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cg→cg

)
−D̃isc

(
A(2)

gc→gc

)
− D̃isc

(
A(2)

cg→cg

)
− D̃isc

(
A(2)

cc→cc

)
−D̃isc

(
A(2)

cc→cc

)
− D̃isc

(
A(2)

cc→cc

)
− D̃isc

(
A(2)

cc→cc

) ]
(7.4)

and

σ
(2)
qg =

agaq

2s

[
D̃isc

(
A(2)

qg→qg

)
− D̃isc

(
A(2)

qc→qc

)
− D̃isc

(
A(2)

qc→qc

) ]
, (7.5)

respectively.

structure of the chapter First, in Sec. 7.1 we discuss the computation of
the double-real radiation contributions. We then discuss the remaining real-virtual
contributions in Sec. 7.2. Finally, in Sec. 7.3, we conclude by discussing the remaining
steps required for obtaining the total, inclusive Higgs boson pair-production cross-section
at NNLO including terms through O(1/M8

t ).

7.1 double-real radiation

In this section we discuss the computation of the contributions due to two massless
partons in the final state. We introduce two additional building blocks which arise in
the double-real contributions in Sec. 7.1.1. In Sec. 7.1.2 we discuss the evaluation of the
four-particle cut MIs. Finally, we present results for the qq and qq′ channels, which only
receive double-real radiation contributions in Sec. 7.1.3.
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→

Figure 7.2: Sample contribution with four gluons coupling to the same top-quark loop. In total
there are 3600 diagrams contributing to the diagram on the right side.

7.1.1 Four-gluon building blocks

Starting from NNLO diagrams with four gluons and one or two Higgs bosons coupling
to the same top-quark loop, such as the one in Fig. 7.2 contribute. As a consequence, we
also need to introduce building blocks with four external gluons. Following [142] we
can write the four-gluon amplitude with one or two Higgs bosons as

Aµνρσ,abcd
4g−1/2H = ∑

ij
ρicabcd

ij (ε)Tµνρσ
ij ({qj}) , (7.6)

where, as in Eq. (6.11), the Tij contain the dependence on the momenta of the gluons
and Higgs bosons. However, the cij are tensors in colour space in case of the four-gluon
building blocks. Thus, we can not separate the colour- and Lorentz-structure trivially
from each other, unlike for the two- and three-gluon building blocks.

The cij can be written as linear combinations of traces over SU (3) generators in the
fundamental representation:

cabcd
ij = cij,1Tr

(
TaTbTcTd

)
+ cij,2Tr

(
TaTbTdTc

)
+ cij,3Tr

(
TaTcTbTd

)
+ cij,4Tr

(
TaTdTcTb

)
+ cij,5Tr

(
TaTcTdTb

)
+ cij,6Tr

(
TaTdTbTc

)
≡

6

∑
k=1

cij,kCabcd
k . (7.7)

Thus, we can write

cabcd
ij =

6

∑
k,k′=1

cij,kδkk′C ′abcd
k , (7.8)

where δ is the Kronecker symbol.
We can now write A4g−1/2H as

Aµνρσ,abcd
4g−1/2H =

(
∑
ijk

ρicij,k(ε)T
µνρσ
ij ({qj})δj

)
×
(

∑
k′

δkk′C ′abcd
k

)
, (7.9)
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effectively separating colour- and Lorentz-structure. We can now use the second factor
in Eq. (7.9) to compute the colour factors of the diagrams and the first factor for the
Lorentz structure. When multiplying both structures together, we can perform the sum
over k.

7.1.2 Computing the four-particle cut master integrals

In the following we discuss the computation of the four-particle cut MIs. As in chapter 6,
we compute them in two way: exactly, by finding a canonical basis, and as an expansion
around δ ≈ 0, by making an asymptotic series ansatz. While, for phenomenological
applications, the expansion around δ ≈ 0 is sufficient, the size and algebraic structure of
the system of DEs complicate the determination of the coefficients in the series ansatz.
Furthermore for the series ansatz the leading term in δ for all MIs needs to be known.
However, a priori, it is unclear if all of them can indeed be computed. On the other hand,
in a canonical basis typically only the leading terms of a small subset of MIs needs to be
known and deeper series expansions can be obtained with less computational effort.

Thus, in the following we derive the canonical basis for all involved MIs.

master integrals Using LiteRed we find that all integrals of the 14 four-particle
cut integral families introduced in chapter 5 reduce to a set of 57 MIs, depicted in Figs. 7.3
and 7.4. The analytical expressions for the MIs I(4)25 to I(4)34 are the same as for the MIs I(4)35

to I(4)44 . We keep them separate in the IBP reduction since they originate from the families
P6 and P8, as well as P7 and P9

1, respectively, which are nothing else than different cuts
of the same family. The reason for keeping them separated is explained in Sec. 5.2.2.
Furthermore, we did not identify any equivalent sectors of the families P6 through P9

with other families. As a consequence, the MIs I(4)45 and I(4)48 can be identified with I(4)27

and I(4)29 , respectively.

differential equations Due to its singular points, the system of DEs for these
MIs requires a more careful treatment than the system discussed in Sec. 6.2.2. As a
consequence, we use the program Libra [136] to perform manual manipulations on the
system of DEs2.

In contrast to Epsilon, Libra does not process systems of DEs in an automated manner.
It rather provides the user with the relevant information on the system of DEs, such
as its singularities and eigenvalues of the residues, and is able to construct balance
transformations. The choice which eigenvalues to balance and the order in which manip-
ulations are performed is left to the user. Thus, while it does not directly implement Lee’s

1 The families P6 through P9 are depicted in Fig. 5.7.
2 Epsilon is only able to handle quadratic polynomials in the denominator. However, we need to deal with

quartic polynomials, as will become evident later.
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Figure 7.3: Four-particle cut master integrals contributing at NNLO. Crosses on lines denote
numerators. Internal solid and dashed lines denote massless and massive particles,
respectively.
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Figure 7.4: Four-particle cut master integrals contributing at NNLO. Crosses on lines denote
numerators. Internal solid and dashed lines denote massless and massive particles,
respectively.

algorithm, it implements all required operations. This allows us to deviate from Lee’s
algorithm, which would first bring the diagonal blocks into Fuchsian form, followed by
performing a variable change to render half-integer eigenvalues integer, then normalizes
all eigenvalues and only then performs manipulations to the off-diagonal terms.

The rational functions in x and ε appearing in the off-diagonal terms have numerator
and denominator degrees as large as 20 and as a consequence, algebraic manipulations
of the system are rather involved. Furthermore, variable changes such as the one in 6.46

will increase the degrees of the rational functions further. Thus, we depart from the strict
application of Lee’s algorithm to minimize the number of terms in off-diagonal entries.
We proceed by

1. derive the system of DEs w.r.t. x = m2
H/s ,3

2. bring all diagonal blocks to Fuchsian form,

3. bring all off-diagonal entries to Fuchsian form,

4. reduce all eigenvalues of the residues of the diagonal blocks to 0± 1
2 ,

5. bring all off-diagonal entries to Fuchsian form again.

