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Abstract— Wide-area indoor people detection in a network
of depth sensors is the basis for many applications, e.g. people
counting or customer behavior analysis. Existing probabilistic
methods use approximative stochastic inference to estimate
the marginal probability distribution of people present in the
scene for a single time step. In this work we investigate how
the temporal context, given by a time series of multi-view
depth observations, can be exploited to regularize a mean-field
variational inference optimization process. We present a proba-
bilistic grid based dynamic model and deduce the corresponding
mean-field update regulations to effectively approximate the
joint probability distribution of people present in the scene
across space and time. Our experiments show that the proposed
temporal regularization leads to a more robust estimation of
the desired probability distribution and increases the detection
performance.

I. INTRODUCTION

Wide-area indoor people detection is a preprocessing task
for a broad field of applications, such as people counting,
customer behavior analysis, emergency detection in an am-
bient assisted living context or public security. Nonetheless,
the vast majority of existing multi-view approaches use
monocular video cameras and focus on pedestrian detec-
tion in outdoor scenarios, capturing the pedestrians from
profile or frontal view. In this work we focus on the task
of people detection in a network of low-cost commodity
depth sensors. In contrast to the classical video surveillance
scenario the mounting height is very limited in many indoor
scenarios. This has three major implications: (i) the sensors
capture the scene from the top-view to reduce occlusions in
crowded scenes; (ii) since the resulting field of view of a
single sensor is quite limited, sensor networks need to be
employed to cover a larger area; (iii) position changes of
people lead to drastically varying appearances as a result
of the vertical top-view. In previous work [1] we propose
a probabilistic framework which uses a generative scene
model to leverage the full image evidence from all sen-
sor views. For the final approximation of the probability
distribution of people present in the scene a mean-field
variational inference optimization is employed. However no
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temporal information is taken into account yet. A common
way to leverage temporal information is to use the detections
obtained from a isolated consecutive temporal frame as input
for an off-the-shelf tracking-by-detection approach to get
smooth person trajectories. Nonetheless, those methods do
not take advantage of the full temporal information since
the tracking component operates on a lossy representation
of object detections and does not have access to the joint
distribution of objects in the scene. In contrast, our goal is
to avoid the loss of information by taking the image evidence
from all sensor-views at every time step into account in order
to approximate the joint probability distribution of people
present in the scene across space and time.

In this work we investigate how the temporal context can
be used to improve the detection performance by regularizing
the underlying stochastic optimization process. Hence we
present a novel extension of [1] which incorporates the
temporal context given by a time series of multi-view depth
observations (see Fig.1). The outcome of our approach could
serve as input for tracking-by-detection post-processing to
provide person trajectories. Our contribution is two-fold: (i)
We present a probabilistic grid based dynamic model to
define the joint distribution across space and time; (ii) we
deduce the mean-field variational inference update equations
to effectively approximate the desired probability distribu-
tion. In the evaluation we show that the proposed temporal
regularization leads to a more robust approximation of the
desired joint probability distribution and in consequence
increases the detection performance.

II. RELATED WORK

The topic of indoor people detection in multiple over-
lapping depth images is not well studied yet. However, the
related task of multi-view people detection and tracking with
monocular video cameras has been studied in great detail [2],
[3], [4]. In this section we will therefore discuss (i) methodi-
cally related work from the classical multi-view person track-
ing literature and (ii) existing approaches focusing on people
detection and tracking in multi-view depth images. Many
approaches in the literature address the problem of multi-
view people detection and tracking by fusing local detections
or tracklets into a global coordinate system. However, these
approaches do not make full use of the multi-view image
evidence, since the detection is performed on each single
camera view independently. A related class of approaches
uses generative modeling to jointly take advantage of the
image evidence of all available views. For the detection of
people Fleuret et al. [5] introduce the probabilistic occupancy
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Fig. 1. Overview of the proposed approach. A time sequence of foreground segmented multi-view depth images from three sensors are used as input
(left). The generative scene model generates synthetic depth images with respect to the given intrinsic and extrinsic sensor parameters (middle). The output
of the stochastic inference are discrete probability maps representing the probability of people present on the ground floor across time and space (right).

map (POM). They use foreground-segmented binary images
as input and employ a simple person model expressed by
a rectangular bounding box to estimate probabilities of
occupancy by mean-field variational inference. The POM
is fed into a probabilistic tracking framework to provide
smooth person trajectories. Alahi et al. [6] follow the idea of
POM [5] and re-cast the task as a linear inverse optimization
problem. Both methods utilize only a binary foreground
mask as input and do not exploit the temporal context in
the detection step. Baque et al. [7] introduce a state-of-the-
art multi-view people detection architecture. They combine
a generative scene model with a classical CNN architecture
which additionally makes use of a Conditional Random Field
(CRF) to resolve ambiguities arising from occlusion.

