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Flow in the living moment. — We are always in
a process of becoming and nothing is �xed. Have
no rigid system in you, and you’ll be �exible to
change with the ever changing. Open yourself
and �ow, my friend. Flow in the total openness
of the livingmoment. If nothing within you stays
rigid, outward things will disclose themselves.

Bruce Lee



Abstract

The theory of dynamic games has been demonstrated to be an e�ective approach for modeling
and analyzing interactions between decision makers or players in dynamic processes. How-
ever, in order to use this theory in real applications, the possibility of quick identi�cation of
the objectives each player or decision maker optimized is crucial. This identi�cation problem
is called inverse dynamic game. This thesis gives solutions for this problem which are based on
the observed actions of the players and the resulting state trajectory describing the evolution
of the game.

Two method classes are developed to solve inverse dynamic games. The �rst is based on the
application of control-theoretical techniques. For the widespread class of linear-quadratic dy-
namic games, explicit solution sets characterizing all possible inverse dynamic game solutions
are additionally stated. The second class of methods is based on the use of inverse reinforce-
ment learning techniques from computer science. For all methods, mathematical conditions
are presented under which a successful player objective estimation is guaranteed.

A simulative comparison with a state-of-the-art approach shows that the proposed novel meth-
ods are computationally more e�cient. Furthermore, the techniques are applied for the iden-
ti�cation of cooperative human behavior in a steering task. The developed inverse dynamic
game methods allow for an e�cient player objective estimation and can be employed in vari-
ous applications �elds including human-machine interaction and the description of coopera-
tive biological system behavior.



Kurzfassung

Die dynamische Spieltheorie hat sich als ein e�ektiver Ansatz zur Modellierung und Anal-
yse der Interaktion zwischen mehreren Akteuren oder Spielern in dynamischen Prozessen er-
wiesen. Um diese Theorie in realen Anwendungen umzusetzen, ist jedoch die Möglichkeit
einer schnellen Identi�kation der Ziele jedes Spielers entscheidend. Dieses Identi�kation-
sproblem wird als inverses dynamisches Spiel bezeichnet. Hierfür präsentiert diese Dissertation
Lösungen, die auf Beobachtungen der Spieleraktionen und der resultierenden Zustandstrajek-
torie basieren, welche die Entwicklung des Spiels über die Zeit beschreibt.

Es werden zwei Arten von Methoden zur Lösung von inversen dynamischen Spielen entwick-
elt. Die erste besteht in der Anwendung von regelungstechnischen Methoden. Für die weitver-
breitete Klasse der linear-quadratischen dynamischen Spiele werden zusätzlich explizite Men-
gen formuliert, die alle möglichen Lösungen des inversen Problems beschreiben. Der zweiten
Methode liegen Verfahren des Inverse Reinforcement Learnings aus der Informatik zugrunde.
Für beide Arten von Methoden werden mathematische Bedingungen formuliert, unter denen
eine erfolgreiche Schätzung der Ziele aller Spieler garantiert ist.

Ein simulativer Vergleich mit einem Verfahren aus dem Stand der Technik zeigt die höhere
E�zienz der vorgestellten neuen Ansätze. Darüber hinaus werden die Methoden für die Iden-
ti�kation von kooperativem menschlichen Verhalten in einem Lenkmanöver angewendet. Die
entwickelten Ansätze für inverse dynamische Spiele ermöglichen die e�ziente Identi�ka-
tion von Spielerzielen und können in zahlreichen Anwendungsfeldern wie beispielsweise der
Mensch-Maschine-Interaktion und der Verhaltensbeschreibung biologischer Systeme einge-
setzt werden.



Resumen

La teoría de juegos dinámicos ha demostrado ser un método efectivo para el modelamiento
y el análisis de la interacción entre varios actores en procesos dinámicos en los cuales sus
respectivas decisiones se afectan mutuamente. Sin embargo, para poder utlizar esta teoría en
aplicaciones reales de ingeniería es crucial tener la posibilidad de identi�car de forma rápida los
objectivos de cada jugador. A este problema de identi�cación se le conoce como juego dinámico
inverso. Esta tesis doctoral presenta soluciones para este problema las cuales están basadas en
observaciones de las acciones de los jugadores y las trayectorias de estados resultantes que
describen la evolución del juego a lo largo del tiempo.

En esta tesis se desarrollan dos tipos de métodos para la solución de juegos dinámicos inver-
sos. La primera consiste en la aplicación de técnicas que provienen de la teoría de control
automático. Además, para la muy extendida clase de juegos lineales-cuadráticos se formulan
conjuntos explícitos que describen todas las posibles soluciones del problema inverso. El se-
gundo método se apoya en procedimientos del aprendizaje por refuerzo inverso que proviene del
campo de la informática. Se presentan condiciones matemáticas para ambas clases de métodos
propuestas que permiten garantizar la identi�cación de los objetivos de cada jugador.

Se presenta una comparación con un algoritmo del estado actual de la ciencia por medio de
simulaciones, demonstrándose la mayor e�ciencia de los métodos propuestos en esta tesis.
Adicionalmente, se enseña una aplicación de estos en la identi�cación del comportamiento
humano en una maniobra cooperativa. Las técnicas para resolver juegos dinámicos inver-
sos permiten la identi�cación e�ciente de objetivos y pueden ser aplicadas en varios campos
tales como la interacción hombre-máquina y la descripción del comportamiento de sistemas
biológicos.
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1 Introduction

Automatic and intelligent machines have become ever-present in today’s society. Previously
developed for industrial environments to perform repetitive tasks on their own and out of
human reach, the robots and automation systems of today interact closely with humans and
several other robotic systems. Current trends of technological development entail an even
closer interaction, for instance, at a haptic level. This means that machines physically interact
with a cooperation partner, e.g. a human, in order to assist him in the more e�cient and safe
completion of various tasks. Such a close interaction is given in the �elds of cooperative in-
dustrial robots, robot-assisted surgery and assistance systems for vehicle control and various
other human-machine cooperation settings. Therefore, automated robotic systems increas-
ingly need the ability to predict the behavior of the humans or previously unknown machines
that may interact with them. This ability is a crucial part for the design of such cooperative sys-
tems and for the exploitation of the full potential of cooperation synergies. Hence, adequate
modeling and identi�cation methods are essential; such mathematical models and suitable
identi�cation approaches can lead to a better general understanding of interacting agents and
also to the possibility of implementing model-based control algorithms in a technical device
for an adequate behavior during interaction with e.g. a human partner.

The aforementioned situation demands a modeling framework which, on the one hand, serves
as a mathematical approach for the design of the automatic controller, but on the other hand,
allows the description of human behavior. Descriptive and biologically interpretable models
for human behavior have been explored in the biologic and neuroscienti�c communities. In
particular, motor control of humans has been conjectured to arise from minimum principles
[NC61]. Several optimality principles have been proposed such that a speci�c trajectory was
generated which served as a command to lower-level biomechanical models (see [Eng01] for
an extensive review). Given these optimality criteria, optimal control theory arises naturally
as a model for movement planning and generation [Tod04] and has become a widely accepted
approach in the neuroscience community. This led to further work which used this approach to
model not only di�erent kinds of human movement [MTL10, EHAAM16], but also the behavior
of a human controlling a dynamic system [PCJ+15]. The theory of optimal control itself is one
of the most applied concepts in automatic control with numerous applications in engineering.
Using this concept, an automatic controller can be described by a particular cost function as
this leads to a control law which determines its behavior.

In the general case with humans and machines interacting and cooperating with each other,
either in terms of self-positioning (e.g. avoiding collision) or through the control of a dynamic
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(a) Agents interacting with each other

System

(b) Agents interacting through a dynamic system

Figure 1.1: Di�erent scenarios of interaction between several agents

system (e.g. haptic shared control of a vehicle), as depicted in Figure 1.1, a possibly con�icting
situation emerges. This is due to the fact that each of them strives for the optimization of
his individual criterion, thus potentially a�ecting each other negatively. Con�icts in dynamic
situations, the latter of which arise in engineering problems, can be described by dynamic
game theory, a framework which has been increasingly employed for applications in automatic
control [Isa99, RBS16] as well as economics [Doc00] and biology [MGP+18]. In other words,
the mathematical framework of dynamic game theory not only includes modeling the behavior
of each partner by means of a criterion to be optimized, but also allows for the analysis of the
result of their interaction. This result is typically described by an equilibrium solution, the
computation of which has been the object of considerable e�orts (cf. [BO99]). In addition, �rst
studies exist which demonstrate the potential of the so-called Nash equilibrium as a descriptive
concept for biological systems, for instance, bird collision avoidance behavior [MGP+18] as
well as interacting humans in avoidance behavior [TW19] and haptically coupled scenarios
[BOW09, CS17, IFH19].

However, calculating equilibrium solutions in dynamic games demands the knowledge of the
criteria each of the players optimize, which in real scenarios are typically unknown. Indeed,
intelligent automated systems will usually have incomplete information about other players.
Moreover, in human-machine interaction, the objective function of the human partner is usu-
ally unknown. For instance, in highly automated driving scenarios, an autonomous driving car
would not have knowledge of the objectives of other non-autonomous (human-controlled) ve-
hicles. In these cases, if only measurement data is available, the objectives of the players have
to be identi�ed out of a given outcome of the interaction, i.e. players’ actions and system states
corresponding to a game-theoretic equilibrium. In order to permit a major breakthrough of
the application of dynamic game theory, e�cient data-based identi�cation of the criteria each
of the players optimized becomes essential. This identi�cation problem is denoted as inverse
dynamic game and its solution is the main research objective of this thesis.
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1.1 Research Objective and Contributions

The main objective of this thesis is the development of methods for solving inverse dy-
namic game problems, allowing for an estimation of player objectives from observed inter-
action behavior. Contrary to the problem of determining equilibrium solutions from known
objectives which has been extensively studied, the inverse problem has scarcely been con-
sidered in previous work. Most treatments consider special cases, propose computationally
heavy methods and do not give further insight on the properties of the problem. Motivated by
the aforementioned studies on human-human-interaction, the focus of this thesis are dynamic
games where a Nash equilibrium arises and de�nes the observed behavior. In addition, the
e�ciency of the methods is endeavoured in view of their utilization in real applications.

In a broad sense, the following contributions are made and presented in this thesis:

1. The development of e�cient control-theoretical methods for inverse dynamic games as
a means to identify cost functions of interacting players based on given observations.
Furthermore, mathematical conditions for successful identi�cation are developed.

2. The development of an inverse dynamic game method based on an approach which
stems from computer science and information theory, for which a proof of the unbi-
asedness of the objective estimation is given.

3. The application of the novel methods using both simulated data from di�erent scenar-
ios and real data from a cooperative steering experiment with 52 participants. The per-
formance of the developed methods and a state-of-the-art approach is compared and
thoroughly analyzed.

1.2 Outline

The remainder of this thesis is structured as follows.

In Chapter 2, related work and existing literature on the estimation of player objectives in
optimal control and dynamic games are reviewed. The research gap is formalized in terms
of concrete research questions which shall be answered in this thesis. Chapter 3 introduces
the reader to the necessary mathematical fundamentals of dynamic game theory. In particu-
lar, existing results on the determination of equilibrium solutions are reviewed which lay the
foundation of the developed inverse dynamic methods of this thesis.

The main theoretical contributions are given in Chapters 4 to 6. Chapter 4 presents a formal
de�nition of inverse dynamic game problems and presents a control-theoretical approach for
open-loop inverse dynamic games. Furthermore, su�cient conditions for succesful identi�ca-
tion of unique parameters will be presented. Inverse methods and analysis tools for the class
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of linear-quadratic (LQ) di�erential games are presented in Chapter 5; necessary and su�-
cient conditions for identi�cation of unique parameters are also given. InChapter 6, a method
based on inverse reinforcement learning is presented and shown to be adequate for solving in-
verse dynamic games with both open-loop and feedback information structures. The chapter
also presents unbiasedness results for the estimation of player objectives with this approach.

The next chapters involve the evaluation of the novel methods in simulations and a real appli-
cation. First, Chapter 7 give simulation results to evaluate all presented methods. The proper-
ties of each class of method are highlighted and a systematic comparison with a state-of-the-art
method is conducted where the quality of the identi�cation, robustness to measurement noise
and modeling errors as well as the computational complexity are evaluated. Chapter 8 shows
an application of inverse dynamic games including the identi�cation of human behavior in
a haptic shared control task. Similar to Chapter 7, the experimental data is used to compare
the methods with respect to the capability of describing observed human cooperative steering
behavior.

Finally, Chapter 9 sums up all insights and results obtained in this thesis.

The structure of the thesis is summarized in Figure 1.2, where the main body is divided into
two paths to stress the di�erent principles which underlie the proposed inverse dynamic game
methods.
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2 Related Work and Research Gap

In this chapter, related work concerning methods for the estimation of cost functions is re-
viewed and the concrete research gap is identi�ed. The majority of related work is concerned
with cost function identi�cation in a single-player case, also known as inverse optimal con-
trol, both from a control-theoretic and from a computer science point of view. Therefore, this
case and its origins are surveyed �rst to provide an adequate context before covering state-
of-the-art methods in a game-theoretical setting. The chapter ends with a discussion on all
explored literature, the statement of the research gap and corresponding research questions
to be answered in this thesis.

2.1 The Inverse Problem of Optimal Control

The problem of characterizing and describing cost functions corresponding to known optimal
solutions was �rst considered in an optimal control setting, a problem which is known as
inverse optimal control. The study of inverse problems in optimal control started with Kalman’s
paper: "When is a linear control system optimal?". The paper introduced conditions for a
given linear control law to be optimal with respect to a quadratic performance index in the
case of a single-input linear system and also showed that the inverse problem is ill-posed
[Kal64]. Further progress was made by [Tha67] and [MA73] which stated similar conditions
for a control-a�ne system and more general performance indices. These conditions serve the
characterization of control laws which are optimal, but are not computationally convenient
in order to calculate a particular cost function. The computational aspect was addressed in
[JK73], where formulas were given for calculating a particular set of cost function matrices
based on the known system dynamics and control law. Generalized results were given by
[Cas80], where the Hamilton-Jacobi-Bellman equation was proposed as a means to calculate
all possible cost function parameters corresponding to a known control feedback law in a
linear-quadratic optimal control problem. Similarly, [FN84] extended Kalman’s results to the
multivariable case and dropping the assumption of a stabilizing control law.

After these initial e�orts, inverse optimal control as a means to determine cost functions re-
ceded into the background in favor of the development of control synthesis methods. The
newly introduced objective of inverse optimal control consisted in the calculation of a control
law which is optimal with respect to any cost function, a property which is desirable due to
the resulting robust stability of the closed-loop system. An approach was developed in [Fuj87]
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for the linear-quadratic case. Later, [FK96, KT99] developed an approach for input-a�ne non-
linear systems. Herefor, a link between optimal value functions and Control Lyapunov Func-
tions was established using Sontag’s control law [Son89].

Nori and Frezza were the �rst in the automatic-control community to state a problem which
consisted of �nding a cost function which explains measured trajectories [NF04], representing
a contrast to the �rst theoretical work and the subsequent approaches focusing on control
synthesis. Hence, the "inverse optimal control problem" underwent a shift towards a more
application-oriented problem. Most following approaches which can be found under the name
of "inverse optimal control" build upon this idea and de�ne the problem as follows:

De�nition 2.1 (Inverse Optimal Control Problem)
Let observed state trajectories x∗(t) of a known dynamic system and control trajectories u∗(t)
of a controller be given. Determine the cost function J under which the observed trajectories
are optimal.

De�nition 2.1 assumes the optimality of the observed trajectories, thus intuitively representing
the inverse problem to the classical optimal control problem1 (illustrated in Figure 2.1). Nev-
ertheless, this assumption is sometimes dropped (as e.g. in [NF04]) and therefore, the problem
consists of estimating a cost function which best approximates a given set of trajectories.

J (x(t), u(t))

Inverse Optimal Control

Optimal Control

x
∗
(t), u

∗
(t)

Figure 2.1: Graphical description of the inverse optimal control problem.

Inverse optimal control has been an object of research in the last decades, both from a theoret-
ical and a practical point of view. The variety of methods for solving inverse optimal control
problems can be classi�ed into three main groups:

1 In the course of this thesis, the latter problem shall be also referred to as forward problem to stress on the contrast
to the introduced inverse problem.



2.1 The Inverse Problem of Optimal Control 9

1. Direct approaches

2. Inverse Optimal Control (IOC) methods which apply control-theoretical principles

3. Inverse Reinforcement Learning (IRL) techniques which stem from computer science

It must be noted that the classi�cation varies in literature. Indeed, a variety of articles use the
term "inverse optimal control" as a term to denote the problem of estimating cost functions
from measured data, similar to [NF04] and independently of the applied method. Nevertheless,
in this thesis, this classi�cation is proposed and shall be delineated in the following. Almost
all articles found in literature present approaches which are based on the assumption of a
particular structure of the cost function, e.g. a quadratic cost function. Therefore, the problem
of identifying a cost function is reduced to determining parameters � such that the observed
state and control trajectories are optimal with respect to the resulting cost function J (�).

The presented method classes are further described in the following.

2.1.1 Direct Approaches

One of the most common ways to solve the inverse optimal control problem is a direct ap-
proach, where the cost function is determined iteratively. In each iteration, an optimal control
problem is solved in order generate the trajectories which are optimal with respect to the cur-
rent cost function candidate. These trajectories are then compared to the observed ones. Based
on this comparison, which usually includes the calculation of an error measure between trajec-
tories, the cost function can be updated such that the error is reduced. The overall aim of the
method is to determine cost function parameters such that the error between both sets of tra-
jectories is minimized. Due to the fact that the solution of the optimal control problem in each
iteration can be represented as a "lower" level of the main optimization problem, these kinds
of methods are also known as bilevel methods [MTL10]. Figure 2.2 shows a schematic diagram
of both levels of the direct approach: the upper level, where the cost function of the current
iteration � is updated such that a performance measure, e.g. the error between trajectories
is minimized, and the lower level, where an optimal control problem is solved to determine
trajectories which are optimal with respect to the current cost function candidate.

The �rst algorithm of this kind was presented in [MTL10] and applied for human locomotion
modeling. Further applications of this approach include driver steering behavior modeling
[MFH17], reach-to-grasp human motion [EHAAM16] and human leg movements [BPC+06].
The implementation of the methods usually di�er in the techniques for solving the upper level
problem. For example, in [EHAAM16], the upper level problem is solved by means of particle
swarm optimization. In [BPC+06], a static optimization version of the problem is posed and
solved by nonlinear programming (NLP) techniques. All methods require the repeated solution
of optimal control (or static optimization) problems in the lower level and therefore potentially
yield large computation times. Therefore, the importance of e�cient numerical techniques for
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the solution of the problems in both levels is often stressed in literature (see e.g. [MTL10]). As a
way of mitigating the computational e�ort, [ARARU+11], [HSB12] and, very recently, [ZLH19]
replace the lower level problem by its corresponding optimality conditions. As a consequence
of the high computation times, the methods are mostly suitable for o�ine applications only.

− Compare optimal and observed trajectories

− J
(�)

→ J
(�+1)

Determine optimal trajectories for J (�)

Figure 2.2: Direct bilevel approach for inverse optimal control: The upper level updates the cost function candidate
such that an error measure is minimized. The lower level solves an optimal control problem.

2.1.2 Inverse Optimal Control

This class of methods exploits results from optimal control theory and do not rely on the re-
peated solution of an optimal control problem. The methods are based on the assumption that
the observed trajectories are optimal with respect to an (unknown) cost function. With this
assumption, optimality conditions are exploited in order to develop computational methods to
�nd the parameters of the cost function which explains observed data. The optimal parameters
are determined by minimizing an objective function (usually called residual function) which
describes the extent to which optimality conditions are violated.

The variety of methods arises from the di�erent kinds of optimality conditions which have
been applied. In the continuous-time case, these include the minimum principle of Pon-
tryagin2 and the resulting Hamilton di�erential equations [JAB13], the Euler-Lagrange equa-
tions [AB14] and the Hamilton-Jacobi-Bellman equation [PHL14]. If time is discretized, then
Karush-Kuhn-Tucker(KKT)-conditions [KWB11, PJJB12, PR15, PR17] or the discrete-time min-
imum principle [MTFP16] can be applied.

Some work focused on the case where the dynamic system is linear and the cost function
structure is quadratic, i.e. an inverse linear-quadratic optimal control problem. This formula-
tion allows for exploiting the arising constant linear feedback matrix if the time horizon tends
towards in�nity. If this matrix is known, then the cost function parameters can be estimated
2 This principle was originally posed in 1955 as a maximum principle given the aim of maximizing an objective

function (cf. [Gam99]).
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by solving a Linear Matrix Inequality (LMI) [Boy94, Section 10.6] or by stating an alterna-
tive objective function to be minimized with the algebraic Riccati equations as constraints
[PCJ+15, FMM+18].

2.1.3 Inverse Reinforcement Learning

Finally, related problems have been tackled in the �eld of computer science, for which so called
inverse reinforcement learning (IRL) techniques have been developed. The IRL problem itself
was �rst introduced by Russell and Ng [Rus98, NR00]. IRL mostly regards a discrete-time
Markov Decision Process (MDP), which implies a �nite and discrete set of possible control3
values and states and search for a reward function instead of a cost function.4 An example
scenario (depicted in Figure 2.3) which can be modeled with an MDP is a grid world.5 The
inverse problem consists in �nding the cost function if the agent’s trajectory from the initial
state to the �nal state, or the optimal strategy, is known. Furthermore, in IRL problems, the
strategies and the dynamics of the system are potentially stochastic.

→

↓

E
Figure 2.3: Grid world scenario in reinforcement learning, where the aim is to �nd an optimal policy which leads to

the desired �nal state (E).

There is a vast number of methods which tackle the IRL problem using di�erent principles.
Interestingly, many of the methods under the name of IRL which are available in literature are
based on a repeated calculation of the control and state sequences based on the current reward
function candidate, i.e. the solution of the forward problem. Therefore, the principle is very
similar to the aforementioned bilevel method. The methods presented in [AN04, RBZ06, NS07]
are exemplarily mentioned. The Bayesian IRL method of [RA07] uses maximum a-posteriori

3 In the IRL literature, the controls are known as actions. In this thesis, both names are used as synonyms.
4 Minimization of a cost function corresponds to a maximization of the reward function. The maximization problem

can be easily cast as a minimization problem by multiplying the reward function with −1. Therefore, in the
following, the term "cost function" will be used without loss of generality.

5 A grid world is the most common test scenario for (inverse) reinforcement learning methods. It describes an
agent searching for an optimal strategy which allows him to reach the �nal state with least cost. In Figure 2.3,
this implies avoiding the red blocks which denote a high cost.
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estimation of the cost function which depends on sampling methods and thus demands the re-
peated estimation of optimal controls. A widespread IRL approach was proposed by Ziebart et
al. [ZMBD08]. The idea consists in applying the principle of maximum entropy introduced by
Jaynes [Jay57] in order to �nd a least-biased probability function which explains the observed
trajectories.

All of the aforementioned IRL methods consider an MDP as a basis and are therefore limited
to discrete-valued and �nite states and actions. For large (or even in�nite) states and action
spaces, these methods su�er from the curse of dimensionality and become highly complex
and computationally heavy, especially if they are applied to approximate continuous-valued
state and action spaces. Therefore, some e�ort has been made to develop IRL techniques for
continuous-valued spaces, tackling in this way a very similar problem as the literature on cost
function identi�cation in a control-theoretical setting. It is conspicuous that these approaches
show a strong similarity to the maximum entropy IRL method of [ZMBD08]. For example,
[AB11] and [HFKB15] apply a maximum entropy distribution, yet solve the IRL problem using
a bilevel structure. On the other hand, [KPRS13] and [LK12] propose a maximum entropy
distribution which considers continuous-valued state and action spaces and does not rely on
the repeated solution of optimal control problems.

2.2 Inverse Problems in Game Theory

After reviewing literature on cost function identi�cation in a single-player case, this section
investigates the extent to which similar problems have been tackled in a game-theoretical
scenario, i.e. the identi�cation of cost functions from observed interaction between several
players.

Inverse problems in game theory have received growing attention in the last years, especially
for static games. The term inverse game theory was introduced in [SC12] to denote the esti-
mation of the actions and cost functions of the adversary, i.e. the other players in the game,
in order to obtain better results. Similar work is reviewed in the following.

2.2.1 Inverse Static Games

Even though the concept of inverse game theory initially consisted in estimating adversary
cost functions from the point of view of a particular player, its meaning quickly became more
general and hence, it gained a strong similarity to the previously introduced inverse optimal
control problems. Kuleshov and Schrijvers [KS15] introduce their paper with the words: "given
the observed behavior of players in a game, how can we infer the utilities6 that led to this behav-
ior?". They consider parametrizable Bayesian games where players have incomplete informa-
6 Utility is a term used especially in static game theory to denote a reward as in IRL methods.
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tion of the opponent’s cost function. These are estimated by using data of several realizations
of static games. Similar conditions are needed in the approach of Konstantakopoulos et al.
[KRJ+18] which leverages necessary and su�cient conditions of each players’ cost function to
estimate their parameters. In [BGP15], a method based on the solution of variational inequal-
ities is presented to identify cost functions. An application of this work for the optimization
of transportation networks is presented in [ZPCP17].

2.2.2 Inverse Dynamic Games

Transferring the problem of De�nition 2.1 to a multiplayer (N -player) case leads to the concept
of inverse dynamic games. A general inverse dynamic game may be de�ned as follows:

De�nition 2.2 (General Inverse Dynamic Game)
Let state trajectories x∗(t) of a known dynamic system and control trajectories u∗

i
(t) of each

player i, i ∈ {1, ..., N } which correspond to a solution of a dynamic game be given. Find the
cost functions Ji , for each player i, which generated the trajectories.

In De�nition 2.2, the trajectories are generated by several players in a dynamic game acting
based on individual cost functions. In addition, the problem is also ill-posed; an evident fact
given the ill-posedness of the single-player case. The problem of De�nition 2.2 is described
as "general" in the sense that the solution type is still unspeci�ed and, contrary to the single-
player case, di�erent solution concepts exist which generally lead to di�erent trajectories. If
the game is noncooperative, the solution may be a Nash or a Stackelberg equilibrium depend-
ing on the order in which the players act. If the game is cooperative, then usually a Pareto
e�cient solution is assumed [ER11]. Literature on dynamic game theory is mostly focused in
the concept of Nash equilibria which naturally arises when all players minimize their corre-
sponding cost functions simultaneously. However, there exists a broad class of dynamic games
for which the Stackelberg and the Nash solutions coincide.7

A literature search reveals that the problem of De�nition 2.2 is greatly unexplored as mostly
special cases can be found. In the automatic control community, an early work by Fujii and
Khargonekar gives an approach to calculate solutions of an inverse linear-quadratic di�erential
game [FK88] with a frequency-domain formulation. The results are similar to the one-player
results developed by Kalman in [Kal64]. An inverse two-player zero-sum game has been con-
sidered in [TMP16] where an approach which exploits necessary conditions for saddle point
solutions was presented.8 In [Wan07], necessary and su�cient conditions for identi�cation
in linear-quadratic dynamic games are given. However, these are restricted to the case of a
7 These concepts will be further explained later in Section 3.5.
8 Zero-sum games represent the case where one player strives to minimize a cost function while the second player

seeks to maximize the same cost function.
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second-order dynamic system and a two-player case. For N-player inverse dynamic game with
open-loop strategies, recent results were presented in [MFP17a, MFP17b] where Pontryagin’s
minimum principle is leveraged. In [MFP17b], a bilevel method analogous to the ones de-
scribed in Section 2.1.1 was formulated. This is portrayed in Figure 2.4: the upper level, where
theN cost functions (denoted by J1∶N ) are updated and the lower level, where a dynamic game
is solved to determine trajectories corresponding to the N current cost function candidates.

− Compare Nash equilibrium and observed trajectories

− J
(�)

1∶N
→ J

(�+1)

1∶N

Determine Nash equilibrium trajectories for J (�)
1∶N

Figure 2.4: Direct bilevel approach for inverse dynamic games: The upper level updates the cost function candidates
such that an error measure is minimized. The lower level solves a dynamic game to determine Nash
equilibrium trajectories.

Dynamic game theory has been of considerable interest in economics, leading to some pro-
posed methods for the solution of the inverse problem in this �eld. For example, [BBL07]
presented an approach which is based on the estimation of the value of the cost function by
means of a Monte Carlo method. The work of Arcidiacono et al. [ABBE16] o�ers a more e�-
cient method based on least-square estimation and likelihood functions. Both aforementioned
methods have the main drawback that the game is limited to discrete-valued strategies and a
�nite number of possible states. A dynamic game with a linear-quadratic setting was consid-
ered in [CFG89], yet restricting the players’ cost function matrices to only penalize their own
controls and to only have diagonal entries.

As for IRL methods, some methods which aim at extending these techniques to the multi-
agent setting were proposed for cases in which all players behave cooperatively [HMRAD16,
NKJ+10, ŠKZK17]. On the other hand, IRL-based methods in a noncooperative setting have
been proposed in [LBC18, RGZH12]. However, similar to single-agent IRL, all of these methods
are based on an MDP and hence are limited to discrete-valued and �nite control and state
spaces. Literature shows few available work which considers continuous-valued action and
state spaces. Two exceptions are [PSS+16], where a cooperative scenario was considered, and
[MHLK17], where each agent has an individual cost function, yet not explicitly relating their
approach to game-theoretical concepts.
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2.3 Discussion

As motivated in Chapter 1, the Nash equilibrium is a promising descriptive concept for the
interaction between biological systems and hence potentially adequate for state-of-the-art ap-
plications in human-machine interaction. Therefore, this thesis focuses on the solution of
inverse dynamic games where the trajectories correspond to a Nash equilibrium. In the fol-
lowing, the term inverse dynamic game will refer to this problem.

In order to solve inverse dynamic games, it may appear conceivable to apply a direct bilevel
approach analogously to the single-player case (cf. Section 2.1.1). Nevertheless, the lower-level
problem would consist in this case in determining the state trajectories and all players’ con-
trol trajectories corresponding to the dynamic game of the current iteration. Consequently, the
method implies the repeated solution of N coupled dynamic optimization problems for each
set of cost function candidates. The �rst evaluation conducted in [MFP17b] presented a sim-
ple example where the inverse dynamic game involved the solution of 388 forward dynamic
games. Especially for non-linear dynamic games, solving for Nash equilibria is in general com-
putionally heavy and e�cient numerical techniques are not available [HdlCIR19]9. Therefore,
applying this approach yields a great risk of huge computation times.

This motivates the need for more e�cient methods for inverse dynamic games which do not
rely on the repeated solution of a dynamic game. A fast identi�cation of player cost functions
allows for an immediate adaptation of automatic controllers based on potential new informa-
tion, e.g. if the cooperating human changes its behavior. Nevertheless, until now, little e�ort
has been spent in the development of alternative methods for the e�cient solution of general
N -player inverse dynamic games. Methods which stem from IRL are restricted to discrete-
valued and �nite states and controls. In addition, IRL methods in a multiplayer setting which
consider continuous-valued states and controls are also almost unexplored and their theo-
retical foundation has not been developed. The situation is similar in the �eld of automatic
control, where only special cases have been treated. Apart from very early work of [CFG89] in
an economics-speci�c scenario, successful attempts to solve generalN -player inverse dynamic
games have occured only recently ([MFP17a, MFP17b]). This work encourages further e�ort
in exploring alternative techniques for inverse dynamic games which avoid a direct bilevel
approach.

Finally, almost all of the mentioned approaches, especially in dynamic games, concentrate on
delivering a method which is able to estimate a cost function, but do not give further insight
on when an estimation is possible. This not less important aspect of the properties of inverse
dynamic game problems is almost unaddressed; there is little work on inverse problems in
optimal control and dynamic games following the ideas of Kalman and the �rst theoretical

9 A recent study in [HdlCIR19] showed that a nonscalar two-player dynamic game with non-quadratic cost func-
tions can take from 479.11 to 12854 seconds to solve, depending on the applied method.
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studies (cf. Section 2.1). In addition, the ill-posedness of inverse dynamic games demands fur-
ther attention. To date, much uncertainty exists concerning the properties of inverse dynamic
games as these are still considerably unexplored.

2.4 Conclusion and Research Questions

As discussed in the previous section, the inverse problem of optimal control, i.e. a single-
player inverse dynamic game has been investigated from both a theoretical and a computa-
tional point of view. However, the problem of modeling and identifying the behavior of several
players interacting with each other remains a greatly unexplored �eld, especially in the case
of continuous-valued control and state spaces which is important for many applications. The
application of a direct bilevel approach to this problem is inappropriate given the potential
complexity of solving for Nash equilibrium trajectories repeatedly. Therefore, the following
questions need to be answered:

− How to solve inverse dynamic games e�ciently, in particular avoiding the solution of
the forward problem?

− Under which conditions can a solution be found and when is this solution unique?

For this purpose, necessary fundamentals concerning dynamic game theory and the forward
problem of determining Nash equilibria are introduced in Chapter 3 as a basis for the sub-
sequent result. Afterwards, the posed questions are addressed in Chapters 4 and 5, where
methods based on IOC —according to the classi�cation in Section 2.1—are developed, and in
Chapter 6 which presents an IRL-based method is introduced as a means to solve inverse dy-
namic games.

Furthermore, two questions which naturally arise after the development of techniques for
solving inverse dynamic games are:

− How do the results of these alternative approaches compare to the results of a direct
bilevel approach?

− Which main class of methods, IOC-based, IRL-based or direct bilevel, yields a greater
potential for a real application, e.g. in the identi�cation of cooperative systems with
humans?
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Probably due to the fact that IOC and IRL methods have been studied by di�erent research
communities, until now, almost no systematic comparison has been conducted on the perfor-
mance of these di�erent concepts.10 Therefore, in Chapter 7, all methods (IOC-based, IRL-
based and bilevel methods) are compared to each other using two di�erent major classes of
inverse dynamic game problems, where robustness to measurement noise and cost function
modeling errors are also examined. Lastly, a �rst application example is presented in Chapter
8 to evaluate the performance of all methods with real experimental data.

10 Two notable exceptions are given by [TZ11] and [JAB13]. The �rst compred bilevel and IOC-similar methods in
(single-player) inverse static optimization. The study demonstrated that the alternative method, which was based
on optimality conditions, yielded comparable results to the bilevel method with considerably less computational
e�ort. In [JAB13], a single-player inverse optimal control method based on Hamilton di�erential equations was
compared in simulations with the bilevel method [MTL10] and the continuous-time counterparts of the methods
presented in [AN04] and [RBZ06]. Their proposed method was shown to perform faster and with less trajectory
and parameter error. Nevertheless, all simulated observed trajectories were noise-free.





3 Fundamentals of Dynamic Game Theory

This chapter gives an overview of fundamentals of dynamic game theory. After a short intro-
duction in the general theory of games, non-cooperative dynamic and di�erential games are
introduced. Furthermore, existing solution concepts for the forward problem are introduced
and the available means for their calculation are shown. These principles provide a basis for
the development of the inverse dynamic game methods proposed in subsequent chapters. The
contents of this chapter are based on the books [BO99, Eng05, HKZ12, Tad13].

Game theory can be de�ned as the theory of mathematical models of decision making to de-
scribe situations with con�icts and cooperations between rational players. The con�icts arise
from di�erent interests or goals, leading to a strong dependency of each one’s individual de-
cisions. The theory arised from the work of von Neumann [VNM47] and blossomed with the
introduction of game equilibria by Nash [Nas51]. Since then, it has been extensively studied
such that analytical tools are available for understanding phenomena arising from the inter-
action between decision makers.

3.1 Introduction to Games

One of the most frequent ways of de�ning a game is as a normal-form game, described in the
following de�nition.

De�nition 3.1 (Game in Normal Form)
A normal-form game is de�ned by

• A set of players  = {1, 2, ..., N }.

• A strategy set i for each player i ∈  .

• A set of cost functions  = {J1, J2, ..., JN }.

A game involvesN decision makers called players which select particular actions from a possi-
ble strategy set. These are chosen such that a speci�c goal, represented by their individual cost
function, is accomplished. De�nition 3.1 is very general and allows numerous kinds of games
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which arise from di�erent properties of the possible actions, strategy sets and cost functions
of the players.

If the players act in a self-interested way, i.e. they strive for minimizing their own cost function,
regardless of possible negative e�ects for other players, then the game is called non-cooperative.
If the players are able to generate binding agreements and act jointly in order to obtain a fair
result, then the game is regarded as cooperative. If the choice of actions is deterministic, the
strategies are called pure strategies. The converse is denoted as stochastic or mixed strategies.
Moreover, games may be �nite or in�nite, depending on the strategy set i of each player. If
the set of possible strategies i has a �nite number of elements for all players, the game is
said to be �nite. Otherwise, if i is in�nite for at least one player, i.e. an in�nite number of
possible strategies is available for at least one player, the game is in�nite.

An important classi�cation of games is based on the number of times a player can choose an
action. If the players act only once and independently of each other, the game is static. As
soon as one player is allowed to act in several time stages based on new information resulting
from other players’ previous actions, then the game is dynamic. Therefore, in dynamic games,
time plays an important role. The evolution of an in�nite dynamic game is naturally described
with a di�erence equation in a discrete-time formulation based on the stages or discrete time
steps in which players take action. However, a continuous-time formulation is possible as well,
which is also known in literature as a di�erential game.

The results of this thesis are based on non-cooperative in�nite dynamic games in both dis-
crete and continuous time. Since many results are analogous and comparable, the main aspects
of in�nite dynamic games will be shown and formalized in this chapter with a continuous-time
formulation. Analogous de�nitions for the discrete-time case can be found in Appendix A.

3.2 Di�erential Games

The evolution of a di�erential game depends on the strategies of all players. It can be described
by means of the time-dependent state trajectories of a dynamic system de�ned by di�erential
equations.
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De�nition 3.2 (Dynamic System in State Space Representation)
A dynamic system is de�ned by ordinary di�erential equations and an initial condition given
by

ẋ(t) = f (x(t), u1(t), … , uN (t), t) (3.1a)
x(0) = x0, (3.1b)

where x(t) ∈ ℝ
n and ui(t) ∈ ℝ

mi , i ∈  , denote the system state vector and the control vector
of player i at time step t , respectively. Furthermore, f ∶ ℝ

n
× ℝ

m1 × ... × ℝ
mN × ℝ

+

0
↦ ℝ

n is
a vector function which is continuous in t ∈ [0, T ] and globally Lipschitz in x , u1, ..., uN .

The evolution of the di�erential game is regarded for a time interval [0, T ] which represents
the duration of the game. The vector x0 represents the initial state of the system. The �nal
time T could be T → ∞ or a �xed value depending on the given problem. Lipschitz conti-
nuity of f is required to ensure that the initial value problem (3.1) admits a unique solution
for every N -tuple (u1(t), ..., uN (t)) of continuous controls ui(t), i ∈  . Each player i ∈  acts
upon the system in De�nition 3.2 by applying a corresponding input or control trajectory
ui(t), ∀t ∈ [0, T ] which belongs to an action space i . Each player’s control decision or strat-
egy, denoted by 
i , is based on the state information available to them which is represented
by a set-valued function �i(t).11 The strategy is chosen from a set of available strategies Γi and
de�nes a particular control trajectory ui(t)12, i.e.

ui(t) = 
i(�i(t), t), 
i ∈ Γi . (3.2)

The strategy and consequently, the control trajectories are determined according to an indi-
vidual cost function

Ji = ℎi (x(T ), T ) + ∫

T

0

gi (x(t), u1(t), … , uN (t), t) dt, (3.3)

where ℎi denotes costs which arise from the �nal state or �nal time and gi represents running
costs which arise for t ∈ [0, T ]. The aim of each player is to minimize the cost function (3.3)
by applying appropriate controls. This is described by the dynamic optimization problem

11 Di�erent possibilities of player state information and corresponding strategies will be examined later in Sections
3.3 and 3.4.

12 In the context of dynamic games, actions and strategies are di�erent and have this relationship. On the contrary,
in static games these are identical and the terms are therefore not distinguished.
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min

ui (t)

Ji (x(t), ui(t), u¬i(t), t)

w. r. t.

ẋ(t) = f (x(t), ui(t), u¬i(t), t)

x(0) = x0

(3.4)

where ¬i is used as a shorthand notation for "all except i". Therefore, u¬i(t) denotes the input
trajectories of all players except player i.13 As a result, di�erential games can be described as
N coupled dynamic optimization problems.

To summarize, a de�nition of di�erential games which will be used throughout this thesis is
given.

De�nition 3.3 (Di�erential Game)
A di�erential game is de�ned by

• A set of players  = {1, 2, ..., N },

• A speci�ed time interval [0, T ] denoting the duration of the game,

• An in�nite action set i , ∀i ∈  ,

• A set-valued function �i(t), ∀i ∈  , which determines the state information of player
i at time t ,

• A dynamic system given by De�nition 3.2,

• A set of cost functions  = {J1, J2, ..., JN }.

13 The importance of the uniqueness of the solution of (3.1) for every N -tuple (u1, ..., uN ) becomes clear at this point.
Non-uniqueness is clearly not allowed in a di�erential game since it would potentially lead to non-uniqueness in
the value of the cost functions for a single N -tuple of control trajectories.
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3.3 Information Structures

A relevant characteristic of a di�erential game is the available information for all players at
each time step t . The information set is described by

�i(t) ∈ P¬∅ ({x0, x(s), x(t)}) , s ∈ [0, �i,t ], �i,t ∈ [0, t], (3.5)

where P¬∅(⋅) denotes a power set which excludes the empty set and �i,t is non-decreasing in t .
In a particular time t ∈ [0, T ], player i has knowledge of current or past values of the state x .
By (3.5), it is possible to describe a variety of information structures which are very common
in dynamic game theory. Sometimes partial state information is assumed instead of a complete
state information as implied by (3.5) and as considered in this thesis. The next de�nition lists
concrete information structures which shall be focused on in the following.

De�nition 3.4 (Information Structure of the Players)
The information structure of player i is said to be

(i) open-loop (OL) pattern if �i(t) = {x0}, t ∈ [0, T ].

(ii) memoryless perfect state (MPS) pattern if �i(t) = {x0, x(t)}, t ∈ [0, T ].

(iii) feedback (FB) pattern if �i(t) = {x(t)}, t ∈ [0, T ].

The open-loop information pattern describes the situation where all players decide at t = 0
the control trajectories ui(t) to be applied for t ∈ [0, T ] based solely on the initial system state
value x0. The control decision remains unchanged for the whole duration of the game, regard-
less of any possible disturbance on the states. Figure 3.1 shows a graphical representation of
a di�erential game with an open-loop information structure for each player.

In case of amemoryless perfect state pattern, the players have information of the initial state
x0 and the current state x(t). The inclusion of the initial state becomes necessary for solving
di�erential games where some of the players have an OL information pattern and others have
access to the states x(t). In this thesis, the converse case—equal information patterns for all
players—is considered such that a feedback information pattern can be used equivalently.14

These last two information structures imply "closing the loop" in a control-theoretical sense.
The resulting multiplayer control loop for a feedback information structure is exemplarily
depicted in Figure 3.2.
14 The later de�ned Nash equilibrium solution (cf. Section 3.5.1) is identical under both MPS and FB information

patterns since the equilibrium dependence on x0 is given only for the initial time t = 0. Therefore, these informa-
tion patterns can be considered as equivalent in this sense [BO99, p. 278]. For this reason, in the following only
the OL and the FB information patterns shall be considered.
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Player 1

Player 2

Player N

System

x0


1(x0, t)


2(x0, t)


N (x0, t)

x(t)

Figure 3.1: Di�erential game with an open-loop information structure.

Player 1

Player 2

Player N

System

x0


1(x(t), t)


2(x(t), t)


N (x(t), t)

x(t)

Figure 3.2: Di�erential game with a feedback information structure.

The di�erent information patterns lead to various kinds of strategies selected by the players,
each of which leads to a particular solution of the di�erential game, i.e. resulting state and
control trajectories.
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3.4 Strategies

As mentioned previously, the strategy de�nes the controls of the players based on the infor-
mation available to them. Therefore, for each information structure de�ned above, we obtain
a di�erent class of strategy. The next de�nitions specify the corresponding strategy classes to
the open-loop and the feedback information patterns.

De�nition 3.5 (Open-Loop Strategy)
An open-loop strategy 
i for player i ∈  selects a control action according to

ui(t) = 
i(x0, t), ∀x0 ∈ ℝ
n
, ∀t ∈ [0, T ], (3.6)

where 
 is a continuous function in t and de�ned for each possible initial state x0. The set of
all such possible strategies is denoted by ΓOL

i
.

De�nition 3.6 (Feedback Strategy)
A feedback strategy 
i for player i ∈  selects a control action according to

ui(t) = 
i(x(t), t), ∀t ∈ [0, T ], (3.7)

where 
 is continuous in t and globally Lipschitz in x . The set of all such possible strategies
is denoted by ΓFB

i
.

An open-loop strategy describes the situation where all players decide at t = 0 the control
trajectories ui(t) to be applied for t ∈ [0, T ] based solely on the initial state value x0 of the
dynamic system. The control decision remains unchanged for the whole duration of the game,
regardless of any possible disturbance on the states.

The feedback strategy implies that the players de�ne their actions based on the current state
x(t). Therefore, each player commits to a particular reaction to the information concerning
the state of the system.

These strategy types are the basis for the solution of di�erential games. In the following,
di�erent solution concepts are presented.
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3.5 Solution Concepts in Di�erential Games

A di�erential game may have di�erent outcomes depending on its properties. The main dif-
ference arises from the cooperative or non-cooperative nature of the interacting players. In a
non-cooperative game, all players act strictly rationally in order to minimize their own cost
function, regardless of the detriment this may cause to other players. In this kind of game, the
most common solution concepts are described as game-theoretical equilibria. These are the
so-called Nash equilibrium [Nas51] and the Stackelberg equilibrium [Sta52]. In turn, in
cooperative di�erential games, players are able to cooperate and make agreements such that
they can (potentially better) achieve their objectives. In this kind of games, Pareto e�cient
solutions [Par14] are mostly sought.

3.5.1 Non-Cooperative Games

Nash Equilibrium

The Nash equilibrium is a solution concept in game theory which arises if (i) all players act
simultaneously and optimally with respect to their own cost function and their beliefs of the
other players’ strategies and (ii) these beliefs are correct15. An alternative, equivalent de�ni-
tion is the following: For each player, there is no other feasible input strategy than the current,
optimal one, that would minimize his own costs, taking into account all the other players with
their optimal input strategy [Nas51]. In other words, it is not possible for all players to obtain a
lower value of the cost function by solely altering their individual strategy. A formal de�nition
is given in the following:

De�nition 3.7 (Nash Equilibrium)
ANash equilibrium is described by theN -tuple of strategies 
 ∗ ∶= (


∗

1
, ..., 


∗

N ), with 
 ∗i ∈ Γ
⋄

i
,

i ∈  , ⋄ ∈ {OL, FB}, which satis�es

Ji (

∗

i
, 


∗

¬i) ≤ Ji (
i , 

∗

¬i) , ∀i ∈  ,

i.e. 
 ∗
i
= u

∗

i
(t), t ∈ [0, T ] is the optimal input strategy for each player i considering optimal

input strategies of all other players 
 ∗
¬i
. The resulting tuple of control trajectories u∗ ∶=

(u
∗

1
(t), ..., u

∗

N
(t)) is called Nash equilibrium solution.