By following these steps we arrive at a form which is close to a canonical form. The
reason for having to bring the off-diagonal entries to Fuchsian form twice is, that the
balance transformations required for reducing the eigenvalues of the diagonal blocks
may change off-diagonal entries in a non-trivial way, introducing higher order poles
again.

In the next step we investigate the poles of the system of DEs. Here, five letters appear:
xi ∈ {0, 1,−1, 1/4,−1/4}. Note, that the poles at x = −1 and x = −1/4 appear in the

3 In practice we set s = 1 and take the derivative w.r.t m2
H .
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Figure 7.5: Four-particle cut master integral with the letter x = −1/4. The momentum (q1 − q2)
flows through the cut depicted by the red dashed line.

DEs of diagrams like the one depicted in Fig. 7.5 and correspond to the kinematic limits
s→ −m2

H and s→ −4m2
H, respectively. This is because the momentum (q1 − q2)2 = −s

flows through the massive lines, instead of (q1 + q2)2 = s, leading to the change of sign.
The eigenvalues for the residues at x = ±1/4 are half-integer and thus we need to

find a variable change to make them integer. To this end, we introduce the variable t,
related to x by

x =
t4 + 1

8t2 . (7.10)

The relevant kinematic regime for Higgs boson pair production expressed in the variable
t lies on the unit circle between 1 and exp(iπ/4). In t, the three letters xi ∈ {0,±1/4}
take the form ti ∈ {0,±1,±i,± exp(±iπ/4)}. The letters xi ∈ {1,−1} are mapped onto
the roots of

P4,1 = t4 − 8t2 + 1 and P4,−1 = t4 + 8t2 + 1 , (7.11)

respectively. After the variable change, only integer eigenvalues of the residues appear
and we can proceed to bring the system of DEs to canonical form. We do so by applying
balance transformations to normalize all eigenvalues of the residues to be proportional
to ε.

Next, we bring the off-diagonal elements to Fuchsian form once again. Since now
quartic polynomials appear in the denominators, algebraic manipulations, similar to
the balance transformations, to reduce the off-diagonal elements to Fuchsian form are
computationally involved. By bringing all off-diagonal elements to Fuchsian form in x
first, we reduced the amount of required manipulations in t to a minimum and, as a
consequence, also the computational complexity. Finally, we factor out ε from the system
of DEs, thus arriving at a canonical form.

boundary conditions Having arrived at a canonical form, we need boundary
conditions for solving the system of DE. To this end, the leading term in the δ expansion
of some of the MIs need to be computed explicitly. To simplify this task, the 57 MIs were
chosen such, that all numerators appearing, but the one in MIs I(4)8 and I(4)10 , reduce to a
linear combination of s and m2

H at LO in δ.
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In [143], the four-particle phase-space was parametrized in a similar manner as the
three-particle phase-space in Sec. 6.2.2. The main difference w.r.t. the three-particle
phase-space is, that we now deal with two massless momenta, instead of one. As a
consequence, we need to integrate over the two additional angles θ6 and φ6. However,
none of the propagators depends on the angles θ3 and φ3, since both Higgs bosons
couple to the same top-quark loop. Thus, after expanding around δ ≈ 0, the integration
over θ3 and φ3 is trivial.

These integrals are then solved with the help of [130] 4 and evaluate to gamma
functions, as in the previous chapter. Using DEs in δ, expansions around δ ≈ 0 through
O(δ20) are obtained [143].

As described in Sec. 6.2.2 we can infer which of the MIs are required as boundary
conditions in the limit δ→ 0 for solving the system of DEs. In total, the entries of 18 MIs

in the transformation matrix T contain a negative power of δ, after expanding in δ ≈ 0.
However, the explicit computation of the LO term in δ in [143] shows that for six out of
these 18 integrals, the leading power in δ is higher than the power of the pole in the
inverse transformation. As a consequence, only twelve of the 57 MIs need to be known
as boundary conditions for the DEs. Taking into account the choice of scalar products,
only six independent angular integrals have to be performed.

iterated integrals To obtain exact solutions for the MIs we define the quartic
polynomial

P4,0 = t4 + 1 , (7.12)

in addition to the two polynomials in Eq. (7.11). In analogy to Eq. (6.47), we define the
integration kernels

f (u(k); t) =
∂k

t P4,0

P4,0
, f (v(k); y) =

∂k
t P4,1

P4,1
and f (w(k); y) =

∂k
t P4,−1

P4,−1
, (7.13)

which appear in the iterated integrals in which the exact MIs are expressed.
As in Eq. (6.48), iterated integrals containing one or more of these kernels can be

written as a sum of GPLs:

G(· · · , u(k), · · · ; y) =
4

∑
i=1

c(k)i,u G(· · · , ui, · · · ; y) ,

G(· · · , v(k), · · · ; y) =
4

∑
i=1

c(k)i,v G(· · · , vi, · · · ; y) ,

G(· · · , w(k), · · · ; y) =
4

∑
i=1

c(k)i,wG(· · · , wi, · · · ; y) , (7.14)

4 During this computation a typo in Eq. (50) of [130] was discovered. The last term should read cos2(χ
(1)
2 /2).



7.1 double-real radiation 109

where the ui are the roots of P4,0, the vi the roots of P4,1 and the wi the roots of P4,−1. An
explicit example for this treatment can be found in example 11. After applying Eq. (7.14)
to the iterated integral under consideration, the numerical evaluation using GINAC [140,
141] is straightforward.

Since we compute the collinear counterterms as well as the double-virtual contributions
in an expansion around δ ≈ 0, we also need to expand the MIs. However, so far, we
have not been able to expand iterated integrals containing the kernels v(k) and w(k)

around δ ≈ 0. Since most publicly available packages capable of expanding GPLs, such
as PolyLogTools [139], are not able to properly handle complex polynomial roots such
as the vi and wi.

7.1.3 Results for the quark-quark initial state

As the qq and qq′ channels only recieve double-real radiative corrections, we are now in
the position to present results for them. We obtained results through O(ρ4) and O(δ27/2).

Only the integrals I(4)1 through I(4)5 , as well as I(4)20 and I(4)21 contribute to the qq′ channel.
As also the second type of diagrams in Fig. 7.1 contributes to the qq channel, also integrals
I(4)22 through I(4)24 contribute to it. The remaining double-real emission integrals contribute
to the other channels, such as the qq channel discussed in Sec. 7.2.4.

The collinear counterterm is equal for both channels and was obtained in [144]. In the
following we present the leading terms in δ and ρ for the initial-state with quarks of
different flavours
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2 , ρ3) ,

(7.15)

as well as the difference between the result for equal and different flavours:

σ
(2)
qq − σ

(2)
qq′ = −

a4
s G2

Fm2
H

π

[
1

1968300
δ

9
2 ρ + ρ2

{
7

104976000
δ

7
2 +

1627
11573604000

δ
9
2

}]
.