While the detection of people in a single depth image [8],
[9], [10] has been intensively studied, only a few existing
approaches address the problem of people detection in a
network of depth sensors. Tseng et al. [11] present an indoor
people detection and tracking system based on multiple
active sensors in top-view. They fuse the point cloud of each
sensor to a virtual global top-view depth image to get multi-
view detections, which are fed into a tracking-by-detection
scheme. Carraror et al. [12] propose an approach for human
body pose estimation and tracking in a network of RGB-D
sensors. In previous work [13] we re-cast the problem of peo-
ple detection and tracking with multiple depth sensors as an
inverse problem, employing an approximately differentiable
scene model to detect people from arbitrary viewpoints.
Following these ideas we introduced a probabilistic frame-
work [1] based on a discrete scene configuration space. For
stochastic inference a variational mean-field approximiation
is used to jointly exploit the multi-view information in order
to estimate the marginal probability distribution of people
present in the scene.

The present work extends the framework proposed in [1]
by taking the temporal context into account to approximate
the full posterior distribution across space and time. While
the mean-field variational inference method used in our
approach is inspired by [5], we incorporate the temporal
context jointly in the mean-field optimization to improve the

detections across space and time.

III. APPROACH

Our approach uses a time series of multi-view depth
images as input and estimates the probability distribution of
people present in a scene (see Fig.1). In previous work [1]
we introduce a generative scene model to handle the different
appearances of people due to the change of viewpoint as
well as partial visibility of people e.g. due to occlusion or
the limited field of view. The generative model is used in a
probabilistic framework which leverages the full multi-view
information given in the overlapping image regions for joint
probabilistic people detection by using mean-field variational
inference. In this work we extend the method introduced
in [1] by taking the temporal context into account, thus
defining the full joint distribution across all sensor views and
time steps (Sect. III-A). Therefore, we introduce a dynamics
model (Sect. III-A.2) to express the probability flow over
time. We deduce how mean-field variational inference can be
used to approximate the desired joint probability distribution
effectively to estimate the marginal probabilities of people
present in the scene across space and time (Sect. III-B).

A. Probabilistic Model

We assume that the intrinsic and extrinsic camera parame-
ters and the common ground floor plane are known from the
initial calibration. The ground floor area is discretized into a
2D-grid of n locations for each time step t with 1 ≤ t ≤ T .
Each location ui will be assigned a realization xi,t of a
Bernoulli random variable Xi,t ∼ B(µ), where µ denotes
the probability of a person present at location ui at time
t. The scene configurations for one time step t are given
as the vector xt = (x1,t, . . . , xn,t)

T ∈ {0, 1}n (see Fig.
2(a)). The foreground-segmented depth observations at the
corresponding time step are given as ot = (o1,t, . . . , oc,t)

T ,
acquired from depth sensors S1 . . . SC . The joint probability
distribution for time steps 1..T is given as

p(x1:T ,o1:T ) = p(o1:T |x1:T )p(x1:T ). (1)



(a) xt−1 (b) p(x|xt−1)

Fig. 2. Example of proposed discrete dynamics model for one scene
configuration (a) with corresponding output distribution (b) for µself = 0.2
and wk = 1.

Assuming conditional independence of the observations over
time p(o1:T |x1:T ) =

∏T
t=1 p(ot|xt) and first order Markov

dynamics p(xt|x1:t−1) = p(xt|xt−1) the posterior distribu-
tion can be written as

p(x1:T |o1:T ) =

∏T
t=1 p(ot|xt)p(xt|xt−1)

p(o1:T )
, (2)

with p(x1|xo)p(xo) = p(x1).
1) Data Likelihood: Since we use the same definition

for the likelihood p(ot|xt) as introduced in [1] we only
briefly recap the definition in this section. Assuming that
the observations are conditionally independent given a scene
configuration xt the data likelihood can be written as

p(ot|xt) =

C∏
c=1

p(oc,t|xt). (3)