De�nition 3.7 describes either an open-loopNash equilibrium (OLNE) or a feedbackNash
equilibrium (FNE), depending on the kind of strategy which is applied by each player, i.e.
whether the strategy set Γi is given by Γ

OL

i
or ΓFB

i
, respectively. The corresponding state

trajectories x∗(t) are determined by solving the initial value problem (3.1) using the control
15 An example of this is a situation where all cost functions are made public to all players [OR94, p. 14].
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trajectories (u∗1(t), ..., u∗N (t)). The OLNE has the property of being a weakly time consistent
solution. This means that the players do not have any incentive of deviating from their strat-
egy during the game, i.e. at any time step t1 ∈ [0, T ]. On the other hand, the FNE is strongly
time consistent16, which means that their strategy 
 ∗

i
is still an equilibrium strategy if it

was applied from any time t1 ∈ [0, T ] and starting from any arbitrarily chosen state x(t1) o�
the original equilibrium path (which is reachable from x(0)). This makes the feedback Nash
equilibrium more robust towards any possible disturbances on the system state.

In a di�erential game, there may exist no Nash equilibria. Moreover, a single or multiple Nash
equilibria may also exist. Furthermore, a Nash equilibrium cannot be uniquely associated to a
set of cost functions  . This fact is of particular importance for the inverse di�erential game
problem and will be discussed in Section 4.1 of the next chapter.

Stackelberg Solutions

Previously, it was assumed that the players select their strategies simultaneously. A scenario,
where the players select their strategies one after the other can lead to a di�erent outcome of
the game. Such a setting was �rst introduced by von Stackelberg in the context of a duopoly
output game [Sta52]. In a general N -player situation, one of the players is selected as a leader
such that he announces his selected control strategy. Afterwards, the next player uses this
information to make a decision on his own strategy such that his cost function is minimized.
This process continues until player N chooses its strategy based on the announcements of
the other N − 1 players’ strategies. Stackelberg solutions are mostly considered in economic
applications, e.g. market models, and are typically de�ned in a 2-player setting (cf. [CC72]).

De�nition 3.8 (Stackelberg Strategy)
The strategy tuple 
s = (
s

1
, 


s

2
) is called a Stackelberg strategy with player 1 as leader and

player 2 as follower if for all 
1 ∈ Γ1

J1(

s

1
, 


s

2
) ≤ J1(
1, 


o

2
(
1)) (3.8)

where 
o
2
(
1) ∈ Γ2 denotes the optimal response of player 2 to a �xed strategy of player 1, i.e.

J2(
1, 

o

2
(
1)) = min


2

J2(
1, 
2), (3.9)

and 
s
2
= 


o

2
(


s

1
).

The Stackelberg strategy is an attractive strategy when the information pattern is biased or
asymmetric. This means that player 1 does not know the cost function of player 2, but player
16 Also called subgame perfect, see. e.g. [Eng05, De�nition 8.2].
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2 has knowledge of both cost functions. This is the case in a market model where there is a
dominant company. The leader has an advantage in terms of the possibility to obtain better
results due to the fact that he is aware that the rest of the players will act optimally based on
whatever strategy he may apply.

First derivations of Stackelberg solutions for dynamic games were given e.g. in [CC72, Med78].
For the (continuous-time) di�erential game case withN players, [Rub06, Proposition 2.3] states
that the Stackelberg solution coincides with the feedback Nash equilibrium solution—provided
it exists—if and only if (i) the running costs gi depend solely on the state x and each player’s
controls ui , i.e.

gi (x(t), ui(t), u¬i(t)) = gi(x(t), ui(t)), (3.10)

and (ii) the dynamics of the state depend, at the most, linearly on each player’s controls, i.e.
the system dynamics have the control-a�ne form

ẋ(t) = fx (x(t), t) +

N

∑

i=1

Gi(x, t)ui(t). (3.11)

3.5.2 Cooperative Games

Contrary to the non-cooperative case, a cooperative game includes players which not only
seek the optimization of their own objectives but also consider the objectives of the other
players in the selection of the control actions. Hence, it is assumed that they cooperate in
order to achieve their objectives.17 However, no side-payments take place, which means that
their cooperative behavior is not explicitely rewarded by introducing a cost-lowering term in
the objective function. This means that, depending on how the players decide to distribute
their e�orts, several possible minima exist for each particular player i ∈  .

In the �eld of cooperative games, the concept of dominating strategies plays an important role.
A strategy tuple 


(a)
will dominate another strategy tuple 


(b)
if the application of 


(a)
leads to

lower costs for all players compared to 

(b)

. Therefore, dominating strategies lead to a better
result for all players. This line of thought motivates considering only solutions that are such
that they cannot be improved by all players simultaneously and leads to the concept of Pareto
e�cient solutions.

Pareto E�cient Solutions

A Pareto e�cient solution is a combination of strategies such that it is not possible to obtain
a better result in terms of the own cost function of each player without a�ecting the result of
other players negatively. This means that, while it may be possible for individual players to
17 Nevertheless, coalitional games, where several groups of players may build coalitions to act non-cooperatively

with respect to other ones, are excluded in this thesis. See the de�nitions given in [ER11].
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improve their own result by changing their own action unilaterally, this would lead to a worse
result for at least one of the other players. A Pareto e�cient solution is de�ned as follows
[Eng05, De�nition 6.1]:

De�nition 3.9 (Pareto E�cient Solution of a Di�erential Game)
An N -tuple of strategies 
p = (


p

1
, … , 


p

N ) is a Pareto e�cient solution (PES) of a di�erential
game if no other feasible tuple 
 = (
1, … , 
N ) exists for which

Jj (
) < Jj (

p
) (3.12)

for at least one j ∈  and

Ji(
) ≤ Ji(

p
), ∀i ∈  , i ≠ j. (3.13)

De�nition 3.9 states that a PES is a combination of strategies such that it is not possible that
any player obtains a lower value of his cost function by deviating from the strategy without af-
fecting at least one other player negatively. Therefore, Pareto optima do not represent a stable
solution of a non-cooperative game, since in such a game each player strives for minimization
of their own cost function. A non-cooperative player will deviate from the Pareto strategy if
this implies a lower value of his cost function, regardless of the resulting drawback for other
players.

3.6 Calculation of Di�erential Game Solutions

This thesis focuses on the Nash equilibrium and on Pareto e�cient solutions of di�erential
games. Therefore, in the following, the relevant means for calculating these solutions are
presented.

3.6.1 Open-Loop Nash Equilibrium

The basis of the calculation of Nash equilibria is De�nition 3.7. The inequality implies that the
optimal strategy 
 ∗

i
∈ Γ

OL

i
leads to a control trajectory u∗

i
(t)which minimizes the cost function

J (ui(t), u
∗

¬i
(t)) subject to the system dynamics

ẋ(t) = f (x(t), ui(t), u
∗

¬i
(t), t), (3.14)

i.e. the system dynamics with the optimal controls of the other players j ∈  , j ≠ i. Therefore,
we obtain an optimal control problem for player i since u∗

¬i
(t) does not depend on ui(t). Hence,
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the tools of classical optimal control can be applied. In particular, Pontryagin’s minimum
principle (see e.g. [Nai03, Chapter 6]) can be used to determine a set of di�erential equations
which represent necessary conditions for Nash equilibria. As in optimal control, the analysis
of di�erential games is based on the Hamiltonian function

Hi( i(t), x(t), ui(t), u¬i(t), t) = gi (x(t), ui(t), u¬i(t), t) +  
⊤

i
(t) f (x(t), ui(t), u¬i(t), t) (3.15)

for all t ∈ [0, T ] and all players i ∈  , where  i ∶ [0, T ] ↦ ℝ
n are so-called costate functions

or Lagrangian multiplier functions. Given the case of an open-loop information structure and
corresponding strategies as de�ned in De�nition 3.5, the equilibrium is said to be an open-loop
Nash equilibrium. The following theorem gives necessary conditions for such equilibria.

Theorem 3.1 (Necessary Conditions for Open-Loop Nash Equilibria)
For an N -player di�erential game of �xed duration [0, T ], let f (x, u1, ..., uN , t),
gi(x, u1, ..., uN , t) and ℎi(x(T ), T ) be continuously di�erentiable with respect to x for all
t ∈ [0, T ], i ∈  .
Then, if 
OL = (


∗

1
(x0, t), ..., 


∗

N
(x0, t)), where 
 ∗i ∈ Γ

OL

i
and 
 ∗

i
(x0, t) = u

∗

i
(t), i ∈  ,

provides an open-loop Nash equilibrium (OLNE) solution with x∗(t) as the corresponding
state trajectory, the trajectories of the N costate functions  i(t), i ∈  , satisfy the relations:

ẋ
∗
(t) = f (x

∗
(t), u

∗

1
(t), ..., u

∗

N
(t), t), x

∗
(0) = x0 (3.16a)

u
∗

i
(t) = argmin

ui (t)

Hi ( i(t), x
∗
(t), ui(t), u

∗

¬i
(t), t) (3.16b)

 ̇i(t) = −∇xHi ( i(t), x
∗
(t), u

∗

i
(t), u

∗

¬i
(t), t) (3.16c)

 i(T ) = ∇xℎi(x
∗
(T ), t), (3.16d)

where ∇x denotes the partial derivative with respect to the state variable x .

Proof:
See the proof of Theorem 6.11 of [BO99].

The set of di�erential equations (3.16) have to be ful�lled for all open-loop Nash equilibria
and is valid for the general case where ui is constrained. In case the optimal controls lie
strictly inside the set de�ning the constraints or if we have unconstrained controls ui ∈ ℝ

mi

as considered in De�nition 3.2, the control equation (3.16b) leads to

0 = ∇ui
Hi( i(t), x

∗
(t), ui(t), u

∗

¬i
(t), t), (3.17)

where ∇ui denotes the partial derivative with respect to ui . Therefore, with the application of
Theorem 3.1 we obtain a set of coupled di�erential equations. Under some further assump-
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tions including the cost functions being decoupled with respect to each player’s controls, i.e.
(3.10) holds, and the system dynamics having the form (3.11), it is possible to formulate a two-
point boundary value problem (TPBVP), generally consisting of (N + 1)n ODEs and (N + 1)n

boundary conditions which can potentially be solved using numerical methods, e.g. shooting
techniques [AMR95, Chapter 4]. Further details are given in Section B.3 of the Appendix. Note
that the minimum principle of Pontryagin and therefore Theorem 3.1 represents only neces-
sary conditions for Nash equilibria. It generates candidates for OLNE solutions but there is
no guarantee that they are indeed a Nash equilibrium. However, under further assumptions,
the minimum principle becomes a su�cient condition for optimality. Therefore, following
[Doc00, Theorem 3.2], it can be stated that if Hi ( i(t), x(t), ui(t), u¬i(t), t) is convex in x and
also continuously di�erentiable in x , and furthermore ℎi is convex, then the controls u∗

i
(t)

are optimal with respect to each corresponding optimization problem and hence describe an
OLNE.

In the following, an example is given to illustrate the procedure of calculating an OLNE by
means of Theorem 3.1.

Example 3.1:
We consider a scenario consisting of two players controlling a system given by

ẋ(t) = −x(t) + u1(t) + u2(t). (3.18)

Each player acts based on the cost function

Ji =

∞

∫

0

1

2

x
2
(t) +

1

2

u
2

i
(t) dt, i ∈ {1, 2}. (3.19)

In the following, i and j are used to denote any player from the set  = {1, 2} such that i ≠ j.
Furthermore, time dependencies are omitted for brevity.

To determine the OLNE, we �rst determine the Hamiltonian of each player:

Hi =

1

2

x
2
+

1

2

u
2

i
+  i (−x + ui + uj) , i, j ∈ {1, 2}, i ≠ j. (3.20)

We now can utilize the necessary conditions for open-loop Nash equilibria given by Theo-
rem 3.1. The control equation (3.16b) leads to

)Hi

)ui

= ui +  i = 0 ⇔ ui = − i . (3.21)

From (3.16c) we obtain the di�erential equation

̇
 i = −

)Hi

)x

= −x +  i . (3.22)
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Furthermore, the system dynamics equation (3.16a) given by

ẋ = −x + u1 + u2 (3.23)

must hold as well.

By combining (3.21), (3.22) and (3.23) we obtain the linear system of di�erential equations

̇

⎡

⎢

⎢

⎣

x

 1

 2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−1 −1 −1

−1 1 0

−1 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x

 1

 2

⎤

⎥

⎥

⎦

. (3.24)

Given that optimal control and di�erential game problems usually speci�y initial conditions
for the state vector and terminal conditions for the costates  i , this system of di�erential equa-
tions represents a TPBVP. In this case, it can be solved both analytically and numerically. The
general analytical solution can be determined e.g. by the eigenvalue and eigenvector method
(see e.g. [HS14, Section 5.3]) and results in

x
∗
(t) = C1(

√

3 − 1) exp (−

√

3t) + C2(1 −

√

3) exp (

√

3t), (3.25)
 
∗

1
(t) = C1 exp (−

√

3t) + C2 exp (

√

3t) − C3 exp (t), (3.26)
 
∗

2
(t) = C1 exp (−

√

3t) + C2 exp (

√

3t) + C3 exp (t), (3.27)

where the constants C
l
, l ∈ {1, ..., 3} are determined by using the aforementioned boundary

conditions for states and costates. The OLNE solution results directly from the costate functions
(3.26) and (3.27). Finally, we recognize that in this example the conditions of Theorem 3.1 are
both necessary and su�cient.

3.6.2 Feedback Nash Equilibrium

Consider a di�erential game where the players apply a feedback strategy as in De�nition 3.6.
By applying the minimum principle, similar equations to the ones of Theorem 3.1 result. Nev-
ertheless, instead of (3.16c), the equation

 ̇i(t) = −∇xHi( i(t), x
∗
(t), u

∗

i
(t), 


∗

¬i
(x
∗
, t), t) (3.28)

holds. The time dependency of the state in the strategies 
 ∗
¬i

is dropped here and in the follow-
ing for brevity. In this new costate equation, the controls u∗

¬i
(t) = 


∗

¬i
(x
∗
, t) have an in�uence

on the partial derivative in (3.16c) since, contrary to the open-loop case, they now depend on
the current value of x(t). Even though these new equations de�ne a closed-loop no-memory
Nash equilibrium, they are not computationally convenient [SH69a]. Furthermore, there is
in general an uncountable number of solutions to the resulting di�erential equations, one of
which is the open-loop solution determined in (3.16) [BO99, p. 277].
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In order to eliminate this so-called "informational non-uniqueness", the concept of feedback
Nash equilibria is introduced. This re�nement states that if an N -tuple of strategies 
 ∗ =
(


∗

1
, ..., 


∗

N ) constitutes a FNE solution of a di�erential game with duration [0, T ], then its re-
striction to the time interval [t, T ], for any t ∈ [0, T ], describes a FNE solution for the same
di�erential game de�ned on this shorter time interval [t, T ]. A consequence of this require-
ment is the strong time consistency of FNE solutions (cf. Section 3.5.1). Furthermore, any FNE
also fu�lls the equations of Theorem 3.1 with the costate equation (3.28).

The core of the results concerning feedback Nash equilibria is given by N coupled Hamilton-
Jacobi-Bellman (HJB) equations for which the value function, known from optimal control, is
extended to the N -player case.

De�nition 3.10 (Value Function)
Consider a player i ∈  . Let the optimal strategies of the other players 
 ∗

¬i
associated to anN -

player non-cooperative di�erential game be given. The value function Vi ∶ ℝ
n
× [0, T ] ↦ ℝ

of player i is de�ned by

Vi(x, t) = min

{
i (x,s), t≤s≤T}

T

∫

t

gi (x̄i(s), 
i(x, s), 

∗

¬i
(x, s), s) ds + ℎi(x(T ), T ) (3.29)

Vi(x, t) =

T

∫

t

gi(x
∗
(s), 


∗

i
(x, s), 


∗

¬i
(x, s), s) ds (3.30)

satisfying the boundary condition

Vi(x, T ) = ℎi(x, T ), (3.31)

and where
̇̄xi(s) = f (x̄i(s), 
i(x, s), 


∗

¬i
(x, s)); x̄i(t) = x. (3.32)

The value function Vi , i ∈  represents the minimum cost-to-go from any initial state x and
any initial time t which is attainable by player i, where the optimal strategies of the otherN −1
players are �xed. With this de�nition, the following theorem can be stated.
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Theorem 3.2 (Su�cient Conditions for Feedback Nash Equilibria)
For an N-player di�erential game of prescribed �xed duration [0, T ], an N-tuple of feedback
strategies 
FB = (


∗

1
, ..., 


∗

N ) where 
 ∗i ∈ Γ
FB

i
and 
 ∗

i
(x, t) = u

∗

i
(t), i ∈  , provides a feedback

Nash equilibrium (FNE) solution if there exist continuous di�erentiable value functions Vi
according to De�ntion 3.10 which satisfy the partial di�erential equations

−

)Vi(x, t)

)t

= min
ui

[∇xVi(x, t)
̃
f
∗

i
(x(t), ui(t), t) + g̃

∗

i
(x(t), ui(t), t)]

= ∇xVi(x, t)
̃
f
∗

i
(x(t), 


∗

i
(x, t), t) + g̃

∗

i
(x(t), 


∗

i
(x, t), t),

Vi(x, T ) = ℎi(x, T ), i ∈  ,

(3.33)

where

̃
f
∗

i
(x(t), ui(t), t) = f (x(t), 


∗

¬i
(x, t), ui(t), t),

g̃
∗

i
(x(t), ui(t), t) = gi(x(t), 


∗

¬i
(x, t), ui(t), t).

(3.34)

The corresponding Nash equilibrium cost for player i is Vi(x0, 0).

Proof:
See the proof of Theorem 6.16 of [BO99].

The following example illustrates the use of Theorem 3.2 to determine a FNE solution of a
di�erential game.

Example 3.2:

Consider the di�erential game with 2 players from Example 3.1, where they control a system
with dynamics (3.18) and each of them chooses his actions such that his individual cost function
(3.19) is minimized. However, contrary to last example, each of the players applies a feedback
strategy according to De�nition 3.6. Again, function dependencies are neglected for brevity,
unless a variable dependence demands special attention.

Given time-independent functions gi(x, ui , u¬i) and system dynamics as well as the in�nite
horizon (T → ∞), the value function also does not depend explicitely on time (cf. [HKZ12,
Remark 7.5]), and therefore the HJB equation of each player results in

0 = min
ui (

1

2

x
2
+

1

2

u
2

i
+

)Vi

)x
[−x + ui + uj]

)
, i ∈ {1, 2}, i ≠ j. (3.35)
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Minimizing the expression at the right hand side leads to

u
∗

i
+

)Vi

)x

= 0 ⇔ u
∗

i
= −

)Vi

)x

=
∧



∗

i
(x). (3.36)

At this point, it is usually necessary to guess the structure of the value function Vi . Given
the linear system dynamics and the quadratic cost function, we hypothesize a quadratic value
function. Moreover, given the symmetric structure18of the game, we are interested in symmet-
rical equilibrium actions u∗

i
= u

∗

j
leading to identical value functions.

For any player i ∈ {1, 2}, we write the value function as

Vi(x) =

A

2

x
2
+ Bx + C ⇔

)Vi

)x

= Ax + B (3.37)

with A, B, C ∈ ℝ. By using (3.36) and (3.37), the HJB equation (3.35) leads after some simpli-
�cation to

0 =
(
−

3

2

A
2
− A +

1

2)
x
2
− (3AB + B) x −

3

2

B
2
. (3.38)

By comparing both equation sides we obtain B = 0 and two possible values A1 = −1, A2 = 1/3.
Given the positive integrand in (3.19), the value function must be positive and therefore, A1 is
discarded. With (3.36) and (3.37) we obtain the optimal feedback strategy



∗

i
(x) = −

1

3

x(t) (3.39)

and the corresponding state trajectory

x
∗
(t) = C exp (−

5

3

t), (3.40)

where C ∈ ℝ is determined by using an initial state condition x(0) = x0 ∈ ℝ.

3.6.3 Pareto E�cient Solutions

In general, a dynamic game has various Pareto e�cient solutions. The set of all of these solu-
tions is called Pareto frontier. In the following, a theorem presenting necessary and su�cient
conditions for Pareto e�cient solutions is given.

18 Here, the notion of symmetry of [Doc00, p. 106] is considered, meaning that all players (usually two) have the
same cost function Ji and control space i . Furthermore, the system dynamics are symmetric with respect to the
players in the sense that the equation is una�ected if e.g. u1 is interchanged with u2.
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Theorem3.3 (Necessary and Su�cientConditions for Pareto E�cient Solutions)
Let �i > 0, for all i ∈  , satisfy

N

∑

i=1

�i = 1. (3.41)

Now consider an N -player di�erential game. If 
p = (

p

1
, ..., 


p

N ) is such that



p
= arg min




N

∑

i=1

�iJi(
)

w.r.t

ẋ = f (x(t), u1(t), ...uN (t), t)

x(0) = x0

(3.42)

then 
p is a Pareto e�cient solution (PES). Moreover, if the strategy spaces Γi are convex and
Ji are convex for all i ∈  , then for all Pareto-e�cient solutions 
p there exist �i such that


P solves the optimization problem (3.42).

Proof:
The theorem can be found in [Eng05, Theorem 6.4]. The su�ciency result is proved in [Eng05,
Lemma 6.1] while the necessary part is proved in [Eng05, Lemma 6.3].

The formulation of Theorem 3.3 as a dynamic optimization problem allows the use of the
minimum principle to solve for the PES. The solution can sometimes be given with �i as a
degree of freedom. Weighting parameters which ful�ll (3.41) can also be chosen to �nd a
particular PES, e.g. with �i = 1/N .

In the following, an example is given to illustrate the calculation of a PES.

Example 3.3:
Consider the di�erential game with two players from Example 3.1. In this example, we as-
sume the players are able to build cooperative strategies such that their overall performance is
increased.

We choose �1 = � and �2 = 1 − � and state the cost function

Jp = �J1 + (1 − �)J2 (3.43)

=

T

∫

0

1

2

x
2
+

�

2

(u
2

1
− u

2

2
) +

1

2

u
2

2
dt. (3.44)
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We now can utilize the minimum principle to determine the solution. The Hamiltonian which
corresponds to Jp is given by

Hp =

1

2

x
2
+

�

2

(u
2

1
− u

2

2
) +

u
2

2

2

+  p (−x + u1 + u2) . (3.45)

Since there is a coordination between both players, we consider the vector up = [u1 u2]

⊤ as
the overall control vector. The control equation

)Hp

)up

=
[

�u1 +  p

u2(1 − �) +  p
]
= 0 (3.46)

of the minimum principle leads to

u1 = −

1

�

 p and u2 = −

1

1 − �

 p . (3.47)

Furthermore, the canonical di�erential equation of the costates

̇
 p = −

)Hp

)x

= −x +  p (3.48)

and the system dynamics equation

ẋ = −x + u1 + u2 (3.49)

must hold for the optimal solution.

Similar to Example 3.1, by inserting (3.47) into (3.49) and using (3.48), we obtain a system of
di�erential equations

̇

[

x

 p]
=

[

−1 −
1

�(1−�)

−1 1 ] [

x

 p]
(3.50)

which can be solved analytically using the eigenvalue and eigenvector method. The general
solution is

x
∗
(t) = C1(� + 1) exp (−�t) − C2(� − 1) exp (�t) (3.51)

 
∗

p
(t) = C1 exp (−�t) + C2 exp (�t), (3.52)

with

� =

√

1 +

1

�(1 − �)

(3.53)

and where C
l
∈ ℝ, l ∈ {1, 2} are determined using initial and terminal conditions.
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3.6.4 Comparison of Solution Concepts

In general, the OLNE and FNE are not equal since they are based on di�erent assumptions
concerning the available information to the players. Furthermore, while there are some cases
where Nash equilibria and Pareto e�cient solutions coincide, this is also generally not the
case. In order to illustrate the di�erence between the solutions, the following example is pre-
sented.

Example 3.4:
Consider the same two-player di�erential game as in Examples 3.1, 3.2 and 3.3. In the three
examples, the OLNE, FNE and the PES were calculated, respectively. In this example, the exact
trajectories which follow from � = 0.5 and the boundary conditions

x(0) = 2,  1(T → ∞) = 0,  2(T → ∞) = 0 and  p(T → ∞) = 0 (3.54)

were determined analytically using MATLAB’s dsolve. Figure 3.3 shows state and control
trajectories of the di�erential game de�ned by (3.18) and (3.19). Only one control trajectory
is shown for each solution concept since the symmetry of the game leads to equal controls for
both players. While the OLNE and FNE are similar to each other, the PES di�ers considerably
more.

0
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1.5

2
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(
t
)

a)

OLNE FNE PES

0 1 2 3 4 5
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−1

−0.5
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t in s

u
i
(
t
)

b)

Figure 3.3: Open-loop Nash equilibrium, feedback Nash equilibrium and Pareto e�cient solution of an example
two-player di�erential game: a) State trajectories, b) Control trajectories.
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Finally, in order to show that a cooperative di�erential game with a PES leads to a better
outcome than a non-cooperative setting, we calculate the value of the objective function for
each solution concept:

J
∗

i,OLNE
= 0.655 (3.55)

J
∗

i,FBNE
= 0.667 (3.56)

Ji,PES = 0.618, i ∈ {1, 2}. (3.57)

Hence, J ∗
i,FBNE

≥ J
∗

i,OLNE
≥ J

∗

i,PES
holds. The lower costs of the PES demonstrates an advantage

of acting cooperatively in this example.

3.7 Tractable Di�erential Games

The solution of the coupled di�erential equations which arise from the necessary and su�cient
conditions for Nash equilibria is in general not a trivial task, especially concerning the partial
di�erential equations (HJB equations) which are needed to �nd an FNE. Indeed, �nding Nash
equilibria for general di�erential games is nontrivial and an object of current research. To
�nd an FNE in nonlinear di�erential games, approximative or iterative solutions of the HJB
equations are sought and therefore, the use of reinforcement learning or adaptive dynamic
programming techniques are obtaining increased interest [KKD14, ZZWZ16, KVML18].

There are particular kinds of di�erential games which are similar to the examples presented
in the previous subsections in the sense that the calculation of Nash equilibria is considerably
simpli�ed. These are therefore called tractable di�erential games [HKZ12, Section 7.6] and
include

- linear-quadratic di�erential games

- linear-state di�erential games

- exponential di�erential games.

These kinds of di�erential games are treated e.g. in [DFJ85] and [Doc00, Chapter 7].

One of the structures considered in this thesis are linear-quadratic di�erential games, as it is
an important and widespread class of di�erential games which has been used in several appli-
cations of automatic control including driver assistance systems [FFH17], collision avoidance
[MSA17], control of mobile robots [Gu08] and control of energy grids [ZMSFZ16]. Therefore,
the following section presents the most important results which are known for this particular
class of games.
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3.8 Linear-Quadratic Di�erential Games

A linear-quadratic (LQ) di�erential game is a class of di�erential games where the system the
players control simultaneously has linear dynamics, i.e. the evolution of the states is governed
by a system of linear di�erential equations. Furthermore, the players act based upon an indi-
vidual quadratic cost function. This kind of games can therefore be seen as an extension of
linear-quadratic optimal control to the N -player case. LQ di�erential games are considered a
class of di�erential games which can be solved with reasonable e�ort. Their particular struc-
ture allows the derivation of necessary and su�cient conditions for Nash equilibria which are
computationally tractable.

De�nition 3.11 (Linear-Quadratic Di�erential Game)
A linear-quadratic (LQ) di�erential game is de�ned by the same elements as De�nition 3.3.
The system dynamics are linear, i.e. are de�ned by

ẋ(t) = Ax(t) +

N

∑

i=1

Biui(t), (3.58)

where x(t) ∈ ℝ
n , u(t) ∈ ℝ

mi and A and Bi , i ∈  , are the system and control matrices of
appropriate dimensions, respectively, which form stabilizable matrix pairs (A, Bi), i ∈  .
Furthermore, the cost functions are quadratic, i.e.

Ji =

1

2

x
⊤
(T )Qi,T x(T ) +

1

2

T

∫

0

x
⊤
(t)Qix(t) +

N

∑

j=1

u
⊤

j
(t)Rijuj (t) dt, (3.59)

where Qi,T , Qi , Rij are symmetric matrices for all i, j ∈  and Rii ≻ 0.

The constraint of positive de�niteness Rii ≻ 0 is required in order to guarantee a meaningful
minimization problem. Additional positive-semide�niteness constraints are sometimes intro-
duced, e.g. Qi,T , Qi ⪰ 0. These are often convenient to obtain Nash equilibrium solutions but
are not always strictly necessary, as will be discussed in the next subsection.19 Furthermore,
the stabilizable pairs (A, Bi), i ∈  , imply that each player is able to stabilize the system on
its own, a fact that is required for the following results on Nash equilibria in LQ di�erential
games.

19 A widespread case is given by a two-player di�erential game N = 2 where the players play in a stringent adver-
sarial way. This is represented by cost function matrices Q2 = −Q1, Q2,T = −Q1,T , R12 = −R22, R21 = −R11 and is
known as zero-sum di�erential game [SH69b].
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3.8.1 Nash Equilibria in Open-Loop LQ Di�erential Games

Finite-Horizon

Consider a linear-quadratic di�erential game with �nite horizon T . The calculation of open-
loop Nash equilibria is based on the solution of coupled matrix Riccati di�erential equations
(RDEs), which can be derived from Pontryagin’s minimum principle. Therefore, applying The-
orem 3.1 to LQ di�erential games leads to the following result.

Theorem 3.4 (Su�cient Conditions for OLNE solutions in Finite-Horizon LQ
Di�erential Games)
Consider an N -player LQ di�erential game as in De�nition 3.11 with the additional con-
straints Qi , Qi,T ⪰ 0, i ∈  . Let there exist a set of matrix-valued functions Pi , i ∈  , which
satisfy the Riccati di�erential equations (RDEs)

Ṗi(t) = −Pi(t)A − A
⊤
Pi(t) +

N

∑

j=1

Pi(t)BjR
−1

jj
B
⊤

j
Pj (t) − Qi , i ∈  , (3.60)

with the transversality conditions

Pi(T ) = Qi,T , i ∈  . (3.61)

Then, the LQ di�erential game has a unique OLNE for every initial state x0. Moreover, the
resulting N -tuple of equilibrium controls u∗ is de�ned by the controls

u
∗

i
(t) = 


∗

i
(x0, t) = −R

−1

ii
B
⊤

i
Pi(t)�(t, 0)x0, i ∈  . (3.62)

Here, �(t, 0) satis�es the di�erential equation

�̇(t, 0) =
(
A −

N

∑

j=1

SjPj (t)
)
�(t, 0), �(t, t) = I , (3.63)

where
Sj = BjR

−1

jj
B
⊤

j
, j ∈  . (3.64)

Proof:
See Section B.1 of the Appendix.

Theorem 3.4 gives an approach for calculating Nash equilibria by solving the RDEs (3.60) with
the conditions (3.61). Nevertheless, cases exist where these do not have a solution, but the LQ
di�erential game still has a solution [BO99, p. 314].
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In case the system is not a�ected by any disturbance during the complete game duration, the
controls can be formulated in the form of an optimal feedback law



∗

i
(x, t) = −R

−1

ii
B
⊤

i
Pi(t)x(t), i ∈  . (3.65)

In�nite-Horizon

For an in�nite-horizon case, i.e. T → ∞, the matrices Pi are constant (Ṗi = 0), resulting in
coupled algebraic Riccati equations (ARE) instead of coupled RDEs. This leads to the following
result.

Theorem 3.5 (Su�cient Conditions for OLNE solutions in In�nite-Horizon LQ
Di�erential Games)
Consider an N -player LQ di�erential game as in De�nition 3.11 with T → ∞ and with the
additional constraints Qi ≻ 0 and Qi,T = 0, i ∈  . Then, the LQ di�erential game has
an OLNE for every initial state x0 if a set of matrices Pi , i ∈  , exists which satis�es the
algebraic Riccati equations (AREs)

0 = −PiA − A
⊤
Pi +

N

∑

j=1

PiBjR
−1

jj
B
⊤

j
Pj − Qi , i ∈  (3.66)

and additionally leads to a stable closed-loop system20

F ∶= A −

N

∑

j=1

SjPj , (3.67)

i.e. the eigenvalues of F have a negative real part. The resulting N -tuple of Nash equilibrium
controls u∗ is de�ned by (3.62), where Pi(t) = Pi , i ∈  .

Proof:
See the proof of [BO99, Theorem 6.22].

According to [BO99, p. 336], the existence of OLNEs in an in�nite-horizon LQ di�erential game
does not imply the existence of an OLNE in the �nite-horizon version of the game. Moreover, a
unique solution of the RDEs in a �nite-horizon di�erential game may converge for T → ∞ to a
solution of the coupled AREs, but these are not necessarily stabilizing solutions and therefore
would not constitute an OLNE of the in�nite-horizon di�erential game.

20 Note that the stabilizability of (A, [B1, ..., BN ]) is necessary, a property which follows from the stabilizable pairs
(A, Bi ), i ∈  , according to De�nition 3.11.
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3.8.2 Nash Equilibrium in Feedback LQ Di�erential Games

Finite Horizon

Consider a LQ di�erential game with �nite horizon T . Similar to the open-loop case, the
calculation of feedback Nash equilibria is based on the solution of coupled RDEs, which can
be derived from Theorem 3.2. For the following results, we restrict our attention to feedback
laws which are linear, i.e. controls belonging to the set

Γ
FB

i
= {
i ∣ 
i(x, t) = −Ki(t)x(t)}. (3.68)

This allows the formulation of the following theorem.

Theorem 3.6 (Necessary and Su�cient Conditions for FNE solutions in
Finite-Horizon LQ Di�erential Games)
Consider an N -player LQ di�erential game as in De�nition 3.11. The LQ di�erential game
has a linear FNE for every initial state x0 if and only if a set of symmetric matrix-valued
functions Pi , i ∈  , exists which satisfy the Riccati di�erential equations (RDEs)

Ṗi(t) = − Qi − Pi(t)A − A
⊤
Pi(t) +

N

∑

j=1

Pi(t)SjPj (t) + ...

... +

N

∑

j=1

j≠i

Pj (t)SjPi(t) −

N

∑

j=1

j≠i

Pj (t)SijPj (t),

(3.69)

where

Sj = BjR
−1

jj
B
⊤

j
, j ∈  ,

Sij = BjR
−1

jj
RijR

−1

jj
B
⊤

j
, i, j ∈  , i ≠ j,

(3.70)

and the transversality conditions

Pi(T ) = Qi,T , i ∈  . (3.71)

The resulting N -tuple of linear Nash equilibrium strategies 
 ∗ is unique and de�ned by



∗

i
(x, t) = −R

−1

ii
B
⊤

i
Pi(t)x(t) =∶ −Ki(t)x(t), i ∈  . (3.72)

Proof:
See the proof of [Eng05, Theorem 8.3].
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Generally speaking, the FNE arising from the solution of the coupled RDEs is not necessarily
the only one. Basar reported in [Bas74] the existence of equilibrium strategies which are
nonlinear functions of the state in discrete-time linear-quadratic dynamic games. Similarly, in
[TM90] the authors present a speci�c LQ di�erential game example for which a nonlinear FNE
exists. Therefore, Theorem 3.6 may not apply if the strategy space is enlarged as to include
nonlinear strategies [Eng05, p. 365].

In�nite Horizon

As in the �nite-horizon case, we restrict our attention to linear feedback strategies. Never-
theless, for in�nite-horizon games, these are constant over time, i.e. they are de�ned by the
set

Γ
FB

i
= {
i ∣ 
i(x, t) = −Kix(t)}. (3.73)

Furthermore, these strategies (or alternatively, control laws) K = (K1, ..., KN ) are assumed to
belong to the set

 =

{

(K1, ..., KN ) | F is stable
}

, (3.74)

which can be interpreted as a strive of the players for jointly stabilizing the system.21 A neces-
sary and su�cient condition for the non-emptiness of  is the stabilizability of the matrix pair
(A, [B1 ⋯ BN ]) [EBS00]. With these conditions in mind, the following result is stated.

21 According to [Eng05, p. 372], this corresponds to the supposition that both players have a �rst priority in stabi-
lizing the system. Furthermore, for most games the equilibria without this stabilization constraint coincide with
the ones corresponding to a game for which this constraint is included. Therefore, the stabilization constraint
will not be active in most cases.
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Theorem 3.7 (Necessary and Su�cient Conditions for FNE solutions in In-
�nite-Horizon LQ Di�erential Games)
Consider an N -player LQ di�erential game as in De�nition 3.11 with T → ∞. Let the ma-
trices Pi , i ∈  , be symmetric solutions to the ARE

0 = −Qi − PiA − A
⊤
Pi +

N

∑

j=1

PiSjPj +

N

∑

j=1

j≠i

PjSjPi −

N

∑

j=1

j≠i

PjSijPj , (3.75)

and additionally lead to a stable closed-loop system

F = A −

N

∑

j=1

SjPj ,

where

Sj = BjR
−1

jj
B
⊤

j
, j ∈  ,

Sij = BjR
−1

jj
RijR

−1

jj
B
⊤

j
, i, j ∈  , i ≠ j.

(3.76)

Then, there exists a linear FNE and the corresponding feedback strategies are de�ned by

u
∗

i
(t) = 


∗

i
(x, t) = −R

−1

ii
B
⊤

i
Pix(t) = −Kix(t). (3.77)

Conversely, if a linear FNE exists and is de�ned by (3.77), then there exists a set of stabilizing
matrices Pi , i ∈  , which solve the AREs (3.75).

Proof:
In light of (A, [B1 ⋯ BN ]) being stabilizable from the fact that the single pairs (A, Bi), i ∈  ,
are stabilizable according to De�nition 3.11, the rest of the proof is stated in [Eng05, Theorem
8.5].

Theorem 3.7 was formulated with some freedom, as the results of the in�nite-horizon case are
established with the de�nition of a feedback Nash equilibrium speci�c for in�nite-horizon LQ
games which are based on the constant linear feedback strategies (3.73). Further details are
given in Chapter 5, where the AREs are exploited to develop a method for inverse LQ dynamic
games. In addition, it is worth noting that the solutions of the AREs (3.75) and therefore the
FNE are generally not unique [Eng05, p. 381].
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3.9 Summary

This chapter presented fundamentals of dynamic game theory needed for the understanding
of the inverse dynamic game methods introduced in this thesis. The following chapters are all
based on games with the basic properties presented in De�nition 3.3 and with mainly the Nash
equilibrium as a solution concept—Nevertheless, a possible application to dynamic games with
Pareto e�cient solutions shall additionally be mentioned. Inverse dynamic game problems
depend on further characteristics of the game, e.g. the information structure and strategy types
as well as the assumed class of dynamic systems and cost function structure. The following
three chapters introduce di�erent kinds of inverse dynamic games and corresponding methods
for their solution.



4 Inverse Non-Cooperative Di�erential
Games

This chapter presents results on the solution of inverse di�erential games.22 As described
in Chapter 2, the aim of an inverse di�erential game is to calculate the cost functions play-
ers minimized which gave rise to observed state and control trajectories. In the following,
this problem is �rst formulated formally. Afterwards, the main contributions presented in
this chapter are the proposal of an e�cient method for solving inverse open-loop di�erential
games and the formulation of su�cient conditions for the uniqueness of the solution. Further-
more, the applicability of the method for inverse di�erential games with feedback strategies
is demonstrated.23

4.1 Problem Formulation

The theoretical framework of non-cooperative di�erential games describes N agents treated
as entities controlling the system based on the minimization of their individual cost functions,
as introduced in Chapter 3. The non-cooperative nature of the game means that no contracts
or agreements between players are in place while attempting to minimize their individual
costs. Within the inverse problem of di�erential games, the result of the interaction between
all players, i.e. the state and control trajectories, are assumed as given. A further important
characteristic of the inverse di�erential game is that the interaction led to a Nash equilibrium.
Some work exists which investigates conditions under which Nash equilibria exist (see e.g. the
results in [Luk71, Var70] and the discussions and references given in [BO99, Eng05]). However,
these conditions are not general and not simple to formulate in terms of the system dynamics
or the cost functions. Addressing the existence of Nash equilibria in general dynamic games
is beyond the scope of this thesis and therefore, the following assumption will be made.

22 In the remainder of this thesis, the term inverse di�erential game describes an inverse dynamic game in continuous
time (cf. last paragraph of Section 3.1).

23 The results of this chapter are based on the conference paper [RIK+17] and the author’s contribution to the journal
paper [MIF+20].
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Assumption 4.1 (Nash Character of the Observed Trajectories)
The observed state trajectories x̃(t) and control trajectories (ũ1(t), ..., ũN (t)) of all players
are Nash equilibrium trajectories x∗(t) and u∗

i
(t) generated by a non-cooperative di�erential

game de�ned by a set of non-trivial cost functions  ∗
= {J

∗

1
, ..., J

∗

N
} and a dynamic system

according to De�nition 3.2.

With this assumption, the inverse di�erential game problem is de�ned as follows.

De�nition 4.1 (Inverse Di�erential Game Problem)
Let Assumption 4.1 hold such that state trajectories x∗(t) and control trajectories u∗

i
(t),

∀i ∈  , which correspond to a Nash equilibrium, are given. Find at least one set  such
that Ji , ∀i ∈  , ful�ll

u
∗

i
(t) = argmin

ui (t)

Ji (x
∗
(t), ui(t), u

∗

¬i
(t))

w.r.t.

ẋ(t) = f (x(t), u1(t), ..., uN (t), t)

x(0) = x0.

(4.1)

The formulation of the inverse di�erential game problem implies determining the cost func-
tions Ji , i ∈  , such that u∗

i
(t) solves the optimal control problems (4.1) which follow from

De�nition 3.7. De�nition 4.1 allows for several types of Nash equilibria which arise depend-
ing on the information structure of the game and the resulting strategy types. In particular, in
this thesis open-loop and feedback Nash equilibria are considered. In addition, De�nition 4.1
establishes the search of "at least one set" of cost functions in consequence of the ill-posedness
nature of inverse problems in optimal control and dynamic games. This means that several
sets of cost functions exist which are equivalent in the sense that all of them are able to ex-
plain the same state and control trajectories. The concept of equivalence of cost functions is
formalized in Section B.2 of the Appendix.

The inverse di�erential game of De�nition 4.1 is very general and represents a considerably
complex task since there is an in�nite number of possible cost functions varying in structure
and parametrization which may potentially solve the inverse di�erential game problem. This
issue is not unique to inverse dynamic or di�erential games as it also arises in the inverse
problem of optimal control (single-player case). Therefore, parameters need to be introduced
�rst. Two lines of research have been developed to achieve this.
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• Approximation of non-linear cost function structures by means of Gaussian processes
[LPK11, LHF14] or alternatively, arti�cial neural networks [WOP16].

• Setting the cost function structure as a linear combination of basis functions [MTL10,
PJJB12, JAB13, AB14, MTFP16, PRBF18, JKL+19].

The �rst approach utilizes parameterized kernel functions which determine the structure of
the Gaussian process. In this way, non-linear rewards can be learned by maximizing the like-
lihood function of the Gaussian process regression output and the kernel parameters under
known observations of the state and control values. Nevertheless, �nding these parameters
is a computationally complex task which has only been solved succesfully in discretized state
and control spaces (e.g. a grid world). On the other hand, the use of arti�cial neural networks
usually demands large data sets and computation times.

Therefore, the second approach is followed and presented in the following subsection.

4.2 Basis Functions Approach

In this approach, the cost functions are given a structure speci�ed with basis functions which
are de�ned as follows.

De�nition 4.2 (Basis Functions Vector)
The vector �i ∈ ℝ

Mi contains the non-trivial functions �
i,(j)
(x(t), u1(t), ..., uN (t), t), j ∈

{1, ..., Mi}which are called basis functions. Furthermore, the functions �
i,(j)

∶ ℝ
n
×ℝ

m1 ×…×

ℝ
mN × [0, T ] ↦ ℝ are continuously di�erentiable in x and u1, ..., uN for all j ∈ {1, ..., Mi}.

The notation a
i,(j)

is used here and in the remainder of this thesis to represent the j-th entry
of any vector a which corresponds to player i ∈  .

Based on De�nition 4.2, cost functions which consist of a linear combination of the basis func-
tions are introduced, i.e.

Ji(�i , �i) =

T

∫

0

�
⊤

i
�i(x(t), u1(t), ..., uN (t), t) dt, (4.2)

where �i ∈ Θi ⊆ ℝ
Mi are time-invariant parameters. The introduction of basis functions may

appear stringent, yet it allows a wide variety of possible cost function structures.24

24 Although the considered cost functions (4.2) have a so-called Lagrangian structure, i.e. cost functions with only
integral costs, the methods and results of this chapter are also applicable to games with player cost functions
with a Bolza structure, i.e. of the form (3.3). To do so, the terminal costs ℎi (x(T ), T ) must be written as a linear
combination of basis functions as well. Afterwards, the Bolza cost function can be transformed into a Lagrange
cost function by means of the fundamental theorem of calculus (see e.g. [Nai03, Section 2.7.1]).
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In order to de�ne a well-posed inverse di�erential problem with the newly introduced basis
functions, the dynamics f and basis functions �i should be speci�ed such that the observed
states x̃(t) and controls (ũ1(t), ..., ũN (t)) constitute a Nash equilibrium solution to the dynamic
game for some (possibly non-unique) cost-functional parameters �i ∈ Θi . Addressing the
selection of suitable dynamics and basis functions is beyond the scope of this thesis. Therefore,
the following assumption is introduced:

Assumption 4.2 (Nash Character of the Trajectories w.r.t. a Di�erential Game
with Basis Functions)
The observed states x̃(t) and controls (ũ1(t), ..., ũN (t)) constitute a Nash equilibrium solution
to the di�erential game with system dynamics according to De�nition 3.2 which are addi-
tionally continuously di�erentiable in x and u1, ..., uN , and cost functions of the form (4.2)
consisting of basis functions �i according to De�nition 4.2 and the unknown cost function
parameters �i = � ∗i ∈ Θi for i ∈  .

Assumption 4.2 speci�es Assumption 4.1 for the introduced cost function structure established
with the basis functions of De�nition 4.2. The assumption of continuous di�erentiability of
the system dynamics f is standard and permits the consideration of Theorem 3.1 which shall
be leveraged in the course of this chapter. With this introduced assumption, the inverse dif-
ferential game problem regarded in this chapter is de�ned as follows.