(7.16)

Here µ f = µ = mH, as = α
(5)
s (mH)/π and a1 = ln 2. Note, that the ρ0 contribution of

the difference starts only at δ11/2. The leading term in the limit δ→ 0 for both channels
is of O(ρ2). We show subsequent terms in the LME of σ

(2)
qq , σ

(2)
qq′ and their difference

σ
(2)
qq − σ

(2)
qq′ as a function of

√
s in Fig. 7.6. Both channels seem to slowly converge below

the top-quark threshold. The ratio between the ρ0 contribution and the subsequent
terms in the LME for σ

(2)
qq is shown in Fig. 7.7. In the lowermost plot of Fig. 7.6, we

show the difference between the same- and different-flavour initial states. The difference
corresponds to the second class of diagrams in Fig. 7.1, which are smaller by two orders
of magnitude than the first class of diagrams.

7.2 real-virtual contributions

In this section we discuss the real-virtual contributions at NNLO which have not been
considered in chapter 6. We need to evaluate contributions with a three-particle cut and
two top-quark loops, such as the left diagram in Fig. 7.8 or three top-quark loops, such
as the diagram on the right. Diagrams with three top-quark loops which all couple to a
Higgs boson are discussed in chapter 6.

The loop momentum running through the massless lines in the diagram on the left
can be either hard or soft. As a consequence, the LME leads to the two contributions
shown in Fig. 7.9. The first contribution contains a one-loop and a two-loop tadpole
integral in the hard subgraph and a two-loop phase-space integral with a three-particle
cut in the co-subgraph. The two-loop phase-space integral falls into the integral families
already discussed in chapter 6. In the following we call this type of contribution hard
real-virtual corrections. We discuss their computation in Sec. 7.2.2. As second contribution
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Figure 7.6: NNLO results of the two quark-quark channels as well as their difference as a function
of
√

s. The renormalization scale is µ = mH and the vertical black line shows the
top-quark pair-production threshold.
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Figure 7.7: Ratio between higher-order terms in the LME and the leading term. The renormaliza-
tion scale is µ = mH and the vertical black line shows the top-quark pair-production
threshold.

Figure 7.8: Sample real-virtual contributions under consideration in this section. The third quark
loop in the diagram on the right can be either a top-quark loop or a massless quark
loop.

→

+

⊗

⊗

Figure 7.9: Real-virtual contribution leading to a two-loop three-particle cut phase-space integral
and a three-loop three-particle cut phase-space integral.
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a hard subgraph with two one-loop tadpole integrals and a three-loop integral with
a three-particle cut in the co-subgraph arise. We call this contribution soft real-virtual
corrections. Their computation, as well as the evaluation of the relevant MIs, is discussed
in Sec. 7.2.3.

The second diagram in Fig. 7.8 has an additional quark loop. This quark loop can be
either massless or a top-quark loop. In the former case, the LME leads to a hard subgraph
with two one-loop tadpole integrals and a three-loop three-particle cut phase-space
integral, whereas in the latter case, the hard subgraph contains three one-loop tadpole
integrals and a two-loop phase-space integral. They are discussed in Sec. 7.2.1 and
Sec. 7.2.3, respectively. In Sec. 7.2.4, we present results for the qq channel, in which all
different real-virtual contributions appear.

7.2.1 Contributions with a third top-quark loop

Contributions with a third top-quark loop, that does not couple to any Higgs boson
line, contribute to the gluon-gluon, quark-gluon and quark-anti-quark channels. Sample
diagrams are depicted in Fig. 7.10. These diagrams yield three one-loop tadpole integrals

↓ ↓ ↓

Figure 7.10: Real-virtual contributions with three closed top-quark loops that are not part of the
subset discussed in chapter 6.

and a two-loop three-particle cut phase-space integral in the LME. The resulting two-loop
phase-space integrals all fall in the families discussed in chapter 6 and reduce to the MIs

I1, I2 and I7.

large mass expansion To compute these contributions, we need to extend the
building block approach introduced in [126]. There are two possibilities to do so:

1. introduce two-gluon and three-gluon building blocks, or

2. generate diagrams with two building blocks for the top-quark loops coupling to
Higgs bosons and a top-quark loop, such as the one depicted in Fig. 7.11.
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Figure 7.11: Diagram with a top-quark loop and two building blocks.

While the first approach technically would be feasible, we can not distinguish between
regular gluon propagators and two-gluon building blocks when generating diagrams. To
this end, we would need to introduce dressed gluon propagators which all correspond to
two-gluon building blocks and introduce book-keeping routines to discard any products
of terms stemming from the LME of two different propagators. The same holds for the
three-gluon building block.

We thus choose to go with the second option and generate diagrams with two building
blocks and a top-quark loop, such as the one depicted in Fig. 7.11. These diagrams can
be processed by exp like when we would perform a regular LME without any building
blocks. Using this approach allows us to expand the subset under consideration through
1/M8

t . This already has been done for the gg channel, which is the most involved one.

7.2.2 Hard real-virtual corrections

In the following, we discuss contributions involving one one-loop and one two-loop
tadpole integral, such as the first term on the right side of Fig. 7.9. These contributions
arise when the loop-momentum flowing through the massless lines is hard, i.e. is of
the order of Mt, and lead to two-loop three-particle cut phase space integrals. As in the
subset discussed in Sec. 7.2.1 the phase-space integrals reduce to I1, I2 and I7.

Again, there are two possibilities to compute these contributions:

1. introduce two-loop building blocks, or

2. generate diagrams with one one-loop building block, as well as one top-quark loop
and perform the LME with exp.

For the first approach, we need to extend the building block code to allow for two-
loop building blocks. While this does not pose any major obstacles for building blocks
with only gluons and Higgs bosons as external particles, diagrams such as the one
depicted in Fig. 7.12 require building blocks involving external off-shell quarks. Fur-
thermore, similar diagrams with ghosts instead of quarks need to be taken into ac-
count and thus we also need to take into account building blocks involving external
ghost particles. In total, we would need to introduce eight additional building blocks:
qqH, qqHH, qqgH, qqgHH, ccH, ccHH, ccgH and ccgHH. This is because building
blocks involving quarks contain a non-trivial structure of Dirac matrices and involve
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→

Figure 7.12: Diagram leading to a two-quark–two-Higgs boson building block.

off-shell spinors at the beginning and end of every Dirac matrix chain, which need to be
taken into account correctly.

While in principle, all the above issues could be overcome, it is simpler to generate
diagrams with one building block and using exp to perform the LME of the remainder. In
a proof-of-principle calculation, the contribution to the qq channel has been successfully
computed through 1/M2

t .
One comment regarding the gg channel is in order. As there are no hard real-virtual

contributions involving quark- or ghost-building blocks in this channel, we could com-
pute it using two-loop versions of the building blocks appearing in chapter 6, in case the
LME of diagrams with one building block is computationally too demanding.