To handle the different appearance of people due to the
change in viewpoint, a generative scene model Gc(xt,Pc) is
employed, which maps a scene configuration xt and a given
projection matrix Pc to a synthetic observation (i.e. synthetic
depth image) from the perspective of sensor Sc (see Fig. 1
top middle). We assume that our given observations suffer
from Gaussian noise, yielding an observation likelihood

p(oc,t|x, σ) ∝ exp

(
− 1

2σ2
‖oc,t −Gc(x,Pc)‖22

)
. (4)

2) Dynamics Model: Since we do not focus on tracking
but on leveraging the temporal context to regularize the
stochastic optimization (see Sect. III-B), we propose a rather
simple, grid based dynamics model without modeling explicit
motion of objects. This leads to a computationally feasible
model which represents the flow of probability across time
and space. For the sake of simplicity we assume that the
probability of a scene configuration xt given the previous
state xt−1 factorizes as

p(xt|xt−1) =

n∏
j=1

p(xj,t|xt−1). (5)

To express the distribution p(xj,t|xt−1) as a weighted sum
of all previous xi,t−1 being in state one (meaning that a
person is present), we introduce a random variable Z with
the realizations being z = (z1, . . . , zn)

T with zk ∈ {0, 1}

and one-hot-encoding such that
∑n

k=1 zk = 1. Introducing z
to the distribution p(xj,t|xt−1) leads to the joint distribution

p(xj,t, z|xt−1) = p(xj,t|z,xt−1)p(z|xt−1). (6)

Since z is one-hot-encoded it follows

p(xj,t|z,xt−1) =

n∏
k=1

p(xj,t|zk = 1,xt−1)
zk

= p(xj,t|zk = 1),

(7)

where p(xj,t|zk = 1) reflects the probability of xj,t given
that one particular cell at index k in the previous state xt−1
is one. Marginalization over z gives the mixture model

p(xj,t|xt−1) =
∑

z∈{0,1}n:|z|=1

p(xj,t, z|xt−1)

=

n∑
k=1

p(xj,t|zk = 1)p(zk = 1|xt−1),

(8)

where the distribution p(zk = 1|xt−1) can be interpreted as
normalization weights, such that

p(zk = 1|xt−1) =

{
wk = 1

||xt−1||1 , if xk,t−1 = 1

0, else.
(9)

Finally the probability flow depends on the transition dis-
tribution p(xj,t|zk = 1) which denotes the probability that
a person is present at location uj given that a person was
present at the previous time step at location uk. Since in
our setup only little movement per time step is expected we
assume that a person will stay on the current location with
a specific probability µself and moves to one of its direct
eight neighbor cells uniformly (see Fig. 2). Hence we define

p(xj,t|zk = 1) =


B(xj,t|µself ) , if j = k

B(xj,t|µne) , if j ∈ ne(k)
1− xj,t , else,

(10)

with ne(k) being the set of the direct neighbors of uk. We
define µne = (1−µself )/|ne(k)|, which leads to the special
case where the emitted probability for one person present
equals to one. Notice that because of the normalization
weights wk it is also possible to use more sophisticated
transition probability distributions. Another consequence for
this special choice of µne is that we can set wk = 1 while (8)
still meets the requirements of a probability density function.
This has the side effect that the expected number of people in
the scene with respect to the dynamics model stays constant.

B. Temporal Regularization of Stochastic Inference

Since the posterior (2) is intractable due to dimensionality
of the latent space we use mean-field variational inference
[14] to approximate the distribution p(x1:T |o1:T ) by a sim-
pler proxy distribution q(x1:T ). The optimization objective
is given as

q̂(x1:T ) = argminq KL(q(x1:T ) || p(x1:T |o1:T )). (11)

We assume a fully-factorized proxy distribution q(x1:T ) =∏n
i=1

∏T
t=1 qi,t(xi,t) where each qi,t(xi,t) denotes the



marginal probability of a person present at location ui
at time step t. Let 〈·〉h(x) be the expected value with
respect to a distribution h(x) and q(x1:T \ xi,t) =∏n

j=1:j 6=i

∏T
k=1:k 6=t qj,k(xj,k) the mean-field distribution

without the element xi,t. According to the general mean-
field equation (see [15, 625 ff.]) the optimal update with
respect to the objective (11) is given as

qi,t(xi,t) ∝ exp
(
〈log p(x1:T |o1:T )〉q(x1:T \xi,t)

)
. (12)