De�nition 4.3 (Inverse Di�erential Game with Basis Functions)
Let Assumption 4.2 be ful�lled such that state trajectories x∗(t) and control trajectories
u
∗

i
(t), i ∈  , which correspond to a Nash equilibrium, are given. Determine at least one

tuple of parameters � ∶= (�1, ..., �N ), with �i ∈ Θi , i ∈  , such that

u
∗

i
(t) = argmin

ui (t)

Ji (�i(x
∗
(t), ui(t), u

∗

¬i
(t), t) , �i)

w.r.t.

ẋ(t) = f (x(t), u1(t), ..., uN (t), t)

x(0) = x0

(4.3)

for all players i ∈  .

A consequence of the introduction of basis functions is the reduction of the general inverse
di�erential game problem to a parameter identi�cation problem. Despite this simpli�cation,
under Assumption 4.2, the inverse di�erential game problem will still have multiple solutions
in general. One of the reasons is the following: if the trajectories x∗(t) and (u

∗

1
(t), … , u

∗

N
(t))
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solve the dynamic optimization problems of De�nition 4.3 with �i = � ∗i ∈ Θi , then the trajec-
tories will also solve the dynamic optimization problems with �i = ci� ∗i for all scaling factors
ci > 0. Furthermore, the zero vectors �i = 0 are trivial solutions to the inverse di�erential game
problem. Therefore, without loss of generality, trivial solutions and ambiguous scaling shall
be excluded by considering parameter sets of the form Θi = {�i ∈ ℝ

Mi ∣ �
i,(1)

= 1} where �
i,(1)

denotes the �rst element of �i . The choice of the �xed-element constraint �
i,(1)

= 1 is arbitrary
and results analogous to those of this chapter will also hold with normalization constraints
such as ‖�i‖ = 1.25

4.3 Inverse Open-Loop Di�erential Games

The inverse di�erential games of De�nitions 4.1 and 4.3 imply �nding cost functions such the
solution of the N optimal control problems correspond to the given controls (u∗

1
(t), ..., u

∗

N
(t)).

Since for a particular optimal control problem of player i, the other players’ controls u∗
¬i
(t) are

available, we can proceed to analyze these individual optimal control problems. For the for-
ward problem of �nding open-loop Nash equilibrium trajectories, the tools of optimal control
theory, in particular the minimum principle of Pontryagin, are leveraged to obtain necessary
conditions for open-loop Nash equilibria (cf. Section 3.6). Similarly, in this section, these
conditions shall be exploited to �nd parameters �i which solve the inverse di�erential game
problem of De�nition 4.3 in case of open-loop strategies.

4.3.1 Residual-Based Approach

The main idea consists of exploting the fact that the observed trajectories correspond by as-
sumption to a Nash equilibrium, i.e. x̃(t) = x∗(t) and ũi(t) = u∗i (t). These trajectories must
ful�ll the equations of Theorem 3.1 since these represent necessary conditions for Nash equi-
libria. Consider any player i ∈  . Apart from the system dynamics equation, the costate
equation

 ̇i(t) = −∇xHi ( i(t), x
∗
(t), ui(t), u

∗

¬i
(t), t) (4.4a)

 i(T ) = 0, (4.4b)

where (4.4b) follows from ℎi(x(T ), T ) = 0 due to the Lagrangian structure of the cost function
(4.2), and the control equation

u
∗

i
(t) = argmin

ui (t)

Hi ( i(t), x
∗
(t), ui(t), u

∗

¬i
(t), t) (4.5)

25 Both �xed-element and normalization-constraint parameter sets are popular in the related literature of inverse
optimal control (e.g., see [MTFP16] for �xed-element constraints, and [ARARU+11] for normalization constraints).
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must be ful�lled. Since we consider no constraints on the control variables ui(t), the control
equation (4.5) results in the Hamiltonian gradient condition

0 = ∇ui
Hi ( i(t), x

∗
(t), ui(t), u

∗

¬i
(t), t) . (4.6)

With the Hamiltonian function of player i being given by

Hi = �
⊤

i
�i (x(t), ui(t), u¬i(t), t) +  

⊤

i
(t) f (x(t), ui(t), u¬i(t), t) (4.7)

as a result of the cost function structure (4.2), the following de�nition is introduced.

De�nition 4.4 (Residuals)
The functions

rC(�i ,  i , t) =
‖
‖
∇ui

Hi ( i , �i , t)
‖
‖

2|
|
|
ui (t)= u

∗

i
(t)

x(t) = x
∗
(t)

(4.8)

and

rL(�i ,  i , t) = ‖ ̇i(t) + ∇xHi ( i , �i , t)‖
2|
|
|
ui (t)= u

∗

i
(t)

x(t) = x
∗
(t)

, (4.9)

where || ⋅ || denotes the Euclidean norm, are called residuals of the control equation and the
costate equation, respectively.

The residuals of De�nition 4.4 result from the insertion of the Hamiltonian (4.7) in (4.4a) and
(4.6) and the subsequent insertion of the known optimal trajectories x∗(t) and u∗

i
(t), which re-

sult in a dependence on the costate functions i and the parameters �i only. Note that rC(�i ,  i)
and rL(�i ,  i) are both equal to zero for �i = � ∗i and  i(t) =  ∗i (t). Therefore, in light of this
formulation, the idea of the proposed residual-based method consists of the computation
of ̂
�i ∈ Θi and costate functions  ̂i ∶ [0, T ] ↦ ℝ

n for each player i ∈  which solve the
optimization problem

min

 i ,�i

∫

T

0

rC(�i ,  i) + � rL(�i ,  i) dt

s.t. �i ∈ Θi ,

(4.10)

where � > 0 is a speci�able weighting factor. The intuition behind (4.10) is the following:  ̂i(t)
and parameters ̂

�i are sought such that the costate condition (4.4a) and Hamiltonian gradient
condition (4.6) hold for all t ∈ [0, T ].26 Under Assumption 4.2, ̂

�i = �
∗

i
will be a (possibly

non-unique) solution to (4.10).
26 If N = 1 and � = 1, this method recudes to the single-player approach presented in [JAB13].
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The solution of (4.10) is based on its reformulation as a quadratic program. For that purpose,
it shall �rst rewritten as a linear-quadratic dynamic optimization problem. Let us de�ne the
rectangular matrix

L ∶= [IMi
0Mi×n]

∈ ℝ
Mi×(Mi+n) (4.11)

where IMi
denotes a square identity matrix with dimensions Mi ×Mi . Similarly, 0Mi×n

denotes
a zero matrix with dimensions Mi × n. Furthermore, we de�ne the matrices R = In , B ∶=

[0n×Mi
In]

⊤ and the time-variant matrices

Ni(t) ∶= [�∇x�i(t) �∇xf (t)]

⊤ (4.12)

and

Qi(t) ∶=
[

√
�∇x�i(t)

√
�∇xf (t)

∇ui
�i(t) ∇ui

f (t) ]

⊤

[

√
�∇x�i(t)

√
�∇xf (t)

∇ui
�i(t) ∇ui

f (t) ]
(4.13)

where we use the shorthand ∇xf (t) ∈ ℝ
n×n and ∇ui f (t) ∈ ℝ

mi×n to denote the matrices of
partial derivatives of f with respect to x(t) and ui(t), respectively27, and evaluated with �i ,
x(t), and ui(t) for i ∈  . Similarly, we use ∇x�i(t) ∈ ℝ

n×Mi , and ∇ui�i(t) ∈ ℝ
mi×Mi to denote the

matrices of partial derivatives of �i evaluated with �i , x(t), and ui(t) for i ∈  . The following
lemma rewrites the problem (4.10) as a linear quadratic dynamic optimization problem.

Lemma 4.1
Consider any player i ∈  . The optimization problem (4.10) over the costates  i and param-
eters �i is equivalent to the linear quadratic dynamic optimization problem

min
zi ,vi

∫

T

0

z
⊤

i
(t)Qi(t)zi(t) + v

⊤

i
(t)�Rvi(t) + 2z

⊤

i
(t)Ni(t)vi(t) dt

s.t.

żi(t) = Bvi(t), t ∈ [0, T ]

Lzi(t) ∈ Θi , t ∈ [0, T ]

(4.14)

over the functions zi ∶ [0, T ] ↦ ℝ
Mi+n andvi ∶ [0, T ] ↦ ℝ

n with the variable substitutions

zi(t) =
[

�i

 i(t)]
and vi(t) =  ̇i(t). (4.15)

27 The partial derivatives ∇x f (t) are de�ned here as the transposed Jacobian matrix of f , i.e. ∇x f (t) =

[

)f (t)

)x1

⋯
)f (t)

)xn ]

⊤

.
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Proof:
We note that the integrand of the objective functional of (4.10) may be rewritten as

‖
‖
∇ui

Hi (t,  i(t), �i)
‖
‖

2
+ � ‖ ̇i(t) + ∇xHi (t,  i(t), �i)‖

2

=

‖
‖
‖
‖
‖
[

√
� ̇i(t) +

√
�∇xHi (t,  i(t), �i)

∇ui
Hi (t,  i(t), �i) ]

‖
‖
‖
‖
‖

2

=

‖
‖
‖
‖
‖
[

√
� ̇i(t) +

√
�∇x�i(t)�i +

√
�∇xf (t) i(t)

∇ui
�i(t)�i + ∇ui

f (t) i(t) ]

‖
‖
‖
‖
‖

2

=

‖
‖
‖
‖
‖
[

√
�∇x�i(t)

√
�∇xf (t)

∇ui
�i(t) ∇ui

f (t) ] [

�i

 i(t)]
+
[

√
�In

0mi×n
]
 ̇i(t)

‖
‖
‖
‖
‖

2

= z
⊤

i
(t)Qi(t)zi(t) + v

⊤

i
(t)�Rvi(t) + 2z

⊤

i
(t)Ni(t)vi(t)

where the second equality holds by recalling the de�nition of the player Hamiltonian (4.7),
and the third and fourth equalities are obtained via matrix algebra by recalling the de�nitions
of Qi(t), R, and Ni(t) together with the variable substitutions (4.15). We also note that the
constraint �i ∈ Θi may be equivalently written as

Lzi(t) = �i ∈ Θi

and the (implicit) constraint in (4.10) that �i is time-invariant is equivalent to the constraint
that

żi(t) =
[

̇
�i

 ̇i(t)]
=
[

0Mi×n

 ̇i(t) ]
= Bvi(t).

Minimization of the functional

∫

T

0

z
⊤

i
(t)Qi(t)zi(t) + v

⊤

i
(t)�Rvi(t) + 2z

⊤

i
(t)Ni(t)vi(t) dt

over zi ∶ [0, T ] ↦ ℝ
Mi+n and vi ∶ [0, T ] ↦ ℝ

n subject to the constraints that żi(t) =
Bvi(t) and Lzi(t) ∈ Θi for all t ∈ [0, T ] is therefore equivalent to the minimization of the
objective functional of (4.10) over  i(t) and �i subject to the constraint that �i ∈ Θi with the
substitutions

zi(t) =
[

�i

 i(t)]
and vi(t) =  ̇i(t).

The lemma result follows and the proof is complete.
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Lemma 4.1 establishes that the optimization problem (4.10) at the core of the proposed method
can be rewritten as the dynamic optimization problem (4.14) with linear dynamic constraints,
quadratic objective functional, and (partial) constraints on the function Lzi(t). In the follow-
ing lemma, we show that this dynamic optimization problem (4.14) can be solved as a linear
quadratic optimal control problem with an unknown initial state zi(0) resulting in a (static)
quadratic program.

Lemma 4.2 (Quadratic Program Formulation)
Consider any player i ∈  and suppose that � > 0 is selected such that the matrix Qi(t) −
Ni(t)�

−1
R
−1
N
⊤

i
(t) is positive semide�nite for all t ∈ [0, T ]. A pair of functions ẑi ∶ [0, T ] ↦

ℝ
Mi+n and v̂i ∶ [0, T ] ↦ ℝ

n solves the dynamic optimization problem (4.14) if and only if
the initial value of ẑi(0) = �̂i ∈ ℝ

Mi+n solves the quadratic program

min
�i

�
⊤

i
Pi(0)�i

s.t. L�i ∈ Θi

(4.16)

and the pair of functions satisfy the di�erential equation

̇
ẑi(t) = Bv̂i(t) = BKi(t)ẑi(t) (4.17)

for all t ∈ [0, T ] where Ki(t) ∶= −�−1 [B⊤Pi(t) + N⊤

i
(t)] and Pi ∶ [0, T ] ↦ ℝ

(Mi+n)×(Mi+n)

is the unique symmetric positive semide�nite solution to the Riccati di�erential equation

0 = Ṗi(t) − �
−1
(Pi(t)B + Ni(t))(B

⊤
P
⊤

i
(t) + N

⊤

i
(t)) + Qi(t) (4.18)

for t ∈ [0, T ] with terminal boundary condition Pi(T ) = 0.

Proof:
Consider any player i ∈  . We �rst note that given a function vi ∶ [0, T ] ↦ ℝ

n together
with an initial value zi(0) = �i ∈ ℝ

Mi+n with L�i ∈ Θi , we may solve the di�erential equation
żi(t) = Bvi(t) for the unique function zi ∶ [0, T ] ↦ ℝ

Mi+n . The constraints in the dynamic
optimization problem (4.14) from Lemma 4.1 therefore imply that the optimization in (4.14)
may be rewritten as only over zi(0) and vi . Namely, (4.14) is equivalent to the unknown initial
state optimal control problem

min
�i

min
vi

∫

T

0

z
⊤

i
(t)Qi(t)zi(t) + v

⊤

i
(t)�Rvi(t) + 2z

⊤

i
(t)Ni(t)vi(t) dt

s.t.

żi(t) = Bvi(t), t ∈ [0, T ]

zi(0) = �i

L�i ∈ Θi .

(4.19)
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For any �i ∈ ℝ
Mi+n , the inner optimization problem over the function vi in (4.19) is a standard

linear quadratic optimal control problem with cross-product terms.

Under the positive de�niteness of R = In as well as � > 0 and the positive semide�niteness of
the expression Qi(t) − Ni(t)�−1R−1N⊤

i
(t), Section 3.4 of [AM89] gives that for any zi(0) = �i ∈

ℝ
Mi+n , the unique function solving the inner optimization problem over vi in (4.19) is

v̂i(t) = Ki(t)ẑi(t) (4.20)

for all t ∈ [0, T ] where Ki(t) = −�−1 [B⊤Pi(t) + N⊤

i
(t)] and Pi ∶ [0, T ] ↦ ℝ

(Mi+n)×(Mi+n) is the
unique symmetric positive semide�nite solution to the Riccati di�erential equation (4.18) with
Pi(T ) = 0 (see also [Kuč73, Kal64]). Section 3.4 of [AM89] also gives that the minimum value
of the inner optimization problem over vi in (4.19) is

�
⊤

i
Pi(0)�i (4.21)

for any initial state zi(0) = �i . The function ẑi solving the inner optimization of (4.19) satis�es
̇
ẑi(t) = BKi(t)ẑi(t) for any initial state �i . Consequently, the unknown initial state optimal
control problem (4.19) simpli�es to the quadratic program (4.16). It follows that the pair of
functions (ẑi , v̂i) solves (4.14) if the functions satisfy the di�erential equation (4.17) and ẑi(0) =
�̂i solves (4.16).

In the following, the “only if” part of the lemma assertion is proved — i.e., that if the pair of
functions (ẑi , v̂i) solves (4.14), then they satisfy the di�erential equation (4.17) and ẑi(0) = �̂i
solves the quadratic program (4.16). We �rst note that the function v̂i solving the inner opti-
mization problem over vi in (4.19) is unique and given by (4.20) for any given �i ∈ ℝ

Mi . Thus,
if the pair of functions (ẑi , v̂i) solves (4.14), then it must satisfy the di�erential equation (4.17).
Since the unique form of v̂i implies that (4.19) reduces to the quadratic program (4.16), then
ẑi(0) = �̂i if the pair of functions (ẑi , v̂i) solves (4.14). The lemma result follows and the proof
is complete.

Lemma 4.2 allows us to solve the quadratic program (4.16) for the initial values ẑi(0) = �̂i

instead of solving (4.14) for the functions ẑi over the entire interval t ∈ [0, T ]. Recalling
Lemma 4.1 and the de�nition of the vectors zi(0), we note that the initial values ẑi(0) = �̂i
correspond to the vector

�̂i = [
̂
�
⊤

i
 ̂
⊤

i
(0)]

⊤ (4.22)

where ̂
�i and  ̂i are solutions to the residual-based method (4.10). Together, Lemmas 4.1 and

4.2 therefore allow us to sidestep the di�cult problem of directly solving and analyzing the
original optimization problem (4.10) and instead solve the quadratic program (4.16) for the
parameters ̂

�i = L�̂i .
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Remark 4.1:
The choice of � = 1 is always su�cient to ensure that the expression Qi(t) − Ni(t)�−1R−1N⊤

i
(t) is

positive semide�nite for all t ∈ [0, T ] since

Qi(t) − Ni(t)R
−1
N
⊤

i
(t)

= Qi(t) − Ni(t)N
⊤

i
(t)

=
[

∇ui
�
⊤

i
(t)∇ui

�i(t) ∇ui
�
⊤

i
(t)∇ui

f (t)

∇ui
f
⊤
(t)∇ui

�i(t) ∇ui
f
⊤
(t)∇ui

f (t)]

= [∇ui
�i(t) ∇ui

f (t)]

⊤

[∇ui
�i(t) ∇ui

f (t)]

with the �rst equality holding due to the de�nition of R, and the second and third equalities
following by substituting the de�nitions Qi(t) and Ni(t). Other values of � may result in Qi(t) −
Ni(t)�

−1
R
−1
N
⊤

i
(t) not being positive semide�nite and thus leading to multiple solutions of (4.18).

In the following, the results of Lemmas 4.1 and 4.2 shall be used to establish novel explicit ex-
pressions for the parameters ̂

�i that solve the inverse di�erential game problem. Furthermore,
su�cient conditions shall be presented under which the parameters ̂

�i are guaranteed to be
unique and identical to the original parameters � ∗

i
up to a multiplying positive factor.

4.3.2 Su�cient Conditions for the Uniqueness of Inverse Open-Loop
Di�erential Game Solutions

To present the main result on the solution of the residual-based method (4.10), consider the
matrix Pi(0) of the optimization problem (4.16) and de�ne

P̄i ∶=

⎡

⎢

⎢

⎢

⎢

⎣

P
i,(2,2)

(0) … P
i,(2,Mi+n)

(0)

P
i,(3,2)

(0) … P
i,(3,Mi+n)

(0)

⋮ ⋱ ⋮

P
i,(Mi+n,2)

(0) … P
i,(Mi+n,Mi+n)

(0)

⎤

⎥

⎥

⎥

⎥

⎦

(4.23)

as the principal submatrix of Pi(0) formed by deleting the �rst row and column of Pi(0), and

p̄i ∶= [Pi,(2,1)(0) P
i,(3,1)

(0) … P
i,(Mi+n,1)

(0)]

⊤ (4.24)

which denotes the �rst column of Pi(0) with deleted �rst element. Furthermore, let

P̄i = Ui�
P

i
U
⊤

i
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be the singular value decomposition (SVD) of P̄i where �P
i
∈ ℝ

(Mi+n−1)×(Mi+n−1) is a diagonal
matrix, and

Ui =
[

U
11

i
U
12

i

U
21

i
U
22

i
]
∈ ℝ

(Mi+n−1)×(Mi+n−1) (4.25)

is a block matrix with submatrices U 11

i
∈ ℝ

(Mi−1)×r
P̄

i , U 12

i
∈ ℝ

(Mi−1)×(Mi+n−1−r
P̄

i
), U 21

i
∈ ℝ

n×r
P̄

i

and U 22

i
∈ ℝ

n×(Mi+n−1−r
P̄

i
). Finally, P̄+

i
and r

P̄

i
represent the pseudoinverse and rank of the

submatrix P̄i , respectively. To present the main result, we recall the introduced parameter
set

Θi = {�i ∈ ℝ
Mi
∣ �

i,(1)
= 1} (4.26)

so as to exclude the trivial solution ̂
�i = 0 and to exclude non-uniqueness due to scaling. As

discussed in Section 4.2, there is no loss of generality with this parameter set since the ordering
and scaling of the basis functions and cost function parameters is arbitrary.

Theorem 4.1 (General Solution of the Residual-Based Method)
Consider any player i ∈  , and let Θi = {�i ∈ ℝ

Mi ∣ �
i,(1)

= 1}. All of the parameter vectors
̂
�i ∈ Θi corresponding to all solutions ( ̂i , ̂�i) of the proposed method (4.10) are of the form

̂
�i = L�̂i (4.27)

where �̂i = [1
̂̄�
⊤

i ]

⊤

∈ ℝ
Mi+n are (potentially non-unique) solutions to the quadratic

program (4.16) with ̂̄�i ∈ ℝ
Mi+n−1 given by

̂̄�i = −P̄
+

i
p̄i + Ui

[

0r

b ]
(4.28)

where 0r ∈ ℝ
r
P̄

i and for any b ∈ ℝ
Mi+n−1−r

P̄

i . Furthermore, if either U 12

i
= 0 or P̄i has full

rank, i.e. r P̄
i
= Mi +n − 1, then all solutions ( ̂i , ̂�i) to the proposed method (4.10) correspond

to the single unique parameter vector ̂
�i ∈ Θi given by

̂
�i = L

[

1

−P̄
+

i
p̄i]

. (4.29)

Proof:
Lemmas 4.1 and 4.2 together imply that all solutions to the original optimization problem (4.10)
of the proposed residual-based method have parameter vectors given by ̂

�i = L�̂i where �̂i is
a solution to the quadratic program (4.16). We thus proceed by analyzing (4.16).
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For any �i ∈ ℝ
Mi+n with L�i ∈ Θi where Θi = {�i ∈ ℝ

Mi ∣ �
i,(1)

= 1}, we have that �i =

[1 �̄
⊤

i ]

⊤ where �̄i ∈ ℝ
Mi+n−1 and so

�
⊤

i
Pi(0)�i = [1 �̄

⊤

i ]
Pi(0)

[

1

�̄i]

= P
i,(1,1)

(0) + �̄
⊤

i
P̄i�̄i + 2�̄

⊤

i
p̄i

where P
i,(1,1)

(0) is the �rst element of Pi(0). All solutions �̂i of the constrained quadratic
program (4.16) with Θi = {�i ∈ ℝ

Mi ∣ �
i,(1)

= 1} are therefore of the form �̂i = [1
̂̄�
′

i ]

⊤

where ̂̄�i ∈ ℝ
Mi+n−1 are solutions to the unconstrained quadratic program

min
�̄i

{

1

2

�̄
⊤

i
P̄i�̄i + �̄

⊤

i
p̄i

}

.

We note that Pi(0) is symmetric positive semide�nite which guarantees the existence of a so-
lution of (4.16). Furthermore, this leads to P̄i also being symmetric positive semide�nite. With
these conditions ful�lled, [Gal11, Proposition 15.2] gives that the equivalent unconstrained
quadratic program is solved by any ̂̄�i satisfying

̂̄�i = −P̄
+

i
p̄i + Ui

[

0r

b ]

for any b ∈ ℝ
Mi+n−1−r

P̄

i . The �rst theorem assertion (4.27) follows.

Now, to prove the second theorem assertion we note that if U 12

i
= 0, then

̂̄�i = −P̄
+

i
p̄i +

[

U
11

i
0

U
21

i
U
22

i
] [

0r

b ]

= −P̄
+

i
p̄i +

[

0Mi−1

U
22

i
b]

for any b ∈ ℝ
Mi+n−1−r

P̄

i where U 22

i
b ∈ ℝ

n . Clearly, if r P̄
i
= Mi + n − 1, then we also have that

̂̄�i = −P̄
+

i
p̄i .

Thus, if either U 12

i
= 0 or r P̄

i
= Mi + n − 1, then the �rst Mi − 1 components of ̂̄�i are invariant

with respect to the free vector b ∈ ℝ
Mi+n−1−r

P̄

i , and so all solutions �̂i = [1
̂̄�
⊤

i ]

⊤ of the
constrained quadratic program (4.16) satisfy

L�̂i = L
[

1

−P̄
+

i
p̄i]
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due to the de�nition of L (cf. (4.11)). The second theorem assertion follows since ̂
�i = L�̂i

which completes the proof.

Theorem 4.1 establishes that the conditions U 12

i
= 0 and r

P̄

i
= Mi + n − 1 are both su�-

cient for ensuring the uniqueness of the player cost-functional parameters ̂
�i computed with

the proposed method (4.10). These conditions will not hold when the inverse di�erential
game problem is ill-posed — for example, on short time-horizons T , due to degenerate sys-
tem dynamics, or when the trajectories are uninformative (e.g. when the trajectories x∗(t)
and (u∗

1
(t), … , u

∗

N
(t)) correspond to a dynamic equilibrium of the dynamics in the sense that

ẋ(t) = 0 for all t ∈ [0, T ]). The conditions U 12

i
= 0 and r

P̄

i
= Mi + n − 1 may be interpreted

as analogous conditions to the persistence of excitation conditions known from parameter
estimation and adaptive control.

The following corollary establishes that, under the assumption that the ill-posedness of the
inverse di�erential game problem is only due to an unknown scaling factor, then U 12

i
= 0

and r P̄
i
= Mi + n − 1 become su�cient conditions for ensuring that the residual-based method

(4.10) yields unique player cost-functional parameters that only di�er from the true player
cost-functional parameters � ∗

i
by an unknown scaling factor ci > 0 when Assumption 4.2

holds.

Corollary 4.1 (Uniqueness up to a Scaling Factor)
Suppose that Assumption 4.2 holds. Consider any player i ∈  , and let Θi = {�i ∈ ℝ

Mi ∣

�
i,(1)

= 1}. If eitherU 12

i
= 0 or r P̄

i
= Mi +n−1, and if there exists a ci > 0 such that ci� ∗i ∈ Θi ,

then

̂
�i = L

[

1

−P̄
+

i
p̄i]

= ci�
∗

i
(4.30)

is the unique parameter vector corresponding to all optimal solutions ( ̂i , ̂�i) of the residual-
based method (4.10).

Proof:
The necessary conditions for open-loop Nash equilibria of Theorem 3.1, i.e. (4.4) and (4.6) im-
ply that ( i , ci� ∗i ) (with  i solving (4.4) under  i(T ) = 0 and �i = ci� ∗i ) is always a solution to
the proposed method (4.10) under Assumption 4.2. Since the conditions of the corollary give
that ci� ∗i is in Θi , and since the second assertion of Theorem 4.1 implies the uniqueness of the
parameter vector ̂

�i ∈ Θi corresponding to all optimal solutions of the residual-based method
(4.10) if either U 12

i
= 0 or r P̄

i
= Mi + n − 1, we must have that ̂

�i = ci�
∗

i
when either U 12

i
= 0 or

r
P̄

i
= Mi + n − 1 holds. The corollary assertion follows.
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In the following, the implications of each condition of Theorem 4.1 to the originally posed
residual-based method (4.10) is analyzed.

Full-Rank Condition

In Corollary 4.1 and Theorem 4.1, if r P̄
i
= Mi + n − 1 holds then both the player cost-functional

parameters ̂
�i and costate functions  ̂i solving (4.10) are unique. To see that a unique pair

( ̂i ,
̂
�i) solves (4.10) when r

P̄

i
= Mi + n − 1, we note that the �rst assertion of Theorem 4.1,

speci�cally (4.28), implies that the vectors �̂i = [1
̂̄�
⊤

i ]

⊤ are unique solutions to the quadratic
program (4.16) if r P̄

i
= Mi +n−1 because the free vector b will be zero-dimensional. Now, since

Lemmas 4.1 and 4.2 imply that the vectors �̂i = ẑi(0) correspond to [
̂
�
⊤

i
 ̂
⊤

i
(0)]

⊤, and since
Lemma 4.2 implies a unique function  ̂i for each initial condition  ̂i(0), we have that the pair
( ̂i ,

̂
�i) is indeed the unique solution to (4.10) when r P̄

i
= Mi + n − 1.

SVD Matrix Condition

The condition U 12

i
= 0 can hold when r

P̄

i
< Mi + n − 1. If U 12

i
= 0 but r P̄

i
< Mi + n − 1, then

the second assertion of Theorem 4.1 implies that all pairs ( ̂i , ̂�i) solving (4.10) will share the
unique parameter vector ̂

�i given by (4.29) but may not share a common costate function  ̂i(t).
The condition U 12

i
= 0 prohibits the elements of �̂i corresponding to ̂

�i (but not  ̂i(0)) from
depending on the free vector b in (4.28).

4.3.3 Algorithm and Example

In light of Theorem 4.1 and the role of the conditions U 12

i
= 0 and r

P̄

i
= Mi + n − 1, the

residual-based method (4.10) can be implemented for each player i ∈  with the following
algorithm:
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Algorithm 1 Residual-based method for player i in an inverse OL di�erential game.
Input: State and control trajectories x∗(t) and (u∗

1
(t), … , u

∗

N
(t)), dynamics f , basis functions

�i , and parameter constraint set Θi = {�i ∈ ℝ
Mi ∣ �

i,(1)
= 1}.

Output: Computed Player i cost-functional parameters �i .
1: Compute Qi(t) and Ni(t) from (4.12) and (4.13), t ∈ [0, T ].
2: Solve Riccati equation (4.18) with Pi(T ) = 0 for Pi(0).
3: Compute submatrix P̄i from (4.23) and vector p̄i from (4.24).
4: Compute rank r P̄

i
of P̄i .

5: Compute pseudoinverse P̄+
i

of P̄i .
6: if r P̄

i
= Mi + n − 1 then

7: return Unique �i = ̂
�i given by (4.29).

8: else
9: Compute Ui and U 12

i
in (4.25) through SVD of P̄i .

10: if U 12

i
= 0 then

11: return Unique �i = ̂
�i given by (4.29).

12: else
13: return Any �i = ̂

�i from (4.27) with any b ∈ ℝ
Mi+n−1−r

P̄

i .
14: end if
15: end if

Hence, the core of the proposed residual-based method with Algorithm 1 is the solution of a
RDE and thus we avoid the need to solve nested di�erential game or optimal control prob-
lems. Furthermore, we are also free to compute the cost function parameters of each player
separately (rather than as part of the same optimization). Finally, the presented method gives
conditions under which the computed parameters are unique in the parameter set Θi . These
conditions hold for N-player inverse di�erential games and therefore valid for the special case
of (single-player) inverse optimal control as well.

To conclude, an example illustrating the results of this section is presented.

Example 4.1:

Consider an optimal control problem, i.e. a one-player di�erential game with system dynamics

ẋ(t) = u1(t) (4.31)

where u1(t) ∈ ℝ and with an initial state value x0 = 1. Let the cost function be of the form
(4.2) with T = 3 and the basis functions

�1 (x(t), u1(t), t) = [u
2

1
(t) x

2
(t) x(t)u1(t)]

⊤ (4.32)
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and cost function parameters
�1 = �

∗

1
= [1 5 2]

⊤

. (4.33)

The optimal control problem is solved for the optimal state and control trajectories in Figure 4.1
by applying theminimum principle and solving the coupled di�erential equations numerically.
These trajectories are unique solutions to the problem since � ∗

1
satis�es the positive de�nite and

positive semide�nite conditions of [AM89, Section 3.4]. To solve the inverse optimal control
problem, Algorithm 1 is applied. The Riccati equation leads to the submatrix

P1 =

⎡

⎢

⎢

⎣

0.4614 −0.6126 −0.6126

−0.6126 0.9951 0.9951

−0.6126 0.9951 0.9951

⎤

⎥

⎥

⎦

(4.34)

which is rank de�cient. Computing the SVD of P1 yields

U1 =

⎡

⎢

⎢

⎣

−0.4113 −0.9115 0.0000

0.6445 −0.2909 −0.7071

0.6445 −0.2909 0.7071

⎤

⎥

⎥

⎦

(4.35)

and therefore U 12

1
= [0 −0.7071]

⊤

≠ 0 which implies that there are not unique parameters
�1 ∈ Θ1 solving the inverse optimal control problem. Thus, the general solution is given by
(4.28). By inspecting this solution, we observe that the �rst parameter of �i(0) which corre-
sponds to �

1,(2)
can uniquely be recovered (cf. the �rst entry of U 12

1
). Nevertheless, the free

parameter b ∈ ℝ a�ects the parameter �
1,(3)

, leading to the non-uniqueness. Using (4.28), the
general solution of �1 can be formulated as

�1 =

⎡

⎢

⎢

⎣

1

5

4.467

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0

0

−0.7071

⎤

⎥

⎥

⎦

b, b ∈ ℝ. (4.36)

Indeed, by solving the optimal control problem again with (4.36) and any b ∈ ℝ, it is con�rmed
that the optimal trajectories x∗(t) and u∗

1
(t) are una�ected by the choice of b.
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Figure 4.1: State and control trajectories that solve the optimal control problem of Example 4.1.
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4.4 Inverse Feedback Di�erential Games

The inverse di�erential game problem assuming a feedback information structure consists in
�nding the cost function parameters of all players such that the observed trajectories corre-
spond to a feedback Nash equilibrium.

As already noted in Section 3.6.2, the Nash solution of one player depends on the Nash controls
of all other players. More speci�cally, the di�erential equation of the costate variables corre-
sponding to player i depends on the other controls since, due to the closed-loop information
structure, these depend on the state variables. In other words, the control ui(t) is determined
by a feedback strategy in the form of a control law ui(t) = 
i(x, t). As discussed in Section
3.6.2, the conditions presented in Theorem 3.1 now include the new costate equation

 ̇i(t) = −∇xHi( i(t), x
∗
(t), u

∗

i
(t), 


∗

¬i
(x
∗
, t), t)

in order to account for the other players’ strategies dependency on the state variable.

4.4.1 Residual-Based Approach

In order to apply the residual-based method, the following assumption is introduced.

Assumption 4.3 (Control Laws)
The Nash equilibrium control laws u∗

i
(t) = 


∗

i
(x, t) are known for all players i ∈  .

Under Assumption 4.3, instead of (3.1), we have

ẋ(t) = fi (x(t), 

∗

1
(x, t), ..., ui(t), ..., 


∗

N
(x, t), t) , x(0) = x0 (4.37)

which represent system dynamics from the point of view of each player i ∈  . Furthermore,
Assumption 4.3 leads to the basis functions

�i (x(t), ui(t), 

∗

¬i
(x, t), t) , i ∈  . (4.38)

Under Assumption 4.3 and the consequently introduced system dynamics (4.37) and basis func-
tions (4.38), we obtain the Hamiltonian function of player i

Hi = �
⊤

i
�i (x, ui , 
¬i , t) +  

⊤

i
fi (x, ui , 


∗

¬i
, t) , (4.39)

where the implicit dependencies were omitted for brevity.
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Residuals can be introduced analogously to Section 4.3 according to De�nition 4.4. Thus, the
inverse di�erential game with feedback strategies can be solved by applying the residual-based
method (4.10). Using (4.37) and (4.38), we rede�ne the matrices

Ni(t) ∶= [�∇x�i(t) �∇xfi(t)]

⊤ (4.40)

and

Qi(t) ∶=
[

√
�∇x�i(t)

√
�∇xfi(t)

∇ui
�i(t) ∇ui

fi(t) ]

⊤

[

√
�∇x�i(t)

√
�∇xfi(t)

∇ui
�i(t) ∇ui

fi(t) ]
(4.41)

and note that the di�erences with respect to the open-loop case arise from the in�uence of the
new system dynamics fi and basis functions on the partial derivatives. With these de�nitions,
we can proceed analogously to the open-loop case, ultimately yielding Lemmas 4.1 and 4.2.
Consequently, analogous results to Theorem 4.1 and Corollary 4.1 can be formulated. The
formal theorem statements and proofs are omitted here.

4.4.2 Example

The following example illustrates the application of the residual-based method for inverse
feedback di�erential games.

Example 4.2:

Consider a two-player di�erential game with system dynamics

ẋ(t) = −x(t) + u1(t) + u2(t) (4.42)

where ui(t) ∈ ℝ, i ∈  , and with an initial state value x0 = 5. Let the cost function be of the
form (4.2) with T = 6 and the basis functions

�i (x(t), ui(t), t) = [u
2

i
(t) x

2

1
(t) u

2

j
(t)]

⊤

, i, j ∈ {1, 2}, i ≠ j (4.43)

and cost function parameters

�1 = �
∗

1
= [1 1 10]

⊤ (4.44)

�2 = �
∗

2
= [1 2 1]

⊤

. (4.45)

These parameters are used to solve for the Nash equilibrium state and control trajectories de-
picted in Figure 4.2. Since a linear-quadratic di�erential game lies at hand, this was done by
solving the coupled Riccati equations (3.69), which also con�rms the Nash character of the
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trajectories according to Theorem 3.6. This inverse di�erential problem is illustrated by recov-
ering the cost function parameters of player 1. The feedback strategies of each player have the
form u

∗

i
(t) = 


∗

i
(x, t) = −k

∗

i
(t)x(t), leading to the system dynamics

ẋ(t) = −x(t) + u1(t) − k
∗

2
(t)x(t) (4.46)

and the basis functions

�1 (x(t), ui(t), t) = [u
2

1
(t) x

2
(t) (−k

∗

2
(t)x(t))

2

]

⊤ (4.47)

according to (4.37) and (4.38). The Riccati equation of the residual-based method leads to the
submatrix

P1 =

⎡

⎢

⎢

⎣

16.045 7.499 −7.470

7.499 3.505 −3.491

−7.470 −3.492 3.642

⎤

⎥

⎥

⎦

(4.48)

which has full rank equal to Mi + n − 1 = 3. Therefore, with the results of Theorem 4.1 and
Corollary 4.1, we obtain the unique solution

̂
�1 = [1.000 1.000 10.000]

⊤

= �
∗

1
. (4.49)
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Figure 4.2: State and control trajectories that solve the di�erential game in Example 4.2.

The presented example illustrates Theorem 4.1 for inverse feedback di�erential games, allow-
ing the identi�cation of cost function parameters if the control laws of all players are known,
according to Assumption 4.3. Interestingly, in Example 4.2, the cost function parameters of
player 1 could be exactly recovered, even though the basis functions were partially redundant
due to the fact that the control of player 2 depends on the state variable. However, since k2(t)
was exactly known for all t ∈ [0, T ], the proportion of its in�uence on the state variable could
be distinguished by the method.
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4.5 Method Limitations

Before concluding this chapter, possible limitations of the presented methods shall be dis-
cussed. A �rst issue could emerge if only truncated trajectories are available, i.e. we only have
access to the trajectories (and control laws, in the feedback case) for t ∈ [0, T̄ ] with T̄ < T .
The method can still be applied, but the quality of identi�cation depends on the extent up to
which the available truncated trajectories represent the complete optimal trajectories.

A further issue arises if Assumption 4.2 does not hold. This assumption may be violated e.g.
due to misspeci�ed dynamics or basis functions, or imperfect trajectories.28 Additionally, the
violation might be even more severe if the trajectories do not even represent a Nash equi-
librium, regardless of the basis functions or the system dynamics. In either case, by solving
(4.10), parameters ̂

�i and functions  ̂i(t) result such that (4.4a) and (4.6) hold approximately
with their priority assigned via choice of �. Due to the fact that the approach is based on con-
ditions for Nash equilibria which are generally only necessary, it cannot be always guaranteed
that the resulting parameters can be used for determining Nash equilibrium trajectories.

Lastly, the exact knowledge of the feedback strategies as implied by Assumption 4.3 is a rather
strict assumption. Nevertheless, given that the state x∗(t) and control trajectories u∗

i
(t), i ∈  ,

are available, it is possible to at least determine an approximation using parameter estimation
techniques. This will be examined in the next chapter in the context of inverse linear-quadratic
di�erential games.

4.6 Conclusion

In this chapter, an inverse di�erential game method based on necessary conditions for Nash
equilibria was presented. The main idea consisted in the formulation of residuals which repre-
sent the violation of the open-loop Nash equilibrium conditions if the parameters (and costate
functions) do not correspond to a Nash equilibrium under the observations of the state and
control trajectories. The minimization of the residuals lead to a dynamic optimization problem
for each player i, the minimizers of which are given by the sought cost function parameters
of that speci�c player. The method is substantially based on the solution of a Riccati di�er-
ential equation and a static quadratic program, thus avoiding the expensive computation of
Nash equilibrium trajectories in each iteration and allowing for the statement of su�cient
conditions for the unique solution of the cost function parameters in an inverse open-loop
di�erential game.

Moreover, an approach to solve inverse di�erential games with feedback strategies was pre-
sented. It was shown that it is possible to formulate a residual-based method for the feedback
case by assuming the knowledge of the control laws. In this way, the su�cient conditions
28 The latter two cases shall be examined in Chapter 7.
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for the solution uniqueness are still valid. Nevertheless, in general, the control’s dependence
on the states may lead to redundant basis functions which potentially make the exact esti-
mation of the cost function parameters di�cult due to the ambiguity of the solution of the
residual-based method.

This chapter presented results for �nite-horizon inverse di�erential games. The following
chapter deals with inverse problems for the class of in�nite-horizon linear-quadratic di�eren-
tial games and aims at gaining additional insight by exploiting the particular system and cost
function structure.



5 Inverse Non-Cooperative Linear-Quadratic
Di�erential Games

This chapter is devoted to the solution of inverse problems in non-cooperative linear-quadratic
di�erential games. This particular class of inverse di�erential games arises if the dynamic sys-
tem all players are controlling is linear and a quadratic structure of the player cost functions
is given. Furthermore, the considered planning horizon is in�nite, leading to constant linear
feedback strategies of the players. Linear system dynamics and quadratic cost functions are
ubiquitous in control theory and therefore, the properties of this kind of inverse di�erential
games are thoroughly investigated. The techniques employed in this chapter are similar to
the ones applied in Chapter 4 in the sense that control-theoretical conditions for Nash equilib-
ria are leveraged, i.e. an inverse optimal control approach is applied. The main contribution
presented in this chapter consists of the formulation of explicit solution sets describing all
possible solutions of an inverse LQ di�erential game with an in�nite horizon. The dimen-
sions of this solution set depend on the characteristics of the di�erential game, e.g. number
of states, controls and players. Furthermore, necessary and su�cient conditions are given for
the uniqueness (up to a positive factor) of the inverse di�erential game solutions. Finally, on a
more practical side, a quadratic program is formulated which allows the e�cient computation
of one solution (belonging to the whole solution set) and the corresponding algorithm for im-
plementation is presented. The chapter ends with an illustrative example of the method and a
conclusion.29

5.1 Problem De�nition

Consider a continuous-time N -player noncooperative di�erential game of linear-quadratic
type according to De�nition 3.11. Therefore, the continuous-time state process of the game is
described by the initial value problem

ẋ(t) = Ax(t) +

N

∑

i=1

Biui(t) (5.1a)

x(0) = x0 (5.1b)

29 The results of this chapter were partially previously published in the journal paper [IBM+19].
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where it is further assumed that (A, [B1 ⋯ BN ]) is stabilizable. Following the explanations
in Section 3.8.2, the results of this chapter shall be restricted to the consideration of constant
linear feedback strategies, i.e. strategies 
i belonging to the set (3.73). Therefore, the control
trajectories are given by

ui(t) = −Kix(t), ∀ i ∈  , (5.2)

with the control lawsK = (K1, ..., KN ) (cf. (3.77)). In partiular, these lead to a stable closed-loop
system (cf. (3.67))

F = A −

N

∑

j=1

BjKj , (5.3)

i.e. they belong to the set of stabilizing control law tuples de�ned in (3.74).

In this chapter, a Lagrangian quadratic cost function

Ji(x0, K , Qi , Rij ) =

1

2
∫

∞

0

x
⊤
Qix +

N

∑

j=1

u
⊤

j
Rijuj dt, (5.4)

is considered for each player i ∈  , where the same matrix assumptions as in De�nition 3.11
are made, i.e. Qi , Rij are symmetric for all i, j ∈  and Rii ≻ 0 for all i ∈  .30 By posing (5.4), a
particular structure of the cost functions of all players is de�ned, similar to the basis function
approach considered in Section 4.2. Indeed, a cost function of the form (5.4) can be equivalently
represented as a cost function with basis functions as introduced in (4.2).31 The cost function
Ji in (5.4) is written as a function of the N -tuple of feedback laws K = (K1, ..., KN ) and the
initial state x0 since together these generate the state and control trajectories x(t) and ui(t)
via (5.1) and (5.2). Finite cost function values are guaranteed by the restriction to strategies or
feedback laws belonging to  as de�ned in (3.74).

In this chapter, feedback Nash equilibria are considered which are de�ned in the context of
in�nite-horizon LQ di�erential games as follows (cf. De�nition 3.7).

De�nition 5.1 (Feedback Nash Equilibrium ([EBS00]))
An N -tuple K ∗

= (K
∗

1
, ..., K

∗

N
) ∈  is called a stationary linear feedback Nash equilibrium if

Ji(x0, K
∗
, Qi , Rij ) ≤ Ji(x0, K

∗

¬i
(�), Qi , Rij ), (5.5)

holds for all i ∈  , all x0 ∈ ℝ
n , and all � such that K ∗

¬i
(�) ∈  , where K ∗

¬i
(�) =

(K
∗

1
, ..., K

∗

i−1
, �, K

∗

i+1
, ..., K

∗

N
) .

30 Note that no de�niteness assumptions onQi , i ∈  , are made since the control laws are restricted to the stabilizing
set  (cf. [EBS00]).

31 This follows directly from e.g. 1

2
x
⊤
Qix = �

⊤

i
�i with �i = vec(Qi ) and where �i has the elements �i,(j) = 1

2
xlxp ,

∀l, p ∈ {1, ..., n}.
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The FNE is generally not unique (cf. Section 3.8.2), i.e. various tuples K ∗ corresponding to
a particular in�nite-horizon LQ di�erential game may exist. However, in the following, one
speci�c FNE denoted by K ∗ shall be considered.

The following de�nition is introduced before formalizing the inverse LQ di�erential game
problem.

De�nition 5.2 (Canonical Parameter Set)
The canonical parameter set of the LQ di�erential game is the set � which contains all pos-
sible cost function parameters of (5.4), i.e. all possible matrices Qi and Rij , ∀i, j ∈  , which
lead to the Nash equilibrium given by K ∗, i.e.

� = {�i ∣ i ∈  , K ∗
= K(�1, ..., �N ) ful�lls (5.5)}, (5.6)

where �i contains the elements of the matrices Qi and Rij , i, j ∈  .

This de�nition follows directly from the ill-posedness characteristic of inverse di�erential
games. It allows for describing a general set of solutions of inverse di�erential game which do
not necessarily di�er in a constant parameter solely. Furthermore, the following assumption
is introduced.

Assumption 5.1
The Nash equilibrium feedback matrices K ∗

∈  are known.