7.2.3 Soft real-virtual corrections

The final subset of real-virtual corrections has a loop-momentum that is soft, i.e. is of
the order of mH or

√
s, such as the second contribution in the second line of Fig. 7.9.

These diagrams can be computed using the same building blocks as in the case of the
double-real corrections and lead to three-loop three-particle cut integrals. As discussed
in Sec. 5.2.2, partial fractioning and minimization of the integral families required for
this subset leads to five linearly independent integral families. Using LiteRed we find
the 17 MIs depicted in Fig. 7.13. In the following we discuss the computation of the MIs.

evaluation of the boundary conditions The 17 MIs are evaluated in [143],
following a similar procedure as for the three-particle cut MIs in Sec. 6.2.1. In the
following we highlight the differences w.r.t. Sec. 6.2.1.

The major difference in this calculation, as compared to the two-loop three-particle cut
phase-space integrals, is given by the extra loop integration which has to be performed.
Most of the loop integrals involved, such as the one appearing in MIs I(3)5 and I(3)6 , lead
to ε-dependent powers of polynomials in cos θ5 and ξ, a feature not present in the
calculation in Sec. 6.2.1. The more complicated loop integrals appearing in MIs I(3)8 and
I(3)11 need to be evaluated using the strategy of regions [125], to obtain the leading term
in the δ expansion.
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Figure 7.13: Three-loop three-particle cut MIs contributing at NNLO. Crosses denote numerators.

Furthermore, some of the loop integrals also lead to an imaginary part. One example
is the loop integral appearing in MI I(3)3 :

L2 =
∫ dDk

(2π)D
1
k2

1
(k + q1 + q2)2 =

1
(4π)2−ε

Γ(ε)Γ2(1− ε)

Γ(2− 2ε)
(−s)−ε . (7.17)

The factor (−s)−ε expands to 1− ε ln(−s) +O(ε2) and thus has a non-vanishing imagi-
nary part. On the contrary, the partonic cross-sections are manifestly real. This apparent
problem is resolved by the fact that also the complex-conjugate of I(3)3 contributes. As
an example consider the two diagrams in Fig. 7.14. After performing Lorentz algebra,
partial fractioning and minimization of the involved integrals, as well as IBP reduction,
the sum of the two diagrams in the first row is expressed through a linear combination
of the four integrals in the second row. The prefactor of I(3)3 and its complex conjugate
(I(3)3 )∗ agree with each other. The same holds for I(3)4 and (I(3)4 )∗. As a consequence, only
the real parts of the three-loop three-particle cut MIs enter. Since we already identify
integrals with their complex conjugates when minimizing families, we need to take the
real part of each loop integral in the boundary conditions5.

5 Greater care has to be taken when treating double-virtual corrections in the reverse unitarity approach, see
e. g.[145].
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→

Figure 7.14: The diagrams in the top row reduce to a linear combination of the diagrams in the
bottom row. The first two MIs are complex conjugates of one another and have the
same prefactor as do the second two.

Finally, in [143] the differential equations in δ were solved by the series ansatz in
Eq. (6.51).

solving the differential equations We process the DEs for the 17 MIs following
the procedure outline in Sec. 7.1.2. After bringing the system of differential equations
to Fuchsian form, three letters remain in the system: xi ∈ {0, 1, 1/4}. While x = 0 and
x = 1/4 appear in the DEs for all 17 MIs, x = 1 only appears in the DEs for MIs ten
through 17. As in the case of the four-particle cut and the two-loop three-particle cut
MIs, the eigenvalues of the residue at x = 1/4 are half-integer. Thus, we introduce the
variable z, given by

x =
z

(z + 1)2 . (7.18)

Note, that the variable change in Eq. (6.46) would also have worked. However, at the
time we did perform the computations in chapter 6, we did not realize that the variable
change to z would have mapped the kinematical range under consideration to z ∈ (0, 1],
leading to slightly simpler expressions when dealing with GPLs involving the letter 0.
After the variable change, we are able to bring the system of DEs to canonical form and
express all iterated integrals by GPLs with the letters z ∈ {0, 1,−1,− exp(±iπ/3)}.

From the basis change between the original and the canonical basis we can deduce
that the leading terms of the first ten MIs enter as boundary conditions.

The solutions obtained by solving the exact differential equations can be numerically
evaluated using GINAC. In contrast to the double-real MIs we can expand this set of MIs

around δ ≈ 0 using PolyLogTools, as the relation between δ and z is simple enough. We
obtained expansions through O(δ20) and found agreement with the results obtained by
solving the differential equations in δ [143].
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7.2.4 Results for the quark-anti-quark initial state

In contrast to the two channels discussed in Sec. 7.1.3, the quark-anti-quark channel also
receives real-virtual contributions. The three contribution discussed in Sec. 7.2 (hard
real-virtual, soft real-virtual and corrections with three top-quark loops) contribute.
We renormalize the top-quark mass in the OS scheme and express the strong coupling
constant in the five-flavour scheme. For µ f = µ = mH , the leading δ terms through O(ρ1)

read

σ
(2)
qq =

a4
s G2

Fm2
H

π

[
δ

9
2

(
5631473

4557106575
− 7748

4822335
a1 +

4
5103

a2
1 −

2
45927

π2 − 7748
14467005

ln δ

+
8

15309
a1 ln δ +

4
45927

ln2 δ

)
+ ρ

{
δ

7
2

(
565457

1607445000
− 599

1275750
a1

+
1

4050
a2

1 −
1

72900
π2 − 599

3827250
ln δ +

1
6075

a1 ln δ +
1

36450
ln2 δ

)

+ δ
9
2

(
81333221

48826141875
− 16

229635
nl −

101317
103335750

a1 +
28

54675
a2

1 −
14

492075
π2

− 101317
310007250

ln δ +
56

164025
a1 ln δ +

28
492075

ln2 δ

)}
+O(ρ2, δ

11
2 )

]
.

(7.19)

Here nl = 5 is the number of light flavours.
The result including terms up to δ29/2 is shown in Fig. 7.15 as a function of

√
s.

The first two terms in the ρ expansion show a similar behaviour as in the case of the
contributions discussed in chapter 6. However, they have a different sign and are two
orders of magnitude larger.

7.3 outlook

As mentioned in the beginning of this chapter, the computations discussed here are
still work in progress. In Sec. 7.3.1 we discuss the remaining steps to complete the
computation of all partonic channels and the necessary steps to obtain the total Higgs
boson pair-production cross-section in proton-proton collisions at the LHC. Finally, in
Sec. 7.3.2 we discuss the validity of the LME and possible ways to improve our results.