Considering that each xi,t is Bernoulli distributed, the final
update for xi,t being in state one is given as

qi,t(xi,t = 1) = [1 + exp (Ei,t)]
−1
. (13)

For more detailed derivation we refer to previous work [1,
Sect. 3(B)]. Inserting the probabilistic model defined in Sect.
III-A the update expectation in (13) expands to

Ei,t =

〈
log

p(o1:T ,x1:T |xi,t = 0)

p(o1:T ,x1:T |xi,t = 1))

〉
q(x1:T \xi,t)

=

〈
log

∏T
k=1 p(ok|xk, xi,t = 0)∏T
k=1 p(ok|xk, xi,t = 1)

+ log

∏T
k=1 p(xk|xk−1, xi,t = 0)∏T
k=1 p(xk|xk−1, xi,t = 1)

〉
q(x1:T \xi,t)

.

(14)

Using the linearity of expectation we can express (14) as the
sum of a data and a temporal expectation

Ei,t = Edata
i,t + Epast

i,t + Efuture
i,t︸ ︷︷ ︸

temporal exp.

. (15)

All terms in (14) which are independent of xi,t cancel out,
therefore the data term can be isolated to

Edata
i,t =

〈
log

p(ot|xt, xi,t = 0)

p(ot|xt, xi,t = 1)

〉
q(xt\xi,t)

. (16)

Since we focus on the temporal regularization in this work,
we refer to previous work [1] for further elaboration on
the efficient approximation of the data term. Inserting the
dynamics model (5) in (14) and again using the fact that all
terms which are independent of xi,t cancel out, it turns out
that the temporal part of the expectation can be separated
into a part

Epast
i,t =

〈
log

p(xt|xt−1, xi,t = 0)

p(xt|xt−1, xi,t = 1)

〉
q(xt\xi,t,xt−1)

=

〈
log

∏
j p(xj,t|xt−1, xi,t = 0)∏
j p(xj,t|xt−1, xi,t = 1)

〉
q(xt\xi,t,xt−1)

=

〈
log

1− p(xi,t = 1|xt−1)

p(xi,t = 1|xt−1)

〉
q(x̃i,t−1)

(17)

which does only depend on the previous state xt−1 and a
slightly more evolved part

Efuture
i,t =

〈
log

p(xt+1|xt, xi,t = 0)

p(xt+1|xt, xi,t = 1)

〉
q(xt−1:t+1\xi,t)

=

〈
log

∏
j p(xj,t+1|xt, xi,t = 0)∏
j p(xj,t+1|xt, xi,t = 1)

〉
q(xt\xi,t,xt+1)

=

〈 ∑
j∈ne(i)

log
p(xj,t+1|xt, xi,t = 0)

p(xj,t+1|xt, xi,t = 1)

〉
q(x̃i,t,x̃i,t+1)

(18)

which depends on the current state xt and the future state in
the next time step xt+1. Since our dynamics model operates
only on a local neighborhood (see (10)) we only need
to consider the reduced neighborhood scene configurations
x̃i,t ∈ {0, 1}8, making the estimation of the expectations
(17,18) computationally feasible.

C. Implementation Details

For the mean-field optimization we use asynchronous
coordinate-ascent variational inference (CAVI) [14], thus
all qi,t(·) are updated sequentially according to (13) with
respect to the previous mean-field state q(x1:T \ xi,t). In
each iteration the time slices q(xt) are consecutively updated
from 1..T . This implies that the temporal context does have
a direct impact on the estimation of the data term on the
next iteration since the mean-field distribution after one
iteration is effected jointly by all temporal frames. Since the
future term (18) relies on the mean-field state from the next
time step we disable the future term in the first iteration.
To take into account that people can enter the observable
area we initialize all border grid cells with a probability of
qinit(xi) = 0.5 with i ∈ Border. To weight the temporal
terms we extend (15) to Ei,t = Edata

i,t + βEpast
i,t + γEfuture

i,t

with β, γ ∈ [0, 1]. For the approximation of the data term
(16) the asymmetric L1-image distance introduced in [1, Eq.
(12)] is used.