With this assumption, which is similar to Assumption 4.1 made in the last chapter, the in-
verse in�nite-horizon LQ di�erential game problem considered in this chapter is de�ned as
follows.32

De�nition 5.3 (Inverse Linear-Quadratic Di�erential Game Problem)
Consider an in�nite-horizon LQ di�erential game consisting of system dynamics (5.1), where
A, Bi , ∀i ∈  are given, and unknown cost functions (5.4). Furthermore, let Assumption 5.1
hold such that Nash equilibrium feedbackmatricesK ∗ are available. Determine the canonical
parameter set � described in De�nition 5.2

While this problem de�nition is related to the problem in De�nition 4.3, it is di�erent in the
sense that not only one single tuple of parameter vectors � = (�1, ..., �N ) is sought, but the
complete set of (equivalent) possible tuples of parameter vectors which lead to a given Nash
32 In the remainder of this chapter, the considered inverse problem shall be referred to as inverse linear-quadratic

di�erential game problem. The in�nite-horizon property shall be omitted for the sake of brevity.
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equilibrium. Furthermore, instead of a Nash equilibrium described by the trajectories x∗(t)
and u∗

i
(t), i ∈  , the availability of a Nash equilibrium described by a tuple of control laws K ∗

is assumed.

Remark 5.1:
By solving the problem of De�nition 5.3 we can also solve the related problem of �nding �, if
instead of K ∗, trajectories x∗(t) and u∗

i
(t), i ∈  , are given. This follows from the fact that K ∗

i
can

be estimated via (5.2). Indeed, such an estimation is commonly performed in single-player inverse
LQ optimal control, e.g. in [PCJ+15] and [FMM+18], where the proposed methods also rely on the
availability of a control law. Further details on the estimation of K ∗ are given in Section 5.4.2.

5.2 Solution Sets for Inverse Linear-Quadratic Di�erential
Games

This section presents general solution sets for inverse LQ di�erential games such that the
problem of De�nition 5.3 is solved. Similar to Chapter 4, available results on the conditions
for feedback Nash equilibria shall be exploited. In the case of an in�nite-horizon LQ di�erential
game, the conditions are available in the form of coupled algebraic Riccati equations (ARE).

5.2.1 Coupled Algebraic Riccati Equations

The following theorem is introduced as a basis for the development of the results of this chap-
ter.

Theorem 5.1 (Necessary and Su�cient Conditions for Feedback Nash Equilib-
ria)
Let there exist an N -tuple of symmetric matrices Pi , i ∈  satisfying the N matrix algebraic
Riccati equations (ARE)

PiF + F
⊤
Pi + ∑

j∈
PjBjR

−1

jj
RijR

−1

jj
B
⊤

j
Pj + Qi = 0 (5.7)

such that F is stabilized. Furthermore, let K ∗

i
be de�ned as

K
∗

i
= R

−1

ii
B
⊤

i
Pi . (5.8)

Then, K ∗
= (K

∗

1
, ..., K

∗

N
) is a FNE as in De�nition 5.1 and Ji(x0, K ∗

, Qi , Rij ) = x
⊤

0
Pix0. Con-

versely, if K ∗ is a FNE then the set of ARE (5.7) has a stabilizing solution.
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Proof:
See the proof of [EBS00, Theorem 4].

Remark 5.2:
The ARE given in (5.7) are an alternative and equivalent formulation of the ARE given in (3.75).
Both expressions are common in di�erential game theory.

Theorem 5.1 represents a necessary and su�cient condition for feedback Nash equilibria.
Hence, if the feedback matrices K ∗ are given, the cost function parameters in the matrices
Rij and Qi , i, j ∈  , must ful�ll (5.7). This fact shall be leveraged in order to develop a method
to solve the inverse LQ di�erential game. Inspired by [JAK89] and [AKFIJ12], where numerical
techniques for continuous-time Riccati equations and results on the properties of Sylvester and
Lyapunov type algebraic equations were introduced, respectively, Kronecker products shall be
applied to derive a reformulation of (5.7) which serves as a basis for the subsequent results.

Reformulation of the Algebraic Riccati Equations

Before presenting the reformulation, let us de�ne a Kronecker sum [Bre78] as

X ⊕ Y = (X ⊗ Iq) + (Ir ⊗ Y ) , (5.9)

for squared matricesX ∈ ℝ
r×r and Y ∈ ℝ

q×q , where Iq denotes a q-dimensional identity matrix
and ⊗ is the Kronecker product. In order to develop a reformulation of (5.7), we require the
following result.

Lemma 5.1 (Inverse Existence)
De�ne F⊕ ∶= F⊤ ⊕ F⊤ where F is calculated by means of (5.3) with any tuple of feedback
matrices K ∗

∈  (cf. (3.74)). The inverse F−1
⊕

exists.

Proof:
F
−1

⊕
exists if all eigenvalues �

l
∈ �(F⊕), l ∈ {1, ..., n2} are di�erent from zero. By using [Zha11,

Theorem 4.8], we discern that �
l
= �j + �k , where �j , �k ∈ �(F), for j, k ∈ {1, ..., n} such that

l is associated to a particular combination of j and k, i.e. j = ⌈
l

n
⌉ and k = l − n(j − 1). Since

only stabilizing feedback matrices belonging to the set  in (3.74) are considered, F is a stable
matrix and thus �

l
< 0, ∀l ∈ {1, ..., n

2
}. The lemma assertion follows.
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Unless otherwise stated, the following calculations are with respect to a particular player i ∈  .
With the results of Lemma 5.1, the matrices

Zi ∶= (In ⊗ B
⊤

i
)F
−1

⊕
∈ ℝ

nmi×n
2

(5.10)

and
K
⊗

i
∶= K

⊤

i
⊗ K

⊤

i
∈ ℝ

n
2
×m

2

i (5.11)

are de�ned. Furthermore,K ∗

i
is written asKi in (5.11) and in the following lemma for brevity.

Lemma 5.2 (Equivalent Formulation of the ARE)
Let the parameter ̄

�i ∈ ℝ
L denote the vectorized matrices of the cost function (5.4), i.e.

̄
�i = [vec(Qi)⊤ vec(Ri1)⊤ ⋯ vec(Rii)⊤ ⋯ vec(RiN )⊤]

⊤

, (5.12)

where vec(X) represents a column vectorization of a matrix X , leading to L = n
2
+

N

∑

i=1

m
2

i
.

Then, the matrices Qi , Rij , i, j ∈  , corresponding to ̄
�i satisfy (5.7) if (and only if) ̄�i ful�lls

M̄i
̄
�i = 0 (5.13)

where M̄i ∈ ℝ
nmi×L is given by

M̄i ∶= [Zi ZiK
⊗

1
⋯ ZiK

⊗

i−1
(ZiK

⊗

i
+ Ki ⊗ Ip) ZiK

⊗

i+1
⋯ ZiK

⊗

N ] . (5.14)

Proof:
We rewrite (5.7) as

0 = vec(PiF) + vec(F⊤Pi) + ∑

j∈
vec(PjBjR−1jj RijR−1jj B⊤j Pj ) + vec(Qi)

0 = [(F
⊤
⊗ In) + (In ⊗ F

⊤

)] vec(Pi) + ∑

j∈
(K

⊤

j
⊗ K

⊤

j ) vec(Rij ) + vec(Qi)

and thus

vec(Pi) = −F−1⊕ vec(Qi) − ∑

j∈
F
−1

⊕
K
⊗

j
vec(Rij ). (5.15)

The �rst equality follows from vectorizing (5.7), while for the second equality (5.8) was used
and the following equivalence was applied:

vec(XYZ) = (Z
⊤
⊗ X) vec(Y ). (5.16)
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This equivalence holds for any matrices X , Y and Z with suitable dimensions [Bre78]. The
third equality (5.15) follows with the results of Lemma 5.1 and the de�nitions given in (5.11)
and (5.9). Now we rewrite (5.8) as

(In ⊗ B
⊤

i )

−1

(K
⊤

i
⊗ Ip) vec(Rii) = vec(Pi) (5.17)

using (5.16). Inserting (5.17) in (5.15) results in

Zivec(Qi)+(K⊤

i
⊗ Ip) vec(Rii)+ ∑

j∈
ZiK

⊗

j
vec(Rij ) = 0 (5.18)

and thus (5.13) follows immediately with (5.14) and (5.12).

The parameters ̄
�i for which (5.13) holds are valid solutions of (5.7) for a given K ∗

i
. Note

that the feedback matrices K ∗
= (K

∗

1
, … , K

∗

N
) completely characterize the Nash equilibrium

trajectories x∗(t) and u∗
i
(t), i ∈  . This follows from (5.1) ful�lling all conditions for admitting

a unique solution for any N -tuple of continuous controls (5.2) [BO99]. Thus, the parameters ̄
�i

are associated to a Nash equilibrium represented by either the feedback matrices or the state
and control trajectories.

5.2.2 Canonical Parameter Sets of Inverse Linear-Quadratic
Di�erential Games

The matrix Riccati equations (5.7) have multiple solutions which potentially represent di�erent
Nash equilibria [Wee01]. However, it is worth emphasizing that we are only interested in all
parameter tuples ̄

� which represent a speci�c Nash equilibrium. Bearing this in mind, the
following theorem gives the main result.

Theorem 5.2 (Canonical Parameter Sets of Inverse LQ Di�erential Games)
Let a LQ di�erential game be given by (5.1) and (5.4). Furthermore, let Assumption 5.1 hold
such that Nash equilibrium control laws K ∗ are given. Then, the canonical parameter set of
the corresponding inverse LQ di�erential game is given by

� = ⋃

i∈
ker(M̄i), (5.19)

with convex boundaries such that Rii > 0, ∀i ∈  .
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Proof:
By inspecting (5.13) from Lemma 5.2 we can recognize that all parameters which satisfy the
ARE lie within the kernel of M̄i , which depends onK ∗. Therefore, all possible cost function pa-
rameters of player i which lead to the known Nash equilibrium are given by span(v(1)

i
, ..., v

(di )

i
),

where di represents the dimension of the kernel of M̄i with basis vectors vi . The set including
the cost function parameters of all players corresponding to the Nash equilibrium represented
by K ∗ is thus given by (5.19).

Note that the results of Lemma 5.2 together with Theorem 5.2 allow for a simple proof of
the well-known invariance of the Nash equilibrium in case any cost function parameter ̄

�i is
multiplied by a positive constant.

Corollary 5.1
The trajectories constituting a Nash equilibrium under N cost functions Ji( ̄� ∗i ), i ∈  , of an
in�nite-horizon LQ di�erential game will constitute the same Nash equilibrium for Ji( ̄�i)
with ̄

�i = ci
̄
�
∗

i
, ∀ci > 0.

Proof:
This can be easily be seen from M̄ici

̄
�
∗

i
= ciM̄i

̄
�
∗

i
= 0 which does not a�ect ker(M̄i) nor �.

The results of Lemma 5.2 as well as Theorem 5.2 are derived with respect to the parameter def-
inition in (5.12) which considers the most general case where no assumptions on the structure
of the cost function matrices were made, e.g. symmetry. The characteristics of the di�erential
game and in particular, the properties of the cost function matrices a�ect the dimensions of
ker(M̄i) and consequently of the canonical parameter set �. Therefore, in the next section,
some properties of inverse LQ di�erential games based on the possible structures of the cost
function matrices are discussed.

5.3 Properties of Inverse Linear-Quadratic Di�erential
Game Solution Sets

Cost function matrices in a quadratic cost function are largely assumed to be at least symmet-
ric. Furthermore, in many applications, these are assumed to be diagonal. Since these matrix
properties reduce the number of unknown parameters, inverse LQ di�erential games and their
solution sets shall be analyzed considering all possible cases for the cost function matrices.
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5.3.1 Preliminaries

Let us de�ne the variable Mi ∈ ℝ
+ to denote the number of (non-redundant) parameters of a

player’s cost function. The speci�c value of Mi depends on whether the cost function matrices
are symmetric or diagonal. We have

Mi =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

n
2
+n

2
+ ∑

i∈

m
2

i
+mi

2
, symmetric matrices

n + ∑

i∈
mi , diagonal matrices

L, else.

(5.20)

Since Mi ≤ L holds, the analysis of inverse LQ di�erential games is based on the vectors
�i ∈ ℝ

Mi which have a potentially reduced dimension compared to the parameter vector of
Lemma 5.2. The matrix Mi ∈ ℝ

nmi×Mi is introduced accordingly as a possible modi�cation of
the matrix M̄i .

Remark 5.3:
The vector �i ∈ ℝ

Mi and the modi�ed matrixMi ∈ ℝ
nmi×Mi comply with Lemma 5.2 in the sense

that
Mi�i = 0 (5.21)

holds. Consequently, the results of Theorem 5.2 and, obviously, Corollary 5.1 hold for these intro-
duced variables as well.

In the following, an example illustrating the introduced modi�cations is presented.

Example 5.1:
Consider a 2-player LQ di�erential game with n = 2, m1 = m2 = 1, where the cost functions
are given by (5.4). By Lemma 5.2, we obtain Mi = L = 6, leading to the vector

̄
�i = [Qi,(1,1) Q

i,(2,1)
Q
i,(1,2)

Q
i,(2,2)

Ri1 Ri2]

⊤

, (5.22)

where Q
i,(r ,c)

with r , c ∈ {1, 2} denotes the element of Q in the r-th row and c-th column.
Furthermore, we have the matrix

M̄i = [(m̄i)1 (m̄i)2 ⋯ (m̄i)6] , i ∈ {1, 2}, (5.23)

where (m̄i)j , j ∈ {1, 2, .., L} denotes the j-th column of M̄i .
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Diagonal Matrices

In case of diagonal matrices, Q
i,(2,1)

= Q
i,(1,2)

= 0, i ∈ {1, 2}. Therefore, the reduced non-
redundant parameter vector has the dimension Mi = 4, i ∈ {1, 2}, and is given by

�i = [Qi,(1,1) Q
i,(2,2)

Ri1 Ri2]

⊤

. (5.24)

Thus, we set
Mi = [(m̄i)1 (m̄i)4 (m̄i)5 (m̄i)6] , i ∈ {1, 2} (5.25)

such that (5.21) is ful�lled.

Symmetric Matrices

In case of symmetric matrices, Q
i,(2,1)

= Q
i,(1,2)

, i ∈ {1, 2}. This leads to a reduced non-
redundant parameter vector with the dimension Mi = 5, i ∈ {1, 2}, and given by

�i = [Qi,(1,1) Q
i,(1,2)

Q
i,(2,2)

Ri1 Ri2]

⊤

. (5.26)

Hence, we set

Mi = [(m̄i)1 (m̄i)2 + (m̄i)3 (m̄i)4 (m̄i)5 (m̄i)6] , i ∈ {1, 2}, (5.27)

such that (5.21) is ful�lled.

These modi�cations allow for the analysis of inverse LQ di�erential games and their solution
sets in the case of symmetric or diagonal cost function matrices by means of the kernel of
Mi .

5.3.2 Su�cient Condition for Solution Sets

In the following, all possible parameters �i which lead to the same Nash equilibrium, provided
all other parameters �¬i are �xed, is denoted as the solution set of player i ∈  . This solution
set is de�ned by the non-trivial solutions of (5.21). Therefore, one way to characterize these
solutions is using the kernel of Mi . Its dimension will depend on the number of linearly in-
dependent equations generated by the nmi rows of Mi compared to the number of unknown
parameters Mi . Since rank(Mi) ≤ min(Mi , n mi), the number of players, states and controls of
each player as well as the assumed properties of the cost function matrices are important for
evaluating the existence of inverse di�erential game solutions.
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Proposition 5.1:
The solution set of player i is at least one-dimensional if the number of rows ofMi is strictly
less than the number of parameters in �i , i.e. ker(Mi) ≠ ∅ if nmi < Mi .

Proof:
The condition nmi < Mi implies rank(Mi) < Mi , leading to dim(ker(Mi)) > 0.

Proposition 5.1 gives a su�cient condition for the existence of vectors spanning the kernel
of Mi . The exact dimension of the kernel is de�ned by rank(Mi). The following example
illustrates the results of Theorem 5.2 and the solution set concept.

Example 5.2:
Consider an in�nite-horizon LQ di�erential game where two players control a double-
integrator system given by

ẋ(t) =
[

0 1

0 0]
x(t) +

[

0

1]
u1(t) +

[

0

1]
u2(t). (5.28)

The cost functions of the two players are given by (5.4) with Q1 = diag(1, 2) and Q2 =

diag(1, 0.7) as well as R11 = 1, R12 = R21 = 0 and R22 = 1. The parameter vector of player i is
given by

�i = [Qi,(1,1) Q
i,(2,2)

Rii] , i ∈ {1, 2}.

The game is solved by calculating the solution of the �nite-horizon version of the game, i.e.
solvin the corresponding RDEs (3.69), and extracting the converged value of Pi afterwards. The
resulting K ∗ represents a Nash equilibrium since the calculated Pi satis�es (5.7) for all players
and the closed loop stability of the system dynamics was con�rmed (cf. Theorem 5.1). The
calculated Nash equilibrium is (K ∗

1
, K

∗

2
) = ([0.5773 1.2827] , [0.5774 0.5882]).

The kernels of the matricesMi ∈ ℝ
2×3 are de�ned by the span of the vectors

v
(1)

1
= [v

(1)

1,(j)
]j=1,2,3 = [0.4083 0.8165 0.4083]

⊤ (5.29)

v
(1)

2
= [v

(1)

2,(j)
]j=1,2,3 = [0.6337 0.4437 0.6337]

⊤ (5.30)

which result in the canonical parameter set

� = {�iQ̂i , �iR̂ii}i=1,2, �i ∈ ℝ
+
, (5.31)

which consists of the solution sets of player 1 and 2 and where Q̂i = diag(v(1)
i,1
, v
(1)

i,2
) and R̂ii =

v
(1)

i,3
. This means that the cost function parameters are unique up to a constant parameter. In

particular, �1 = 2.4494 and �2 = 1.5779 lead to the de�ned ground truth parameters.
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As mentioned in the introduction of this section, the number of unknown parameters depend
on the properties of the matrices, which in turn have an in�uence on the possible dimensions of
each player’s solution set for the inverse LQ di�erential game. This aspect is further examined
in the following.

General Cost Function Matrices

In the case of arbitrary cost function matrices Mi = L = n
2
+ ∑

j∈ m
2

j
holds. Since nmi ≤

0.5(n
2
+ m

2

i
) < n

2
+ ∑

j∈ m
2

j
for any choice of n ,mj , ∀j ∈  and N ∈ ℕ

+, dim(ker(Mi)) > 0

follows. The su�cient condition of Proposition 5.1 is ful�lled.

Symmetric Cost Function Matrices

If we assume symmetry of all cost function matrices, then Mi = 0.5(n
2
+ n + ∑

j∈ (m
2

j
+ mj )).

Since

nmi ≤ 0.5(n
2
+ m

2

i
) < 0.5

(

n(n + 1) + ∑

j∈
mj (mj + 1)

)

= Mi

for any choice of n, mj , ∀j ∈  , and N ∈ ℕ
+, dim(ker(Mi)) > 0 holds. The su�cient condition

of Proposition 5.1 is ful�lled and the solution set of player i can be given in terms of the vectors
vi which span the kernel of Mi .

Diagonal Cost Function Matrices

Only in the case of diagonal matrices, where Mi = n + ∑
j∈ mj , combinations of n, mi , N

exist such that nmi ≥ Mi , thus potentially leading to an empty solution set. Here we note
that if rank(Mi) = Mi − 1, then the solution set of player i is one-dimensional and a unique
algebraic solution for player i’s parameters may be found by setting �

i,(j)
= 1 for one particular

j ∈ {1, ..., Mi} and proceeding analogously to [MZ18, Proposition 1], where the special case
N = 1 is considered. This is possible e.g. if n = 1 and m1 = 1 (besides N = 1).

The analysis of the su�cient condition for symmetric and diagonal cost function matrices is
illustrated in Figure 5.1 for the case N = 1. The number of equations (rows of Mi) and the
number of parameters Mi are shown as a function of the number of states n and the number
of controls mi . In Figure 5.1(a), which depicts the case of symmetrical cost function matrices,
the number of parameters Mi is always greater than the number of equations nmi such that
the solution set of player 1 is at least one-dimensional. In Figure 5.1(b), which depicts the case
of diagonal cost function matrices, we observe that there are combinations of n and mi which
lead to nmi ≥ Mi , thus not yet allowing for any conclusion concerning the solution set. In
turn, the situations where the kernel of Mi is guaranteed to not be empty in this scenario are
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Figure 5.1: Number of parameters and equations in the ILQDG problem depending on the number of states and
controls in a one-player LQ di�erential game. The red thick line/dot denotes the cases where nmi = Mi−1.

represented by the red thick line. It denotes the cases where nmi = Mi − 1 < Mi which ful�ll
the su�cient condition of Proposition 5.1.

These 3D maps are altered if N > 1 and in the general case where each player penalizes the
other players’ controls, i.e. Rij ≠ 0 for i ≠ j, i ∈  . The cases N = 2 and N = 3 are shown in
the Appendix C for further illustration of how the properties ofMi are a�ected by the number
of players, states and controls.

Remark 5.4:
The previous analysis shows the implications of nmi < Mi as a su�cient condition for the ex-
istence of a solution set for player i which is at least one-dimensional. The case nmi ≥ Mi de-
mands further attention, given that it potentially leads to an empty kernel of Mi— this occurs if
rank(Mi) ≥ Mi . Nevertheless, this does not imply that a solution of the inverse di�erential game
problem for player i does not exist. Indeed, the existence of a Nash equilibrium described by K ∗

implies the existence of at least one N-tuple � = � ∗ which generated the equilibrium.

In light of Remark 5.4, the next section presents a formulation of inverse LQ di�erential games
which allows to �nd a solution of the inverse di�erential game problem regardless of the pre-
sented properties. In addition, it facilitates the derivation of further general results concerning
the solution sets of each player.
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5.4 Quadratic Programming Formulation for Inverse
Linear-Quadratic Di�erential Games

The approach is based on the formulation of a residual function, analogously to De�nition
4.4, which denotes the extent to which the necessary and su�cient conditions for Nash equi-
libria are violated. Since the conditions are represented by the coupled ARE (5.7) and its re-
formulation (5.21), where the matrix Mi depends on the given matrices A, Bi , i ∈  and
K
∗
= (K

∗

1
, ..., K

∗

N
), the following residual is introduced.

De�nition 5.4 (Residual)
Let a function ri ∶ ℝ

Mi ↦ ℝ
nmi , i ∈  , be de�ned as

ri(�i) = Mi�i . (5.32)

The function ri is called residual of the coupled ARE (5.7).

The violation of the coupled ARE in terms of the residual function occurs if the parameters �i
do not represent a Nash equilibrium for given feedback control laws K ∗

i
and system dynamics

matrices A and Bi , i ∈  . While it would be possible to pose an optimization problem such
that ||ri || is minimized, it is computationally more convenient to consider a quadratic resid-
ual function. The following lemma is stated to relate the quadratic residual function to the
AREs.

Lemma 5.3
Let a LQ di�erential game be given by (5.1) and (5.4). Furthermore, let Assumption 5.1 hold.
The ARE (5.7) is ful�lled if and only if ||Mi�i ||

2
= 0.

Proof:
The proof is trivial given that the norm of a vector is zero if and only if the vector itself is a
zero-vector.

In light of Lemma 5.3, the optimization problem

min

�i

||ri(�i)||
2

2
= min

�i

1

2

�
⊤

i
Hi�i ,

s.t.

IMi
�i ≻ 0

Rii ≻ 0

(5.33)
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is posed, where Hi = 2(M⊤

i
Mi) ∈ ℝ

Mi×Mi and IMi
is an Mi-dimensional identity matrix. Anal-

ogously to the residual-based approach in Section 4.3.1, the aim of the optimization problem
(5.33) is to minimize the quadratic residual to obtain parameters �i which ful�ll the ARE.

Remark 5.5:
The constraint IMi

�i ≻ 0 in (5.33) is introduced in order to avoid trivial solutions. Literature
in inverse optimal control and inverse games often introduce the constraint �

i,(j)
= 1 for any

j ∈ {1, ..., Mi} (see note 25 in page 51). Analogous results concerning the properties of (5.33) can
easily be proved with this (additional) constraint. Also note that, in case of diagonal cost function
matrices, IMi

�i ≻ 0 ensures Rii ≻ 0.

5.4.1 Necessary and Su�cient Conditions for One-Dimensional
Solution Sets

In the following, the quadratic program (5.33) is leveraged to obtain insights on inverse LQ dif-
ferential games. The properties of the quadratic program (5.33) di�er considerably depending
on whether rank(Mi) is less, equal or greater than the number of parameters Mi . By consid-
ering the case nmi < Mi , which leads to rank(Mi) < Mi , the following proposition can be
stated.

Proposition 5.2:
Let a LQ di�erential game be given by (5.1) and (5.4) such that nmi < Mi . Then, the
quadratic program (5.33) is convex and a solution is guaranteed to exist.

Proof:
It is clear that both the constraint set de�ned by IMi

�i ≻ 0 and Rii ≻ 0 are convex and there-
fore, their intersection is also convex. Under the conditions nmi < Mi we obtain rank(Hi) =
rank(M

⊤

i
Mi) ≤ min(n mi , Mi) = n mi < Mi , leading to a convex—since M⊤

i
Mi ⪰ 0—but not

strictly convex objective function. Hence, the quadratic program is convex and therefore al-
ways has a solution.

The results of Proposition 5.2 are not surprising for the case where Assumption 5.1 holds, since
this guarantees that at least one solution for the parameters �i of a particular player i ∈ 
(and the ones generated by a multiplying positive constant) must exist. Note that solving the
optimization problem (5.33) leads to one of the solutions belonging to ker(Mi) (cf. Proposition
5.1 and Theorem 5.2), but it does not give any information on the dimensions of each player’s
solution set.

The following theorem is stated as the main result regarding the canonical parameter set of
inverse LQ di�erential games.
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Theorem 5.3 (Necessary and Su�cient Conditions for Uniqueness up to a Posi-
tive Factor)
Let a LQ di�erential game be given by (5.1) and (5.4). Furthermore, let Assumption 5.1 hold.
The inverse LQ di�erential game has a canonical parameter set of the form

� = {ci�i ; ci > 0, i ∈ }, (5.34)

if and only if rank(Mi) ≥ Mi − 1.

Proof:
First, consider the case nmi ≥ Mi . By the results of Lemma 5.3, the coupled ARE (5.7) are
ful�lled if and only if ||Mi�i ||

2
= 0. We therefore proceed to analyze the quadratic program

(5.33). IfMi has full rank, i.e. rank(Mi) = Mi , we obtainHi ≻ 0 and thus (5.33) is strictly convex.
Strict convexity leads to a unique solution of (5.33). Nevertheless, by the results of Corollary
5.1 the solution may be multiplied by a positive constant, leading to a one-dimensional solution
set.

Now consider the case where rank(Mi) = Mi − 1 which is only possible if nmi ≥ Mi − 1.
This leads to dim(ker(Mi)) = 1 and therefore, the solution set of each player i ∈  is one-
dimensional. The theorem assertion follows.

Theorem 5.3 gives necessary and su�cient conditions for the solution set of each player i
being one-dimensional, i.e. each player’s parameters �i are unique up to a real positive factor
ci .

Summarizing the results of this subsection, if the canonical parameter set has the form (5.34),
then a particular �i belonging to the corresponding solution set each player i can be computed
by means of the quadratic program (5.33). If the conditions of Theorem 5.3 are not ful�lled,
then with the results of Proposition 5.2, (5.33) yields any solution from the canonical parameter
set with non-unique parameters for each player i ∈  .

5.4.2 Identi�cation of Feedback Matrices

The optimization problem (5.33) always yields a solution which is associated with a given Nash
equilibrium represented byK ∗. If only observed Nash equilibrium control and state trajectories
are available, then it becomes necessary to estimate the control laws K ∗. For the N -player
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inverse di�erential game at hand, a least-squares identi�cation based on (5.2) is proposed. For
this purpose, let us introduce a �nite sequence of sampling times

i ∶= {tk ∈ [0, T ] ∶ 1 ≤ k ≤ Ki ∧ 0 ≤ t1 < ... < tKi ≤ T} (5.35)

for each player i ∈  , where [0, T ] is the time interval for which x∗(t) and u∗
i
(t) are available.

Let the value of the state and control trajectories at t
k

be denoted by x[k] and u[k]
i

, respectively.
Then, the feedback matrix can be estimated by means of

K̂i = argmin

Ki

Ki

∑

k=1

||Kix
[k]
+ u

[k]

i
||
2
, (5.36)

where || ⋅ || denotes the Euclidean norm. Least-square estimation theory states that the parame-
ters (in this case the entries of Ki) can be recovered if persistence of excitation (PE) conditions
are ful�lled [ÅW95, Section 2.4]. These conditions demand that the trajectories of x and ui
are "informative" enough and are e.g. not identical to zero. Furthermore, if the least-square
estimation is considered from a stochastic point of view, i.e.

u
[k]

i
= −Kix

[k]
+ �i , (5.37)

where �i ∈ ℝ
mi denotes a vector of zero-mean Gaussian white noise, then the estimation is

biasfree if �i(t) is independent of the state x(t) [ÅW95, P. 47]. The conditions for a bias-free
estimation are usually not given. For example, the state x(t) depends on the controls ui(t)
due to the system dynamics and is therefore not independent of the additive gaussian noise.
Nevertheless, the LS estimation works well in practice, as shown later in Chapter 7.

5.4.3 Algorithm and Example

The inverse LQ di�erential game method for determining a particular solution parameter vec-
tor �i of player i based on (5.33) can be implemented with the following algorithm.

Algorithm 2 IOC based method for player i in an inverse feedback LQ di�erential game.
Input: State and control trajectories x(t) and (u1(t), … , uN (t)), system matrix A, input matri-

ces Bi , ∀i ∈  .
Output: Computed player i cost function parameters �i .

1: Estimate K ∗

i
for all i ∈  with (5.36) and determine the corresponding closed-loop system

matrix F with (3.67).
2: Compute matrices Zi with (5.10) and K⊗

i
with (5.11).

3: Compute matrix Mi with (5.14).
4: Solve the quadratic optimization problem (5.33).
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Note that, similar to the methods presented in Chapter 4, Algorithm 2 may be used for cost
function parameter identi�cation of any player i ∈  in an N -player in�nite-horizon LQ dif-
ferential game. Furthermore, the method may also be applied for the special case of a single
player, i.e. an inverse LQ optimal control problem. The core of the presented approach is
the quadratic program which can be solved very e�ciently with state-of-the-art methods, e.g.
active-set and interior point methods [NW06, Chapter 16].

This section ends by the presentation of an example to illustrate Theorem 5.3 and the use of
Algorithm 2 to identify cost function parameters in an inverse LQ di�erential game.

Example 5.3:
Consider an in�nite-horizon LQ di�erential game where 2 players control a stabilizable linear
system de�ned by the di�erential equation

ẋ(t) =
[

1 −1

1 0 ]
x(t) +

[

1 0

0 1]
u1(t) +

[

1 0

0 1]
u2(t) (5.38)

and select their feedback strategies according to a cost function of the form (5.4) with cost
function matrices

Q1 =
[

1 0

0 1]
, Q2 =

[

1 0

0 10]
,

R11 =
[

1 0

0 1]
, R22 =

[

2 0

0 1]
,

R12 = 0, R21 = 0.

(5.39)

The vectorization of the cost function matrices according to (5.12) leads to a parameter vector
of dimension Mi = 4 given by

�i = [Qi,(1,1) Q
i,(2,2)

R
ii,(1,1)

R
ii,(2,2)] , i ∈ {1, 2},

whereQ
i,(j,j)

and R
ii,(j,j)

denote the j-th diagonal entry ofQi and Rii , respectively. Analogously
to the last example, the in�nite-horizon LQ di�erential game was solved by calculating the so-
lution of the corresponding RDEs (3.69) and extracting the converged value of Pi . The resulting
state and control trajectories x∗(t) and u∗

i
(t) were con�rmed to correspond to a stable system

and hence, to a Nash equilibrium.

In this example, the inverse method is given the resulting state and control trajectories x∗(t)
and u∗

i
(t) instead of the Nash equilibrium feedback matrices K ∗. Following Algorithm 2, these

trajectories were used to estimate the feedback matrices with the LS approach given in (5.36),
where a set i with T = 10 andKi = 501was selected according to (5.35). The Nash equilibrium
can be exactly estimated with deviations ||K̂i − K ∗

i
|| < 10

−14 for all i = {1, 2}. With K ∗
=
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(K
∗

1
, K

∗

2
), we obtain the matrices

M1 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.436 −0.026 0.466 −0.004

0.100 −0.027 0.053 −0.126

0.100 −0.027 −0.078 0.006

−0.032 −0.153 −0.020 0.204

⎤

⎥

⎥

⎥

⎥

⎦

(5.40)

and

M2 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.436 −0.026 0.530 −0.365

0.100 −0.027 0.144 −0.114

0.100 −0.027 0.264 −0.353

−0.032 −0.153 −0.048 1.655

⎤

⎥

⎥

⎥

⎥

⎦

. (5.41)

We �nd that rank(Mi) = Mi holds for i = {1, 2}, which indicates a one-dimensional solution
set for each player i according to Theorem 5.3. By solving the quadratic program (5.33) we
obtain the parameters

̂
�1 = [1.000 1.000 1.000 1.000]

̂
�2 = [0.602 6.024 1.204 0.602] .

(5.42)

The parameters � ∗
1
were exactly identi�ed, while for the second player, the parameters are

equal up to a multiplying constant. In particular, we have ̂
�2 = 0.6024 �

∗

2
.

5.5 Method Limitations

Prior to this chapter’s conclusion, possible limitations of the method are discussed. The �rst
issue is given, similar to last chapter, if e.g. only noise-corrupted measurements of the state
and control trajectories are available. Nevertheless, since the method relies on the feedback
control laws and these are estimated by the LS method, it can be conjectured that the method
has a considerable robustness to noise in the trajectories. This case shall be further examined
in Section 7.5. In addition, truncated trajectories do not represent a problem as long as these
ful�ll the PE condition mentioned in Section 5.4.2. Informative trajectories can potentially
ful�ll this condition even with a small number of values.

A further issue arises if an i ∈  exists such that Ki does not constitute a Nash equilibrium
feedback law with respect to any set of cost function matrices Qi , Rii , and Rij of the assumed
structure, e.g. symmetric. More generally, Ki might not be a Nash equilibrium for any set
of cost function matrices, regardless of their structure. This can occur e.g. if Ki is identi�ed
from trajectories x(t) and ui(t) which do not represent a Nash equilibrium. However, by the
results of Proposition 5.2, the existence of a solution to the quadratic program (5.33) is guaran-
teed, independently of the Nash character of the control laws. Since the presented quadratic
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programming approach is based on the coupled ARE which are necessary and su�cient con-
ditions for feedback Nash equilibria, the identi�cation results yield parameters which lead to
the Nash equilibrium feedback law which is the closest to the original observed feedback law.
The distance is measured in terms of the violation of the coupled AREs (cf. the discussion of
the experimental results in Section 8.8). However, this distance may not be proportional to or
correlate with the error between observed and identi�ed trajectories.

5.6 Conclusion

In this chapter, the inverse problem of in�nite-horizon LQ di�erential games was considered,
where a feedback Nash equilibrium is given and cost function parameters are sought which
explain this resulting equilibrium. The parameters correspond to the elements of the matri-
ces of the quadratic cost functions of the players and the Nash equilibrium is assumed to be
given in the form of an N -tuple of player feedback matrices. The solution of the inverse LQ
di�erential game was given in the form of an explicit set—the canonical parameter set—which
describes all possible cost function parameter vectors or matrices which lead to the same Nash
equilibrium, and was achieved by a reformulation of the necessary and su�cient conditions
for Nash equilibria. Importantly, su�cient conditions for the possibility of stating such ex-
plicit sets were given. In addition, these results were applied to formulate a quadratic program
which allows an e�cient computation of the cost function parameters. Moreover, the anal-
ysis of the resulting quadratic program allowed for the statement of necessary and su�cient
conditions for the uniqueness of the solution set of a particular player up to a multiplying
positive constant. Finally, it was demonstrated that the feedback matrices of all players can be
estimated out of Nash equilibrium state and control trajectories by using a least-squares ap-
proach. Consequently, all of the results developed in this chapter can be applied if, instead of
the player feedback matrices, observations of Nash equilibrium state and control trajectories
are available.

The results of this chapter represent solutions related to one of the questions Kalman stated:
"What optimization problems lead to a constant, linear control law?" (Problem A in [Kal64]).
This problem was recently considered in [MZ18] for single-player in�nite-horizon problems;
these results have been generalized for N -player di�erential games in this chapter.



6 Inverse Dynamic Games Based on Inverse
Reinforcement Learning

This chapter presents inverse dynamic game solutions such that cost functions which explain
observed behavior of several players can be found. The methods presented in this chapter
are based on inverse reinforcement learning techniques and on a discrete-time formulation
of the in�nite dynamic game. Therefore, the methods in this chapter represent an alternative
approach to the IOC-based methods of the previous two chapters. Nevertheless, there is a sim-
ilarity to the results of these aforementioned chapters, namely the development of an inverse
dynamic game method which does not rely on a repeated solution of the forward problem,
i.e. the repeated computation of Nash equilibrium state and control trajectories. After a short
introduction to the principle of maximum entropy, which represents the basis of the meth-
ods, the main contribution of this chapter is shown, namely the derivation of a probabilistic
method for inverse dynamic games based on Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL). The cases where the players’ behavior corresponds to an open-loop and a
feedback Nash equilibrium are considered. In addition, results on the unbiasedness of the
estimation of cost function parameters are presented. After providing further details which
are important for the practical implementation of these methods, examples for the solution of
inverse linear-quadratic dynamic games are given. The chapter ends with conclusions on all
presented results.33

6.1 Introduction to the Probabilistic Approach and
Maximum Entropy

In this thesis, the aim is the development of IRL methods for inverse dynamic games which
allow for continuous-valued control and state spaces, such that comparable methods to the
ones presented in Chapters 4 and 5 based on inverse optimal control can be obtained. The
inverse dynamic game problem is regarded in this chapter from a probabilistic perspective
which is introduced in the following.

33 Preliminary versions of the results of this chapter have been published in the conference paper [KIR+17]. The
chapter’s contents are based on the article [IBKH20].
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Figure 6.1: Example of a probability function for trajectories

For a simpli�ed presentation, consider the results of a dynamic game as a single trajectory
̃
� (t) which is assumed to stem from a probability function P(� ) de�ned over a �nite and dis-
crete set of (in this case �ve) possible trajectories � (t). This scenario is illustrated in Figure
6.1, where the observed trajectory ̃

� (t) = �
(3) is colored green. In this example, a probability

value is assigned to each of the �ve possible trajectories. Transferring this line of thought to
an inverse problem in dynamic games leads to the fact that one or several trajectories � are
observed, but their probabilities are unknown. The choice of a probability function which ex-
plains these observed trajectory is not unique, even if some constraints are introduced. This
problem becomes even more complex if the trajectories originate from a probability density
function p(� ) instead of the previously presented probability mass function P(� ) since this im-
plies a potentially in�nite number of possible trajectories. In order to resolve the ambiguity in
this kind of problem, the principle of maximum entropy can be applied. This was introduced
by Jaynes in [Jay57] as a means to infer probability distributions which are consistent with
experimental data.34 According to Jaynes, this method leads to the “least biased estimate pos-
sible on the given information”. This is illustrated e.g. by the fact that the distribution which
maximizes the entropy with the constraints of �xed and known expectation and variance is
the Gaussian distribution. Similarly, the maximum entropy distribution where no constraints
are introduced is the uniform distribution [CT06, Section 12.2].

34 Jaynes’ objective was to present a potential application of information theory results—obtained by Shannon
([Sha48])— to the �eld of statistical mechanics. The interested reader is also referred to [PGLD13] for a historical
review.
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This introduced probabilistic perspective of dynamic games constitutes the basis of the de�-
nition of the problem. Likewise, the principle of maximum entropy shall be leveraged for the
development of inverse dynamic game solutions presented in the next sections.

6.2 Problem De�nition

Consider an in�nite dynamic game in discrete time35, whereN players simultaneously control
a system with (potentially time-variant) dynamics of the form (see also De�nition A.1)

x
(k+1)

= f
(k)

D (
x
(k)
, u
(k)

1
, … , u

(k)

N )
(6.1a)

x
(1)
= x1. (6.1b)

The goal of each player i ∈  is to minimize its individual cost function by applying a control
strategy. The cost functions’ structure is assumed to be de�ned by a linear combination of
Mi ∈ ℕ known features36, i.e.

Ji = −

kE

∑

k=1

�
⊤

i
�i (

x
(k)
, u
(k)

1
, … , u

(k)

N )
, (6.2)

where kE ∈ ℕ>0, �i ∈ ℝ
Mi contains all features of player i de�ned analogously to De�nition

4.2 and �i ∈ ℝ
Mi represents the vector of player i’s individual feature weights, i.e. the cost

function parameters.

A main element of inverse problems in optimal control and dynamic games are the observed
state and control trajectories. Generally speaking, a trajectory consists of a sequence of values
according to the discrete-time formulation of the game. Therefore, the following de�nition is
introduced.

35 The discrete-time formulation is chosen following the line of a vast number of previous studies on single-player
IRL (cf. Section 2.1.3). The results of this chapter are based on de�nitions analogous to the ones in Chapter 3.
These discrete-time dynamic game de�nitions are given in Appendix A.

36 In this chapter, the term features is used instead of basis functions in order to be consistent to IRL literature. Fur-
thermore, in the following it is assumed that the feature functions in �i are independent of k. Their corresponding
values are still stage-dependent through the values of the states and the controls. In addition, note that the cost
function has been multiplied with a factor of −1. This is done in order to be congruent with IRL literature which
assumes a reward function to be maximized instead of a cost function to be minimized.
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De�nition 6.1 (Stacked State and Control Values)
Let

x =
[(
x
(1)

)

⊤

… (x
(kE )

)

⊤

]

⊤

∈ ℝ
nkE

, (6.3)

u
i
=
[(
u
(1)

i )

⊤

…
(
u
(kE )

i )

⊤

]

⊤

∈ ℝ
mikE

, (6.4)

∀ i ∈  , be vectors containing all values of the system state x(k) and the control values u(k)
i

of player i ∈  for all time steps k ∈ , respectively.

Furthermore, the following notation is introduced for a set of trajectories in accordance with
the system dynamics (6.1) which will facilitate a more compact representation of the results
of this chapter.

De�nition 6.2 (Trajectory Set)
A trajectory � ∶=

{

x, u
1
, … , u

N

}

is de�ned as a set containing the stacked values of the
system state x and the stacked control values u

i
of all players i ∈  , which is feasible with

respect to the system dynamics given by (6.1).

The estimation of the cost function parameters �i is based on an observed set of trajecto-
ries denoted by ̃

� ∶=

{

x̃, ũ
1
, … , ũ

N

}

which, following the probabilistic approach presented in
Section 6.1, is assumed to be sampled by a probability density function p (� | � ∗1, ..., � ∗N ) with
unknown parameters � ∗

1
, ..., �

∗

N
.

A further key value in IRL problems is the feature count (cf. [AN04, RBZ06, ZMBD08] in the
single-player case) which is introduced in the following.

De�nition 6.3 (Feature Count)
The feature count �i (� ) ∈ ℝ

Mi of a player i ∈  along a trajectory � is de�ned as a vector
containing the accumulated values of the features along that trajectory, i.e.

�i (� ) =

kE

∑

k=1

�i (
x
(k)
, u
(k)

1
, … , u

(k)

N )
, (6.5)

with x(k), u(k)
i

∈ � , ∀ i ∈  , k ∈ .
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Using the feature counts �i (� ) and (6.2), the costs along a trajectory � for any player i ∈ 
can be rewritten as

Ji (� , �i) = −�
⊤

i
�i (� ) . (6.6)

In the following and with some abuse of notation in favor of better readability, p (� | �1∶N )
represents the probability density of a trajectory � as a function of parameters �1, … , �N cor-
responding to the cost functions Ji , ∀i ∈  .

Having introduced these basic de�nitions, the inverse dynamic game problem considered in
this chapter is de�ned as follows.

De�nition 6.4 (Inverse Dynamic Game Based on IRL)
Find parameters ̂

�i , ∀ i ∈  , such that the expected costs of a trajectory sampled from the

probability density p
(
� |

̂
�1∶N)

resulting from the identi�ed parameters corresponds for each
player i ∈  to the expected costs of the observed trajectory sampled from the probability
density p (� | � ∗1∶N ), i.e.

E
p
(
� |
̂
�1∶N)

{Ji (� , �
∗

i
)}

!
= E

p( � |�
∗

1∶N
)
{Ji (� , �

∗

i
)} , ∀i ∈  . (6.7)

The requirement (6.7) arises from the demand of obtaining for each player a cost function that
results in an individual performance as good as the observed one, where the performance is
measured with respect to each player’s unknown true cost function Ji (� , � ∗i )37. Similar to the
inverse di�erential game problem of De�nition 4.3, De�nition 6.4 implies that we are interested
in �nding one parameter vector �i for each player i ∈  such that (6.7) holds, i.e. the dynamic
game with identi�ed cost function parameters is able to explain the observed trajectories.
This di�ers to the problem investigated in Section 5.2 where the complete solution set for
each player i ∈  is sought, since inverse problems in optimal control and dynamic games are
naturally ill-posed.

6.3 Maximum Entropy Distribution of Trajectories in
Dynamic Games

The principle of maximum entropy provides a means to resolve the ill-posedness issue such
that parameters can be found which solve the problem given in De�nition 6.4. In this section,
we transfer the maximum entropy approach to inverse dynamic games with N players. The
37 Similar objectives have been frequently de�ned in single-player IRL methods, see e.g. the seminal papers [NR00]

and [AN04].
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aim is to �nd a probability density function p (� | �1∶N ) which represents the probability of
trajectories � as a function of the parameters �1, … , �N , yet considering (6.7) as only constraint
or a-priori knowledge. Finding an expression for p (� | �1∶N ) shall provide a useful result on
our way towards the solution of inverse dynamic games with IRL.

In order to state a relationship between observed trajectories ̃
� and the probability distribution

p (� | �
∗

1∶N ) which generated them, the following assumption is made:

Assumption 6.1
The feature count of player i along the trajectory ̃

� (denoted as �̃i for all players i ∈ )
represents the expectation of the feature count E

p( � |�
∗

1∶N
)
{�i (� )} based on the probability

density function p (� | � ∗1∶N ) which results from the parameters � ∗
1
,. . . ,� ∗

N
, i.e.

E
p( � |�

∗

1∶N
)
{�i (� )} = �̃i , ∀i ∈  . (6.8)

Assumption 6.1 means that each observation ̃
�
l

is representative38. As no further information
is available, the sample mean is used as an estimate for the expectation of the feature count.
Furthermore, note that Assumption 6.1 implies that if nt ∈ ℕ>0 observed trajectories are
given, i.e. a set of trajectories  = {

̃
�1, … ,

̃
�nt
}, the expectation of the feature count of player

i is given by

E
p( � |�

∗

1∶N
)
{�i (� )} =

1

nt

nt

∑

l=1

�i (
̃
�
l) , (6.9)

where �i ( ̃�l) denotes the feature count of the observed trajectory ̃
�
l

with l ∈ {1, ..., nt}.