7.3.1 Completing the computation

In the following we discuss the remaining steps to obtain the total Higgs boson pair-
production cross-section in proton-proton collisions.
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Figure 7.15: NNLO qq inital-state cross sections as a function of
√

s. The renormalization scale is
µ = mH and the vertical black line shows the top-quark pair-production threshold.

completing the partonic channels With the quark-quark and quark-anti-
quark initiated partonic channels available through O(ρ4) and O(ρ1), respectively, the
next step is to extend the computation of the quark-anti-quark channel through O(ρ4).
To this end, corrections leading to a two-loop tadpole integral, the hard real-virtual
corrections, discussed in Sec. 7.2.2, need to be extended through O(ρ4). All other
contributions can be computed by the available setup and do not pose additional
challenges.

However, the main task is to complete the calculation of the contributions with gluons
in the initial state, i.e. the gluon-gluon and the quark-gluon channel. Here, the following
contributions are already available:

• For both channels, the contributions with an additional top-quark loop, discussed
in Sec. 7.2.1, are known through O(ρ4).

• The expressions for the double-real and soft real-virtual contributions are availabe
through O(ρ1).

• The collinear counterterms are known [144].

• The virtual corrections to the gluon-gluon channel are also available.

Thus, for these two channels we need to extend the computation of the double-real
and soft-real virtual corrections to higher powers in ρ and compute the hard real-
virtual contributions. Once we are able to extend the expansion depth of the hard real-
virtual contributions in the quark-anti-quark channel through O(ρ4), the computational
setup should, in principle, be able to also handle the quark-gluon channel without
modifications. For the gluon-gluon channel further optimizations might be required.
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four-particle cut master integrals As described in Sec. 7.1.2, obtained a
canonical form of the DEs and thus could express all double-real MIs exactly in m2

H/s.
However, as other contributions have only been obtained as an expansion around
δ ≈ 0, we need to obtain higher-order expansion terms in δ for the four-particle cut
MIs. Obtaining them by means of recurrence relations using the differential equations
in δ is computationally expensive and thus we want to perform an expansion of our
exact solutions. As mentioned in Sec. 7.1.2, this is a rather challenging task by itself, but
preliminary studies with the Mathematica package HarmonicSums [146–148] show, that it
might be feasible without the need of developing a new program to do so.

To expand the iterated integrals with HarmonicSums, we do not apply the relations in
Eq. (7.14) but let HarmonicSums operate on the iterated integrals with quartic polynomials
in the integration kernels. In the first step, we change to the variable t′ = t− 1, letting
HarmonicSums perform all necessary transformations of the integration kernels. In the
next step we expand around t′ ≈ 0, corresponding to an expansion around t ≈ 1 and
thus δ ≈ 0. In the next step we would need to express the expansion in t′ by δ and
expand around δ ≈ 0 again.

The major open question regarding this procedure is the expansion depth in δ we can
reach.

the hadronic cross-section Once all partonic channels are known through
O(ρ4), we have to obtain predictions for proton-proton collisions. To this end, we need
convolute the partonic cross-sections with parton density functions f :

σpp→HH+X = ∑
i,j

∫
dx1dx1 f (x1) f (x2)σij→HH+X(x1x2s) . (7.20)

Here, the sum runs over all possible partonic initial-state configurations. With the results
for the partonic cross-section expanded in δ the necessary numerical integrations do not
pose additional challenges.

7.3.2 Beyond the large mass expansion

The results obtained in this chapter and in chapter 6 using the LME only describe
the partonic cross-sections for partonic center-of-mass energies below the top-quark
threshold. At higher energies, the LME diverges and we need additional methods to
improve our predictions. To this end, it was found in [26] at NLO, that on the level of the
total hadronic cross-section it is possible to obtain a reasonably converging behaviour by
factoring out the exact LO result. Since the exact NLO result for the gluon-gluon channel
is available [23–25], this analysis can be extended to NNLO.

In the following we discuss two additional ideas, which might allow for further
improvements.
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padé approximants In [149] the full top-quark–mass dependence of the NLO form
factors contributing to single-Higgs boson production and Higgs boson pair production
is reconstructed from the LME and an expansion around the top-quark threshold of the
form factors. To this end, the top-quark–mass dependence is encoded in the variable ω

with

s
4M2

t
=

4ω

(1 + ω)2 (7.21)

and an Padé ansatz of the form

[n/m](ω) =
∑n

i=0 aiω
i

1 + ∑n
i=0 biωi (7.22)

is made. The coefficients ai and bi are then determined by comparing the ansatz to the
LME and the threshold expansion.

This method has also been successfully applied to the Higgs boson–gluon form factor
at NNLO [89] and Z-boson pair-production off-shell interference [150].

In [89] it was shown, that the knowledge of several expansion terms in the LME is
crucial for correctly approximating the form factor. With a LME of similar depth available
for the hadronic Higgs boson pair-production cross-section, a similar approximation can
be constructed once information on the behaviour at the top-quark threshold becomes
available.

towards differential distributions Another possibility to improve upon the
LME is to combine all contributions which can be computed without an approximation
in Mt together with LME results for those that can not. At NNLO such a combination
was conducted in [29], where exact results through NLO were combined with exact
results for the double-real radiation contribution, which can be obtained numerically
with programs such as OpenlLoops 2 [151], and the real-virtual and purely virtual NNLO

corrections in the limit Mt → ∞. As a result, the authors of [29] were able to obtain
results for differential distributions through NNLO.

To improve upon these predictions, LME results for the purely virtual and real-virtual
NNLO corrections could be used. While the form factors for gg→ HH are known through
O(ρ4), the real-virtual contributions are missing. As a first step towards the inclusion of
higher order terms in the LME we thus would compute the LME of the form factors for
gg→ gHH and gq→ qHH through O(ρ4).
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C O N C L U S I O N

The topic of this thesis is the computation of NNLO corrections to Higgs boson pair
production and higher-order corrections to processes involving Higgs bosons. In this
section, we summarize the two parts of this thesis and the results obtained.

The first part of this thesis is devoted to the computations of three quantities, at the
four-loop order, which are relevant to Higgs boson physics:

• In chapter 2 we obtain the effective coupling between two Higgs bosons and gluons.
We published the result, including all decoupling constants in QCD at four loops,
in Ref. [33]. Our result served as an important ingredient in the recent computation
of the Higgs boson pair-production cross-section, in the limit Mt → ∞, at N3LO [31,
32].

• In chapter 3 we expand the four-loop Higgs boson–gluon vertex for Mt � mH

through O(m4
H/M4

t ) and found that the mass-suppressed terms add corrections of
O(10%), for the top-quark mass renormalized in the OS scheme, compared to the
leading term. This result is the first step towards including terms suppressed by
inverse powers of the top-quark mass in cross-section predictions for the production
of Higgs bosons in gluon-fusion at N3LO. The results obtained in this chapter are
published in Ref. [34].

• Based on the computational setup established in the course of the computations of
chapter 3, in chapter 4 we compute the N3LO QCD corrections to the decay rate of a
Higgs boson into two photons through O(m4

H/M4
t ). While these contributions are

small, the mass-suppressed terms are comparable to the leading term, showing the
significance of the higher-order terms in the LME at N3LO for a physical quantity. A
publication of the result is in preparation [152].