IV. EVALUATION

We analyze the effects of using the temporal context
as proposed in Sect. III on a sequence of 600 annotated
consecutive temporal frames. Each temporal frame contains
three foreground segmented depth images with a resolution
of 376× 240 pixel, recorded from three commodity stereo-
vision-based depth sensors (see Fig. 3(a)). The foreground
segmentation is obtained by simple static background sub-
traction. The sensors have a top view on the scene and are
mounted at a height of three meters, having fields of view
with significant overlap. For the evaluation of our approach
we use a discrete ground floor grid with 15×12 grid points,
corresponding to a horizontal and vertical distance of 33 cm
between adjacent grid points. For the quantitative evaluation
we use the precision-recall metric, where the precision is
given by TP/(TP+FP ) and the recall by TP/(TP+FN);
TP , FP , FN are the counts of the true positives, false
positives and false negatives, respectively. The F1-Score



(a) Input depth observations at one time step from three sensors (temporal frame)

(b) No temporal context used

(c) With temporal context

Fig. 3. Exemplary mean-field optimization results depicted for one temporal frame (a). (b,c) show the resulting marginal probability map projected onto
the ground floor, false negatives are marked with a red dot.
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Fig. 4. Precision-Recall curves showing the performance of our approach
with and without temporal context.

is defined as the harmonic mean of precision and recall,
F1 = (2 × precision× recall)/(precision + recall). During
evaluation we observed that the influence of the proposed
future term in (18) on the quantitative results is negligible for
the proposed update strategy and motion model. Therefore

the presented results are based only on the past and data term
defined in (16,17) respectively. For evaluation we run six
mean-field iterations with the parameters β = 0.65, γ = 0.0,
µself = 0.8 and wk = 1.

Fig. 4 shows the precision-recall performance for the
proposed method compared to: (i) the joint probablistic
people detection method (JPOD) without temporal context
as introduced in [1]; (ii) a difference of Gaussian blob
detector (DoG-Detector) which is applied on the foreground
segmented depth images of each sensor independently and
the finaly detections are obtained by proximity clustering
on the ground plane; (iii) Deep Occlussion [7], a SOTA
deep learning architecture for multi-view people detection
(for evaluation we use the available pre-trained model; as
input we stack the grey scale observations to a three channel
image to be compatible with the RGB architecture). The
top-view data set is challenging for Deep Occlusion since
it was trained with RGB images containing people in the
profile-view and is now applied to top-view grey scale
images. Notice that the mentioned approaches (i-iii) operate
on a single temporal frame and do not make use of the
given temporal context. Although the performance of our
previous work JOPD [1] without temporal context is already
quite high (best F1-score of 0.91) the results show that the



(a) No temporal context

(b) With temporal context

Fig. 5. Mean-field results for five consecutive frames, projected into sensor view one.

exploitation of temporal context can increase the overall
precision and recall performance (best F1-score of 0.94).

Fig. 3(b), (c) and Fig. 5 illustrate mean-field optimization
results. The final marginal probability distribution q̂(xt) is
projected onto the ground floor, where purple correspond to a
probability of zero and yellow to one respectively (see Fig.
1 left bottom for the color scale). In Fig. 3 an exemplary
temporal frame with a typical positive effect of the tempo-
ral regularization is shown. Without temporal context (Fig.
3(b)) the estimated marginal probability distribution contains
high uncertainty around two targets due to partial visibility
and measurement noise, leading to two false negatives. In
contrast, exploiting the temporal context can resolve those
uncertainties, leading to a marginal distribution with clean
peaks (Fig. 3(c)). Similar effects can be observed in Fig. 5,
where a short sequence of mean-field results (shown only in
sensor view one) is depicted. On a single CPU core1, our
non-optimized Python implementation needs approximately
700ms per temporal frame. We observed that the run time
per frame decreases slightly on average by using the temporal
context. This can be explained by the fact that the proposed
dynamics model effectively restricts the set of grid cells
where a person can be present with a probability greater
than zero, thus less mean-field updates need to be evaluated.

V. CONCLUSION

In this work we have presented a novel extension for prob-
abilistic people detection in a depth sensor network, which
leverages the temporal context to regularize the stochastic
mean-field optimization process. We proposed a probabilistic
grid based dynamics model and deduced the corresponding
mean-field update equations to effectively approximate the
joint distribution of people present in the scene across
space and time. Our results have shown that the introduced
temporal regularization leads to a more robust estimation of
the desired joint probability distribution and in consequence
increases the detection performance.

Future work will focus on extended quantitative evalua-
tion as well as the investigation of more sophisticated grid

1Intel Core-i7@2.9Ghz

based dynamics models and their influence on the temporal
regularization.
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