Lemma 6.1 (Path Feature Count Equivalence to Costs)

Let the expectation of the feature count be equal for both the probability density p
(
� |

̂
�1∶N)

resulting from the identi�ed parameters and the probability function p (� | � ∗1∶N ) with orig-
inal parameters � ∗

1
, ..., �

∗

N
, i.e.

E
p
(
� |
̂
�1∶N)

{�i (� )} = E
p( � |�

∗

1∶N
)
{�i (� )} (6.10)

for each player i ∈  . Then, for any parameters where ‖
‖
�
∗

i

‖
‖2
< ∞, (6.7) is ful�lled.

38 A representative sample is a typical sample of a population [Mar91]. The latter means in this context all possible
trajectories which can be generated from the assumed probability density function p ( � | � ∗1∶N ).
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Proof:
By rewriting (6.7), we can state the following relations:

0 ≤

|
|
|
|
|

E
p
(
� |
̂
�1∶N)

{J
∗

i
(� , �

∗

i
)} − E

p( � |�
∗

1∶N
)
{J
∗

i
(� , �

∗

i
)}

|
|
|
|
|

(6.11)

=

|
|
|
|
|

E
p
(
� |
̂
�1∶N)

{

�
∗

i

⊤
�i (� )

}

− E
p( � |�

∗

1∶N
)

{

�
∗

i

⊤
�i (� )

}
|
|
|
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|

(6.12)

≤
‖
‖
�
∗

i
‖
‖2

‖
‖
‖
‖
‖

E
p
(
� |
̂
�1∶N)

{�i (� )} − Ep( � |�
∗

1∶N
)
{�i (� )}

‖
‖
‖
‖
‖2

(6.13)

Therefore, if (6.10) holds, then the right side of (6.13) is equal to zero and hence, together with
the inequality in (6.11), this implies that (6.7) holds as well.

Lemma 6.1 represents the principle of matching feature expectations for all players. This prin-
ciple was introduced in [AN04] for N = 1 and used as a basis for numerous single-player IRL
methods.

Since the inverse dynamic game problem de�ned in De�nition 6.4 demands the ful�llment of
(6.7), by the results of Lemma 6.1 and using Assumption 6.1 we require

E
p( � |�1∶N )

{�i (� )} = �̃i , (6.14)

for each player i ∈  . Moreover, for a density function,

∫
∀�

p (� | �1∶N ) d� = 1 (6.15)

must apply. Since the conditions (6.14) and (6.15) do not lead to a unique solution for the
probability density function, the principle of maximum entropy is applied. For a continuous
density function the entropy corresponding to a probability density function is given by [CT06,
Section 8.1]

ℎ (p ( � | �1∶N )) = − ∫
∀�

p (� | �1∶N ) ln (p ( � | �1∶N )) d� . (6.16)

In order to determine a probability density function p (� | �1∶N ) which only takes the informa-
tion of (6.14) and (6.15) into consideration, the di�erential entropy (6.16) is maximized with the
requirements (6.14) and (6.15) as optimization constraints. The density function which leads
to maximum entropy in dynamic games is presented in the following lemma.
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Lemma 6.2 (Maximum Entropy Probability Distribution in Inverse Dynamic
Games)
Themaximum entropy distribution under the constraints de�ned by (6.14) and (6.15) is given
by

p (� | �1∶N ) =

exp (∑
N

i=1
�
⊤

i
�i (� ))

∫
∀�

exp
(

N

∑

i=1

�
⊤

i
�i (� )

)
d�

=

exp (∑
N

i=1
−Ji (� , �i))

∫
∀�

exp
(

N

∑

i=1

−Ji (� , �i)
)
d�

,

(6.17)

where the alternative representation given in the last equation follows from (6.6).

Proof:
A calculus-based approach is followed as suggested in [CT06, Section 12.1]. To maximize
the di�erential entropy (6.16) under the constraints given by (6.14) and (6.15), we introduce
Lagrange multipliers  ∈ ℝ and �i ∈ ℝ

Mi×1, ∀ i ∈  , and set up the objective function

Λ (p (� | �1∶N ) ,  , �1∶N ) =

−
∫
∀�

p (� | �1∶N ) ln (p ( � | �1∶N )) d� +  
(
∫
∀�

p (� | �1∶N ) d� − 1
)

+ �
⊤

1
(
∫
∀�

p (� | �1∶N ) �1 (� ) d� − �̃1
)
+ …

⋮

+ �
⊤

N
(
∫
∀�

p (� | �1∶N ) �N (� ) d� − �̃N
)
.

(6.18)

In this way, the expression

)Λ

)p (� | �1∶N )

= −
∫
∀�

ln (p ( � | �1∶N )) d� − ∫
∀�

p (� | �1∶N )
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d�
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1 d� + �
⊤

1 ∫
∀�

�1 (� ) d� + ⋯ + �
⊤

N ∫
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−ln (p ( � | �1∶N )) − 1 +  +

N

∑

i=1

�
⊤

i
�i (� )

)
d�

!
= 0

(6.19)



6.3 Maximum Entropy Distribution of Trajectories in Dynamic Games 97

gives a necessary condition for the sought probability density function. By inspecting (6.19)
we see that this condition is ful�lled if

− ln (p ( � | �1∶N )) − 1 +  +
N

∑

i=1

�
⊤

i
�i (� ) = 0. (6.20)

By reformulating (6.20), we obtain the probability density function of a trajectory � , i.e.

p (� | �1∶N ) = exp (−1 +  ) exp
(

N

∑

i=1

�
⊤

i
�i (� )

)
. (6.21)

Using (6.21), (6.15) is rewritten as

1 =
∫
∀�

p (� | �1∶N ) d�

= exp (−1 +  )
∫
∀�

exp
(

N

∑

i=1

�
⊤

i
�i (� )

)
d�

⇔ exp (−1 +  ) = 1

∫
�

exp
(

N

∑

i=1

�
⊤

i
�i (� )

)
d�

.

(6.22)

Inserting (6.22) in (6.21) leads to the probability density function (6.17). The entropy is maxi-
mized since

)
2
Λ

)p (� | �1∶N )
2
= −

∫
∀�

1

p (� | �1∶N )

d� < 0 (6.23)

for all p (� | �1∶N ) ≠ 0.

In order to obtain an estimate of the cost function parameters ̂
�i , i ∈  , it may appear suitable

to maximize the probability density function (6.17), analogously to similar 1-player IRL meth-
ods [ZMBD08, LK12]. However, given the dependence of (6.17) on the cost function parame-
ters of all players, it is not possible to solve for a particular �i . Nevertheless, if � corresponds
to a Pareto e�cient solution according to De�nition 3.9, then (6.17) can be used to identify
corresponding parameters ̂

�i which explain the observations. This approach is presented in
Appendix D.

The following sections present approaches to identify cost function parameters which explain
observed Nash equilibrium trajectories.
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6.4 Open-Loop Case

In this section, we shall consider inverse dynamic games where each player applies an open-
loop strategy (cf. De�nition A.4) and an open-loop Nash equilibrium (OLNE) arises from their
interaction.

A suitable probability density function p(� ) is sought which allows for the estimation of cost
function parameters.

6.4.1 Probability Density Function

The non-cooperative character of the dynamic game implies that each player only considers
his own cost function and strives for its minimization by means of the selected open-loop
strategy. From Theorem A.1 we see that the open-loop Nash equilibrium involves the solution
of a set of di�erential equations which includes derivatives of the system dynamics and the
features (which constitute the Hamiltonian) with respect to the system state x(k) and player
i’s controls u(k)

i
. The other players’ controls do not depend on either of these, and therefore,

they do not have any in�uence on player i’s actions.

Consequently, the following probability function

p (� | �i) =

exp (−Ji (� ))

∫
̃
�

exp (−Ji (
̃
� )) d

̃
�

=

exp (�
⊤

i
�i(� ))

∫
̃
�

exp (�
⊤

i
�i(

̃
� )) d

̃
�

(6.24)

is de�ned, which represents the probability (density) of a particular trajectory from the point
of view of player i. This density implies that the probability of a particular trajectory is in-
versely proportional to the costs generated by player i’s own individual cost function Ji de�ned
by player i’s cost function parameter set �i . This simpli�es the probability density function
p (� | �1∶N ) in such a way that N probability density functions p (� | �i) which depend on each
player’s cost function parameters �i are considered instead of one single probability density
function which depends on all parameters.

Considering a possible total number of nt demonstrations, the following likelihood function
is de�ned based on the introduced probability density function.
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De�nition 6.5 (Likelihood Function)
Let a set of nt trajectories denoted by  = {

̃
�1, ...,

̃
�nt
} be given. Then the likelihood of the

data given a parameter vector �i is de�ned as

(�i ∣ ) =
nt

∏

l=1

p (
̃
�
l
∣ �i) , (6.25)

where p ( ̃�l ∣ �i) is obtained by evaluating (6.24) at ̃�
l
, l ∈ {1, ..., nt}.

The likelihood describes the probability density of the trajectories when the parameters are set.
Moreover, it is a function of �i . With this function, the foundation for a maximum likelihood
estimation (MLE) of the cost function parameters is given. In order to show that maximizing
the likelihood leads to an unbiased estimation of the cost function parameters, the following
assumption adapts Assumption 6.1 (and (6.9)) to probability density functions depending only
on the parameters �i of one player i ∈  as de�ned in (6.24).

Assumption 6.2 (Expectation and Mean Equivalence)
The mean of the feature count of the nt observed trajectories is equal to the expectation of
the feature count of the trajectories resulting from the probability density function with
original parameters � ∗

i
, i.e.

E
p( � |�

∗

i
)

{

�j (� )

}

=

1

nt

nt

∑

l=1

�j (
̃
�
l) , ∀ i, j ∈  . (6.26)

6.4.2 Cost Function Estimation and Unbiasedness Results

Before presenting the unbiasedness of the MLE as the main result for inverse non-cooperative
dynamic games of this chapter, an alternative de�nition of the cost functions which will be
convenient for the proof of the main theorem.
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De�nition 6.6 (Extended Features, Feature Count and Parameter Vector)
Let �̄ denote an extended feature vector which includes all features �

i,(q)
, i ∈  , q ∈

{1, … ,Mi} of all N players such that ̄
�
(r)

≠
̄
�
(s)

for all r , s ∈ {1, … , dim(�̄)} and r ≠ s.
In other words, the extended feature vector �̄ consists of the feature vectors �i of all players
such that no feature is included more than once and all features are linearly independent of
each other. The extended feature count �̄(� ) is de�ned analogously according to De�nition
6.3. Furthermore, let the extended parameter vector ̄

�i be de�ned such that

Ji(� ) = �
⊤

i
�i(� ) =

̄
�
⊤

i
�̄(� ), i ∈  . (6.27)

Remark 6.1:
For (6.27) to hold, ̄

�i has to include zeros in the positions corresponding to the elements of �̄
representing features which were not in �i previously.

Remark 6.2:
Assumption 6.2 leads to

E
p( � |�

∗

i
)
{�̄(� )} =

1

nt

nt

∑

l=1

�̄ (
̃
�
l) , ∀ i ∈  , (6.28)

for the extended feature count �̄(� ).

The following theorem presents the method for estimating cost function parameters from
open-loop Nash equilibrium trajectories and states the unbiasedness of the estimation.

Theorem 6.1 (Unbiasedness of the Estimation)
Let a set of trajectories = {

̃
�1, … ,

̃
�nt
} for which Assumption 6.2 is ful�lled be given. Then,

the MLE with respect to the observed trajectories, i.e.

̂
�i = arg max

�i

ln  {�i |} , (6.29)

where  {�i |} is obtained by evaluating the likelihood function of De�nition 6.5 at ̃
�
l
,

l ∈ {1, ..., nt}, leads to parameters ̂
�i such that p

(
� |

̂
�i)

results in an expectation of the cost

function values Jj (� , � ∗j ), ∀j ∈  which is equal to the one corresponding to p (� | � ∗i ), i.e.

E
p
(
� |
̂
�i)

{

Jj (� , �
∗

j )

}

= E
p( � |�

∗

i
)

{

Jj (� , �
∗

j )

}

, (6.30)

holds for all i, j ∈  .
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Proof:

Using the the extended parameter vector ̄
�i introduced in De�nition 6.6, (6.30) can be rewritten

as
E
p
(
� |
̂̄
�i)

{

Jj (� ,
̄
�
∗

j )

}

= E
p( � |

̄
�
∗

i
)

{

Jj (� ,
̄
�
∗

j )

}

(6.31)

for all i, j ∈  . Therefore, (6.31) shall be proved in the following.

The maximization of the log-likelihood function (6.29) implies

0
!
=

)

)
̄
�i

nt

∑

l=1

ln

⎛

⎜

⎜

⎜

⎜

⎝

exp (
̄
�
⊤

i
�̄(
̃
�
l
))

∫
�

exp (
̄
�
⊤

i
�̄(� )) d�

⎞

⎟

⎟

⎟

⎟

⎠

|
|
|
|
|
|
|
|
| ̄
�i=

̂̄
�i

(6.32)

=

nt

∑

l=1

)

)
̄
�i

(
−ln

(
∫
�

exp (
̄
�
⊤

i
�̄(� )) d�

)
+
̄
�
⊤

i
�̄(
̃
�
l
)
)

|
|
|
|
| ̄�i=

̂̄
�i

(6.33)

=

nt

∑

l=1

⎛

⎜

⎜

⎜

⎜

⎝

∫
�

−exp (
̄
�
⊤

i
�̄(� )) �̄(� ) d�

∫
̌
�

exp
(

̄
�
⊤

i
�̄(
̌
� )
)
d
̌
�

+ �̄(
̃
�
l
)

⎞

⎟

⎟

⎟

⎟

⎠

|
|
|
|
|
|
|
|
| ̄
�i=

̂̄
�i

. (6.34)

Since the integrals in the numerator and the denominator in (6.34) are independent of each
other, (6.34) can be rewritten as

0
!
=

nt

∑

l=1

⎛

⎜

⎜

⎜

⎜

⎝

∫
�

−exp (
̄
�
⊤

i
�̄(� )) �̄(� )

∫
̌
�

exp
(

̄
�
⊤

i
�̄(
̌
� )
)
d
̌
�

d� + �̄(
̃
�
l
)

⎞

⎟

⎟

⎟

⎟

⎠

|
|
|
|
|
|
|
|
| ̄
�i=

̂̄
�i

. (6.35)

Using the de�ned probability density function (6.24), we obtain

0
!
=

nt

∑

l=1
(
−
∫
�

p (� |
̄
�i) �̄(� ) d� + �̄(

̃
�
l
)
)

|
|
|
|
| ̄�i=

̂̄
�i

=

nt

∑

l=1(

−E
p
(
� |
̂̄
�i)

{�̄(� )} + �̄(
̃
�
l
)

)

. (6.36)

By rewriting (6.36) and considering Assumption 6.2 and Remark 6.2,

E
p
(
� |
̂̄
�i)

{�̄(� )} =

1

nt

nt

∑

l=1

�̄(
̃
�
l
) = E

p( � |
̄
�
∗

i
)
{�̄(� )} (6.37)
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results. Therefore, the expectations of the feature count �̄ are equal for both probability den-
sity functions. By applying the results of Lemma 6.1 (which also hold for a probability density
function p(� | �i)) we conclude that (6.37) leads to (6.31) which is equivalent to (6.30).

The results of Theorem 6.1 guarantee (6.30), which at �rst glance di�ers from the requirement
(6.7) posed in the inverse dynamic game problem in De�nition 6.4. However, for inverse open-
loop dynamic games, it was proposed to consider N probability density functions p (� | � ∗i )
instead of a single one given by p (� | � ∗1∶N ). Therefore, instead of the equivalence of expected
costs with respect to this initially assumed probability density function p (� | � ∗1∶N ), we obtain
the equivalence of expected costs for all players j ∈  with respect to each of the N probability
density functions p (� | � ∗i ) as stated in (6.30). Consequently, the estimated parameters ̂

�i solve
the inverse dynamic game problem for an open-loop information structure.

Remark 6.3:
Solving the optimization problem (6.29) demands the possibility of evaluating the likelihood func-
tion  {�i |} and therefore the probability density function (6.24) at the trajectories � ∗

l
. The

denominator in (6.24) includes an integral over all trajectories � which are feasible with respect
to the system dynamics and an initial state. Calculating this integral is intractable given the
continuous-valued control and action spaces. Therefore, approximations are usually applied. This
will be tackled in Section 6.6.

6.5 Feedback Case

In this section, solutions for inverse dynamic games with the feedback Nash equilibrium (FNE)
as a solution concept are presented. Therefore, the MPS and feedback information structures
according to De�nition A.3 are considered. The resulting strategies are given by39

u
(k)

i
= 


(k)

i
(x
(k)
). (6.38)

The following assumption is needed for the results of this section.

Assumption 6.3 (Control Laws)
The Nash equilibrium control laws 
 (k)∗

i
(x
(k)
), k ∈  are known for all players i ∈  .

39 According to [BO99, p. 278], the feedback Nash equilibrium solution under the MPS information pattern solely
depends on x (k) at the time step k. The dependency on x (1) is given only for k = 1. Therefore, we have feedback
strategies as in De�nition A.5 for both MPS and FB information structures.
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For the case of a �nite-horizon dynamic game, i.e. kE ∈ ℕ, Assumption 6.3 demands the
knowledge of the exact (time-dependent) function 
 (k)∗

i
(x
(k)
). This case is analogous to As-

sumption 4.3 for inverse feedback di�erential games. In case of an in�nite-horizon (kE →∞)
dynamic game, Assumption 6.3 implies that the time-independent functional relationship of


(k)

i
to x(k) is known.

Remark 6.4:
Assumption 6.3 is rather restrictive for general nonlinear feedback Nash equilibria. However, not
only the estimation of the control law is non-trivial, but also the calculation of the equilibria
themselves which implies the solution of coupled partial di�erential equations (see Theorem 3.2)
or coupled Bellman equations (see Theorem A.2). On the other hand, Assumption 6.3 is not restric-
tive for in�nite-horizon linear-quadratic dynamic games, since the Nash equilibrium controls are
given by



(k)∗

i
(x
(k)
) = K

∗

i
x
(k)
, (6.39)

with K ∗

i
∈ ℝ

mi×n [Eng05, Section 8.3]. As mentioned in Section 5.4.2, the estimation of K ∗

i
can

easily be performed by means of a least-squares approach.

If Assumption 6.3 holds, the control laws of the players j ∈  , j ≠ i can replace u(k)∗
j

in (6.1),
leading to system dynamics from player i’s perspective de�ned as

x
(k+1)

= f
(k)

(
x
(k)
, u
(k)

i
, 


(k)∗

¬i (
x
(k)

))

= f
(k)

i (
x
(k)
, u
(k)

i )
. (6.40)

In this way, it is possible for player i to represent the system dynamics as a function of the
system state x and his own control variable ui . The e�ect of the other players’ controls are
considered due to the implied knowledge of the control laws and the system state in every time
step. Analogously, the features �i of player i’s cost function can be rewritten as a function of
the state x and the control variables ui , i.e.

�i = �i(x
(k)
, u
(k)

1
, … , u

(k)

N
)

= �i (
x
(k)
, u
(k)

i
, 


(k)∗

¬i (
x
(k)

))

= �i (
x
(k)
, u
(k)

i )
,

(6.41)

where the same vector �i is used with some mathematical freedom in favor of a simpli�ed pre-
sentation. Based on the system dynamics from player i’s perspective (6.40) and the rewritten
features (6.41), the following theorem is presented which describes the method for an unbi-
ased maximum likelihood estimation of cost function parameters in an inverse feedback Nash
dynamic game.
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Theorem 6.2 (Unbiasedness of the Estimation)
Let a set of trajectories  = {

̃
�1, … ,

̃
�nt
} be given such that Assumption 6.2 is ful�lled. Fur-

thermore, let Assumption 6.3 hold such that the feedback Nash control laws 
 (k)∗
i

are known
for all i ∈  . Then, the MLE with respect to the observed trajectories, i.e.

̂
�i = arg max

�i

ln  {�i |} (6.42)

where  {�i |∗
} is obtained by evaluating the likelihood function of De�nition 6.5 at � ∗

l
,

l ∈ {1, ..., nt} and with respect to the system dynamics (6.40), leads to parameters ̂
�i such

that
E
p
(
� |
̂
�i)

{

Jj (� | �
∗

j )

}

= E
p( � |�

∗

i
)

{

Jj (� | �
∗

j )

}

(6.43)

holds for all i, j ∈  (cf. Theorem 6.1).

Proof:
The cost functions Ji , i ∈  can be rewritten using the modi�ed features (6.41). Afterwards,
the theorem can be proved analogously to Theorem 6.1.

6.6 Practical Aspects

The results of the previous sections provide the theoretical foundation for the application of
MaxEnt IRL for the solution of inverse dynamic game problems. The core of the method is
the MLE based on the probability density functions p (� | � ∗i ). The focus of this section is laid
on the computation of the MLEs which yield cost function parameters ̂

�i explaining observed
results of a dynamic game. This poses the practical challenge of evaluating the probability
density function (6.24) and with that result, the likelihood function (6.25). This is the main
objective approached in this section.

6.6.1 Approximation of the Probability Density Function

The integral in the denominator of (6.24) is computationally intractable and therefore, an ap-
proximation is necessary. This may be achieved by replacing the integral with a sum over
several trajectory samples which have to be generated from a previously de�ned probability
distribution [KPRS13, MHB16] or determined in each iteration from a forward optimal control
or dynamic game solution with current cost function parameter candidates [AB11]. Which
sampled trajectories are chosen has a great impact on the estimation of cost function param-
eters (cf. [AB11]). In order to avoid the problem of choosing adequate samples, in this thesis
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the integral and therewith, the probability density functions are approximated locally. The
following procedure is inspired by the approach proposed in [LK12] for a single-player case.
Nonetheless, some modi�cations are introduced and will be explained when suitable.

Consider any player i ∈  . Given an observed trajectory ̃
�
l
, l ∈ {1, 2, ..., nt}, and consequently,

the control trajectories ũ
¬i,l

of all other players, we can formulate the costs Ji( ̃�l , �i) of player
i generated by ̃

�
l

such that only variations of his own control trajectory ũ
i,l

are taken into
account, i.e. the costs are formulated as Ji (ui , ũ¬i,l , �i). Local approximations of the observed
trajectory ̃

�
l

are considered which arise from the aforementioned variations of u
i,l

while the
other players’ controls ũ

¬i,l
remain unchanged. Hence, we approximate the cost function

Ji (ui , ũ¬i,l , �i) by means of a second-order Taylor series expansion around the observed con-
trols ũ

i,l
corresponding to the trajectory ̃

�
l
. This results in

Ji (ui , ũ¬i,l , �i) ≈ Ji (ũi,l , ũ¬i,l , �i) + (ui − ũi,l)

⊤

g̃
i,l
(�i)

+

1

2
(ui − ũi,l)

⊤

G̃
i,l
(�i) (ui − ũi,l) ,

(6.44)

where g̃
i,l
(�i) ∈ ℝ

mikE and G̃
i,l
(�i) ∈ ℝ

mikE×mikE denote the �rst and second derivative of Ji
with respect to u

i
, respectively, i.e.

g̃
i,l
(�i) ∶=

dJi
du

i

|
|
|
|u
i
=ũ

i,l

(6.45)

G̃
i,l
(�i) ∶=

d2Ji
du2

i

|
|
|
|
|u
i
=ũ

i,l

. (6.46)

In the following, g̃
i,l
(�i) and G̃

i,l
(�i) are written as g̃

i,l
and G̃

i,l
, respectively, for brevity.

By reformulating (6.24) using the Taylor series based approximation (6.44) of the cost func-
tion and considering that the observed trajectory ̃

�
l

is (with �xed �i) uniquely de�ned by the
controls ũ

i,l
with given ũ

¬i,l
and the initial state x(1), the probability density function can be

evaluated at ̃�
l

using the relation

p
(
ũ
i,l

|
|
|
ũ
¬i,l

, x
(1)
, �i)

=

e−Ji( ũi,l
|
|
|
ũ
¬i,l

,x
(1)
,�i)

∫

∞

−∞

e−Ji(ui |ũ¬i,l ,x
(1)
,�i) du

i

≈ e(−
1

2
g̃
⊤

i,l
G̃
−1

i,l
g̃
i,l)

det (G̃i,l)

1

2
(2�)

−

dim(ũ
i,l
)

2 . (6.47)

This leads to the log-likelihood function

ln ({�i ∣ }) ≈
nt

∑

l=1
(
−

1

2

g̃
⊤

i,l
G̃
−1

i,l
g̃
i,l
+

1

2

ln (det(G̃i,l )) −

1

2

dim (ui,l)
ln (2�)

)
(6.48)
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which can be used for the MLEs stated in Theorems 6.1 and 6.2. The detailed calculation steps
are provided in Section B.5 of the Appendix.40

Therefore, in order to evaluate (6.24), the �rst derivative g̃
i,l

and the second derivative G̃
i,l

are
needed. Their calculation is explained in the following.

6.6.2 Evaluation of the Log-Likelihood Function

By applying the chain rule, the �rst and second derivatives of the cost function are given by

g̃
i,l
= ∇u

i
Ji + (∇u

i
x)

⊤

∇x Ji

|
|
|
u
i
= ũ

i,l

x = x̃
l

, (6.49)

and41

G̃
i,l
= ∇u

i
u
i
Ji + (∇u

i
x)

⊤

∇xx Ji∇u
i
x + ∇u

i
u
i
x ×1 ∇x Ji + 2∇u

i
x Ji∇u

i
x
|
|
|
u
i
= ũ

i,l

x = x̃
l

, (6.50)

where ∇u
i
Ji and ∇x Ji denote the partial derivatives of Ji with respect to u

i
and x , respectively.

Likewise, ∇u
i
u
i
Ji , ∇xx Ji and ∇u

i
x Ji represent second-order partial derivatives of Ji with respect

to u
i

and x . The partial derivative ∇u
i
x is de�ned analogously. The term ∇u

i
u
i
x is used with

some abuse of notation to represent a third-order tensor such that ×1 represents a 1-mode
tensor multiplication [KB09, Section 2.5].42

In the following, we elaborate on the structure of the partial derivatives which form g̃
i,l

and G̃
i,l

as given in (6.49) and (6.50), with the partial derivatives with respect to x as an example. With
the assumed structure of the cost function (6.2), we obtain the �rst-order partial derivative

∇x Ji = − [(∇x�i) �i |x(k)=x(1)
… (∇x�i) �i |

x
(k)
=x

(k
E
)]

⊤

∈ ℝ
nkE , (6.51)

where, unless otherwise speci�ed, ∇x�i denotes the partial derivative of�i with respect to x(k).
The second-order partial derivatives of the cost function ∇xx Ji , ∇u

i
u
i
Ji and ∇u

i
x Ji are block

diagonal matrices since the costs at time step k only depend on the states x(k) and controls
u
(k)

i
at time step k. Therefore, we obtain

∇xx Ji = blkdiag

(

−

Mi

∑

l=1

∇xx�i,(l)�i,(l)

|
|
|
|
|x(k)=x(1)

, … , −

Mi

∑

l=1

∇xx�i,(l)�i,(l)

|
|
|
|
|x(k)=x

(k
E
))

, (6.52)

40 Note that (6.44) and (6.48) yield equalities in the case of quadratic cost functions.
41 The last term in (6.50) was neglected in [LK12]. Nevertheless, it can only be neglected if there are no features which

depend on both x and ui , i.e. �i,(j)(x, ui ) is equal to either �i,(j)(x) or �i,(j)(ui ) for all i ∈  and all j ∈ {1, ..., Mi}.
42 For the 1-mode tensor multiplication we obtain ∇u

i
u
i
x ×1 ∇x Ji = (∇x Ji)

⊤

∇u
i
u
i
x ∈ ℝ

1×mikE×mikE , which can be
represented as a matrix of dimensions mikE × mikE .
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where blkdiag(⋅) denotes a block diagonal matrix. In this case, there are kE blocks of dimension
n × n. The other partial derivatives can be computed analogously to (6.51) and (6.52).

The partial derivative ∇u
i
x describes the sensitivity of x with respect to ui for all time steps

as a consequence of the system dynamics. Since present actions are not in�uenced by future
actions, the matrix

Di ∶= ∇u
i
x
|
|ui= ũi,l

x = x̃
l

(6.53)

is de�ned, where Di is a block upper triangular matrix. The blocks within Di are given by

D
(k2,k1)

i
=

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

∇
u
(k)

i

x
(k+1)

|
|
|
|k=k1

, for k2 = k1 + 1

(∇x(k)
x
(k+1)

)D
(k2−1,k1)

i

|
|
|k=k2−1

, for k2 > k1 + 1

0, else.

(6.54)

The blocks D(k2,k1)
i

, k1, k2 ∈  have the dimension n × mi and represent the in�uence of the
player i’s control at time step k2 on the states at time step k1. These partial derivatives can
be interpreted as part of the numerical solution of the initial value problem which approxi-
mates the next state. The matrix Di employs the partial derivatives with respect to ui in each
time step for the whole corresponding time interval between two time steps. Contrary to this
approach, a modi�cation of the matrix Di is proposed here in order to improve the approxi-
mation. Inspired by the trapezoid method for solving initial value problems [Epp13, Section
6.5], the e�ect of u(k2) at k2 on x(k1) is approximated by means of

D̃
(k2,k1)

i
∶=

1

2
(
∇
u
(k
2
)x
(k1)

+ ∇
u
(k
2
)x
(k1+1)

)

⊤

=

1

2
(
D
(k2,k1)

i
+ D

(k2,k1+1)

i )
.

(6.55)

The modi�ed matrix D̃i , which is built with the blocks D̃(k2,k1)
i

analogously to D with (6.54),
takes into account the e�ect of the control value u(k2)

i
on the interval of x(k1) until x(k1+1) and

yields a better approximation of the system dynamics.43

Contrary to the aforementioned partial derivatives, the term ∇u
i
u
i
x is a third-order tensor

and does not exhibit a convenient structure for its computation. Therefore, following the
recommendations in [LK12], this term is neglected in favor of more e�cient calculations.44

43 This modi�cation was applied in experimental work presented in [IEFH18].
44 Neglecting this term does not have any e�ect for most problems. For example, this term is always zero for the

broad class of nonlinear control-a�ne systems (3.11).
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6.6.3 Algorithms

The results presented in the previous sections are condensed in two algorithms for the so-
lution of inverse dynamic games by means of MaxEnt IRL. The algorithms summarize the
procedure for cost function identi�cation in a dynamic game when an open-loop information
structure or a feedback information structure (and corresponding Nash equilibria) lie at hand.
The following Algorithm 3 corresponds to the open-loop case.

Algorithm 3 IRL Method in Open-Loop Dynamic Games for Player i.
Input: Observed trajectory set , dynamics f , basis functions �i .
Output: Computed player i cost function parameters �i .

1: Determine the derivatives of the features ∇x�i , ∇ui�i , ∇xx�i , and ∇uiui�i .
2: Determine the matrix D̃i with (6.55).
3: Determine the �rst and second derivatives g̃

i,l
and G̃

i,l
evaluated at the trajectories ̃

�
l

by
means of (6.49) and (6.50), respectively.

4: Calculate the MLE according to (6.29) using the log-likelihood function (6.48).
5: return �i .

The next Algorithm 4 gives the necessary steps for solving inverse dynamic games with a
feedback information structure based on MaxEnt IRL.

Algorithm 4 IRL Method in Feedback Dynamic Games for Player i.
Input: Observed trajectory set , dynamics f , basis functions �i .
Output: Computed player i cost function parameters �i .

1: Determine the system dynamics with respect to player i by means of (6.40) and the features
according to (6.41).

2: Determine the derivatives of the features ∇x�i , ∇ui�i , ∇xx�i , and ∇uiui�i .
3: Determine the matrix D̃i with (6.55).
4: Determine the �rst and second derivatives g̃

i,l
and G̃

i,l
evaluated at the trajectories ̃

�
l

by
means of (6.49) and (6.50), respectively.

5: Calculate the MLE according to (6.42) using the log-likelihood function (6.48).
6: return �i .

Remark 6.5:
Step 1 and Step 2 of Algorithms 3 and 4, respectively, can also be calculated prior to the identi�-
cation procedure since they are independent of the observed data.
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Remark 6.6:
The methods shown in this chapter are formulated for a �nite-horizon problem, i.e. kE ∈ ℕ>0 in
(6.2). However, all results can still be applied if the assumed underlying LQ dynamic game has an
in�nite horizon kE →∞. The presented method solely requires the availability of observed state
trajectories x ∈ ℝ

nKi and u
i
∈ ℝ

miKi where Ki ≪ ∞ (cf. De�nition 6.1). For adequate results,
[0; Ki] should be a su�ciently representative interval of the complete time span [0, ∞).

6.7 Application to Inverse LQ Dynamic Games

This section presents an exemplary application of IRL for solving inverse LQ dynamic games
in order to illustrate the procedures presented in Algorithms 3 and 4. In the following, both
inverse open-loop dynamic games and inverse feedback dynamic games are examined.

6.7.1 Open-Loop

Consider N -player LQ dynamic games according to De�nition A.7. Therefore, each player
applies his controls to a system described by the di�erence equation

x
(k+1)

= A
(k)

D
x
(k)
+

N

∑

j=1

B
(k)

D,j
u
(k)

j
. (6.56)

Furthermore, each player i ∈  selects an open-loop strategy 
 (k)
i

= u
(k)

i
(cf. De�nition A.4)

based on a quadratic cost function of the form

Ji = −

1

2

kE

∑

k=1
((
x
(k)

)

⊤

Qix
(k)
+
(
u
(k)

i )

⊤

Riiu
(k)

i
)
, (6.57)

where Qi and Rii ≺ 0 are symmetric matrices.45 The cost function (6.57) does not include the
terms which penalize the controls u(k)

j
, j ≠ i of all other players (cf. (A.16)). This is due to

the fact that these controls do not have any in�uence on the solution of open-loop dynamic
games and therefore can be neglected. This follows e.g. from the necessary conditions for
Nash equilibria given in Theorem A.1.

In order to apply the results of the previous sections to linear-quadratic dynamic games, it
is necessary to reformulate quadratic objective functions such that the structure in (6.2) is
obtained. Furthermore, the partial derivatives of the states with respect to the controls have
a particular structure in the case of linear system dynamics. These aspects will be examined
and presented in the following.
45 The negative sign is considered in this chapter according to (6.2) and thus Rii is negative de�nite instead of positive

de�nite to ensure a meaningful problem.
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Features in LQ Open-Loop Dynamic Games

The features in the vector �i which correspond to the 1

2
(n
2
+ n) non-redundant elements of

the matrix Qi are given by

�
Qi

i,rc
= −

1

2

x
(k)

r x
(k)

c , c = 1, … , n, r = 1, … , c. (6.58)

Similarly, for the 1

2
(m

2

i
+mi) parameters of the symmetric matrix Rii , we obtain the features

�
Rii

i,rc
= −

1

2

u
(k)

i,r
u
(k)

i,c
, c = 1, … ,mi , r = 1, … , c. (6.59)

For r = c, the parameters which are multiplied with �
Qi

i,rc
and �Rii

i,rc
correspond to the r-th di-

agonal entry of the matrix Qi and Rii , respectively. For the case where c ≠ r , these parameters
correspond to two times the o�-diagonal (symmetric) entries Qi,rc = Qi,cr and Rii,rc = Rii,cr ,
respectively.

System Dynamics

The linear system dynamics lead to the relations

∇
x
(k)x

(k+1)
= A

(k)

D
and ∇

u
(k)

i

x
(k+1)

= B
(k)

D,i
. (6.60)

Then, D̃i can be determined with (6.54) and (6.55).

The following example illustrates the solution of an inverse dynamic game with MaxEnt IRL
to identify cost function parameters:

Example 6.1:
Consider a two-player discrete-time dynamic game with system dynamics (6.56) de�ned by
the matrices

A
(k)

D
=
[

1 0.02

0 1 ]
, B

(k)

D,i
=
[

0.0002

0.02 ]
, i ∈ {1, 2}, k ∈  (6.61)

and the initial value x(1) = [1 −1]

⊤. These matrices correspond to a continuous-time double-
integrator system (cf. Example 5.2) sampled with ΔT = 0.02 s. In addition, let the quadratic
cost function of the players be given by (6.57), where

Q1 = −
[

4 1

1 3]
, R11 = −1, Q2 = −

[

10 1

1 2]
, R22 = −1. (6.62)
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Then, the features corresponding to the cost function of player i are given by

�
Qi

i,11
= −

1

2
(
x
(k)

1 )

2

, �
Qi

i,12
= −

1

2

x
(k)

1
x
(k)

2
,

�
Qi

i,22
= −

1

2
(
x
(k)

2 )

2

, �
Rii

i,11
= −

1

2
(
u
(k)

i )

2

.

(6.63)

The cost functions Ji of player i can be rewritten as

Ji = −

kE

∑

k=1

[
�
i,(1)

�
Qi

i,11
+ �

i,(2)
�
Qi

i,12
+ �

i,(3)
�
Qi

i,22
+ �

i,(4)
�
Rii

i,11]
, i ∈ {1, 2}. (6.64)

with the cost function parameters

�1 = �
∗

1
= [4 2 3 1]

⊤

,

�2 = �
∗

2
= [10 2 2 1]

⊤

.

Now we assume kE = 250 and use the coupled Riccati equations (3.60) to calculate the
OLNE46and obtain the trajectory set � ∗. The state and control trajectories belonging to this
set are corrupted by Gaussian white noise such that the resulting trajectories have a signal-to-
noise ratio (SNR) of 30 dB. A total number of 30 realizations are generated, leading to nt = 30
trajectories ̃�

l
, l ∈ {1, ..., nt}. These are used to evaluate the log-likelihood function (6.48), for

which we compute the necessary partial derivatives. The partial derivative ∇x Ji is given by
(6.51), where

(∇x�i) �i =

[

�
i,(1)

x
(k)

1
+
1

2
�
i,(2)

x
(k)

2

1

2
�
i,(2)

x
(k)

1
+ �

i,(3)
x
(k)

2
]

. (6.65)

Similarly, ∇u
i
Ji ∈ ℝ

kE is determined by using the partial derivative

(∇ui
�i) �i = �i,(4)u

(k)

i
. (6.66)

For the second partial derivates we obtain

∇xx Ji = blkdiag
(
−
[

�
i,(1)

1

2
�
i,(2)

1

2
�
i,(2)

�
i,(3)

]
, … , −

[

�
i,(1)

1

2
�
i,(2)

1

2
�
i,(2)

�
i,(3)

])
(6.67)

∇u
i
u
i
Ji = blkdiag (−�i,(4), … , −�

i,(4)) . (6.68)

The MLE (6.29) is performed using a numerical optimization method, namely the Broyden-
Fletcher-Goldfarb-Shannon (BFGS) method. We obtain, after normalizing with respect to �

i,(4)

for a better comparability, the estimated parameters

̂
�1 = [3.88 −2.22 2.98 1.00]

⊤

̂
�2 = [10.19 −1.69 2.12 1.00]

⊤

.

(6.69)
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Consider now the feature count

̂̄� =

1

2

kE

∑

k=1

[
(x
(k)

1
)
2

x
(k)

1
x
(k)

2
(x
(k)

2
)
2

(u
(k)

1
)
2

(u
(k)

2
)
2

]

⊤

. (6.70)

The feature count of the trajectory ̂
� generated by solving an LQ dynamic game with the

estimated parameters (6.69) is given by

̂̄� = [9.88 −12.75 17.04 32.46 12.66] . (6.71)

The mean feature count of observed trajectories is

̃̄� = [9.88 −12.76 17.05 32.90 12.87] , (6.72)

suggesting, in consideration of (6.10), that the estimated parameters ̂
�i are di�erent to the

original parameters � ∗
i
, but lead to very similar costs. The original trajectory � ∗ and the esti-

mated ̂
� are depicted in Figure 6.2, showing that the identi�ed parameters are able to explain

the observed behavior.

−1

0

1 x1 x
∗

2

x̂1 x̂2

0 1 2 3 4 5

−2

−1

0

1

2

kΔT in s

u
∗

1
u
∗

2

û1 û2

Figure 6.2: Observed trajectories and trajectories following from the estimated parameters of the LQ dynamic
game in Example 6.1.

46 The continuous-time equations were used as the considered time step ΔT = 0.02 s allows a quasi-continuous
analysis instead of the use of discrete-time equations for determining Nash equilibria. The interested reader is
referred to Section A.5 of the Appendix where references on discrete-time Riccati equations are given.
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6.7.2 Feedback Case

Consider now a LQ dynamic game where players choose their feedback strategies (cf. De�ni-
tion A.5) based on a quadratic cost function. Since we consider a feedback (or MPS) information
pattern, the general quadratic cost functions are given by

Ji = −

1

2

kE

∑

k=1
(
x
(k)⊤

Qix
(k)
+

N

∑

j=1

u
(k)⊤

j
Riju

(k)

j
)
, i ∈  , (6.73)

and the resulting feedback strategies are given by (6.39). This relation can be used to obtain
system dynamics from the point of view of player i given by

x
(k+1)

= A
(k)

D
x
(k)
+ B

(k)

D,i
u
(k)

i
−

N

∑

j=1

j≠i

B
(k)

D,j
K
(k)

j
x
(k)

=

⎛

⎜

⎜

⎜

⎝

A
(k)

D
−

N

∑

j=1

j≠i

BD,jK
(k)

j

⎞

⎟

⎟

⎟

⎠

x
(k)
+ B

(k)

D,i
u
(k)

i

=∶ Ā
(k)

D,i
x
(k)
+ B

(k)

D,i
u
(k)

i
.

(6.74)

As described in Section 6.5, inverse feedback dynamic games can be solved by exploiting the
knowledge of the strategies 
 (k)

i
. For the case of LQ dynamic games this means that the feed-

back matrices K (k)∗

i
, i ∈  , k ∈  are given.

Remark 6.7:
In the typical case that K (k)∗

i
, i ∈  , k ∈  are not known, it is possible to assume an in�nite

horizon, i.e. kE →∞ and estimate a constant feedback law which approximates the relationship
between the controls and the states (cf. Section 5.4.2).47 In the case of an in�nite-horizon inverse
LQ dynamic game, then the estimation can be e�ectively done by means of (5.36).

Features in LQ Feedback Dynamic Games

By using the known feedback control matricesK (k)∗

i
, the quadratic cost function (6.73) of player

i can be rewritten as

Ji =

1

2

kE

∑

k=1

⎛

⎜

⎜

⎜

⎝

x
(k)⊤

Qix
(k)
+

N

∑

j=1

j≠i

x
(k)⊤

K
(k)⊤

j
RijK

(k)

j
x
(k)
+ u

(k)⊤

i
Riiu

(k)

i

⎞

⎟

⎟

⎟

⎠

. (6.75)

47 If the limit of the Riccati matrix P (k)
i

for (k = kE → ∞) exists, then it corresponds to a FNE for the in�nite-
horizon dynamic game. In general, other FNE solutions may also exist which are not necessarily related to the
aforementioned solution [BO99, P. 290].
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The features corresponding to the entries of Qi und Rii are identical to the open-loop case
(cf. (6.58) und (6.59)). In the feedback case, we further have the features corresponding to the
entries of Rij which are given by

�
Rij

i,rc
= −

1

2

(K
(k)∗

j
x
(k)
)r (K

(k)∗

j
x
(k)
)c , c = 1, … ,mj , r = 1, … , c, (6.76)

where (K (k)∗

j
x
(k)
)r denotes the r-th entry of the vector K (k)∗

j
x
(k). Similar to the matrices Qii

and Rii , the main diagonal elements of Rij correspond to parameters which weight the features
�
Rij

i,rr
, r = 1, … ,mi . For the case where c ≠ r , these parameters correspond to two times the

o�-diagonal (symmetric) entries Rij,rc = Rij,cr , respectively.

System Dynamics

The linear system dynamics lead to the relations

∇
x
(k)x

(k+1)
= Ā

(k)

D,i
and ∇

u
(k)

i

x
(k+1)

= B
(k)

D,i
. (6.77)

Then, D̃i can be computed with (6.54) and (6.55).

Example 6.2:
Consider a two-player discrete-time dynamic game with the system dynamics (6.61), the initial
value x(1) = [1 −1]

⊤, and cost functions of the form (6.73) with the cost function matrices

Q1 =
[

8 0

0 2]
, R11 = 1, R12 = 1,

Q2 =
[

1 0

0 4]
, R22 = 1, R21 = 0.3.

(6.78)

The LQ dynamic game leads to feedback strategies

u
(k)∗

i
= 


(k)∗

i
(x) =

[
k
(k)∗

2,(1)
k
(k)∗

2,(2)]
[

x
(k)

1

x
(k)

2
]

. (6.79)

We assume thatK ∗

i
=
[
k
(k)∗

i,(1)
k
(k)∗

i,(2)]
is not known and is approximated by a constant feedback

law K̃i to be identi�ed, as mentioned in Remark 6.7. We obtain ||K̃ix − u
∗

i
|| < 0.02 for all

i = {1, 2}. The approximation of the time-variant control matricesKi by means of the constant
matrices K̂i is shown in Figure 6.3.
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Figure 6.3: Nash equilibrium feedback matrices K (k)∗

i
and their approximation by means of constant feedback

matrices K̂i in Example 6.2.

The features corresponding to the cost function of player i are given by:

�
Qi

i,11
= −

1

2
(
x
(k)

1 )

2

, �
Qi

i,22
= −

1

2
(
x
(k)

2 )

2

�
Rii

i,11
= −

1

2
(
u
(k)

i )

2

, �
Rij

i,11
= −

1

2
(
k
∗

j,(1)
x
(k)

1
+ k

∗

j,(2)
x
(k)

2 )

2
(6.80)

The cost functions Ji , i ∈ {1, 2} , can be rewritten as

Ji = −

kE

∑

k=1

[
�
i,(1)

�
Qi

i,11
+ �

i,(2)
�
Qi

i,22
+ �

i,(3)
�
Rii

i,11
+ �

i,(4)
�
Rij

i,11]
, i, j ∈ {1, 2}, i ≠ j, (6.81)

where the cost function parameters are given by

�1 = [8 2 1 1]

⊤

,

�2 = [1 4 1 0.3]

⊤

.

The calculated FNE trajectory � ∗ is used to identify cost function parameters which explain it.
However, this time the exact FNE trajectory � ∗ and one single demonstration, i.e. nt = 1, are
used. Using the MLE (6.42) which is determined again with the BFGS method, we obtain the
cost function parameters

̂
�1 = [7.67 0.148 1.00 2.26]

⊤

,

̂
�2 = [−1.44 2.47 1.00 0.72]

⊤

.

(6.82)
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Similar to last example, we consider the extended feature count

̂̄� =

1

2

kE

∑

k=1

[
�
Q1

1,11
�
Q1

1,22
�
R11

1,11
�
R12

1,11
�
R22

1,11
�
R21

1,11]

⊤

. (6.83)

for both the observed trajectory � ∗ and the trajectory ̂
� corresponding to the parameters (6.82),

obtaining

̂̄� = [10.44 15.92 1.34 10.37 10.41 1.34]

⊤ (6.84)

and

̃̄� = [10.44 15.93 1.34 10.37 10.37 1.34]

⊤

, (6.85)

and indicating that the identi�ed parameters indeed approximate the observed trajectory ad-
equately (cf. Example 6.1).