In the second part, we focused on the computation of real-radiation corrections to
Higgs boson pair production at NNLO by expanding the integrals involved for a large
top-quark mass. We divided the computation into three individual pieces:

• In chapter 5 we discuss the computation of real-radiation contributions using the
method of reverse unitarity. In this context linearly dependent Feynman integrals
arise, which need to be partial fractioned in order to apply regular Feynman
integral techniques. To this end, we developed the program LIMIT to partial fraction
linearly dependent Feynman integral families and minimize the resulting linearly
independent ones. LIMIT not only proved useful in this context, but was also
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successfully applied to the computation of two-loop matching coefficients in non-
relativistic QCD [123] and the relation between pole mass and kinetic mass at three
loops [124].

• Using the techniques established in chapter 5, we compute a subset of the real-
virtual contributions in chapter 6. This subset involves all diagrams with both
Higgs bosons coupling to different top-quark loops. It is gauge independent and,
when combined with the corresponding subset of virtual corrections, finite. At
the partonic level, the corrections due to terms suppressed by inverse powers of
the top-quark mass are of O(30%− 40%) compared to the leading NNLO term. We
published the results in Ref. [35].

• In the final chapter, we provide results for the qq, qq′ and qq channels. Furthermore,
we discuss the state of the qg and gg channels. In particular we find a canonical
basis for all MIs involved. Furthermore, we discussed possibilities to improve the
knowledge of top-quark–mass dependent terms beyond the pure LME.

While the computation of the real-radiation contributions is not yet complete, the main
technical challenges have been solved in the course of this thesis and the computation
of the missing pieces is underway. Once all partonic channels are completed, the total
inclusive cross-section for Higgs boson pair production in proton collisions can be
obtained.
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A
D E F I N I T I O N S

In this appendix we discuss several definitions used throughout this thesis. We start by
introducing ghost fields in Sec. A.1 and continue with the renormalization of fields and
parameters in Sec. A.2. In Sec. A.3 we introduce decoupling constants. We conclude by
defining the various colour factors arising in QCD calculations in Sec. A.4 and specifying
the tensor structures and projectors required in the computation of CHH in Sec. A.5.

a.1 ghosts and gauge fixing

Deriving the gluon propagator solely based on Eq. (2.1) is not possible due to gauge
invariance. To this end we choose to quantize QCD using the covariant Lorentz gauge
and add an additional term to the Lagrangian density Eq. (2.1)1:

LGF = − 1
2 (1− ξ)

(
∂µ Aa

µ

)2
. (A.1)

The gauge parameter ξ can take arbitrary values and physical observables do not depend
on it. There are two special gauge choices commonly used: ξ = 0, also known as Feynman
gauge and ξ = 1, known as Landau gauge.

For abelian gauge theories, such as QED, Eq. (A.1) is enough to quantize the theory
and derive Feynman rules. In the nonabelian case however, we furthermore need to
introduce so-called Fadeev-Popov ghost fields to quantize the theory using the path-integral
formalism. The ghost fields ca are anticommuting scalar fields described by

Lghosts = (∂µca) Dab
µ cb . (A.2)

While ghosts seem to be a mere mathematical trick to quantize the theory, they also play
a more physical role. Without ghosts, loop computations with internal gluons would
lead to the wrong result, due to unphysical timelike and longitudinal polarizations, see
e. g.the example in Ref. [153]. Ghosts exactly cancel these unphysical degrees of freedom.

a.2 renormalization of qcd

The fields and parameters present in Eq. (2.1) and Eq. (A.1) can not be measured directly
but have to be connected to observable quantities. Furthermore, Green’s functions beyond
LO expressed in terms of bare quantities typically diverge in the UV regime. To this

1 Our choice of the gauge parameter is related to the choice in Ref. [42] by α = 1− ξ.
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end, renormalized, as well as bare fields and parameters are introduced together with
renormalization constants Z, to absorb the UV divergences and obtain finite results.

The renormalization constants may not only contain UV divergences, but can also be
chosen to contain finite pieces. In the widely used MS scheme [154] also finite terms
of the form ln (4π) and γE, which always appear together with poles in dimensional
regularization, are absorbed. In the MS scheme the bare quark, gluon and ghost fields
are connected to their renormalized counterparts via [46]

q0
f =
√

Z2q f , G0,a
µ =

√
Z3Ga

µ , ca =

√
Z̃3ca . (A.3)

The bare parameters are connected to the renormalized ones via

g0
s = µεZgs gs , m0

f = Zmm f , ξ0 = 1 + Z3 (ξ − 1) . (A.4)

Here µ is the so-called renormalization scale which is introduced to keep the coupling
constant gs dimensionless. As a consequence all renormalized fields and parameters
depend on µ. The renormalization constants in Eq. (A.3) and Eq. (A.4) can be related to
the UV divergences of two- and three-point Green’s functions, by demanding cancellation
of UV poles. They are known through five loops [55, 57–59, 155].

the on-shell scheme Another commonly used scheme for the renormalization of
masses and external fields is the so-called OS scheme. In this scheme the renormalization
constants for the fields and masses are chosen such that the bare propagators behave
like the free propagators near the mass shell. For gluons and massless quarks using this
implies that

ZOS
2 =

1
1 + ΣV(0)

, ZOS
3 =

1
1 + Π(0)

, (A.5)

where ΣV is the vectorial part of the light quark self-energy and Π is the transversal part
of the gluon self-energy. Since the self-energies are evaluated for p2 = 0 contributions
involving only massless particles vanish and thus, only contributions involving massive
particles enter ZOS

2 and ZOS
3 .

For massive quarks the relation between self-energy and ZOS
2 is more involved and

can be found e. g. in Refs. [104, 156], together with the relation for ZOS
m . In contrast to

the MS scheme all renormalization constants in the OS scheme contain finite parts and
positive powers in ε. The quark mass in the MS and OS scheme can be related using the
renormalization constants in the two schemes. This relation is known through four-loop
order in QCD [104, 156–162]

m f (µ)

MOS
f

=
Zm

ZOS
m

= zm (µ) . (A.6)
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a.3 decoupling constants

Furthermore, in many QCD applications all scales involved are much smaller than the
top-quark mass. In this case, large logarithms occur, which in the effective theory can be
absorbed into parameters and fields.

Example 12 (Large logarithms)

To see the effect of large scale hierarchies, consider the electromagnetic R-ratio

R(s) =
σe+e−→hadrons

σe+e−→µ+µ−
.

This observable is known up to O
(
α4

s
)

[163, 164] and plays a crucial role in the determination
of αs. Pure QCD corrections can be related to the imaginary part of the photon vacuum
polarization

R(s) = 12π ImΠ (−s− iε)

and thus only two-point diagrams such as the ones below contribute.