6.8 Method Limitations

Some potential limitations of the presented mehods shall be discussed before concluding this
chapter. The introduced IRL-based inverse dynamic game methods can cope with truncated
trajectories in [0, Ki] with Ki < KE as long as these represent the complete trajectories ade-
quately (cf. Remark 6.6). Small values of Ki compared to KE may deteriorate the results, i.e.
the results improve the closer Ki is to KE .

Noise-corrupted trajectories can also represent an issue since the approach indirectly attempts
to equalize the feature count values of observed trajectories with the ones which would arise
from the probability density function with identi�ed parameters. On the other hand, equal-
izing feature count values may lead to a greater robustness in case the features, i.e. the basis
functions, are not speci�ed correctly. The e�ects of these issues on the identi�cation results
will be examined in Chapter 7.

Finally, a further possible detriment can arise if the available trajectories do not constitute a
Nash equilibrium. The method is based on the probability density function (5.1) which includes
the implicit assumption that each player’s decision was not directly a�ected by the choice
of the other players’ controls, a su�cient condition of which is given by the availability of
trajectories representing a Nash equilibrium. In addition, the method for feedback information
structures leverages the availability of feedback control laws. If the control laws describe the
functional relationship between states and controls, then the modi�ed system dynamics still
re�ect the actions of the other players. Therefore, the IRL methods have the potential of being
robust to at least mild deviations from the Nash equilibrium. Indeed, the basis of the presented
results is Assumption 6.2, which does not demand that the observed trajectories are exactly
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equal to a deterministic result of the dynamic game with cost function parameters � ∗
i
. This

allows for the estimation of cost function parameters ̂
�i from trajectories which represent and

resemble Nash equilibrium trajectories, but may deviate from this optimality.

6.9 Conclusion

In this chapter, IRL was considered as a means to solve inverse problems in dynamic games.
The principle of maximum entropy was applied to the dynamic game scenario and the ob-
tained results were used to derive probability density functions to model the origin of ob-
served dynamic game trajectories. Based on these, a maximum-likelihood estimation of the
cost function parameters was proposed for the case when players apply Nash equilibrium
strategies. Both open-loop and feedback strategies were regarded. In addition, the unbiased-
ness of this maximum-likelihood estimation was proved under typical IRL assumptions. The
results of this chapter lay the theoretical foundation for the application of MaxEnt IRL for
identifying cost function parameters of players in a dynamic game. Finally, solutions of in-
verse linear-quadratic dynamic games were shown to illustrate the presented methods and
their applicability.

After this last chapter presenting theoretical results on inverse dynamic games and their so-
lution, the following chapters present a comparison between di�erent method classes in both
simulations and a real application.





7 Simulations

In the previous chapters, inverse problems in dynamic game theory were introduced and two
main classes of methods were proposed for their solution, namely the residual-based IOC
method and an IRL-based approach. These classes of methods are di�erent from a theoretical
and conceptual point of view given their contrasting origins in automatic control and com-
puter science. This chapter aims at presenting the capabilities of both classes of methods and
comparing them by using di�erent test scenarios in simulations. In this way, their strengths
and weaknesses shall be examined. Moreover, the IOC and IRL methods are systematically
compared with a Direct Bilevel (DB) approach which is based on the solution of a forward
dynamic game in each iteration (see Section 2.1.1).

This chapter starts with a mathematical description of the DB approach used for comparison
to the new inverse dynamic game methods. Afterwards, the considered scenarios are intro-
duced before explaining the general evaluation procedure applied in this chapter, as well as the
metrics used for comparison. Then, the simulation results are presented and discussed. These
results include an evaluation of the methods’ robustness to measurement noise and errors in
the basis function vectors. After shortly analyzing the computation times of the methods, the
chapter ends with conclusions based on the obtained insights.

7.1 Direct Bilevel Approach

The Direct Bilevel (DB) approach considered in this chapter is a direct extension of the method
introduced in [MTL10] (see also Section 2.1.1), which was recently formulated in [MFP17a].
It aims to determine cost function parameters � = (�1, ..., �N ) such that the corresponding
Nash equilibrium trajectories approximate the observed state and control trajectories. For this
objective, the following optimization problem can be formulated:

min

�

JDB =

T

∫

0

||x
�
(t) − x̃(t)||

2
+

N

∑

j=1

||u
�,j
(t) − ũj (t)||

2
dt, (7.1)

where x
�
(t) and u

�,i
(t) denote Nash equilibrium trajectories resulting from cost functions with

parameters � . The objective functional JDB provides a natural squared-error metric between
candidate state and control trajectories and the observed Nash equilibrium state x̃(t) and con-
trol trajectories ũi(t). Note that if the observed trajectories correspond to a Nash equilibrium
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with cost function parameters � ∗ ∈ Θ, then the optimization problem is solved for any � which
also belongs to the solution set Θ according to the equivalence of cost functions (cf. Section
B.2 in the Appendix) which imply identical Nash equilibrium trajectories. Some details need
to be considered for practical implementation of this approach. These are given in Section B.6
in the Appendix.

7.2 Simulation Scenarios

In this chapter, two main simulation scenarios are considered:

1. a non-linear open-loop dynamic game with two players controlling a ball-on-beam sys-
tem

2. a generic LQ feedback dynamic game with three players

In the �rst scenario, the ball-on-beam is chosen as a dynamic system. It is a well-known bench-
mark system in control engineering since it poses a challenging stabilization problem which is
representative of the di�culties generated by growing nonlinearities [HSK92, BSLK97]. This
scenario shall serve to show the solution of inverse dynamic games with open-loop strate-
gies.

The second scenario consists of a LQ dynamic game with feedback strategies. Considering
the class of LQ dynamic games allows for an analysis with the tools developed in Chapter 5.
Furthermore, in order to increase the complexity of the LQ dynamic game, a generic dynamic
game is considered where three players in�uence a system by means of two control variables
each. This scenario is used for the examination of inverse feedback dynamic games.

For each scenario, one IOC-based method, one IRL method and a DB approach shall be com-
pared. The performance comparison is �rst done with assumed perfect observations of the
Nash trajectories. Nevertheless, an evaluation of the robustness of all methods to noise in the
observations is also presented.

7.3 Evaluation Method

In the following, the evaluation method is presented. After describing the general steps con-
stituting the whole evaluation process, the metrics used for the comparison are introduced.
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7.3.1 General Steps

The evaluation procedure used in this chapter is summarized in Figure 7.1 and shall be ex-
plained in the following. For the simulation environment, a cost function structure de�ned
by a linear combination of basis functions according to (4.2) is assumed. Therefore, it is �rst
necessary to de�ne a basis function vector �i and a parameter vector � ∗

i
for each player i ∈  .

These cost functions are used to calculate the Nash equilibrium trajectories of the states
x
∗
(t) and the controls u∗

i
(t).48 For the case where perfect observations are assumed, the obser-

vations x̃(t) and ũi(t) correspond to the calculated Nash equilibrium trajectories x(t) and ui(t).
Otherwise, Gaussian white noise �x and �ui is added to the Nash equilibrium state trajectories
and control trajectories to form the observations, respectively. The generated observations
x̃(t) and ũ(t) simulate dynamic game data which is measured and results from the interaction
between the players. Based on these observations, in the inverse dynamic game step, one
of the inverse dynamic game methods is applied to obtain estimations of the cost function
parameters ̂

�i for all players i ∈  . At this point, the analysis of the identi�cation results
may be conducted based on the parameter deviation, i.e. the comparison of the estimated
cost function parameters with the ground truth. Nevertheless, particularly for the robustness
evaluation, it will be examined whether potentially inexact identi�cation of the cost function
parameters has a considerable impact on the capability to approximate the observations. For
these cases, identi�ed trajectories x̂(t) and ûi(t) are determined. This is done by calculating
the Nash equilibrium again, yet this time based on the estimated parameters ̂

�i of all play-
ers. By comparing the identi�ed trajectories with the ground truth trajectories, it is possible
to evaluate if the estimated parameters can describe the observed outcome of the dynamic
game despite a potential deviation from the real parameters. We determine the trajectory
deviation by calculating the metrics �x , �u , and Δ� which are presented in the next section.

7.3.2 Evaluation Metrics

As previously mentioned, the results of the inverse dynamic game methods are evaluated with
respect to the quality of the cost function parameter identi�cation. Furthermore, the approx-
imation of the observed trajectories by means of the trajectories of the identi�ed model are
also assessed. For these two objectives, two di�erent metrics are used which are introduced
in the following.

48 All simulated Nash equilibrium trajectories x∗(t) and u∗
i
(t) are calculated using a continuous-time formulation

of the dynamic game using the di�erent theorems from Section 3.6, depending on the information structure and
strategy types. The IRL-based methods, which were developed considering a discrete-time formulation, shall be
given equivalent system dynamics corresponding to the selected time step ΔT as shown in Examples 6.1 and 6.2.
Furthermore, one single trajectory set will be used, i.e. nt = 1 for the IRL methods.
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Figure 7.1: Evaluation procedure for simulation results

Cost Function Parameters

Since identi�cation of the cost function parameters is only possible up to a scaling constant,
the comparison is done after a normalization process. The ground truth parameters �i,GT and
the identi�ed parameters ̂

�i are normalized with respect to an arbitrary parameter. In this
case and without loss of generality, the last entry of the vector �i is chosen. This is done for
all players i ∈  . Therefore, for the ground truth normalized parameter vectors � ∗

i,(norm) and
the normalized estimated parameter vectors ̂

�
i,(norm) of player i, we have

{�
∗

i,(norm)}p =
{�

∗

i
}p

{�
∗

i
}Mi

and {
̂
�
i,(norm)}p =

{
̂
�i}p

{
̂
�i}Mi

,

∀ p ∈ {1, … ,Mi},

(7.2)
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where {�i}p denotes the p-th entry of the parameter vector �i .49 The parameter {�i}Mi
is

therefore the last entry of the vector �i . By using the normalized parameters, the relative
parameter error is de�ned as

�
�

p
=

{
̂
�
i,(norm)}p

{�
∗

i,(norm)}p
, ∀ p ∈ {1, … ,Mi}. (7.3)

The comparison of the parameters is done by means of the absolute value of the relative error
of the parameters

Δ
�

p
=
|
|
|
1 − �

�

p

|
|
|
, Δ

�

p
∈ [0,∞) . (7.4)

Therefore, the closer the absolute values of the relative error Δ�
p

are to zero, the stronger the
similarity is between identi�ed and ground truth parameters. The mean and maximum value
of Δ�

p
will be considered. These are denoted with Δ�

p,mean
and Δ�

p,max
, respectively.

Comparison of Trajectories

Before introducing the considered metrics for comparing trajectories, it is important to note
that in the simulations, trajectories are available in the form of a series of Ki data points de-
scribed by the set

i = {tk ∈ [0, T ] ∣ 1 ≤ k ≤ Ki ∧ 0 ≤ tk ≤ T}. (7.5)

In the following, Ki = K is set for all i ∈  to ease the comparison between ground truth and
estimated trajectories. The estimated trajectories x̂(t) and ûi(t), i ∈  , are the ones which arise
from the solution of the dynamic game with the estimated cost function parameters ̂

�i . The
di�erent state and control trajectories may di�er in maximal amplitude, which hinders a direct
comparison between them. In order to be able to compare the error measures of all trajectories,
it is reasonable to normalize each of them with respect to their respective maximum value.
Therefore, we consider the normalized sum of absolute trajectory errors (NSAE), which
in case of the state error, is de�ned as

�
xj
=

1

max
k

|
|
|
x
∗(k)

j

|
|
|

K

∑

k=1

|
|
|
x̃
(k)

j
− x̂

(k)

j

|
|
|

, j ∈ {1, … , n}, (7.6)

where x (k)
j

= x
t
k

j
denotes the k-th data point of the state xj . For systems with more than one

state, the sum of NSAEs of the state trajectories

�
x
=

n

∑

j=1

�
xj (7.7)

49 The notation {�i}p is equivalent to the previously introduced �i,(p). These are used interchangeably in favor of
better readability.
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is considered. Similarly, the NSAE of the controls of player i is de�ned as

�
ui
=

mi

∑

j=1

1

max
k

|
|
|
u
∗(k)

i,(j)

|
|
|

K

∑

k=1

|
|
|
ũ
(k)

i,(j)
− û

(k)

1,(j)

|
|
|

, j ∈ {1, … ,mi}. (7.8)

The overall sum of NSAEs of the control trajectories is given by

�
u
=

N

∑

i=1

�
ui
. (7.9)

In the following, the error measures (7.7) and (7.9) will be used for trajectory comparison.

7.4 Inverse Open-Loop Dynamic Games

In this section, di�erent classes of inverse dynamic game methods for identifying cost function
parameters corresponding to an open-loop Nash equilibrium are evaluated and compared. The
methods are

• the residual-based inverse di�erential game method of Section 4.3,

• the method of Section 6.4 based on IRL,

• the direct bilevel approach presented in Section 7.1 for the open-loop case, detailed in
Section B.6.

These are abbreviated and referred to as IOC, IRL and DB methods, respectively.

7.4.1 Preliminaries

The considered system is a ball-on-beam system which was extended such the system is con-
trolled by two players simultaneously instead of one. The task is to balance a ball in the middle
of the beam.

System Dynamics

The ball-on-beam system is shown schematically in Fig. 7.2. Here, �x denotes the angle of
the beam towards the horizontal. In addition, (sX , sY ) and (sx , sy ) denote the positions of the
ball in the earth-�xed and beam-�xed coordinate systems, respectively, both centered at the
beam’s center of rotation. Both players are allowed to interact with the system by applying a
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Figure 7.2: Ball on beam system

torque ui(t) = Mi(t), i ∈ {1, 2}, with respect to the beam’s rotational axis. Let the system state
be de�ned as

x(t) = [sx (t) ṡx (t) �x (t) �̇x (t)]

⊤

. (7.10)

Then, the system dynamics are described by the nonlinear di�erential equation (cf. [BVBB14])

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2

m
b
r
2

b
(x1x

2

4
−ge sin(x3))

Θ
b
+m

b
r
2

b

x4

−2m
b
x1x2x4−mb

gex1 cos(x3)+u1+u2

m
b
x
2

1
+Θw

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.11)

where the time dependence of the states and controls was dropped for a better readability. The
variable ge is the gravitational constant, Θw is the inertia of the beam and r

b
, m

b
and Θ

b
are

the radius, mass and inertia of the ball, respectively. The parameter values are given in Table
7.1.

Table 7.1: Parameters of the ball-on-beam system used for simulation

ge m
b

r
b

Θ
b

Θw

9.81m/s
2

0.02 kg 25mm 5 ⋅10
−6
kgm

2
0.667 kgm

2

The inertia of the beam was calculated assuming an equally distributed mass mw = 1.3 kg, a
width dw = 0.01m and a length lw = 2m.
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Cost Functions and Data Generation

Each player acts based on an individual cost function of the form (4.2), where the basis function
vector is given by

�i = [x
2

1
x
2

2
x
2

3
x
2

4
u
2

i ]

⊤

, ∀i ∈ {1, 2}. (7.12)

This feature vector describes both players’ individual preferences to zero the ball’s displace-
ment from the center of the beam, its velocity, the beam’s angle and angular velocity, respec-
tively. Furthermore, it represents the desire to keep their individual torques small. In the
following, units are neglected as all quantities are given in SI units. To model the players’
behavior by means of cost functions, let the ground truth parameters be given by

�
∗

1
= [20 1 1 1 2] and �

∗

2
= [1 1 10 1 1] . (7.13)

In this way, the �rst player focuses on bringing the ball to the center of the beam whereas the
second player mainly focuses on bringing the beam to a horizontal position (see state de�nition
in (7.10)).

For the calculate equilibrium step, the system dynamics and cost functions with ground
truth parameters are used to solve for open-loop Nash equilibrium trajectories by applying
Pontryagin’s minimum principle and then solving the resulting two-point boundary value
problem, where the initial state

x(0) = [0.5 0 0 0]

⊤

, (7.14)

was used. The solution leads to trajectories x∗(t) and u∗
i
(t) corresponding to the open-loop

Nash equilibrium (OLNE). Further details on the calculation are given in Section B.4 of the
Appendix. The equilibrium state is illustrated in Figure 7.3, where the trajectories of the ball
position and beam angle, i.e. of the states x1(t) and x3(t) are depicted. The applied torques
of each player, i.e. the controls u1(t) and u2(t) are also shown. The di�erent preferences of
the players modeled by the cost function parameters in (7.13) can be recognized. Player 1
applies a positive torque such that the ball is moved towards the zero position, whereas player
2 counteracts this action since his focus is to regulate the beam angle towards zero.

7.4.2 Noisefree Case

The inverse methods are �rst tested under the assumption that the observed trajectories corre-
spond exactly to the OLNE trajectories generated by the ground truth cost function parameters
�
∗

i
. This represents an ideal condition to analyze the extent up to which the real parameters

�i can be obtained. The cost function parameter values are given with a precision of 2 dec-
imal values. More precision is not needed since, as it will be shown later, di�erences of less
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Figure 7.3: Open-loop Nash equilibrium trajectories of the ball-on-beam system

order of magnitude barely have an e�ect on the corresponding trajectories. Nevertheless, the
parameter errors Δ�

p
are calculated with the highest possible precision.

Inverse Optimal Control Based Method

The trajectories of the open-loop Nash equilibrium are used to determine the parameters �i of
each player by means of Algorithm 1. The solution of the RDE appearing in the method was
calculated by means of a numerical solver of MATLAB (ode45).

The estimated parameters are50

̂
�1 = [19.99 1.00 1.00 1.00 2.00]

̂
�2 = [1.01 1.00 10.00 1.00 1.00] .

(7.15)

which lead to a mean parameter error Δ�
p,mean

= 0.16% and a maximum parameter error
Δ
�

p,mean
= 0.76%. The NSAE of the states is �x = 0.0271. The NSAE of the controls is

�
u
= 0.025.

50 For the presented inverse open-loop dynamic game results, the parameter vectors �i , ∀i ∈  were multiplied with
a constant factor c ∈ ℝ

+ such that the last entry corresponds to the ground truth, i.e. ̂
�i,(5) = �

∗

i,(5)
, ∀i ∈  . This

was done in favor of higher clearness in the comparison.
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Inverse Reinforcement Learning Based Method

In order to solve the inverse dynamic game problem, Algorithm 3 was applied. The optimiza-
tion problem corresponding to the MLE (6.29) was solved with the MATLAB solverfminunc,
using a BFGS Quasi-Newton method. The estimated parameters are

̂
�1 = [19.51 0.95 0.73 0.77 2.00]

̂
�2 = [ 1.04 1.01 9.99 1.02 1.00] .

(7.16)

We obtain a mean parameter error Δ�
p,mean

= 8.1% and a maximum parameter error Δ�
p,max

=

27.0%. The NSAE of the states is �x = 0.664. The NSAE of the controls is �u = 0.554. The
parameter error is bigger than the one generated by the IOC approach. The NSAE values are
also higher than the ones corresponding to the IOC based identi�cation.

Direct Bilevel Approach

For this method, the optimization problem (7.1) was solved using the procedure in Section B.6
with an interior-point method of MATLAB’s fmincon solver.

The estimated parameters are

̂
�1 = [20.11 0.89 3.91 0.85 2.00]

̂
�2 = [1.14 1.01 10.13 1.09 1.00] .

(7.17)

The mean parameter error Δ�
p,mean

= 42.9% and a maximum parameter error Δ�
p,max

= 290.9%.
The NSAE of the states is �x = 1.4322. The NSAE of the controls is �u = 0.122. The parameter
error is bigger than the one generated by both the IOC and IRL approaches.

Comparison

The following Table 7.2 summarizes the results of the parameter identi�cation with all meth-
ods. In addition, the identi�ed parameters ̂

�i of all methods are used to generate OLNE trajec-
tories x̂(t) and ûi(t). Both the original and identi�ed trajectories of the controls as well as the
ball position and beam angle (states x1 and x3, respectively) are depicted in Figure 7.4. While
the parameter errors of the identi�cation with IRL and the DB approach are higher than the
ones corresponding to the IOC method, they do not have a big impact on the trajectory ap-
proximation in this setup. The OLNE of all identi�ed cost functions is practically identical to
the original OLNE trajectories. The di�erences are imperceptible even though there is a slight
di�erence in the estimation accuracy by all methods. This also con�rms that the presented
parameter precision of two decimal values is su�cient for an adequate comparison.
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Table 7.2: Ground truth and cost function parameters of the nonlinear OL di�erential game identi�ed with all meth-
ods using noiseless trajectories

�1 �2

GT [20.00 1.00 1.00 1.00 2.00] [1.00 1.00 10.00 1.00 1.00]

IOC [19.99 0.99 1.00 0.99 2.00] [1.01 1.00 9.99 1.00 1.00]

IRL [19.51 0.95 0.73 0.77 2.00] [1.04 1.01 9.99 1.02 1.00]

DB [20.11 0.89 3.91 0.85 2.00] [1.14 1.01 10.13 1.09 1.00]
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Figure 7.4: Trajectories resulting from the nonlinear inverse dynamic game solutions with IOC, IRL and DB methods

7.4.3 Robustness to Measurement Noise

In practice, measurements of the states and controls corresponding to a dynamic game may
not be ideal. For example, the measurements may be a�ected by noise, which can be detri-
mental for the identi�cation of cost function parameters. Therefore, the results of the inverse
dynamic game methods should ideally be robust to measurement noise. In order to evalu-
ate this property for the considered open-loop methods, Gaussian white noise is arti�cially
added to the state and control trajectories. Hence, the new measurements which are used for
identi�cation of cost function parameters are given by

x̃z(t) = x
∗

z
(t) + �

x

z
, ∀z ∈ {1, ..., n}, (7.18)
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and
ũi,z(t) = u

∗

i,z
(t) + �

u

i,z
, ∀z ∈ {1, ..., mi}, ∀i ∈  . (7.19)

The noise �x
z

and �
u

i,z
was chosen in such a way that all signals have a particular signal-to-

noise ratio (SNR). Di�erent SNR levels from 20 dB to 40 dB were considered for trajectory
generation. In order to examine the consistency of the results, 100 samples of Gaussian white
noise are generated for each of the considered SNR levels such that we obtain the trajectories
̃
�s , s ∈ {1, ..., 100} (cf. De�nition 6.2). Figure 7.5 shows examples of noise-corrupted Nash
equilibrium trajectories with di�erent SNR values. The generated noisy trajectories are used
to identify cost function parameters with all methods. Therefore, for each of the methods, we
obtain 100 sets of identi�ed parameters ̂

�
s
, s ∈ {1, ..., 100}. In turn, each of these is used to

compute corresponding OLNE trajectories denoted by ̂
�s , s ∈ {1, ..., 100}. The mean over all

100 values of the identi�ed parameters of each player, denoted by ̂
�i,mean is computed for the

following analysis. Moreover, the comparison of the estimated parameters and trajectories
with the original ones is assessed with the mean of the NSAE errors (de�ned in (7.7), (7.8)
and (7.9)) over all 100 trajectories. These are denoted by �x

mean
, �uimean and �u

mean
, respectively.

Similarly, the maximum and mean parameter errors over all 100 results, denoted by Δ�
max

and
Δ
�

mean
, are considered (cf. (7.4)).

Inverse Optimal Control

The mean values of the identi�ed cost function parameters are given in Table 7.3, where the
noisefree case is listed for comparison and is denoted by an in�nite SNR. The parameter error
increases considerably with the presence of noise. Even with a SNR value of 30 dB which
implies a rather low magnitude of the noise, the parameters deviate signi�cantly from the
ground truth. In particular, from this SNR value on, the parameter ̂

�
i,(3)

becomes negative
which implies a reward of the deviations from zero, instead of a penalty as originally stated.
This trend is con�rmed by the mean values of the parameter and trajectory errors which are
summarized in Table 7.4. The table shows very high errors for an SNR value equal to 30 dB or
below.

Table 7.3: Mean values of the cost function parameters of the inverse nonlinear OL dynamic game which were iden-
ti�ed with the IOC method

SNR in dB ̂
�1,mean

̂
�2,mean

20 32.83 3.71 -29.72 10.29 2.00 52.57 12.11 -115.97 38.37 1.00
25 24.19 1.90 9.47 4.08 2.00 16.51 4.42 -30.00 12.44 1.00
30 21.33 1.31 -2.78 2.01 2.00 6.02 2.12 -3.12 4.71 1.00
35 20.40 1.10 -0.13 1.30 2.00 2.58 1.35 5.87 2.16 1.00
40 20.14 1.03 0.64 1.10 2.00 1.50 1.11 8.77 1.36 1.00
∞ 19.99 0.99 1.00 0.99 2.00 1.01 1.00 9.99 1.00 1.00
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Figure 7.5: Noise-corrupted open-loop Nash equilibrium trajectories of the two-player dynamic game with the non-
linear ball-on-beam system
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Table 7.4: Parameter errors and mean NSAE errors of trajectories obtained with the IOC method

SNR in dB �
x

mean
�
u1

mean �
u2

mean Δ
�

max
Δ
�

mean

20 69.522 129.948 221.314 9206.2 49.28
25 20.706 69.119 100.339 47.59 6.56
30 10.449 38.274 55.584 10.05 2.10
35 4.123 15.534 22.563 4.45 0.68
40 1.469 5.177 7.519 2.57 0.25
∞ 0.027 0.010 0.0147 0.01 0.002

Inverse Reinforcement Learning

The mean values of the identi�ed cost function parameters are given in Table 7.5. The order
of magnitude of the parameters is similar for all SNR values, but the results are also negatively
a�ected by lower SNR values. For an SNR value of 20 dB, the parameter ̂

�
1,(3)

of player 1 be-
comes slightly negative, leading to a reward of the deviation of x3 from zero. The mean values
of the errors listed in Table 7.6 are moderately low compared to the IOC results, especially the
mean parameter error and the mean NSAE of the states.

Table 7.5: Mean values of the identi�ed cost function parameters with the IRL method

SNR in dB ̂
�1,mean

̂
�2,mean

20 20.62 1.19 -2.58 1.79 2.00 1.53 1.16 7.03 1.58 1.00
25 19.85 0.97 0.79 0.99 2.00 1.23 1.06 9.13 1.20 1.00
30 19.60 0.94 1.16 0.81 2.00 1.09 1.02 9.63 1.08 1.00
35 19.53 0.93 1.17 0.76 2.00 1.05 1.01 9.88 1.04 1.00
40 19.51 0.92 1.41 1.72 2.00 1.05 1.01 9.98 1.03 1.00
∞ 19.51 0.95 0.73 0.77 2.00 1.04 1.01 9.99 1.02 1.00

Table 7.6: Parameter errors and NSAE errors of trajectories obtained with the IRL method

SNR in dB �
x

mean
�
u1

mean �
u2

mean Δ
�

max
Δ
�

mean

20 4.808 10.915 15.854 23.05 1.07
25 2.522 4.256 6.182 10.24 0.39
30 1.345 2.088 3.033 6.83 0.20
35 0.920 1.109 1.610 5.42 0.14
40 0.724 0.591 0.855 2.97 0.15
∞ 0.664 0.227 0.327 0.27 0.08
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Direct Bilevel Approach

The mean values of the identi�ed cost function parameters are given in Table 7.7. The identi-
�ed parameters are very similar for all SNR values and no clear SNR-dependent trend can be
recognized. Almost all parameters are very similar to the ground truth. Only the parameter
̂
�
1,(3)

of the �rst player could not be recovered exactly. The mean values of the errors listed in
Table 7.8 show that the parameter and trajectory error overall do increase with smaller SNR
values. However, even for the lowest SNR value of 20 dB, the errors, especially the NSAE of
the controls, are considerably low.

Table 7.7: Mean values of the identi�ed cost function parameters with the DB method

SNR in dB ̂
�1,mean

̂
�2,mean

20 20.12 0.86 3.16 0.91 2.00 1.06 1.00 9.97 1.04 1.00
25 20.13 0.90 3.03 0.93 2.00 1.09 1.00 10.06 1.06 1.00
30 20.05 0.94 2.34 0.94 2.00 1.05 1.00 10.03 1.04 1.00
35 20.02 0.92 2.19 0.92 2.00 1.01 1.00 9.96 1.01 1.00
40 20.03 0.96 1.99 0.95 2.00 1.04 1.00 10.04 1.03 1.00
∞ 20.11 0.89 3.91 0.85 2.00 1.14 1.01 10.13 1.09 1.00

Table 7.8: Parameter errors and NSAE errors of trajectories obtained with the DB method

SNR in dB �
x

mean
�
u1

mean �
u2

mean Δ
�

max
Δ
�

mean

20 4.424 0.239 0.355 12.203 0.547
25 2.887 0.144 0.214 12.871 0.451
30 1.872 0.087 0.128 8.743 0.312
35 1.329 0.056 0.081 5.420 0.259
40 0.881 0.037 0.053 7.034 0.192
∞ 1.432 0.050 0.072 2.909 0.429

Comparison

The results of cost function identi�cation with noisy measurements are now compared. The
mean values of the parameter error corresponding to the SNR values of 20 dB to 40 dB are
illustrated in Figure 7.6. In a similar way, Figure 7.7 contrasts the mean values of the NSAE of
the states and controls.

Figure 7.6 shows that the IOC approach outperforms the IRL and DB methods in the case
of perfect observations of the Nash equilibrium trajectories, but its parameter estimation be-
comes notoriously worse as the SNR values become smaller. In contrast, both the IRL and
DB method yield similar results across all SNR values and demonstrate being less a�ected by
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Figure 7.6: Comparison of parameter errors of identi�cation for all SNR values and all methods
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Figure 7.7: Comparison of trajectory errors of identi�cation for all SNR values and all methods

measurement noise. The DB method is slightly better than the IRL approach only for the 20
dB case. A similar trend is observed in Figure 7.7. Nevertheless, it is noticeable that the dif-
ferences in the parameter estimation can lead to big dissimilarities in the mean NSAE errors.
The superiority of IRL and the DB method in terms of robustness to measurement noise is
con�rmed. Nevertheless, it can be observed that the DB approach yields the lowest NSAE of
the controls.

In order to obtain a better insight into the quality of the trajectory approximation, the mean
values of the identi�ed parameters with each method, i.e. the parameters in Tables 7.3, 7.5 and
7.7, are used to generate model state and control trajectories for each method. Figure 7.8 shows
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an example for an SNR value of 30 dB. The IRL and DB methods yield very similar results. The
IOC approach is able to explain the state trajectories adequately, but fails to reproduce the
course of the control trajectories. For SNR values lower than 30 dB, the control trajectory
approximation by the IRL method starts to deteriorate while the DB approach maintains its
robustness. Plots of this comparison for all SNR values can be found in Section E.1.1 of the
Appendix.
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Figure 7.8: Observed trajectories and estimations based on mean identi�cation results of all methods, SNR = 30 dB

7.4.4 Robustness to a Basis Function Mismatch

Especially in practical applications, it cannot be assured that the observed trajectories con-
stitute Nash equilibrium trajectories generated by the considered basis functions gi . In order
to give a �rst evaluation of the limits of the presented methods, a mismatch of the original
ground truth (GT) basis functions and the ones used in the inverse dynamic game methods is
regarded in this section. The following analysis utilizes the noisefree trajectories generated by
the parameters � ∗

1
and � ∗

2
, as given in Section 7.4.1, for identi�cation. However, for both the in-

verse dynamic game step and the subsequent forward solution to obtain estimated trajectories
x̂(t), û1(t), and û2(t) (cf. Figure 7.1), four di�erent basis function vectors shall be considered
which di�er from the original ones. These are given in Table 7.9.

The choice is motivated by the control task and the ground truth parametrization (cf. (7.13)).
The basis functions x2

2
and x

2

4
corresponding to the ball velocity and the beam angle veloc-
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Table 7.9: Considered cases in the basis function mismatch analysis of inverse open-loop dynamic games

Case gi

GT [x
2

1
x
2

2
x
2

3
x
2

4
u
2

i
]

I [x
2

1
x
2

3
u
2

i
]

II [x
2

3
u
2

i
]

III [x
2

1
u
2

i
]

IV [x
2

1
x2 x

2

3
x
2

4
u
2

i
]

ity are both weakly weighted by �
i,(2)

and �
i,(4)

, respectively. Therefore, case I neglects these
basis functions to evaluate their signi�cance for identi�cation. Cases II and III disregard one
additional basis function, either x2

1
or x2

3
, corresponding to the ball position and beam an-

gle, respectively. Finally, case IV represents a situation where one of the basis functions is
incorrectly speci�ed.

The basis functions are assumed as di�erent from the ground truth and hence, the parameters
are not comparable. Therefore, only the NSAE of the trajectories shall be considered for the
evaluation. The NSAE errors arising from identi�cation with each method is given in Table
7.10 for each case. For case I we observe a low NSAE of the states and a higher NSAE of the
controls. Cases II and III lead to worse results in terms of the state trajectory approximation.
Lastly, for case IV only the IRL method yields low NSAE values for the states, whereas the DB
method can only approximate the control trajectories adequately. The observed trajectories
and the estimated trajectories are exemplarily shown for cases I and IV in Figures 7.9 and 7.10.
Additional plots describing the results of the other cases can be found in Section E.1.2 of the
Appendix.

7.4.5 Discussion of Inverse Open-Loop Dynamic Game Results

By comparing the results of both methods based on noisefree trajectories, it is recognizable
that the method based on IOC o�ers the best results in terms of parameter accuracy. This also
leads to a better performance considering the approximation of the ground truth trajectories.
Nevertheless, even though the IRL method and the DB approach exhibit a lower parameter
approximation accuracy, both are still able to explain the Nash equilibrium trajectories. While
there is computationally a minor di�erence between their trajectory approximation errors, it
is so low that it is imperceptible, as shown by Figure 7.4.

The di�erences in the parameter identi�cation results can be explained by the di�erent char-
acteristics of each of the methods. All methods are based on the solution of an optimization
problem. In the case of the IOC approach, the parameters which exactly ful�ll the conditions
for Nash equilibria are sought. Since the observations are perfect, i.e. they correspond to an
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Table 7.10: NSAE errors in case of basis function mismatch

Case Method �
x

�
u1 �

u2 �
u

I
IOC 17.395 35.338 50.936 86.274
IRL 14.993 41.280 59.513 100.793
DB 129.579 10.909 15.040 25.949

II
IOC 339.288 17.472 23.152 40.624
IRL 315.659 13.063 21.286 34.348
DB 338.988 12.635 20.357 32.992

III
IOC 117.505 15.356 22.504 37.859
IRL 119.463 14.479 19.814 34.292
DB 128.401 15.429 20.357 35.786

IV
IOC 521.423 11036.171 15928.605 26964.776
IRL 15.394 47.481 68.439 115.920
DB 124.605 4.994 4.595 9.589
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Figure 7.9: Inverse open-loop dynamic game results for all methods, basis function mismatch case I.

exact Nash equilibrium, the corresponding cost function parameters can be found with great
precision. The IRL approach is based on the maximization of a likelihood function which indi-
rectly considers the requirement of matching the cost function values of the Nash equilibrium
trajectories. The slight deviation to the true parameters arise given the fact that a su�cient
match of trajectories, which correlates to a peak in the likelihood function, may not require a
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Figure 7.10: Inverse open-loop dynamic game results for all methods, basis function mismatch case IV.

precise estimation of parameters. Finally, the DB approach similarly searches for parameters
such that the deviation between the costs of observed and estimated trajectories is minimal.
This also potentially does not require an exact estimation of parameters.

Having discussed these di�erences in the noisefree case, it is possible to �nd similar expla-
nations for the results of identi�cation in the presence of measurement noise in the observed
Nash equilibrium trajectories. In this case, we observe that the IRL method and the DB ap-
proach are more robust towards measurement noise. Even up to SNR values of 20 dB and
25 dB, cost function parameters can be found which explain the observed trajectories. This
can also be explained by the di�erent principles each method is based on. The probabilistic
formulation of the inverse dynamic game problem in the IRL-based method with the indirect
requirement of matching trajectory costs leads to a higher robustness to noise. On the con-
trary, the IOC approach is strongly a�ected by measurement noise. The parameter deviations
of the IOC approach especially lead to a poor approximation of the control trajectories. The
approximation of the state trajectories is not strongly a�ected by the parameters deviations
due to higher trajectory noise.51

Finally, the analysis of basis function mismatch indicates that all methods are mildly robust to-
wards a small mismatch of the basis function vectors, especially regarding the state trajectory
approximation. All methods yield greater errors if an originally relevant basis function (e.g.
51 Similar results were reported in [MTFP16], where a one-player inverse optimal control problem was similarly

solved by leveraging the minimum principle and where only the state were corrupted with noise in the evaluation.
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x
2

1
and x2

3
in the example) is neglected. The results suggest that the task can, to some extend,

still be described by the other basis functions with a corresponding adequate parameteriza-
tion which compensates the missing basis functions. However, this possibility may depend
on the real parametrization of the basis functions. This means that a missing basis function
which was weighted by a high value of the corresponding parameter cannot be compensated
with other basis functions. In addition, a misspeci�ed basis function as in case IV can a�ect
the results of all methods considerably, especially for the IOC method. This is due to the fact
that the basis function x2 is not appropriate for the task at hand which consists of regulating
all states to zero. The other methods, IRL and DB, are less a�ected since they, either directly
or indirectly, take the deviation between trajectories into consideration. This is further illus-
trated by Table 7.11 where the parameters identi�ed by each method in case IV are listed. The
table indicates that the IRL and DB methods correctly estimate the parameter �

i,(2)
—the one

which corresponds to x2—as a value which has to be at least close to zero such that trajectories
similar to the observed ones can be obtained.

Table 7.11: Identi�ed cost function parameters for basis function mismatch case IV

�1 �2

GT 20.00 1.00 1.00 1.00 2.00 1.00 1.00 10.00 1.00 1.00
IOC 18.22 23.90 19.40 -1.30 2.00 -5.56 -7.37 16.73 -3.07 1.00
IRL 18.78 0.00 16.10 -0.62 2.00 1.55 0.02 33.17 -0.20 1.00
DB 29.42 0.17 199.12 43.19 2.00 8.11 0.01 95.59 18.82 1.00

7.5 Inverse Feedback Dynamic Games

After comparing inverse dynamic game methods for identi�cation in open-loop dynamic games,
this section is devoted to an evaluation of inverse feedback dynamic games in a Nash equilib-
rium, i.e. the players applied linear feedback strategies which led to a FNE. Analogously to last
section, one method of each class is analyzed and compared in the following. In particular,

• the inverse LQ di�erential game method of Section 5.4,

• the method of Section 6.5 based on IRL,

• the direct bilevel approach presented in Section 7.1 for the feedback case, detailed in
Section B.6.

These are be abbreviated and referred to again as IOC, IRL and DB methods, respectively.
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7.5.1 Preliminaries

The following analysis is conducted by means of an in�nite-horizon linear-quadratic dynamic
game with the following system dynamics and cost functions.

System Dynamics

The system is described by the di�erential equation

ẋ(t) = Ax(t) +

3

∑

i=1

Biui(t) (7.20)

with

A =

⎡

⎢

⎢

⎢

⎢

⎣

−8 −6 1 0

1 0 2 1

0 −2 0 1

0 1 0 −1
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⎥

⎦
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1 0

⎤

⎥

⎥

⎥

⎥

⎦

, B2 =
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⎢

⎣

0 0
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1 0

0 1
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⎥
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, B3 =

⎡
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⎢

⎢

⎣

0 0

1 0

0 1

0 1

⎤

⎥
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⎥

⎥

⎦

.

Therefore, in this case, each player i has a control vector ui ∈ ℝ
mi with mi = 2 to apply at each

time t . The system (A, [B1 ⋯ BN ]) is stabilizable and therefore, the existence of stabilizing
linear feedback strategies of the form

ui(t) = −Kix(t), ∀ i ∈ 

is guaranteed [EBS00].

Cost Functions

Each player i ∈  aims to minimize an individual quadratic performance index

Ji =

1

2
∫

∞

0

x
⊤
(t)Qix(t) + u

⊤

i
(t)Riiui(t) dt. (7.21)

The ground truth parameters of the cost functions were set to

Q
∗

1
= diag(1, 0.4, 2, 1), R

∗

11
= diag(1, 1),

Q
∗

2
= diag(1, 0.6, 1, 2), R

∗

22
= diag(1, 1),

Q
∗

3
= diag(1, 1, 0.5, 1), R

∗

33
= diag(1, 2).

(7.22)
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Using the ground truth cost function parameters, the feedback Nash equilibrium trajectories
x
∗
(t) and u∗(t) were calculated by means of the coupled matrix Riccati equations [Eng05, The-

orem 8.5]. The theorem allows to con�rm the Nash character of the trajectories given the
stability of the controlled system. The resulting Nash equilibruim feedback matrices are given
by

K
∗

1
=
[

0.012 0.123 0.114 0.318

0.066 0.028 −0.006 0.012]
,

K
∗

2
=
[

0.004 −0.041 0.541 0.130

0.018 0.197 0.130 0.644]
,

K
∗

3
=
[

0.025 0.650 0.115 0.149

0.020 0.132 0.384 0.301]
.

(7.23)

Properties of the Inverse LQ Dynamic Game

Before solving the inverse LQ dynamic game, the LQ character of the problem allows for its
analysis by means of the results of Chapter 5. We �rst use the results of Lemma 5.2 to determine
the matrices Mi ∈ ℝ

8×6 with (5.14) using the control matrices K ∗

i
. Now consider the rank of

Mi and obtain rank(Mi) = 6 for all i ∈  . By the results of Theorem 5.3, the necessary and
su�cient conditions for a unique solution of the inverse LQ dynamic game up to a multiplying
constant parameter are ful�lled.

7.5.2 Noisefree Case

The inverse dynamic game methods are �rst tested under ideal conditions, i.e. the observed
trajectories are free of measurement noise and therefore correspond exactly to the FNE which
arise out of the dynamic game consisting of the system dynamics (7.20) and cost functions
(7.21) with ground truth parameters (7.22). Since both the IOC and IRL methods rely on the
estimation of the Nash equilibrium feedback matrices, this is carried out for both players using
a least-squares approach presented in Section 5.4.2 and the given trajectories x∗(t), u∗

i
(t). The

estimation yields very good results for K̂i as we obtain deviations where ||K̂i − K
∗

i
|| < 10

−4,
i = {1, 2, 3}, from the original Nash feedback matrices.

Inverse Optimal Control

The inverse dynamic game is solved by determining the solution of the quadratic static opti-
mization problem (5.33) using the estimated feedback matrices K̂i . The parameters in (7.22)
are exactly identi�ed exactly up to two decimal values and are therefore not explicitely given.
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The mean parameter error Δ�
p,mean

is 0.05% and the maximum parameter error Δ�
p,max

is 0.26%.
The NSAE of the states is �x = 0.002 while the NSAE of the controls is �u = 0.010.

Inverse Reinforcement Learning

The IRL approach leads to identi�ed cost function parameters which approximate the original
ground truth paramters up to two decimal values. The mean parameter error is Δ�

p,mean
= 0.1%

and the maximum parameter error is Δ�
p,max

= 0.6%. The NSAE of the states is �x = 0.019. The
NSAE of the controls is �u = 0.073. All errors are slightly bigger than the errors obtained with
the IOC method.

Direct Bilevel Approach

The DB approach leads to a mean parameter error of Δ�
p,mean

= 0.43% and a maximum parame-
ter error of Δ�

p,max
= 3.85%. The NSAE of the states is �x = 0.028 and the NSAE of the controls

is �u = 0.151. The DB approach yields greater errors than both the IOC and IRL methods.

Comparison

The following Tables 7.12 and 7.13 summarize the results of the parameter identi�cation with
all methods.52

Table 7.12: Ground truth and cost function matrices Qi identi�ed from noiseless trajectories with all methods

Case Q1 Q2 Q3

GT (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (1.00, 1.00, 0.50, 1.00)

IOC (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (1.00, 1.00, 0.50, 1.00)

IRL (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (0.99, 1.00, 0.50, 1.00)

DB (1.00, 0.40, 2.00, 1.00) (1.04, 0.58, 1.00, 2.00) (0.99, 1.00, 0.50, 1.00)

Table 7.13: Ground truth and cost function matrices Rii identi�ed from noiseless trajectories with all methods

Case R
1,(22)

R
2,(22)

R
3,(22)

GT 1.00 1.00 2.00
IOC 1.00 1.00 2.00
IRL 1.00 1.00 2.00
DB 1.01 1.00 2.00

52 All results were normalized with respect to the parameter Ri,(11) for a better comparison. Therefore, this parameter
is not explicitely given in Table 7.13.
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Even though the metrics show that the DB leads to the highest mean and maximum parameter
errors as well as the highest NSAE, thus suggesting a superiority of IOC and IRL in the quality
of the estimation, all errors are relatively small. The values in Tables 7.12 and 7.13 con�rm
that all methods lead to an excellent estimation of the cost function parameters. For the sake
of completeness and in order to see potential di�erences in the approximation of the observed
trajectories, we solve the LQ di�erential game with the estimated parameters and determine
the corresponding FNE trajectories for all methods. The ground truth and model state trajec-
tories are depicted in Figure 7.11. Likewise, the control trajectories are shown in Figure 7.12.
All methods are able to perfectly approximate the observed trajectories.
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Figure 7.11: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method

7.5.3 Robustness to Measurement Noise

This section presents simulation results on the in�uence of the presence of noise in the ob-
served trajectories on the results of the inverse dynamic game methods. Similar to the eval-
uation in Section 7.4.3 for the open-loop case, Gaussian white noise is added to the state tra-
jectories and the control trajectories according to (7.18) and (7.19), respectively. Once more,
the added noise is generated such that the corrupted trajectories have a particular SNR value.
The considered SNR values range from 20 dB to 40 dB. 100 samples of Gaussian white noise
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Figure 7.12: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method

were generated and therefore, the noisy trajectories ̃
�s , s ∈ {1, ..., 100} (cf. De�nition 6.2),

are obtained for each of the di�erent SNR values. Each one of these trajectories was used to
identify cost function parameters. Therefore, we obtain for each method the parameter sets
̂
�s , s ∈ {1, ..., 100}. Each of the parameter sets can be used to determine corresponding FNE
trajectories which are denoted by ̂

�s , s ∈ {1, ..., 100}. Analogously to Section 7.4.3, the metrics
�
x

mean
, �uimean and �u

mean
for the trajectory comparison as well as Δ�

max
and Δ�

mean
for parameter

comparison are considered.

Inverse Optimal Control

The parameter and trajectory errors are given in Table 7.14. The errors increase moderately
with lower values of the SNR. The worst case mean parameter error is 18.2%. It is noticeable
that the NSAE error of the control u1(t) is always bigger than the NSAE errors of the other
players’ controls.

Inverse Reinforcement Learning

The error measures for each SNR value are given in Table 7.15. In this case, it can be observed
again that the NSAE error of the control u1(t) is always bigger than the NSAE errors of the
other players’ controls. The worst case mean parameter error is 11.4%.
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Table 7.14: Error between ground truth trajectories and trajectories obtained with IOC from noisy trajectories

SNR in dB �
x

mean
�
u1

mean �
u2

mean �
u3

mean Δ
�

max
Δ
�

mean

20 4.380 8.082 4.454 4.837 0.977 0.182
25 1.668 3.437 1.614 1.878 0.843 0.162
30 0.714 1.168 0.687 0.842 0.379 0.080
35 0.330 0.455 0.337 0.408 0.342 0.045
40 0.173 0.257 0.182 0.233 0.299 0.017
∞ 0.002 0.003 0.003 0.004 0.003 4.67 ⋅10−4

Table 7.15: Error between ground truth trajectories and trajectories obtained with IRL from noisy trajectories

SNR in dB �
x

mean
�
u1

mean �
u2

mean �
u3

mean Δ
�

max
Δ
�

mean

20 1.556 4.947 1.449 1.144 1.859 0.114
25 0.693 2.136 0.717 0.579 1.327 0.061
30 0.291 0.839 0.361 0.309 0.631 0.030
35 0.158 0.475 0.183 0.181 0.467 0.018
40 0.085 0.250 0.098 0.096 0.175 0.008
∞ 0.019 0.045 0.011 0.017 0.006 0.001

Direct Bilevel Approach

Table 7.16 gives the resulting NSAE errors of the trajectories and the parameter errors. The
trend of less accurate estimations of the control u1(t) is visible in this case as well. The worst
case mean parameter error is 19.4%.

Table 7.16: Error between ground truth trajectories and trajectories obtained with the DB method from noisy
trajectories

SNR in dB �
x

mean
�
u1

mean �
u2

mean �
u3

mean Δ
�

max
Δ
�

mean

20 1.255 3.640 0.846 3.843 1.866 0.194
25 0.699 1.829 0.504 2.094 0.647 0.093
30 0.438 1.049 0.308 1.328 0.579 0.061
35 0.266 0.678 0.192 0.746 9.615 0.054
40 0.148 0.334 0.112 0.430 0.253 0.022
∞ 0.028 0.062 0.026 0.063 0.039 0.004

Comparison

Figure 7.13 shows a comparison of the mean NSAE errors obtained with each method and for
all SNR values. It is noticeable that the IRL approach leads to the least NSAE of the states for
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the SNR values 30 dB to 40 dB. For an SNR of 25 dB, the IRL method and the DB approach
obtain almost the same results. Finally, for highly corrupted trajectories with an SNR of 20 dB,
the DB approach o�ers the best results, closely followed by the IRL method. The IOC method
leads for all SNR values to a higher state error than the other approaches. Similar results can
be observed in the mean NSAE control errors �uimean, i ∈ {1, 2, 3}. In this case, the IRL approach
o�ers better results consistently across all SNR values. For little noise, i.e. for SNR values of
30 dB to 40 dB, the IOC method leads to better results than the DB approach.
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Figure 7.13: Mean NSAE errors obtained with each method for all trajectory SNR values

Regarding the parameter errors, Figure 7.14 shows that the least mean parameter error is ob-
tained by the IRL method for all SNR values. However, the maximum parameter error does
not show a clear trend, but suggests that the IOC method yields more consistent results, as
the other methods have greater maximum parameter errors. The IOC method and the DB ap-
proach have similar mean parameter errors. However, by inspecting the maximum parameter
error, it can be discerned that the IOC approach does not lead to great di�erences as the SNR
value changes. On the contrary, the maximum parameter error of the IRL is always higher
and varies considerably more with the exception of the case of an SNR value of 40 dB. The DB
method results do not allow a particular interpretation as no clear trend can observed, except
for the bigger error with less SNR which is common for all methods. Nevertheless, an outlier
value can be observed for an SNR of 35 dB caused by an anomalously poor identi�cation result.

Once more, for a better understanding of these results, the mean values of the identi�ed param-
eters were used to determine mean estimated Nash equilibrium trajectories. These parameters
are listed in the Appendix: Tables E.1 and E.2 correspond to the IOC method, Tables E.3 and
E.4 to the IRL method and Tables E.5, E.6 show the results of the DB approach. The resulting
estimated FNE trajectories are compared with the original noiseless trajectories in � ∗. Figures
7.15 and 7.16 show this comparison for the FNE state and control trajectories, respectively,
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Figure 7.14: Parameter error of identi�cation for all SNR values and all methods
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Figure 7.15: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted using noise-corrupted trajectories with SNR = 20 dB.

which were estimated from noisy observations with 20 dB. It is noticeable that, despite the
low SNR, all methods lead to good approximations of the states and control trajectories. In a
detailed view of the results, there is a better agreement between the original trajectories and
the estimated ones in the case of the state variables. Furthermore, we can observe that the DB
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method performs slightly better than the IRL and IOC methods. While this minor di�erence
are visible in this case, these are even tinier for greater SNR values. The corresponding �gures
are given in Section E.2.1 of the Appendix.
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Figure 7.16: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted using noise-corrupted trajectories with SNR = 20 dB.

7.5.4 Robustness to a Basis Function Mismatch

This section presents an evaluation of the robustness of the inverse LQ dynamic game methods
to a mismatch in the basis functions, similar to the analysis conducted in Section 7.4.4 for the
open-loop case. The noisefree trajectories generated by the cost function matrices Q∗

i
and R∗

ij
,

i, j ∈  , as given in Section 7.5.1 are used for identi�cation. For both the inverse dynamic
game step and the subsequent forward solution to obtain estimated trajectories x̂(t) and ûi(t),
i ∈  , it shall be assumed that certain elements of the matrix Qi are neglected and therefore
not identi�ed. The considered cases are described in Table 7.17. These describe an increasing
number of parameters of the diagonal matrix Qi which are neglected. Analogously to the
open-loop case, only the NSAE of the trajectories shall be considered for the evaluation. The
NSAE errors arising from identi�cation with each method are given in Table 7.18. Similar error
values can be observed for the cases I to III for all methods, with the DB method presenting
slightly lower values. In turn, case IV shows a very high error for all methods. The observed
trajectories and the estimated trajectories are exemplarily shown for case I in Figures 7.17 and
7.18. Additional plots describing the results of the other cases can be found in Section E.2.2 of
the Appendix.
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Table 7.17: Considered cases in the basis function mismatch analysis of inverse LQ dynamic games

Case �i

GT [Q
i,(1,1)

Q
i,(2,2)

Q
i,(3,3)

Q
i,(4,4)

R
ii,(1,1)

R
ii,(2,2)

]

I [Q
i,(1,1)

Q
i,(2,2)

Q
i,(3,3)

0 R
ii,(1,1)

R
ii,(2,2)

]

II [Q
i,(1,1)

Q
i,(2,2)

0 0 R
ii,(1,1)

R
ii,(2,2)

]

III [Q
i,(1,1)

0 0 0 R
ii,(1,1)

R
ii,(2,2)

]

IV [ 0 0 0 0 R
ii,(1,1)

R
ii,(2,2)

]

Table 7.18: NSAE errors in case of basis function mismatch in inverse LQ dynamic games

Case Method �
x

�
u1 �

u2 �
u3 �

u

I
IOC 37.622 19.944 76.219 30.861 127.024
IRL 11.978 22.173 17.352 8.489 48.013
DB 11.224 16.388 14.781 8.625 39.795

II
IOC 35.289 39.714 94.681 29.867 164.262
IRL 15.659 21.337 28.352 17.377 67.065
DB 13.497 20.699 27.027 21.121 68.848

III
IOC 29.423 61.954 88.718 22.088 172.759
IRL 47.402 30.572 50.260 59.949 140.782
DB 13.870 24.111 26.942 21.399 72.451

IV
IOC 438.410 49.741 72.837 100.270 222.848
IRL 438.410 49.741 72.837 100.270 222.848
DB 201.243 49.741 158.091 100.270 308.102

7.5.5 Discussion of Inverse LQ Dynamic Game Results

The inverse LQ di�erential game was solved by means of an IOC based method, an IRL based
method and the DB approach. All methods were shown to lead to good identi�cation results
both in terms of trajectory approximation and parameter estimation. The IOC method pre-
sented the highest parameter estimation precision in the case of noiseless trajectories.

The analysis with noise-corrupted trajectories demonstrated that the IRL based method o�ers
the best results across all SNR values. Only for the mean NSAE of the states, the DB method
is slightly better than IRL. The results indicate that the DB and IRL methods are more robust
towards measurement noise than IOC. As for the parameter error, we observe that the mean
parameter error re�ects the fact that the IRL method performed the best with all SNR values.
The higher robustness of the DB approach in low SNR regions compared to IOC can also
be noticed. However, an interesting result of IOC is the lower variability in the maximum
parameter error. This suggests that even though the DB approach and IRL performed better
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Figure 7.17: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(4,4) = 0 for i ∈ {1, 2}

(case I).

in the mean, they are not guaranteed to always lead to better results.

Regarding the robustness to a basis function mismatch, the resuls of Table 7.18 show that the
methods are fairly robust to a mismatch caused by the neglection of features. However, not
including any basis function which penalizes the states (as in case IV) leads to major deviations
of both states and controls with respect to the original trajectories. The original parameters
describe a behavior which aims at regulating all states to zero and has to be considered in the
choice of the basis functions. Similarly to the analysis of the e�ects of measurement noise
on the results, it can be discerned that the IRL and DB method are slightly more robust than
the IOC method in case of a basis function mismatch. Finally, it can also be noted that the
control trajectory approximation is corrupted more than the state approximation, especially
for the IOC and IRL methods. In general, the approximations of the controls are a�ected more,
independent of whether the perturbation lies in the basis functions or the trajectories.

Analogously to the open-loop case, the results of this section can be explained by the di�erent
concepts behind each of the methods. IOC depends on the fact that the trajectories correspond
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Figure 7.18: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(4,4) = 0 for i ∈ {1, 2}

(case I).

to a feedback Nash equilbrium. The IRL method is based on the maximization of a likelihood
function which indirectly includes the requirement of matching costs of the observed trajecto-
ries and therefore is more robust towards mild violations of the Nash equilibrium assumption
generated by the measurement noise or by basis function errors. Finally, the objective function
of the DB approach which explicitely considers the deviation between trajectories is respon-
sible for its good results.

7.6 Computation Time

Before concluding on the observed results, the computation time of all approaches is brie�y
examined, as computational e�ciency is an important issue towards the application of these
methods for an online estimation of cost function parameters. The computational e�ort is ex-
emplarily shown for the case with noisy trajectories with SNR = 25 dB to give an impression
of the computational demands of each of the methods. Table 7.19 presents the computation
times of the di�erent methods in the case of an identi�cation in an open-loop and feedback
scenario.53 The DB method yields the highest computation time, followed by the IRL and

53 The used CPU was an Intel Xeon E5-2630 at 2.6 GHz with 32 GB of RAM.
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IOC methods. The DB method’s computation time in the open-loop nonlinear case is approxi-
mately 26% higher than the one corresponding to the linear-quadratic feedback dynamic game.
This can be explained by the fact that the �rst demands the repeated solution of a nonlinear
dynamic game which is generally harder to solve than a linear-quadratic dynamic game. The
IOC method is the fastest since it relies on the solution of a conventional RDE or a quadratic
program, which can usually be e�ciently solved with numerical techniques. Finally, the IRL
method stands inbetween. The conceptually abstract likelihood function and its convergence
properties are hard to analyze. However, the fact that it consists of one single static optimiza-
tion problem yields a great chance of being faster than the DB method.

Table 7.19: Computation times for inverse dynamic games

Method TCPU in s
OL FB

IOC 4.2 0.087
IRL 161.3 1060.2
DB 2435.8 1805.1

7.7 Conclusion

In this chapter, a systematic comparison between IOC, IRL and DB methods for solving in-
verse dynamic games was conducted. Both open-loop and feedback structures were consid-
ered. Moreover, the robustness of the approaches with respect to the presence of noise in
the observed trajectories was examined. In addition to the quality of cost function parameter
identi�cation, the capability of the identi�ed cost functions to describe observed data was also
assessed.

In the open-loop case, the IOC method was shown to lead to the most accurate results in the
parameter estimation if the observed trajectories correspond to a Nash equilibrium. Neverthe-
less, if the observations are noise-corrupted, the IOC method’s results deteriorate. The state
trajectory approximation is still adequate, but the control trajectories deviate considerably
from the ground truth. The IRL and DB methods showed a higher robustness to measure-
ment noise and yield to similar results. Only in the lowest considered SNR value case, the DB
method led to slightly better approximations. In addition, all methods show a slight robustness
to missing relevant basis functions as long as the other ones are meaningful and related to the
control task at hand. In case a non-adequate basis function is provided, only the IRL and DB
methods are able to neglect it by setting its corresponding parameter to a value near zero.

As for the feedback case, a similar trend as in the open-loop case could be observed. Never-
theless, it can be stated that the magnitude of both parameter and NSAE errors for IOC and
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IRL methods is smaller than in the open-loop case. One possible reason is that the linear sys-
tem dynamics allow for better identi�cation, especially in the case of the IRL which relies on
a dynamics linearization (which is nevertheless time-variant, i.e. it is computed in every time
step). However, this may be best explained by the LS estimation of the feedback matrices Ki
which is done by means of the control and state trajectories. This estimation is, theoretically
speaking, not bias-free. The noise has zero mean, but is applied to both the control and the
state values. In spite of this fact, the estimation works well in practice such that a relatively
accurate functional relationship between the states and the control is provided to the IOC and
IRL methods. This is also re�ected by the good results obtained by all methods in the analysis
of basis function mismatch.

To �nish this chapter, the main �ndings are summarized as follows:

• Approaches based on IOC o�er the most precise parameter identi�cation results in case
of uncorrupted observations of Nash equilibrium trajectories. They are less robust to-
wards measurement noise than the other methods and may be a�ected by a signi�cant
mismatch in the basis functions, but are the least computationally expensive of all meth-
ods. The latter property indicates that this method class is the most appropriate for a
potential online application.

• Approaches based on IRL provide a good compromise between computation time and
quality of identi�cation. They are the most robust towards measurement noise among
all tested methods. Moreover, they are more robust to non-adequate basis functions than
the IOC method and yield similar results than the DB method in this case.

• The direct bilevel approach has been shown to lead to very good results and to be robust
to noise and slight errors in the basis functions, but the computation time is greater than
IOC methods (up to a factor of approximately 20 000) and IRL methods (up to a factor
of approximately 15) and therefore is the least e�cient among all methods.

• The robustness of all methods to measurement noise and to errors in the basis function
selection is higher for the state trajectory approximations. Especially for the IOC and
IRL methods, the approximation of the controls is more sensitive to violations of the
assumptions the methods are based on.

After this analysis of inverse dynamic game methods in a simulation environment, the fol-
lowing chapter presents a �rst application of inverse dynamic game methods with real exper-
imental data.
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This chapter presents an application example for inverse dynamic games. The aim of this
chapter is to provide a �rst evaluation of the applicability of inverse dynamic games to identify
cost functions in a real scenario. In the following, a shared control scenario between two
humans is considered. Shared control stems from the �eld of human-machine cooperation. It
usually describes a situation where humans and machines simultaneously control a dynamic
system54. Therefore, it has led to a rising number of applications including robot-assisted
rehabilitation in medicine as well as all kinds of technical assistance systems for vehicle control
or for various types of technical devices including construction machines, wheelchairs, etc. For
the evaluations in this chapter, an experiment in which several pairs of subjects simultaneously
control a steering system is employed. This scenario is modeled by means of a di�erential
game such that cost functions describing the interaction of human pairs can be identi�ed from
measured data. The two method classes for inverse di�erential games presented in this thesis,
IOC and IRL, shall be evaluated by means of this experiment. Furthermore, similar to Chapter
7, the results shall be compared to the results of applying the DB approach for identi�cation.

8.1 Experimental Setup

The experimental setup which was used can be seen as a simpli�ed scenario of the lateral
control of a vehicle. This section presents all details concerning the hardware setup and the
implementation of the haptic feedback. In the following, this setup will be referred to as the
cooperative steering system.55

The cooperative steering system consists of four main components: two active steering wheels,
two monitors with visualization windows and a real-time processing unit of dSPACE. The
steering wheels are equipped with an incremental encoder of 40000 increments per full rota-
tion for measuring the steering angles with a sampling frequency of fs = 100 Hz. Furthermore,
they are active due to integrated motors which can apply a torque on each of them. The maxi-
mum torque of the motors is 15.6 Nm. One of the components of the motor torque is calculated

54 The reader is referred to [ACM+18] for a formal de�nition of Shared Control and its multiple applications.
55 The experiment described in this chapter has been also presented in the conference paper [IFH19], where the

di�erential game model was shown to better explain cooperative steering behavior than an alternative state-of-
the-art model (presented in [IEFH18]).
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such that the steering wheel has the dynamics of a spring-damper system. Therefore, the dy-
namics of the steering wheel j ∈ {1, 2} are described by means of the equation

ΘSW,j '̈j (t) = Mj (t) − dj '̇j (t) − cj'j (t), (8.1)

with the spring constant cj , damping constant dj and the moment of inertia ΘSW,j and where
'j (t) and Mj denote the steering wheel angle and the human input torque, respectively. The
parameters of the steering wheels are given in Section F.1.1 of the Appendix.

In the experiment, the two steering wheels are haptically coupled. This virtual coupling is
implemented in a real-time environment with the dSPACE processor unit. This unit is also used
to establish the communication between all components. The haptic coupling is e�ectuated
by calculating the required torque MC(t) such that the angular di�erence between the two
steering wheels is reduced to zero. This is achieved by emulating a virtual spring-damper
element between both steering wheels with an automatic controller. Therefore, with the haptic
coupling, a further torque exists which in�uences the dynamics of each steering wheel, leading
to the dynamics equation

ΘSW,j '̈j (t) = Mj (t) − dj '̇j (t) − cj'j (t) + MC(t). (8.2)

The implementation of the controller was done in MATLAB/Simulink 2010b. Further de-
tails on this controller can be found in Section F.1.2 of the Appendix.

A computer interacts with the real-time system and generates two separate visualization win-
dows on two monitors in order to give visual feedback of the current steering wheel position
to each participant. This visualization was implemented by means of OpenGL and includes
a marker (green square) which moves horizontally in the window according to the value
of the steering angle. The steering wheel value range which is mapped onto the screen is
[−180°; 180°], where a positive angle corresponds to a counterclockwise rotation. A further el-
ement in the visualization window is the reference trajectory. The points which constitute the
trajectory pass downwards through the window at a constant speed. A single point crosses the
entire visualization window in 2 seconds. The vertical position of the marker is �xed at 75%
of the window height. Figure 8.1 depicts all components of the experimental setup as well as
an example of the visualization window and the black curtain (thick black line) which served
to separate each subject’s area.

8.2 Modeling

The experiment consists of a shared control task, in which pairs of participants control the
cooperative steering system simultaneously. The aim of the subjects is to follow the reference
trajectory shown on the monitor by means of their corresponding steering wheel. This sce-
nario is modeled by means of a di�erential game such that the observed data can be used to
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Figure 8.1: Hardware setup for the experiment

identify cost functions of each subject which explain their cooperative behavior. In the fol-
lowing, the di�erential game is formalized mathematically. Afterwards, the system dynamic
equations and cost function structure are stated more precisely for the scenario at hand.

8.2.1 Shared Control Modeling via Di�erential Games

Consider two human players controlling a dynamic system

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t) (8.3)

with x(0) = x0, where x(t) ∈ ℝ
n represents the system states and ui(t) ∈ ℝ

mi denotes the
control trajectories of player i. In addition, suppose a reference signal is given, which is the
output of the known linear reference model

ż(t) = Hz(t). (8.4)

Given that the framework of feedback control is the most suitable for modeling human motor
control [TJ02, Tod04], it is assumed that the human players select a feedback strategy 
i ∈ ΓFBi
according to De�nition 3.6. Furthermore, the cost function structure

Ji =

∞

∫

0

e(t)
⊤
Qie(t) + ui(t)

⊤
Riiui(t) dt, i ∈ {1, 2} (8.5)
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is assumed for each player, where e(t) = x(t) − z(t). In this way, the cost function models the
objective of both humans to track a given reference, i.e. minimize the error between the state
and reference trajectories.

While the cost function (8.5) is quadratic, it is not a standard quadratic cost function since
the cost function matrix Qi is not penalizing the state variable x(t), but the state-reference
deviation e(t). Therefore, the methods for inverse linear-quadratic dynamic games cannot be
applied directly. Nevertheless, it is possible to introduce a new system state including both the
states and the reference variables such that (8.5) is transformed into a standard quadratic cost
function. This leads to extended system dynamics where the linearity property is maintained.
In this way, we obtain a linear-quadratic di�erential game according to De�nition 3.11. The
details on these reformulations are presented in Section B.7 of the Appendix.

8.2.2 Cooperative Steering System Dynamics

To simplify the model of the cooperative steering system, an ideal coupling of the two steering
wheels is assumed. This means that both steering wheels have the same angle ' and angular
velocity '̇. With this assumption, the dynamics of the system of coupled steering wheels are
given by

ẋ(t) =

[

−
dc

Θsum
−

cc

Θsum
1 0 ]

x(t) +
[

1

Θsum
0 ]

u1(t) +
[

1

Θsum
0 ]

u2(t) (8.6)

where x(t) = ['̇(t) '(t)]

⊤ and ui(t) = Mi(t) is the steering torque of human i. The variable
Θsum denotes the sum of the moments of inertia of both steering wheels. All system parameters
are given in Table 8.1.

Table 8.1: Cooperative steering system model parameters

Parameter Value Description

Θsum 0.094 kgm
2 Rotational inertia of the coupled steering wheels

cc 1.146 Nm/rad Spring constant
dc 0.859 Nm ⋅ s/rad Damping constant

8.2.3 Cost Functions

The cost function structure is given by (8.5). Furthermore, diagonal matricesQi = diag(q(1)i , q
(2)

i
)

are assumed such that o�-diagonal parameters are neglected. This is a common procedure
in optimal control theory since o�-diagonal matrix elements represent mixed terms in the
cost function which are usually not interpretable [BH75]. The state reference is given by
z(t) = ['̇ref(t) '

ref
(t)]

⊤, representing the reference values for the steering angle velocity
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and the steering angle, which is visible on the monitor. It is assumed that the participants do
not aim to follow a particular reference trajectory of the steering velocity since none was spec-
i�ed, neither visually nor verbally. Conversely, the reference trajectory of the steering angle
'
ref
(t) corresponds to the one visible on the monitor and is equal for both participants.

8.3 Data Acquisition and Preparation

In order to apply inverse dynamic game methods, a set of state and control trajectories is
needed. As mentioned previously in Section 8.1, a sensor for measuring the angle 'j (t) of
each steering wheel is available. The steering angle velocity '̇j (t) and the acceleration '̈j (t)

are determined o�ine by a numerical di�erentiation and a subsequent smoothing process
via a cubic spline interpolation (MATLAB function csaps with parameter p = 0.99995). The
steering torque of each human ui(t) = Mi(t) is then calculated by means of (8.2), i.e. the system
dynamics equation of each steering wheel. Due to the ideal coupling of the steering wheels,
the steering wheel angle '(t) and angular velocity '̇(t) of the cooperative steering system are
set equal to the mean value of both steering wheel angles and velocities, respectively.

8.4 Experimental Protocol

Fifty-two subjects (age 25 ± 2.27) participated in the experiment in pairs. They did not have
the possibility to make any eye-contact and were told to refrain from speaking during the
experiment. They were aware that they were completing the task with a partner. Each subject
pair was told to track the reference trajectory as well as they could.

Each pair of subjects completed an approximately two minutes long run which consisted of

• An approximately one minute long initial part (P1) which allowed the participants to
become familiar with the haptically coupled system,

• A 4 seconds long middle part (P2) which was used for identi�cation and validation,

• A 32 seconds long �nal part (P3) which was not used for analysis.

The �rst part P1 included splines and step functions as visible reference trajectories for the
steering angle. On the other hand, P2 consisted of only step functions. Step functions were
used for evaluation since these represent goal-oriented or point-to-point movements, also
known as reaching movements. This kind of movements are often considered in studies
concerning human motor behavior both from a neuroscience and biology perspective [FH91,
Kal09, KM11] as well as from a control theoretical perspective [ARARU+11, CS17]. The ref-
erence trajectory of P2 describes 4 point-to-point movements de�ned by the �xed positions
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(120°, 0°, -120°, 0°, 120°). Finally, P3 included similarly to P1 step functions as well as splines.
The subjects were unaware of this scenario subdivision and all related details.

8.5 Evaluation Procedure

As described in Section 8.2.1, the shared control scenario is modeled as a linear-quadratic dif-
ferential game with feedback strategies. Therefore, the methods for inverse feedback dynamic
games (the same as in Section 7.5) are applied for cost function identi�cation. In the following,
they are also referred to as the IOC, IRL and DB methods. All methods were given the same
system dynamics and cost function structure. The data obtained from the middle part of the
test run (P2) was used for estimating the cost function parameters of both participants with
each of the aforementioned methods.

Contrary to the simulations presented in Chapter 7, no ground truth cost function parameters
�
∗
= (�

∗

1
, �
∗

2
) are available in a real application. Therefore, the only way to evaluate the identi-

�cation results is by using the estimated cost functions to generate estimated trajectories x̂(t),
û1(t), and û2(t) and compare them with the measured trajectories x̃(t), ũ1(t) and ũ2(t). This
comparison is done by means of the NSAE for states and controls introduced in Section 7.3.2.
The 52 participants formed 26 pairs of subjects and therefore, 26 data sets were available for
analysis. These 26 sets of trajectories lead each to an estimation of the cost function parame-
ters. Therefore, we obtain the parameters ̂

�
(s), s ∈ {1, ..., 26} for each of the methods IOC, IRL

and DB. Afterwards, each set of identi�ed parameter vectors consisting of ̂
�
(s)

IOC
, ̂� (s)
IRL

and ̂
�
(s)

DB

is used to solve for the Nash equilibrium trajectories x̂(s)(t), û(s)
1
(t) and û(s)

2
(t), s ∈ {1, ..., 26}.

This is done by applying the reformulations of Section B.7 to obtain a standard LQ di�erential
game and using Theorem 3.7 afterwards. The Nash trajectories are compared to the observed
trajectories x̃(t), ũ1(t) and ũ2(t) by computing the corresponding NSAE as described in Section
7.3.2. Figure 8.2 summarizes the evaluation procedure applied in this chapter.

8.6 Results

The NSAE of states and controls was calculated for all data sets and all corresponding identi�-
cation results. All values are given in the Section F.2 of the Appendix. Due to the small data set,
the median values �x

median
of the errors are considered instead of the mean values. The median

values and the standard deviations �x
SD

of the errors for all used inverse dynamic methods are
given in Table 8.2. The statistical results are summarized and depicted in Figure 8.3.

The �rst noticeable characteristic of the results is the considerably higher magnitude of the
error compared to the magnitudes seen in Chapter 7. In general, it can be discerned that the
DB approach led to smaller mean values and variances of errors than the IRL and IOC based
approaches. The IRL method performed better than the IOC method in terms of the state
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Figure 8.2: Evaluation procedure for the identi�cation in a real shared control scenario

Table 8.2: Mean value and standard deviation of the error between measured trajectories and trajectories obtained
from identi�cation with IOC, IRL and DB methods.

�
x

�
u

�
x

median
�
x

SD
�
u

median
�
u

SD

IOC 127.429 58.632 166.578 52.904
IRL 101.236 35.611 173.202 49.356
DB 89.672 19.372 143.952 22.867

trajectory approximation. Nevertheless, the mean values of the NSAE error of the controls are
very similar. The range and standard deviation of the errors shown in Figure 8.3 are smaller
for the DB method compared to IOC and IRL based approaches. In order to test the statistical
signi�cance of these errors, a Wilcoxon signed rank test56 was conducted on the data sets of �x ,
�
u . The test results con�rmed that all di�erences are statistically signi�cant with a signi�cance

level of � = 0.01. Nevertheless, the control errors of the IOC and IRL methods are an exception.
The signed rank test con�rmed that their di�erence is not statistically signi�cant. Detailed
results with p-values are provided in Section F.2.1 of the Appendix.

56 A Wilcoxon signed rank test (see e.g. [SC88]) is a statistical test where, contrary to more widespread statistical
test methods as e.g. student’s t-test, it is not assumed that the data follows a normal distribution. This assumption
was avoided here due to the relatively small data population.
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Figure 8.3: Statistical results of the cost function identi�cation in the cooperative steering experiment

In order to further illustrate the identi�cation results, the measured data and the estimated
trajectories x(s)(t) and u(s)

i
(t) for some representative subject pairs s ∈ {1, ..., 26} are shown in

the following. Figure 8.4 shows the data and identi�cation results of subject pair 1. This data set
yielded the smallest error for all methods. It can be recognized that the states are approximated
the best by the DB approach, followed by the IRL method. The control trajectories cannot be
exactly described by the dynamic game with the estimated parameters ̂

� any method. Only
the qualitative course can be described and several changes in the torque cannot be accounted
for.

The following identi�cation result in Figure 8.5 corresponds to subject pair 2. The DB and
IRL method yield the best results regarding state trajectory approximation. Nevertheless, the
error is higher than in the results shown in Figure 8.4. In the case of the control trajectories, it
is noticeable that the IRL approach fails to identify the control actions of the �rst subject, but
estimates the control of the second subject as higher. This leads to the same state trajectories
as the DB approach. The estimation of a control trajectory as (nearly) a constant is an e�ect
which was observed for some data sets, not only for the IRL method, but also for the IOC and
DB method. This e�ect can be seen e.g. in the results of subject pair 22 depicted in Figure 8.6.
The DB approach is able to describe the control trajectories better, but on the other hand, the
IOC and IRL methods are able to approximate the state trajectories slightly better than the DB
method for this data set.
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Figure 8.4: Identi�cation results of subject pair 1
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Figure 8.5: Identi�cation results of subject pair 2
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8.7 Computation Time

Analogously to Chapter 7, the computation time required for the solution of inverse dynamic
games is analyzed.57 The mean of the computation times was calculated for each of the method
classes considered. The values are listed in Table 8.3. It can be observed that the results of
Section 7.7 are replicated. The DB approach needs the most computation time, followed by
the IRL and IOC method. The IOC and IRL approaches need 0.01 % and 1.57 % of the DB
method’s required computation time, respectively.

Table 8.3: Mean computation time for identi�cation of both cost functions of a subject pair in the cooperative steering
experiment.

Method TCPU

IOC 0.04 s

IRL 4.6 s

DB 291.75 s

8.8 Discussion

This section is devoted to a discussion of the results of the previous sections. The results are
analyzed and the limitations of the methods and the experiment are reviewed.

Overall, it can be stated that the inverse feedback dynamic game method based on the DB
approach performs better than its IRL and IOC based counterparts in terms of trajectory ap-
proximation. This is shown by the mean values of the errors �x

DB,mean
< �

x

IRL,mean
< �

x

IOC,mean

of both states and controls in Table 8.2. Furthermore, the standard deviations �x
SD

and �u
SD

are
the smallest for the DB approach, indicating that this method led to more consistent results.

The better results of the DB approach can be similarly explained as in the simulation results
of Chapter 7. The underlying optimization problem in the DB method directly minimizes the
error between observed and estimated trajectories. In turn, the IRL method does this indirectly
by means of an implicit requirement included in the likelihood function. In a very di�erent
approach, the IOC method aims to minimize the violation of Nash equilibrium conditions and
does not consider the error between trajectories in the process.

In general terms, the methods appear to be able to describe the state trajectories better than
the control trajectories. However, there were several data sets for which the state trajectories
could not be explained adequately by the cost functions with identi�ed parameters, regardless
of the selected inverse dynamic game method. The question arises as to which reasons this
e�ect might have.
57 The used CPU was an Intel Core i7-6600U at 2.6 GHz with 12 GB of RAM.
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Figure 8.6: Identi�cation results of subject pair 22

One potential source of error is an inexact modeling of the cooperative steering system. In
particular, the assumption of an ideal coupling of the steering wheels may have been too
strong for the used system, such that the description by means of (8.6) is not accurate enough.
It is conceivable that this inaccuracy is higher the more dynamic the interaction is, i.e. when
the partners act very di�erently and change the direction of the torque very often. Besides
this fact, the subject pairs were observed to have partially disobeyed the instructions of the
experiment. For example, in Figure 8.6, the time span between 1 s and 2 s shows that player
1 applied a torque contrary to the one which is needed to bring the steering angle towards
the reference value. This behavior had to be compensated for by player 2. Such behavior
contradicts the rationality implied by a model based on di�erential games and thus cannot be
accounted for.

Overall, the results suggest that the players may not act exactly optimally and thus the inter-
action may sometimes not be exactly represented by a Nash equilibrium. If the trajectories do
not represent a Nash equilibrium, then worse results of the IOC and IRL methods are poten-
tially obtained, given the fact that they rely on the estimation of a Nash equilibrium control
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law from these trajectories. For example, the IOC method �rst calculates an estimation K̂i of
the linear control law which best describes the relation between measured controls and states;
afterwards, cost function parameters are determined which correspond to the identi�ed con-
trol matrix. However, these control matrices K̂i which are optimal in a least-squares sense
(cf. Section 5.4.2) do not necessarily correspond to a Nash equilibrium. Consequently, the
cost functions with parameters ̂

�i describe a Nash equilibrium which is the "closest" to K̂i in
the sense that the violation of the Riccati equations is minimal. To illustrate this, consider the
value of the residual ||M̂i

̂
�i ||, where M̂i is calculated by means of the K̂ = (K̂1, ..., K̂N ) identi�ed

via the LS method (see (5.36)). This describes the extent up to which identi�ed parameters ̂
�i ,

together with K̂i , violate the necessary and su�cient conditions for Nash equilibria. There-
fore, it can be seen as a measure of the "non-Nash" character of the estimated K̂ 58. Figure 8.7
shows that some of the identi�ed K̂ are approximately a Nash equilibrium, but some others
present less Nash character. In particular, the good results of Figure 8.4 can be associated to a
low value of the residual. Nevertheless, it could be observed that the residual value does not
allow forseeing the quality of the trajectory approximation results.

2 4 6 8 10 12 14 16 18 20 22 240

1

2

3

Subject pair

||
M̂
i
̂
�
i
||

Player 1
Player 2

Figure 8.7: Residual values of the identi�ed control law and parameters for all subject pairs. Here, the outlier
||M̂2

̂
�2 || = 44.84 for subject pair 22 is not depicted in favor of better visibility of the other values.

Another problem arises if the estimated K̂i yields higher values of the objective function of
the least-square estimation functional ||ui + Kix|| (cf. (5.36)), i.e. the linear feedback is unable
to reproduce the relationship between ui(t) and x(t). A consequence would be a detriment of
the approximation capabilities of the inverse dynamic game methods based on IOC and IRL
since they rely on this feedback law estimation to include the in�uence of the other player’s
controls on the system dynamics.

58 Note that ||M̂i
̂
�i || ≠ 0 is possible while ||M̂

′

i

̂
�i || ≈ 0. M̂′

i
is calculated with K̂ ′ which arise from the solution of the

di�erential game corresponding to the identi�ed parameters ̂
� . The latter lead to a Nash equilibrium according

to the necessary and su�cient conditions used for determining the trajectories ûi (t) and x̂(t).
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Finally, the mean computation times presented in Table 8.3 show that the IOC method would be
the most appropriate method in terms of a potential online application such that cost function
parameters are constantly updated as new data points are available. The IRL approach may
also serve for such a purpose with more e�cient coding. On the other hand, the computation
time of the DB approach con�rm that it is not suitable for an online application. Cost function
parameters may change over time due to di�erent e�ects, e.g. fatigue or even sudden events.
These alterations cannot be quickly detected by the DB method, but rather by the alternative
methods developed in this thesis.

8.9 Concluding Remarks

In this chapter, an application example for inverse dynamic games was presented. A cooper-
ative steering experiment was conducted where pairs of subject interact haptically to cooper-
atively complete a control task. The results indicate that it is possible to describe cooperative
system behavior by means of dynamic games, and that inverse dynamic game methods can be
used to identify cost functions which explain the observed behavior.

The results showed the following insights:

• All methods are in�uenced by dynamic system model inacurracy, irrational behavior
with respect to the control task, and the violation of the assumption of Nash equilibrium
trajectories. The IOC and IRL methods are the most a�ected by this violation.

• The IOC method is con�rmed as the most promising method for the online estimation
of cost function parameters in real applications due to computation times of fractions of
a second.

• The IRL method performs better than the IOC method but the estimation demands more
computation time. It still is less computationally demanding than the DB method but
has a lower performance.

• The DB method is the most robust towards all kinds of perturbations, but at the cost of
a high computational burden. In the evaluations conducted in this chapter, the compu-
tation time was over 60 times and 7000 times bigger than the ones achieved by the IRL
and IOC methods, respectively.

The system used for the experiment and its dynamic model resulted to be too inaccurate to
make reliable conclusions concerning cooperative behavior of human in haptic interaction.
The results of this experiment suggest that the assumption of a Nash equilibrium in haptic
interaction may be reasonable in certain situations. In order to give answers to these questions,
which are also interesting for other scienti�c communities, more studies and experiments have
to be conducted. Nevertheless, the methods presented in this thesis showed the potential of
application to these purposes.
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As technical systems become more intelligent, they are also required to be able to interact
with other technical systems and humans. The theory of dynamic games provides a useful
mathematical framework for describing the interaction between several players with possibly
con�icting interests. A large body of work exists concerning the calculation of the outcome of
the dynamic game from known objectives of all players. On the contrary, the inverse problem
of dynamic games, which consists on �nding the cost functions each player minimized which
led to the observed behavior, has received limited attention. This thesis contributes to this line
of research by developing methods for the solution of N -player inverse dynamic games with
both open-loop and feedback structures and with two di�erent classes of methods, assum-
ing that the interaction between players led to an open-loop or a feedback Nash equilibrium.
Following the line of a large number of studies in the identi�cation of cost function in a single-
player case, the structure of the cost functions is �xed by assuming a linear combination of
basis functions such that the problem is reduced to �nding cost function parameters for each
player. In addition, the results give a substantial insight on the properties of inverse optimal
control and inverse dynamic game problems.

The �rst method class proposed in this thesis is given by a residual-based IOC method and
exploits necessary and su�cient conditions for Nash equilibria which are based on control-
theoretical techniques. In the open-loop case, the reformulations of these conditions allow
to pose the problem of identifying cost function parameters as an unconstrained quadratic
program. Furthermore, su�cient conditions are given to test for the uniqueness of the cost
function parameters up to a multiplying constant. For a feedback structure, the use of the
same techniques is possible. Nevertheless, the knowledge of the feedback law becomes nec-
essary. Identifying the feedback law is feasible for the main class of dynamic games given by
in�nite-horizon linear-quadratic dynamic games with an in�nite horizon. Therefore, the in-
verse problem of dynamic games was thoroughly analyzed for this particular class of games.
By exploiting the necessary and su�cient conditions for Nash equilibria given by algebraic
Riccati equations, explicit solution sets describing all possible cost function parameters which
correspond to the same Nash equilibrium were established. Furthermore, a quadratic pro-
gram was formulated to e�ciently �nd a solution of the inverse dynamic game. An analysis
of the properties of this quadratic program yields necessary and su�cient conditions for the
uniqueness of the inverse LQ dynamic game solutions.

The second method class which was proposed is an IRL approach, where a probability density
function is stated as a likelihood function which depends on the cost function parameters of
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each player. The likelihood function, found by means of the principle of Maximum Entropy,
implicitely includes the requirement that the expected costs of the trajectories sampled from a
density function with the estimated parameters correspond to the costs of the observed trajec-
tories. The cost function parameters are determined via a Maximum-Likelihood estimation.
For this approach, it was proved that by maximizing the likelihood function we obtain equal
expected costs of trajectories generated by the probability density function with ground truth
parameters and the one with the estimated parameters.

Having proposed two major classes of inverse dynamic game methods for each of the two
information structures considered, i.e. open-loop and feedback, a systematic evaluation was
conducted where each method was tested using Nash equilibrium trajectories of a test system.
Until now, such a study was missing in literature, even for the single-player case. For inverse
dynamic games with open-loop strategies, a two-player game with a nonlinear ball-on-beam
dynamic system was considered. The evaluation in the case of a feedback Nash equilibrium
was done using a three-player linear-quadratic dynamic game. Both cases included a com-
parison of the performance of IOC and IRL based methods as well as a direct bilevel (DB)
approach analogous to the widespread state-of-the-art single-player inverse dynamic game
method of Mombaur et al. [MTL10]. The main �ndings con�rm previous evidence that bilevel
methods generally need a high computational e�ort, since they demand the solution of sev-
eral dynamic games, i.e. determining Nash equilibria from current candidate cost function
parameters. The IOC method outperformed IRL and the DB method in the case of perfect
measurements. However, it was shown that the DB and IRL methods are similar to each other
and more robust towards measurement noise than IOC methods, since the results of the latter
deteriorate with higher measurement noise. Nevertheless, if the measurement noise is low,
IOC methods can yield even better results than the DB approach, as it could be observed that
the IOC method needs between 0.005% and 0.01% of the DB method’s computational time.
In addition, the inverse dynamic game methods which exploit the estimation of the feedback
Nash equilibrium control laws were shown to be more robust towards measurement noise. As
for potential errors in the basis functions, the IRL method o�ers the ability of detecting irrel-
evant basis functions with less computational e�ort than the DB method. The IOC methods
show a higher dependency on meaningful basis functions.

Finally, an application example of cooperative system identi�cation was presented, where the
aim was to identify cost functions which explain cooperative behavior of humans while com-
pleting together a control task and interacting haptically in the process. The results con�rmed
the trends observed in the simulations, showing that the DB method is the most robust method,
followed by IRL and IOC methods. Nevertheless, some data sets could not be described prop-
erly by any of the methods. The results indicate that an accurate dynamic system model is
of utmost importance for the use of these methods. With a model which better describes the
dynamic system both humans interact through, it is conceivable that the developed methods
based on IRL and IOC yield a good performance with a reasonable required computational
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time (of seconds or even milliseconds), thus allowing for their use in real applications where
an online estimation of cost function parameters is of interest.

To summarize, this thesis makes a contribution to the theory of inverse problems in optimal
control and dynamic game theory. The methods open new possibilites for applications regard-
ing multiagent or cooperative system identi�cation, e.g. human behavior during interaction
with a machine. The results not only provide new methods for solving this class of problems,
but also shed new light onto their properties. In particular, the novel necessary and su�cient
conditions for unique solutions of inverse dynamic games, as well of the unbiasedness of the
estimation in an IRL setting, are also valid for the single-player case.





A In�nite Dynamic Games in Discrete Time

This section gives an overview of the relevant de�nitions and theorems for discrete-time dy-
namic games which are considered in Chapter 6 of this thesis. The de�nitions and theorems
are analogous to the ones in continuous time. Therefore, each of them has a corresponding
counterpart which can be found in Chapter 3. The following selection is based on the books
[BO99, HKZ12].

A.1 Basic De�nitions

A discrete-time dynamic game involves N players taking actions in several discrete time steps.
Since their possible actions are in�nite, typical description forms as payo� matrices or game
trees are not possible (see e.g [BO99, Chapter 3]). Instead, the evolution of their decision pro-
cess is described by means of a dynamic system in discrete-time which is de�ned as follows.

De�nition A.1 (Dynamic System in Discrete-Time State Space Representation)
A dynamic system is de�ned by a di�erence equation and an initial condition given by

x
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= f
(k)

D (
x
(k)
, u
(k)
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, … , u

(k)

N )
(A.1a)

x
(1)
= x1 (A.1b)

where x(k) ∈ ℝ
n and u(k)

i
∈ ℝ

mi denote the system state vector and the control vector of
player i at time step k ∈ {1, 2, ..., kE} =∶ , respectively.

Each player i ∈  acts upon the system in De�nition A.1 by applying a sequence of inputs
or controls u(k)

i
, ∀k ∈  which belongs to an (here in�nite) action space i . Analogously to

the continuous-time case, each player decides on a particular strategy 
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from the space Γi .
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where y(k)
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) denotes the observed values of the state x(k) according to a function
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Each player selects its strategy according to an individual stage-additive cost function of the
form
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N )
. (A.3)

To summarize, a de�nition of the discrete-time in�nite dynamic game is given.

De�nition A.2 (Non-Cooperative Discrete-Time Dynamic Game)
A non-cooperative discrete-time dynamic game is de�ned by

• A set of players  = {1, ..., N }

• A set  = {1, ..., kE} including the stages of the game

• An in�nite action set i , i ∈ 

• A set-valued function �(k)
i

describing the state information of player i ∈  at time step
k

• A system given by De�nition A.1

• A set of stage-additive cost functions  = {J1, ..., JN }, i ∈  .

The elements and the de�nition strongly resemble those introduced in Chapter 3. In fact, in
system-theoretical terms, if a time di�erence between each level of play (e.g. k and k + 1) in
a discrete-time dynamic game can be stated and this di�erence tends towards zero, the game
may be considered an approximation of a corresponding continuous-time di�erential game
(quasi-continuous analysis). Indeed, this fact was exploited in order to apply the IRL-based
inverse dynamic game methods of Chapter 6 to continuous-time models, e.g. the physically
interpretable model of the ball-on-beam system. Furthermore, this allows the comparison of
the methods presented in this thesis.
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A.2 Information Structures

In the following, a de�nition of the information structures analogous to the ones in De�nition
3.4 is given.

De�nition A.3 (Information Structure of the Players in Discrete-Time Dynamic
Games)
The information structure of player i is said to be

(i) open-loop (OL) pattern if �(k)
i
= x

(1)
, k ∈ .

(ii) memoryless perfect state (MPS) pattern if �(k)
i
=

{

x
(1)
, x
(k)

}

, k ∈ .

(iii) feedback (FB) pattern if �(k)
i
= {x

(k)
}, k ∈ .

A.3 Strategies

Similar to Section 3.4, the following de�nitions describe open-loop and feedback strategies in
discrete-time dynamic games.

De�nition A.4 (Open-Loop Strategy in Discrete-Time Dynamic Games)
An open-loop strategy 
 (k)

i
for player i ∈  selects a control action according to

u
(k)

i
= 


(k)

i
(x1), ∀x1 ∈ ℝ

n
, k ∈ . (A.4)

The set of all such possible strategies is denoted by ΓOL
i

.

De�nition A.5 (Feedback Strategy in Discrete-Time Dynamic Games)
An feedback strategy 
 (k)

i
for player i ∈  selects a control action according to

u
(k)

i
= 


(k)

i
(x
(k)
), k ∈ . (A.5)

The set of all such possible strategies is denoted by ΓFB
i
.
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A.4 Necessary and Su�cient Conditions for Nash
Equilibria and Pareto E�cient Solutions in
Discrete-Time Dynamic Games

The de�nition of the solution concepts, i.e. Nash equilibrium, Stackelberg and Pareto e�cient
solutions, are identical to the ones given in Section 3.5. The only di�erence is the de�nition
of the strategies 
i which are de�ned for discrete-time dynamic games by De�nitions A.4
and A.5. Therefore, the de�nitions are not rewritten here. Nevertheless, in the following,
analogous results to Theorems 3.1 – 3.3 are given. These serve as a basis for the calculation of
solutions of discrete-time dynamic games.