The contributions of massless quarks up to O
(
α2

s
)

can be easily evaluated and yield

R(s)
Nc ∑nl

f Q2
f
= 1 +

αs

π
+
(αs

π

)2
[

365
24
− 11ζ3 + nl

(
−11

12
+

2
3

ζ3

)]
,

where the renormalization scale µ2 = s, ζ3 is the Riemann ζ-function evaluated at 3, Nc is the
number of colours, nl is the number of massless quark flavours, and Q f is the electric charge of
the quark flavour f . If we now also consider a heavy quark with mass mQ which is much larger
than s, it only contributes through diagrams like the last one in the above figure. Its leading
contribution in s/m2

Q is given by

R(Q)(s) = −1
6

Nc

nl

∑
f

Q2
f

(αs

π

)2
ln

(
s

m2
Q

)
.

For large values of mQ, this contribution can become dominant and even spoil perturbativity if∣∣∣ αs
π ln(s/m2

Q)
∣∣∣ > 1.
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When integrating out a heavy quark also the parameters and fields of the full and
effective theories have to be related to each other. This is done by introducing the
so-called decoupling constants, which in their bare form can be defined by [46]

G0,(nl)
µ =

√
ζ0

3G
0,(n f )
µ , c0,(nl) =

√
ζ̃0

3c0,(n f ) , q0,(nl)
f =

√
ζ0

2q
0,(n f )

f ,

g0,(nl)
s = ζ0

gg
0,(n f )
s , ξ0,(nl) = 1 + ζ0

3

(
ξ0,(n f ) − 1

)
, (A.7)

where n f = nl + 1 and no colour indices are shown.
Replacing bare fields and parameters by renormalized ones using Eq. (A.3) and

Eq. (A.4) yields for the parameters2 [46]

α
(nl)
s =

Z
(n f )
g

Z(nl)
g

ζ0
g

2

α
(n f )
s = ζαs α

(n f )
s ,

ξ(nl) = 1 +
Z
(n f )

3

Z(nl)
3

ζ0
3

(
ξ(n f ) − 1

)
= ζ3

(
ξ(n f ) − 1

)
, (A.8)

where the renormalized decoupling constants depend on α
(n f )
s , ln(µ2/m2

Q) and, in the

case of ζ3, on ξ(n f ). Note that in the nl-flavour renormalization constants the parameters
need to be replaced by their n f -flavour versions using the above relations.

Example 13 (Absorbing large logarithms)

Recall the NLO corrections as well as NNLO involving massive quarks to the R-ratio

R(s) = Nc

nl

∑
f

Q2
f

(
1 +

α
(n f )
s

π

)
,

R(Q)(s) = −1
6

Nc

nl

∑
f

Q2
f

(
α
(n f )
s

π

)2

ln

(
s

m2
Q

)
,

where now the number of quark flavours n f = nl + 1 is explicit. Up to one loop the inverse of
the decoupling constant of αs is given by

1
ζαs

= 1 +
1
6

α
(nl)
s

π
ln

(
µ2

m2
Q

)
+O

(
α2

s
)

,

where we replaced α
(n f )
s by iteratively applying Eq. (A.8). Expressing α

(n f )
s in R(s) through

α
(nl)
s absorbs the large logarithm in the coupling constant.

2 Similar relations hold for ζ2 and ζ̃3.
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matching for the decoupling constants Following the same reasoning as
in the previous two subsections the bare decoupling constants for the gluon and ghost
fields are given by their vacuum polarization Π(p2) and Π̃(p2) [46]

ζ0
3 = 1 + Πh(0) , (A.9)

ζ̃0
3 = 1 + Π̃h(0) . (A.10)

Combining Eq. (A.9) and Eq. (A.5) we obtain

ZOS
3 =

1
ζ0

3
. (A.11)

The bare gauge coupling decoupling constant ζ0
g can be extracted from the 1PI part of

the gauge boson–ghost vertex Γccg(p, q) by [46]

ζ̃0
1 = 1 + Γh

ccg(0, 0) , (A.12)

ζ0
g =

ζ̃0
1

ζ̃0
3

√
ζ0

3

. (A.13)

a.4 colour factors

In this section we provide explicit expressions for the colour factors appearing in our
computations. We provide expressions, both for a generic number of colours Nc and the
case of QCD (Nc = 3). In the following we normalize

Tr
(

TaTb
)
= TFδab =

δab

2
, (A.14)

where the T are generators in the fundamental representation.
The dimension and quadratic Casimir operator in the fundamental representation are

given by

NF = Nc = 3 , CF =
N2

c − 1
2Nc

=
4
3

, (A.15)

whereas the corresponding quantities in the adjoint representation read

NA = N2
c − 1 = 8 , CA = Nc = 3 . (A.16)

Furthermore, the following contractions of symmetric rank-4 tensors arise at four
loops:

dabcd
A dabcd

F
NA

=
Nc(N2

c + 6)
48

=
45
48

,
dabcd

F dabcd
F

NA
=

N4
c − 6N2

c + 18
96N2

c
=

5
96

. (A.17)
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a.5 projectors and tensors structures

Here, we provide the Lorentz tensor structures and projectors appearing in Higgs boson
and Higgs boson pair-production.

In the case of single Higgs boson production, there is only one contributing tensor
structure, discussed in Sec. 2.2.1. We project on this structure, by applying

Pµν =
q

D− 2
(
(q1 · q2)gµν − qν

1qµ
2 − qµ

1 qν
2
)

. (A.18)

In the case of Higgs boson pair-production two tensor structures arise. They can be
found, e. g.in Ref. [126], and are given by

Aµν
1 = gµν − qν

1qµ
2

(q1 · q2)
,

Aµν
2 = gµν +

q2
3

q2
T(q1 · q2)

qν
1qµ

2 −
(q2 · q3)

q2
T(q1 · q2)

qν
1qµ

3 −
(q1 · q3)

q2
T(q1 · q2)

qν
3qµ

2 +
2

q2
T

qµ
3 qν

3 , (A.19)

where q2
T = 2(q1 · q3)(q2 · q3)/(q1 · q2)− q2

3. Note, that the first tensor structure is the
same, as in the case of single Higgs boson production. However, the projector can not be
re-used, as it is not orthogonal to the second structure.

As a consequence, we need two new projectors, given by

Pµν
1 =

1
2(D− 3)

(
gµν −

[
(1− ε)− q2

3

q2
T

ε

]
qν

1qµ
2

(q1 · q2)

− 2ε

q2
T(q1 · q2)

[
(q2 · q3)qν

1qµ
3 + (q1 · q3)q

µ
2 qν

3
]
+

2ε

q2
T

qµ
3 qν

3

)
,

Pµν
2 =

1
2(D− 3)

(
gµν −

[
ε− (1− ε)

q2
3

q2
T

]
qν

1qµ
2

(q1 · q2)

− 2(1− ε)

q2
T(q1 · q2)

[
(q2 · q3)qν

1qµ
3 + (q1 · q3)q

µ
2 qν

3
]
+

2(1− ε)

q2
T

qµ
3 qν

3

)
.

(A.20)

In the calculation of CHH, we only need Pµν
1 as the form-factor of Aµν

2 vanishes in the
limit mt → ∞. Still, we need Pµν

1 and have to keep the three external momenta different
from each other and zero, to avoid mixing with unphysical operators.

a.6 goncharov polylogarithms

The phase-space MIs discussed in chapters 6 and 7 can be expressed in terms of so-called
GPLs [165]. They can be defined recursively as

G(a1, . . . , an; x) =
∫ x

0

dy
y− a1

G(a2, . . . , an; y) , (A.21)
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with G(x) = 1. The ai are called letters and the set of letters~a = {a1, . . . , an} is called a
word. In case the rightmost letter is zero, special care has to be taken. To this end one
generally defines

G(0; x) = log(x) . (A.22)

The product of two GPLs of the same argument with the words~a and~b can be written
as a sum of GPLs:

G(~a; x)G(~b; x) = ∑
~c=~a

∃

~b

G(~c; x) . (A.23)

The sum runs over all shuffles of the letters in ~a and ~b. In the following we give an
explicit example of this property:

Example 14 (Shuffle algebra)

The shuffle of two words keeps the order of the letters in each individual word unchanged. In
the case of two words with length two, the above sum becomes:

G(a, b; x)G(c, d; x) = G(a, b, c, d; x) + G(a, c, b, d; x) + G(a, c, d, b; x)

+ G(c, a, b, d; x) + G(c, a, d, b; x) + G(c, d, a, b; x) .

Further properties of GPLs are reviewed in Ref. [139].





B
L A R G E M A S S E X PA N S I O N

Throughout this thesis we apply the large mass expansion (LME)1 to various problems in
Higgs boson physics. Here, we want to briefly describe the method.

The expansion of a Feynman diagram Γ in the large mass M takes the form

Γ(M, {q}, {m}) M→∞≈ ∑
γ

Γ/γ({q}, {m})⊗ T{qγ},{mγ}γ(M, {qγ}, {mγ}) , (B.1)

where {q} and {m} denote the sets of small momenta and masses, respectively. The sum
goes over all sub-graphs γ of Γ with the following properties:

1. γ contains all lines carrying the large mass M,

2. γ is 1PI in its connected parts after contracting all lines carrying the large mass.

The operator T{qγ},{mγ} denotes a Taylor expansion in the small momenta and masses
appearing in the respective subgraphs, before loop-integration is carried out. The set
{qγ} also contains the loop momenta that are external to the subgraph. The notation
Γ/γ⊗ T γ means that we first Taylor-expand γ in the small parameters and then re-
insert the Taylor-expansion into the diagram Γ where the lines in γ are contracted. The
subgraphs γ are generally referred to as hard subgraphs, where as the Γ/γ are called
co-subgraphs.

This procedure allows us to systematically perform an expansion in a large mass at
the level of Feynman diagrams. Thus, we reduce the involved integrals by one scale
already before performing IBP reduction.

Sample applications of the procedure are shown in Figs. 2.2 and 3.1.

1 This method is also known as the hard mass procedure in the literature.
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C
A D D I T I O N A L R E S U LT S

In this section we present additional results that have been obtained in the course of the
computations of Ref. [33], but have not been presented there. In Sec. C.1, we present the
effective coupling of a Higgs boson to light quarks. In Sec. C.2 and Sec. C.3 we provide
additional terms in the ε expansion of CH and the OS renormalization constant of gluons,
respectively.

c.1 effective coupling of a higgs boson to quarks

The discussion of chapter 2 and Sec. A.3 can be extended to account for the leading
effects of the masses of light quarks. To this end, we introduce the quark mass decoupling
constant ζm, relating quark masses in the n f and nl flavour theories:

m(nl)
f = ζmm

(n f )

f . (C.1)

Four-loop results for ζm have been obtained for general Nc in Ref. [166] and in terms of
SU (N) colour factors in Ref. [33].

At LO in the light-quark mass, the effective coupling of the Higgs boson to light quarks
can be written as

LO ⊃ −C0
2

H
v ∑

f
m0

f q0
f q0

f , (C.2)

where the sum runs over all light quark flavours, the m0
f are the bare quark masses and

the q0
f the bare quark fields.

In Ref. [46] a low-energy theorem connecting the effective coupling constant C2 to ζm

was derived:

C2 = 1 + m2
f

∂

∂m2
f

log ζm . (C.3)

The effective coupling C2 can be written as

C2 = 1 + TF ∑
i=1

(
α
(n f )
s (µ)

π

)i

C(i)
2 , (C.4)

where the coefficients C(i)
2 are given by

C(1)
2 = 0 ,
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C(2)
2 =

5
12

CF ,
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(
13
32
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)
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(
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+

3
2

ζ3

)
+
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F

(
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384
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11
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512

ζ3 +
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ζ4 −
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A

(
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11
24
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1ζ2 +
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(
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(
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Here, µ = mt, nl is the number of light quark flavours, ζ is the Riemann ζ-function
Eq. (2.35) and an = Lin(1/2).

The four-loop term C(4)
2 in terms of SU (N) colour factors has not been presented in

the literature so far.

c.2 effective coupling of a higgs boson to gluons

To construct the EFT expression of the Higgs boson–gluon form factor in chapter 3 we
require the one-, two- and three-loop contributions to the effective Higgs boson–gluon
coupling CH to higher orders in ε. In particular, we require terms up to ε8−2l for the
l-loop contribution. We write

CH = −2
3

TF ∑
i=1

(
α
(nl)
s (µ)

π

)i

C(i)
H , (C.6)

where the coefficients C(i)
H are given by

C(1)
H = 1 + lmtε +

(
1
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mt
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+
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+
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− 1
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+
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Here nl is the number of light quark flavours, ζ is the Riemann ζ-function Eq. (2.35),
an = Lin(1/2) and lmt = ln(µ2/m2

t (µ
2)), where mt is the top-quark mass renormalized

in the MS scheme.

c.3 on-shell renormalization of gluons

In chapters 2 and 3 we need the gluon wave-function renormalization constant in the OS

scheme, including higher orders in the ε expansion. It is connected to the inverse of the
bare gluon decoupling constant, as discussed in Sec. A.3. Analogously to the gluon case
in Eq. (A.11). As in the case of CH in Sec. C.2, we require the l-loop contribution up to
ε8−2l . We write the renormalization constant as

ZOS
3 = 1 + TF ∑

i
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π

)i

z(i)3 . (C.8)

The coefficients z(i)3 are given by
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Here nl is the number of light quark flavours, ζ is the Riemann ζ-function Eq. (2.35),
an = Lin(1/2) and lmt = ln(µ2/m2

t (µ
2)), where mt is the top-quark mass renormalized

in the MS scheme. Furthermore s6 is given by [75]

s6 =
∞

∑
m=1

m

∑
k=1

(−1)m+k

m5k
≈ 0.987 . (C.10)
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