Nash Equilibrium

The following theorems are based on the discrete-time Hamiltonian function
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Furthermore, the shorthand notations
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are introduced.
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The following theorem is the discrete-time counterpart of Theorem 3.1.

TheoremA.1 (NecessaryConditions forOpen-LoopNashEquilibria inDiscrete–
Time Dynamic Games)
For an N -player discrete-time in�nite dynamic game, let f (k)
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where ∇
x
(k) denotes a partial derivative with respect to the states x(k).

Proof:
See e.g. the proof of Theorem 6.1 of [BO99].

Before presenting the theorem which represents necessary and su�cient conditions for feed-
back Nash equilibria, the discrete-time value function is de�ned.

De�nition A.6 (Value Function)
Consider a player i ∈  . Let the optimal strategies of the other players 
 ∗

¬i
associated to an

N -player non-cooperative discrete-time in�nite dynamic game be given. The value function
Vi ∶ ℝ

n
× ↦ ℝ of player i is de�ned by
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where x(k) = x .
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The following theorem is the discrete-time counterpart of Theorem 3.2.

Theorem A.2 (Necessary and Su�cient Conditions for Feedback Nash Equilib-
ria in Discrete-Time Dynamic Games)
For an N-player discrete-time dynamic game, an N-tuple of feedback strategies
(

(k)∗

1
, ..., 


(k)∗

N
) provides a feedback Nash equilibrium (FNE) solution if, and only if, there

exist value functions Vi according to De�nition A.6 such that the following recursive rela-
tions are satis�ed for all players i ∈  :

Vi(x, k) = min

u
(k)

i

[
g̃
(k)∗

D,i
(x, u

(k)

i
) + Vi (

̃
f
(k)∗

D,i
(x, u

(k)

i
), k + 1

)]

= g̃
(k)∗

D,i
(x, u

(k)∗

i
) + Vi (

̃
f
(k)∗

D,i
(x, u

(k)

i
), k + 1

)
; Vi(x, kE) = 0,

(A.11)

where

̃
f
(k)∗

D,i
(x, u

(k)

i
) = fD(x, 


(k)∗

¬i
(x), u

(k)

i
),

g̃
(k)∗

D,i
(x, u

(k)

i
) = g

(k)

D,i
(x, 


(k)∗

¬i
(x), u

(k)

i
).

(A.12)

The corresponding Nash equilibrium cost for player i is Vi(x1, 1).

Proof:
See the proof of Theorem 6.6 of [BO99].

Theorem A.2 gives not only su�cient conditions for FNE (cf. Theorem 3.2), but also necessary
conditions. Its core consists of the N Bellman equations (A.11) which, analogous to the single-
player case, follow from the principle of optimality stated by Bellman [Bel66]59. For dynamic
games, the Bellman equations imply that the N inequalities corresponding to the de�nition of
the Nash equilibrium must hold true for all possible local games (with 
 (k)

i
∈ Γ

FB

i
) de�ned at

each possible initial point x(k), k ∈ , thus leading to the strong time consistency property of
the FNE.

Pareto E�cient Solutions

In the following, a theorem presenting necessary and su�cient conditions for Pareto e�cient
solutions in discrete-time dynamic games is given. The theorem represents the counterpart of
Theorem 3.3.
59 The principle of optimality as stated in [Bel66] reads: "An optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the �rst decision". This result was used to derive the Bellman equation in single-player optimal
control (see e.g. [Kir04, Chapter 3]).
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TheoremA.3 (Necessary and Su�cient Conditions for Pareto E�cient Solutions
in Discrete-Time Dynamic Games)
Let �i > 0, for all i ∈  , satisfy

N

∑

i=1

�i = 1. (A.13)

Now consider an N -player di�erential game. If 
P = {
P
1
, ..., 


P

N
} is such that



P
= arg min




N

∑

i=1

�iJi(
) (A.14a)

w.r.t

x
(k+1)

= fD(x
(k)
, u
(k)

1
, ...u

(k)

N
) (A.14b)

x(1) = x1 (A.14c)

then 
P is a Pareto e�cient solution (PES). Moreover, if the strategy spaces Γi are convex and
Ji are convex in u(k)

i
for all i ∈  , k ∈ , then for all Pareto-e�cient 
P there exist � such

that 
P solves the optimization problem in (A.14).

Proof:
The theorem is stated analogously to Theorem 3.3. According to [LZ18], both the su�ciency
(�rst theorem assertion) and the necessary part which are taken from the continuous-time
result are valid for the discrete-time case.

Similar to Theorem 3.3, the optimization problem (A.14) allows the use of the discrete-time
minimum principle to solve for the PES. Further results concerning the necessary and su�cient
conditions, in terms of the minimum principle corresponding to the problem de�ned by (A.14),
are presented in [LZ18].
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A.5 Discrete-Time Linear-Quadratic Dynamic Games

Analogously to LQ di�erential games, discrete-time LQ dynamic games are de�ned as fol-
lows.

De�nition A.7 (Linear-Quadratic Dynamic Game)
A linear-quadratic dynamic game is de�ned by the same elements as De�nition A.2. The
system dynamics are linear, i.e. are de�ned by

x
(k+1)

= ADx
(k)
+

N

∑

j=1

BD,ju
(k)

j
(A.15)

where x ∈ ℝ
n , u ∈ ℝ

mi . The cost functions are quadratic, i.e.

Ji =

1

2

kE

∑

k=1
(
x
(k)⊤

Qix
(k)
+

N

∑

j=1

u
(k)⊤

j
Riju

(k)

j
)
. (A.16)

where Qi , Rij are symmetric for all i, j ∈  and Rii ≻ 0.

The positive semide�niteness of Qi and Rij , i, j ∈  , i ≠ j can be sometimes required in or-
der to state necessary and su�cient conditions for Nash equilibria in open-loop and feedback
information structures by means of discrete-time coupled Riccati equations. These equations
are also derived from the discrete-time minimum principle, i.e. Theorem A.1, and the coupled
HJB equations, i.e. Theorem A.2, respectively. In this thesis, a quasi-continuous analysis was
considered such that the trajectories of states and controls in LQ dynamic games were gen-
erated by the continuous-time RDEs. Therefore, the discrete-time Riccati equations are not
explicitely given here. The reader is referred to

• [BO99, Theorem 6.2] for discrete-time Riccati equations in LQ open-loop dynamic games

• [BO99, Corollary 6.1] for discrete-time Riccati equations in LQ feedback dynamic games

• [BO99, Proposition 6.3] for discrete-time Riccati equations in in�nite-horizon LQ feed-
back dynamic games.
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In this section, further mathematical details are given which complement various sections of
this thesis.

B.1 Proof of Theorem 3.4

To the best of the author’s knowledge, the precise formulation of Theorem 3.4 is not available
in literature. Similar results can be found in [BO99, Theorem 6.12]. However, a formulation
similar to the results in [Eng05] was chosen in this thesis in favor of simplicity.

Proof:
[Eng05, Theorem 7.2] states that an OLNE exists if the coupled RDEs (3.60) with conditions
(3.61) have a solution Pi , i ∈  and additionally, a symmetric solution P̄i(t) to the non-coupled
RDE

̇̄
Pi(t) = −A

⊤
P̄i(t) − P̄i(t)A + P̄i(t)Si P̄i(t) − Qi(T ) (B.1)

exists on [0, T ] for all players i ∈  . Under the theorem conditions Qi ⪰ 0 and Qi,T ⪰ 0, i ∈  ,
results of the theory of di�erential equations can be leveraged to state that the solutions P̄i(t)
of (B.1) are guaranteed to exist (cf. proof of [BO99, Proposition 5.3]. The theorem assertion
follows.

B.2 Equivalence of Cost Functions

Inverse optimal control and inverse dynamic game problems have an inherent ill-posedness
property. We give in this section de�nitions of the equivalence of cost functions in an optimal
control and dynamic game scenario.



XXX B Mathematical Supplements

B.2.1 Optimal Control

In an optimal control problem, where optimal control trajectories u∗(t) which minimize a cost
function J are sought, more than one cost function exists which would lead to the same optimal
control u∗(t). Consequently, if the system dynamics are unchanged, they lead to the same state
trajectories x∗(t). Mathematically, this means that even if

J
(1)
(u(t)) ≠ J

(2)
(u(t)), (B.2)

it is still possible to obtain

argmin

u(t)

J
(1)
(u(t)) = argmin

u(t)

J
(2)
(u(t)). (B.3)

For example, it is a well-known fact that (B.3) holds for J (2)(u(t)) = cJ (1)(u(t)), c ∈ ℝ
+. Never-

theless, according to [NF04], the illposedness of a general inverse LQ optimal control problem
may transcend the ill-posedness due to a positive real constant. Therefore, it is conceivable
that this property is still present in a general inverse (non-LQ) optimal control problem. To
de�ne when two cost functions are equivalent, we introduce the following de�nition.

De�nition B.1 (Equivalence of Cost Functions in an Optimal Control Problem)
Two cost functions J (1) and J (2) are equivalent if and only if

 (1) =  (2) (B.4)

where  (j), j ∈ {1, 2}, denotes the set of solutions for cost function J (j), i.e.

 (j) =

{

u(t) ∣ u(t) = argmin

u(t)

J
(j)
(u(t))

}

. (B.5)

B.2.2 Di�erential Game

An N -player di�erential game can be considered a generalization of an optimal control prob-
lem. Consequently, the ill-posedness issues discussed in the last section are valid in this more
general case as well. Analogously to De�nition B.1, it is possible to de�ne two equivalent cost
functions of a speci�c player i in a di�erential game with N players.
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De�nition B.2 (Equivalence of Cost Functions in a Di�erential Game)
Two cost functions J (1)

i
and J (2)

i
are equivalent if and only if

 (1)
i

=  (2)
i

(B.6)

where  (j)
i
, j ∈ {1, 2} denotes the set of solutions of cost function J (j)

i
, i.e.

 (j)
i
=

{

ui(t) ∣ ui(t) = argmin

ui (t)

J
(j)

i
(ui(t), u

∗

¬i
(t))

}

. (B.7)

This de�nition can be interpreted as follows. Let J¬i represent N − 1 cost functions except the
cost function of player i. If these cost functions are �xed, then according to De�nition B.2,
two cost functions for player i are equivalent if and only if, together with J¬i , they lead to the
same Nash equilibrium.

B.3 Calculating Open-Loop Nash Equilibria With
Pontryagin’s Minimum Principle

Section 3.6.1 presented Theorem 3.1 as necessary conditions for open-loop Nash equilibria
which consist of several coupled di�erential equations. Under certain restrictions, these can
be used to state a two-point boundary value problem (TPBVP) to solve for Nash equilibrium
state trajectories x∗(t). The following lemma represents a useful result for this purpose.
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Lemma B.1
Consider an N -player di�erential game where the system dynamics are a�ne in the controls,
i.e.

ẋ(t) = f (x(t), u1(t), ..., uN (t), t) = fx (x(t), t) +

N

∑

i=1

Gi(x, t)ui(t) (B.8)

and the running costs gi of the cost function Ji in (3.3) are given by

gi(x(t), u1(t), ..., uN (t)) = gi,1(x(t), u1(t)) + ... + gi,N (x, uN (t)), ∀i ∈  . (B.9)

Furthermore, assume that the functions uj ↦ gi,j (x(t), uj (t)) are strictly convex for all i, j ∈
 and that gi,i has superlinear growth, i.e.

lim

||ui ||→∞

gi,i(x, ui)

ui

→∞ (B.10)

Then, for every (x, t) ∈ ℝ
n
×[0, T ] and every tuple ( 1, ...,  N ) ∈ ℝ

n
×...×ℝ

n , theminimization
problem

u
∗

i
(t) = argmin

ui

{ 
⊤

i
Gi(x, t)ui(t) + gi,i(x(t), ui(t))} (B.11)

has a unique solution.

Proof:
The proof is analogous to the proof of Lemma 4.1 in [Bre11] in a two-player case..

The implications of Lemma B.1 are explained in the following. By using the n algebraic equa-
tions de�ned by (3.17) and the results of Lemma B.1, u∗

i
(t) can be written as the map

u
∗

i
(t) = �

∗

i
(x(t),  i(t), t). (B.12)

By inserting (B.12) in (3.16a) and (3.16c), we obtain a system of coupled non-linear di�erential
equations consisting of

ẋ(t) = f (x(t), �
∗

i
(t), �

∗

¬i
(t), t) (B.13)

 ̇i(t) = −∇xHi( i(t), x(t), �
∗

i
(t), �

∗

¬i
(t), t), (B.14)

where �∗
i
(t) and �∗

¬i
(t) is used as a short notation for = �∗

i
(x(t),  i(t)) and �∗

¬i
(x(t),  ¬i(t)),

respectively, and the boundary conditions

x
∗
(0) = x0 (B.15a)

 i(T ) = ∇xℎi(x(T )). (B.15b)
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The TPBVP arising from (B.13), the di�erential equations (B.14) for each i ∈  and boundary
conditions (B.15) can be solved using numerical methods, e.g. shooting methods or colloca-
tion methods [AMR95, Chapter 4]. The solution of this TPBVP describes an open-loop Nash
equilibrium.

B.4 Open-Loop Nash Equilibrium of the Ball-on-Beam
System

In this section, details on the computation of the OLNE for the di�erential game with the ball-
on-beam system considered in Section 7.4 are provided. In the following, time dependencies
shall be omitted for brevity. Furthermore, all equations with the index i refer to player i ∈
{1, 2}. The ball-on-beam system dynamics are given by

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2

m
b
r
2

b
(x1x

2

4
−ge sin(x3))

Θ
b
+m

b
r
2

b

x4

−2m
b
x1x2x4−mb

gex1 cos(x3)+u1+u2

m
b
x
2

1
+Θw

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.16)

and the cost functions are de�ned as

Ji =

T

∫

0

�
⊤

i
�i dt

with the parameter vector �i ∈ ℝ
5×1 and the basis function vector

�i = [x
2

1
x
2

2
x
2

3
x
2

4
u
2

i ]

⊤

. (B.17)

The corresponding Hamiltonian is

Hi = �
⊤

i
�i +  

⊤

i
f (x, ui , u¬i). (B.18)

Using (3.17), we obtain for each players’ controls

u
∗

i
= �i(x,  i) = −

 i,4

2�i,5(mb
x
2

1
+ Θw )

. (B.19)

Next, we apply (3.16c) to obtain
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 ̇i = −

⎡

⎢

⎢

⎢

⎢

⎣

2�i,1x1 +  i,2(∇xf )(2,1) +  i,4(∇xf )(4,1)

2�i,2x2 +  i,1(∇xf )(1,2) +  i,4(∇xf )(4,2)

2�i,3x3 +  i,2(∇xf )(2,3) +  i,4(∇xf )(4,3)

2�i,4x4 +  i,2(∇xf )(2,4) +  i,3(∇xf )(3,4) +  i,4(∇xf )(4,4)

⎤

⎥

⎥

⎥

⎥

⎦

, (B.20)

where (∇xf )(r ,c), r , c ∈ {1, ..., 4} denote the elements of the matrix of partial derivatives

∇xf =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

m
b
r
2

b
x
2

4

m
b
r
2

b
+Θ

b

0
−gemb

r
2

b
cos(x3)

m
b
r
2

b
+Θ

b

2m
b
r
2

b
x1x4

m
b
r
2

b
+Θ

b

0 0 0 1

D −
2m

b
x1x4

Z

gemb
x1 sin(x3)

Z
−
2m

b
x1x2

Z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.21)

with

D =

−2m
b
x2x4 − gemb

cos(x3)

Z

−

2m
b
x1(u

∗

1
+ u

∗

2
− 2m

b
x1x2x4 − gemb

x1 cos(x3))

Z
2

Z = m
b
x
2

1
+ Θw .

Following the procedure described in Section B.3, we insert (B.19) in (B.16) and obtain the
system dynamics

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2

m
b
r
2

b
(x1x

2

4
−ge sin(x3))

Θ
b
+m

b
r
2

b

x4

f
�

4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.22)

where

f
�

4
=

(−4�1,(5)�2,(5)x2x4 − 2�1,(5)�2,(5)ge cos(x3))mb
x1Z −  1,(4)�2,(5) −  2,(4)�1,(5)

2�
1,(5)

�
2,(5)

Z
2

. (B.23)

Furthermore, we insert (B.19) in (B.20) and obtain the same costate di�erential equation, yet
with
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(∇xf )(4,1) = D
�
=

−2m
b
x2x4 − gemb

cos(x3)

Z

−

2m
b
x1f

�

4

Z

. (B.24)

The system dynamics (B.22) and the di�erential equations of  1 and  2 de�ned by (B.20)
and (B.24) constitute a TPBVP which can be solved numerically. In this thesis, the MATLAB
function bvp4c is used which applies a collocation method (see [SKR00]).

B.5 Approximations for the Maximum Entropy
Probability Density Function

This section presents the steps needed for the approximation result of the probability density
function given in (6.47). For brevity, the subscript i is omitted from all variables related to
player i in the following. Likewise, for the following derivations are based on the assump-
tion that one single demonstration (nt = 1) lies at hand such that the subscript l can also be
neglected.

Inserting (6.44) in (6.24) results in

p
(

̃
�
|
|
|
�
)
= p

(
ũ| ũ

¬i
, x
(1)
, �

)

= e−J (ũ)
[
∫

∞

−∞

e−J (u)du
]

−1

≈ e−J (ũ)
[
∫

∞

−∞

e
{

−J (ũ)−(u−ũ)
⊤
g−

1

2
(u−ũ)

⊤
G(u−ũ)

}

du
]

−1

=
[
∫

∞

−∞

e
{
1

2
g
⊤
G
−1
g−

1

2
((u−ũ)

⊤
G(u−ũ)+g

⊤
(u−ũ)+(u−ũ)

⊤
g+g

⊤
G
−1
g)

}

du
]

−1

=
[
∫

∞

−∞

e
{
1

2
g
⊤
G
−1
g−

1

2
(G(u−ũ)+g)

⊤
G
−1
(G(u−ũ)+g)

}

du
]

−1

. (B.25)

We note that the relation

(G (u − ũ) + g)
⊤
G
−1
(G (u − ũ) + g)

= (Gu − Gũ + g)
⊤
G
−1
(Gu − Gũ + g)

= (u
⊤
G
⊤
G
−1
− ũ

⊤
G
⊤
G
−1
+ g

⊤
G
−1

)G (u − ũ + G
−1
g)

= (u
⊤
+ (g

⊤
G
−1
− ũ

⊤

))G (u + G
−1
g − ũ)

= (u + (G
−1
g − ũ))

⊤

G (u + (G
−1
g − ũ)) ,

(B.26)
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holds due to the symmetry of the second derivative G of the cost function. By appling (B.26)
in (B.25), the right hand side results in

e
{

−
1

2
g
⊤
G
−1
g

}

[
∫

∞

−∞

e
{

−
1

2
(u+(G

−1
g−ũ))

⊤

G(u+(G
−1
g−ũ))

}

du
]

−1

. (B.27)

Finally, since

∫

∞

−∞

1

√

(2�)
dim(y)

|� |

e
{

−
1

2
(y−� )

⊤
�
−1

 (y−� )
}

dy !
= 1 (B.28)

holds for a multidimensional Gaussian distribution with the mean � and the covariance ma-
trix � , we may rewrite (B.27) and obtain the approximated probability density function

p (�i | �) ≈ e−
{
1

2
g
⊤
G
−1
g

}

det(G)

1

2 (2�)
−
1

2
dim(u)

, (B.29)

where dim (u) = mkE denotes the dimension ofu. From (B.29), the approximated log-likelihood
function results in

ln
(

̃
�
|
|
|
�
)
= ln

(
p
(
u| ũ

¬i
, x
(1)
, �

))

≈ −

1

2

g
⊤
G
−1
g +

1

2

ln (det(G)) − 1
2

dim (u) ln (2�) .
(B.30)

B.6 Implementation of the Direct Bilevel Approach

The DB approach used for comparison in this thesis is based on the minimization of the cost
functional (7.1) which depends on the current candidate trajectories u

�,j
(t) and x

�
(t). These

trajectories must be Nash equilibrium trajectories under an arbitrary parametrization of the
cost functions � . The solution of a forward dynamic game with the parameters � is there-
fore nested inside the objective function in (7.1). Consequently, each of the objective function
evaluations will include the solution of a forward dynamic game to determine an OLNE or a
FNE, depending on the considered case. We note that the search for � might lead to cost func-
tion parameter candidates for which a Nash equilibrium does not necessarily exist. Proving
the existence of Nash equilibria is in general not trivial. For example, in the case of linear-
quadratic di�erential games, the existence of Nash equilibria depends on the existence of the
solution to the coupled Riccati di�erential equations, yet its existence has only been proved
under strong assumptions. Furthermore, the proofs are not very useful for practical implemen-
tation. Therefore, existence of Nash equilibria cannot be ensured by introducing optimization
constraints. Nevertheless, probably inspired by the optimal control case (cf. assumptions in
the results summarized in [Kuč73]), literature on (linear-quadratic) dynamic games usually
introduce constraints of the kind

 =
{

�i ∣ �i,(j) ≥ 0, ∀i ∈  , j ∈ {1, ..., Mi}

}

. (B.31)



B.7 Solutions of the LQ Tracking Problem in the Cooperative Steering Model XXXVII

This constraint set was implemented in the minimization of the objective function for the DB
approach. The occurence of succesful calculations of Nash equilibria was indeed increased
with this set. Nevertheless, it was not enough to completely avoid failure. Therefore, the ob-
jective function was augmented by a resetting procedure of the candidate trajectories (poten-
tially leading to greater costs) which became active if the forward problem, i.e. the numerical
solution of the corresponding RDEs or the TPBVPs did not converge.

The algorithm describing the cost functional to be evaluated in each iteration of the optimiza-
tion problem is listed below.

Algorithm 5 Cost Functional for the Direct Bilevel Approach in Inverse Di�erential Games.
Input: Parameter candidates � , observed trajectory set , dynamics f , basis functions �i .
Output: Sum of squared errors JDB

1: Attempt calculation of Nash equilibrium trajectories x
�
(t) and u

�,j
(t).

2: if Calculation fails then
3: Set x

�
(t) = 0 and u

�,j
(t) = 0, ∀j ∈  .

4: end if
5: Calculate sum of squared errors between candidate trajectories and observed trajectories
JDB.

6: return JDB.

Therefore, the DB method used for the simulation results of Chapter 7 consists of the mini-
mization of the cost functional described by Algorithm 5 subject to the constraints (B.31).

B.7 Solutions of the LQ Tracking Problem in the
Cooperative Steering Model

This section presents reformulations of the LQ tracking problem arising in Section 8.2.1 to a
standard LQ problem which allows an easier solution of the di�erential game. First, the general
approach is presented. It is based on the reformulation proposed for the single-player case in
[ML14]. Afterwards, the reformulations speci�c to the problem of Section 8.2.1 are shown.
In the remainder of this section, time dependencies of all variables will be omitted for better
readability.

B.7.1 General Reformulation to a Standard LQ Problem

To begin the reformulation, the state variable X = [x z]

⊤ is introduced which combines
the system states and the corresponding reference trajectories. With this new state, we de�ne
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an extended system including the original system dynamics as well as the reference model
dynamics:

Ẋ = ÃX + B̃1u1 + B̃2u2

with Ã =
[

A 0

0 H]
, B̃i =

[

Bi

0 ]
, i ∈ {1, 2}. (B.32)

Due to the in�nite horizon, the cost function (8.5) can only be applied if H is Hurwitz. This
is a considerable restriction, since application-relevant reference signals, e.g. sinusoidal and
step functions, will not lead to a Hurwitz reference system matrix. In order to circumvent
this problem, we introduce a discount factor � such that 0 < � < 1 in the cost function, thus
avoiding in�nite costs.

We note that the tracking error e can be written as e = X , where = [In −In] and In is an
n-dimensional identity matrix. With this transformation matrix and with the discount factor
� , we rewrite (8.5) as

Ji =

∞

∫

0

exp(−�t)X
⊤⊤
QiX + u

⊤

i
Riiui dt

=

∞

∫

0

exp(−�t)X
⊤
Q̃iX + u

⊤

i
Riiui dt (B.33)

where
Q̃i =

⊤
Qi =

[

Qi −Qi

−Qi Qi ]
. (B.34)

According to Modares and Lewis [ML14], the optimal control problem consisting of the system
dynamics (B.32) and the cost function (B.33) for any i ∈ {1, 2} to be minimized can be refor-
mulated as an optimal control problem with a cost function without any discounting factor � ,
but with the new system matrix Ã − 0.5�In instead of (B.32). This is necessary in order to ease
the calculation of the solution and to prove its existence. In their paper [ML14], Modares and
Lewis state that the solution exists if the matrix Ã − 0.5�In is Hurwitz.

B.7.2 Transformed System Dynamics and Cost Functions of the
Cooperative Steering System

Given that we apply constant reference values, H = 0 holds for the reference system matrix
in (8.4). Moreover, the velocity reference signal is zero. Therefore, we neglect this term before
applying the aforementioned transformation. In this way, we obtain system dynamics of the
form (B.32) with the extended state X = ['̇ ' '

ref]

⊤. This leads to a transformed system
(B.32) with
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Ã =

⎡

⎢

⎢

⎢

⎣

−
dc

Θsum
−

cc

Θsum
0

1 0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, B̃1 = B̃2 =

⎡

⎢

⎢

⎢

⎣

1

Θsum
0

0

⎤

⎥

⎥

⎥

⎦

. (B.35)

Furthermore, the transformation matrix is given by

=
[

1 0 0

0 1 −1]
. (B.36)

Since our steering wheel system is stabilizable and the reference system withH = 0 is marginally
stable, any � > 0 su�ces to make the extended system stabilizable and, consequently, to make
the transformation applicable. We choose a small value of � = 0.01, leading to a modi�ed cost
function

Ji =

∞

∫

0

exp(−�t)X
⊤
Q̃iX + Riiu

2

i
dt, (B.37)

where

Q̃i =
⊤
Qi =

⎡

⎢

⎢

⎣

q1 0 0

0 q2 −q2

0 −q2 q2

⎤

⎥

⎥

⎦

. (B.38)

Finally, we obtain a standard LQ di�erential game consisting of the system dynamics matrices
(Ã − 0.5�In , B̃1, B̃2) and the cost functions

Ji =

∞

∫

0

X
⊤
Q̃iX + Riiu

2

i
dt, (B.39)

For the solution of the inverse LQ dynamic game, parameter constraints are introduced in the
corresponding optimization problems (constituting the IOC, IRL and DB approaches) such that
the structure of the cost function matrix in (B.38) is ensured.





C Supplementary Results on the Solution Sets
for Inverse Linear-Quadratic Di�erential
Games

The following results complement the results of Section 5.3 to illustrate how the properties of
an inverse LQ di�erential game are altered depending on the number of states, controls and
players.

All results are based on the general structure of a quadratic cost function given by

Ji(x0, K , Qi , Rij ) =

1

2
∫

∞

0

x
⊤
Qix +

N

∑

j=1

u
⊤

j
Rijuj dt.

A two-player and a three-player inverse LQ di�erential game are considered exemplarily.

Figures C.1 and C.2 shows a 3D map for analyzing the dimensions of the matrixMi for inverse
LQ di�erential games with N = 2 and N = 3, respectively, with symmetric and diagonal cost
function matrices and di�erent numbers of states n and controls mi . These are analogous to
Figure 5.1 which showed the case N = 1. The number of equations (rows of Mi) and the
number of parameters Mi (columns of Mi) are shown as a function of the number of states n
and the number of controls mi .

In Figure C.1a and C.2a, the number of parameters Mi is always greater than the number of
equations nmi such that the solution set of player i is at least one-dimensional. In Figures
C.1b and C.2b, we observe that there are combinations of n and mi which lead to nmi ≥ Mi .
The black line denotes the cases where nmi = Mi − 1 < Mi which shows that the kernel is
guaranteed to exist and is one-dimensional. Therefore, from this line to the left, the solution
set of player i can be expressed by ker(Mi), while the area which is on the right side of the line
represents the cases where solutions may be found by applying the results of Theorem 5.3.
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Figure C.1: Number of parameters and equations depending on the number of states and controls in a two-player
inverse LQ di�erential game. The red thick line denotes the case where nmi = Mi − 1.
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Figure C.2: Number of parameters and equations depending on the number of states and controls in a 3-player inverse
LQ di�erential game. The red thick line denotes the case where nmi = Mi − 1.



D Inverse Cooperative Dynamic Games Based
on Maximum Entropy Inverse
Reinforcement Learning

In this chapter, the probability density function given by (6.17) is leveraged such that a method
to identify cost function parameters out of a solution of the dynamic game in the sense of
Pareto is developed. Similar to the results of Chapter 6 the unbiasedness of the estimation is
proved.

D.1 Preliminaries

In this appendix, Pareto e�cient solutions are considered which can be described by a global
cost function given by the sum of weighted player cost functions. Several global cost functions
are possible depending on the selected weighting parameters to build the sum (cf. Section
3.6.3). One particular global cost function is given by the sum of uniformly weighted player
cost functions de�ned as follows.

De�nition D.1 (Global Cost Function as Uniformly Weighted Sum)
The uniformly weighted sum of all player cost functions is given by

JΣ =

N

∑

i=1

Ji =

N

∑

i=1

−�
⊤

i
�i =∶ −�

⊤

Σ
�Σ (D.1)

with

�Σ = [�
⊤

1
… �

⊤

N ]

⊤ (D.2a)
and

�Σ = [�
⊤

1
… �

⊤

N ]

⊤

. (D.2b)

The following assumption is introduced in order to be able to obtain Pareto e�cient solu-
tions.
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Assumption D.1 (Convexity of the Global Cost Function)
The cost functions Ji are convex for all i ∈  .

Remark D.1:
It can be noted that

arg min




JΣ(
) = arg min




N

∑

i=1

1

N

Ji(
), (D.3)

where 
 ∶= {
1, … , 
N }, holds since multiplying any cost function JΣ with a constant factor c ∈
ℝ
+ (here 1/N ) does not alter the solution of the optimization problem. Therefore, under Assumption

D.1 and with the results of Theorem 3.3, the minimizer of JΣ describes a Pareto e�cient solution
of a cooperative game.

D.2 Identi�cation Method and Unbiasedness of the
Estimation

Sections 6.4 and 6.5 presented how to �nd cost function parameters which explain observed
trajectories which arise from a noncooperative game with OL and FB Nash equilibrium strate-
gies. This was done by means of a MLE based on a probability density function. This section
presents a similar procedure such that parameters can be found which explain trajectories
corresponding to a cooperative game with equally weighted cost functions as in De�nition
D.1.

The inverse dynamic game method is based on the density (6.17) with naturally arised with
the maximum entropy principle as described in Section 6.3. The �rst step consists in rewriting
(6.17) using (D.1) and (D.2), leading to

p (� | �Σ) =

exp (�
⊤

Σ
�Σ (� ))

∫
�

exp (�
⊤

Σ
�Σ (� )) d�

=

exp (−JΣ (� ))

∫
�

exp (−JΣ (� )) d�
.

(D.4)
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This allows the de�nition of a likelihood function analogous to the one introduced in De�ni-
tion 6.5. In this case, we denote the likelihood as

(�Σ ∣ ) =
nt

∏

l=1

p (
̃
�
l
∣ �Σ) , (D.5)

where p ( ̃�l ∣ �Σ) is obtained by evaluating (D.4) at ̃�
l
, l ∈ {1, ..., nt}.

The following theorem represents the main result concerning the identi�cation of cost func-
tions in an inverse cooperative dynamic game with Pareto e�cient solutions.

Theorem D.1 (Unbiasedness of the Identi�cation of Pareto E�cient Solutions)
Let nt trajectories  = {

̃
�1, … ,

̃
�nt
} ful�lling Assumption 6.1 be available. Then, the MLE

with respect to the observed trajectories, i.e.

̂
�Σ = arg max

�Σ

ln  {�Σ|} (D.6)

where  {�Σ|} is obtained by evaluating the likelihood function (D.5) at ̃�
l
, l ∈ {1, ..., nt},

leads to parameters ̂
�Σ such that the resulting probability density function p (� | � ∗Σ) leads to

an expectation of the cost function values JΣ (� , � ∗Σ) which is equal to the one corresponding
to the probability density function with original parameters p (� | � ∗Σ), i.e.

E
p( � |�

∗

Σ
)

{

JΣ (� , �
∗

Σ)

}

= E
p
(
� |
̂
�Σ)

{

JΣ (� , �
∗

Σ)

}

. (D.7)

Proof:
The proof is analogous to the proof of Theorem 6.1.

The results of Theorem D.1 imply that the expectation of the global costs (under the original
parameters) produced by trajectories generated by the probability density functions with orig-
inal and estimated parameters are equal. Note that this result is weaker than the one required
in (6.7) as it considers only the overall costs. Nevertheless, for a cooperative game, it is enough
to describe observed trajectories completely.

Remark D.2:
Similar to the results of Chapter 6, solving the optimization problem (D.6) demands the possibility
of evaluating the likelihood function  {�Σ|} and therefore the probability density function
(D.4) at the trajectories ̃�

l
, l ∈ {1, ..., nt}. The denominator in (D.4) includes an integral over all

trajectories ̃
� which are feasible with respect to the system dynamics and an initial state. An

approach analogous to the one presented in Section 6.6 can be applied in this case.
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Remark D.3:
The result ̂

�Σ of (D.6) contains the cost function parameters of all players in one single vector
according to (D.2). Assuming that the number of features Mi is known for every player i ∈  ,
an individual parameter set ̂

�i can be determined by means of (D.2a) out of ̂
�Σ. This is done by

using the relation
̂
�i =

̂
�Σ(l

s

i
∶ l

e

i
). (D.8)

with

l
s

i
= 1 +

i

∑

�=1

M�−1 and l
e

i
=

i

∑

�=1

M� , (D.9)

with M0 = 0 and where ̂
�Σ(l

s

i
∶ l

e

i
) ∈ ℝ

l
e

i
−l
s

i
+1 denotes a vector that contains the entries ls

i
to le

i
of

the vector ̂
�Σ.

The presented method is capable of identifying cost function parameters which explain trajec-
tories corresponding to an optimal solution based on uniformly weighted player cost functions,
which is one of the Pareto e�cient solutions belonging to the Pareto frontier. Pareto e�cient
solutions can be obtained by minimizing the sum of cost functions of all players which are nev-
ertheless not necessarily equally weighted (see De�nition 3.9). The presented method would
not be able to estimate the original parameters � ∗

i
, but would be able to determine parameters

̂
�i which are also capable of describing the trajectories in this scenario. A simulation example
where the e�ectiveness of the presented inverse dynamic game method is demonstrated can
be found in [IBKH20].



E Supplementary Simulation Results

This chapter gives supplementary results of the simulative evaluation of the inverse dynamic
game methods which was performed in Chapter 7.

E.1 Inverse Open-Loop Dynamic Game

E.1.1 Robustness to Measurement Noise

The following Tables E.1 to E.6 list the mean values of the parameters corresponding to the
matrices Qi and Rii over all 100 identi�cation procedures conducted in Section 7.5.3, where
the robustness of the inverse dynamic game methods to noise is evaluated.

Figures E.1 – E.4 show the comparison of the trajectories which result from the dynamic games
solved with the parameters �i , i ∈  identi�ed by each of the considered methods and based
on observed trajectories with di�erent SNR values. The noisefree case is presented in Figure
7.4 and the 30 dB results are shown in Figure 7.8.

Table E.1: Mean values of the cost function matrices Qi identi�ed with IOC

SNR in dB Q̂1,mean Q̂2,mean Q̂3,mean

20 (0.88, 0.62, 1.28, 0.65) (0.80, 0.70, 1.02, 1.11) (1.29, 0.74, 0.60, 0.55)

25 (0.95, 0.50, 1.69, 0.85) (0.80, 0.68, 1.01, 1.65) (1.29, 0.82, 0.52, 0.77)

30 (0.98, 0.43, 1.91, 0.95) (0.82, 0.68, 1.00, 1.88) (1.11, 0.93, 0.51, 0.91)

35 (1.00, 0.41, 1.98, 0.98) (0.85, 0.67, 1.00, 1.96) (1.04, 0.98, 0.50, 0.97)

40 (1.00, 0.40, 2.00, 0.99) (0.93, 0.63, 1.00, 1.98) (1.01, 1.00, 0.50, 0.99)

∞ (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (1.00, 1.00, 0.50, 1.00)
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Table E.2: Mean values of the identi�ed cost function matrices Rii with IOC

SNR in dB R̂
1,(22),mean

R̂
2,(22),mean

R̂
3,(22),mean

20 0.99 0.85 1.97
25 1.00 0.95 1.97
30 1.01 0.99 1.99
35 1.01 0.99 1.99
40 1.00 1.00 2.00
∞ 1.00 1.00 2.00

Table E.3: Mean values of the identi�ed cost function matrices Qi with IRL

SNR in dB Q̂1,mean Q̂2,mean Q̂3,mean

20 (0.98, 0.20, 2.06, 0.94) (0.93, 0.63, 1.00, 2.12) (1.09, 0.95, 0.51, 0.90)

25 (0.99, 0.32, 2.02, 0.98) (0.96, 0.62, 1.00, 2.07) (1.02, 0.99, 0.51, 0.96)

30 (1.00, 0.38, 2.00, 0.99) (0.96, 0.62, 1.00, 2.02) (1.00, 1.00, 0.50, 0.99)

35 (1.00, 0.39, 2.00, 1.00) (0.99, 0.61, 1.00, 2.00) (1.00, 1.00, 0.50, 1.00)

40 (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (1.00, 1.00, 0.50, 1.00)

∞ (1.00, 0.40, 2.00, 1.00) (1.00, 0.60, 1.00, 2.00) (0.99, 1.00, 0.50, 1.00)

Table E.4: Mean values of the identi�ed cost function matrices Rii with IRL

SNR in dB R̂
1,(22),mean

R̂
2,(22),mean

R̂
3,(22),mean

20 0.98 1.11 2.01
25 0.99 1.05 2.01
30 1.00 1.02 2.00
35 1.00 1.00 2.00
40 1.00 1.00 2.00
∞ 1.00 1.00 2.00

Table E.5: Mean values of the identi�ed cost function matrices Qi with the DB method

SNR in dB Q̂1,mean Q̂2,mean Q̂3,mean

20 (1.17, 0.37, 2.22, 1.01) (1.32, 0.47, 0.99, 2.02) (1.16, 0.92, 0.57, 1.46)

25 (1.08, 0.37, 2.15, 1.00) (1.25, 0.49, 1.00, 2.02) (1.10, 0.95, 0.53, 1.22)

30 (1.05, 0.39, 2.08, 1.00) (1.20, 0.51, 1.00, 2.01) (1.12, 0.94, 0.52, 1.13)

35 (1.03, 0.39, 2.04, 1.00) (1.16, 0.53, 1.00, 2.02) (1.08, 0.96, 0.51, 1.06)

40 (1.01, 0.40, 2.02, 1.00) (1.09, 0.56, 1.00, 2.00) (1.05, 0.97, 0.50, 1.04)

∞ (1.00, 0.40, 2.00, 1.00) (1.04, 0.58, 1.00, 2.00) (1.02, 0.99, 0.50, 1.00)
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Table E.6: Mean values of the identi�ed cost function matrices Rii with the DB method

SNR in dB R̂
1,(22),mean

R̂
2,(22),mean

R̂
3,(22),mean

20 1.55 0.98 2.16
25 1.18 0.99 2.01
30 1.10 1.00 2.04
35 1.15 1.00 2.02
40 1.03 1.00 2.01
∞ 1.00 1.00 2.00
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Figure E.1: Observed trajectories and estimations based on mean identi�cation results of all methods, SNR = 20 dB
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Figure E.2: Observed trajectories and estimations based on mean identi�cation results of all methods, SNR = 25 dB
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Figure E.3: Observed trajectories and estimations based on mean identi�cation results of all methods, SNR = 35 dB
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Figure E.4: Observed trajectories and estimations based on mean identi�cation results of all methods, SNR = 40 dB
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E.1.2 Robustness to Basis-Function Mismatch

Figures E.5 and E.6 show the comparison of the trajectories which result from the dynamic
games solved with the parameters �i , i ∈  identi�ed by each of the considered methods. The
identi�cation is based on observed trajectories generated in Section 7.4.1 and di�erent basis
functions (cases II and III) as given in Table 7.9.
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Figure E.5: Inverse open-loop dynamic game results for all methods in the basis function mismatch case II.
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Figure E.6: Observed trajectories and estimations based on identi�cation results of all methods in the basis function
mismatch case III.
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E.2 Inverse Feedback LQ Di�erential Game

E.2.1 Robustness to Measurement Noise

The following Figures E.7 – E.10 show the comparison of the trajectories which result from
the dynamic games solved with the mean of the parameters ̂

�i , i ∈  identi�ed by each of
the considered methods and based on the observed trajectories with di�erent SNR values. The
noisefree case is presented in Figures 7.11 and 7.12 and the 20 dB results are shown in Figure
7.15 and 7.16. As it can be inferred from Figures E.9 and E.10, the trajectory comparison for the
cases 35 dB and 40 dB yields no visually recognizable improvement. These are not explicitely
shown here as the result are practically identical to the noisefree case from Figures 7.11 and
7.12.
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Figure E.7: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each method.
The identi�cation was conducted using noise-corrupted trajectories with SNR = 25 dB.

−0.1

0.1

0.3

u 1

ũ
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Figure E.8: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each method.
The identi�cation was conducted using noise-corrupted trajectories with SNR = 25 dB.
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Figure E.9: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each method.
The identi�cation was conducted using noise-corrupted trajectories with SNR = 30 dB.
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Figure E.10: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted using noise-corrupted trajectories with SNR = 30 dB.
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E.2.2 Robustness to Basis Function Mismatch

Figures E.11 – E.16 show the comparison of the observed trajectories with the ones which
result from the dynamic games solved with the parameters ̂

�i , i ∈  identi�ed by each of the
considered methods. The identi�cation is based on observed trajectories generated in Section
7.4.1 and incomplete basis functions (cases II to IV) as given in Table 7.17.
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Figure E.11: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(j,j) = 0 for i ∈ {1, 2}

and j ∈ {3, 4} (case II).
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Figure E.12: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(j,j) = 0 for i ∈ {1, 2}

and j ∈ {3, 4} (case II).
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Figure E.13: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(j,j) = 0 for i ∈ {1, 2}

and j ∈ {2, 3, 4} (case III).
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Figure E.14: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi,(j,j) = 0 for i ∈ {1, 2}

and j ∈ {2, 3, 4} (case III).
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Figure E.15: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi = 0 for i ∈ {1, 2} (case
IV).
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Figure E.16: Ground truth and estimated state trajectories of the inverse LQ feedback dynamic game with each
method. The identi�cation was conducted with the wrong assumption that Qi = 0 for i ∈ {1, 2} (case
IV).



F Supplementary Results of the Application
in Shared Control

This section gives further information on the results of Chapter 8.

F.1 Further Details on the Experimental Setup

This section provides details on the parameters of the two steering wheels and on the devel-
oped control structure which realizes their virtual coupling are presented.

F.1.1 Steering Wheel Parameters

The following Table F.1 lists the parameters of the two steering wheels belonging to the co-
operative steering system.

Table F.1: Steering wheel parameters

Parameter SW1 SW2 Description

Θj 0.04 kgm
2

0.054 kgm
2 Rotational inertia

cj 0.573 Nm/rad 0.573 Nm/rad Spring constant
dj 0.430 Nm ⋅ s/rad 0.430 Nm/rad Damping constant

F.1.2 Steering Wheel Coupling Control

The steering wheels were coupled using a control algorithm which emulates a spring-damper
element between them. This kind of coupling was �rst presented in [LDFH14], where it was
also used in a study for analyzing haptic interaction between humans.

Figure F.1 shows the control loop of the cooperative steering system. The controller calculates
a torque M(t) which is equally distributed on each steering wheel. The aim is to regulate the
di�erence ee(t) = edes − emeas(t) towards zero, where emeas(t) = '1(t) − '2(t) is the di�erence
of measured steering angles and e

des
= 0 is the desired angle di�erence.
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Figure F.1: Control structure of the cooperative steering system

The controller R(s) is designed as a proportional-derivative (PD) controller with a low-pass
�lter positioned before the derivative part in order to supress measurement noise. The struc-
ture of the PD controller is illustrated in Figure F.2. The controller behavior is de�ned by the
transfer function

R(s) =

M(s)

E(s)

=

sKD

1 + Tps

+ KP , (F.1)

where M(s) and E(s) denote the Laplace transform of the torque M(t) and the control error
ee(t), respectively. The variables KP and KD denote the coe�cients of the proportional and
the derivative terms, respectively. The variable Tp denotes the time constant of the �rst-order
lag �lter. The values of these parameters are given in Table F.2.

ee M

KP

KD
Tp

Figure F.2: PD controller used for the coupling of the steering wheels

Table F.2: PD controller parameters

Parameter Value

KP 1.96
KD 0.175
Tp 1.825 ms
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F.2 Supplementary Tables of the Shared Control
Identi�cation Results

The following Tables F.3 to F.5 give all errors of all subjects.

Table F.3: Cooperative steering experiment: Error between measured trajectories and trajectories obtained with the
IOC method

Subject pair �
x

�
u1 �

u2

1 70.014 56.907 56.436
2 127.429 60.718 85.649
3 100.466 86.705 59.141
4 133.885 105.515 78.556
5 91.833 44.793 65.951
6 81.696 44.930 71.280
7 253.893 130.618 86.561
8 111.529 71.462 74.479
9 182.829 59.913 100.267
10 129.138 97.584 72.642
11 249.695 90.685 192.784
12 271.043 111.514 126.208
13 80.681 81.442 43.414
14 142.491 99.035 88.994
15 107.503 90.802 65.915
16 196.169 68.491 98.087
17 134.954 74.166 73.785
18 123.916 90.849 89.037
19 113.636 67.701 108.814
20 126.179 77.609 110.219
21 93.533 57.297 93.647
22 109.570 197.063 141.135
23 171.691 125.290 82.074
24 178.529 73.403 67.797
25 246.650 132.693 88.445

mean 145.158 87.887 88.853
median 127.429 81.442 85.649

SD 58.632 33.530 30.747
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Table F.4: Cooperative Steering Experiment: Error between measured trajectories and trajectories obtained with the
IRL method

Subject pair �
x

�
u1 �

u2

1 53.719 58.563 58.703
2 101.236 100.596 90.611
3 129.557 98.956 63.395
4 84.566 104.799 75.475
5 94.571 48.288 72.978
6 99.932 50.992 69.750
7 175.364 118.096 80.992
8 104.913 76.127 93.537
9 108.529 72.967 77.475
10 77.535 70.975 66.250
11 127.078 86.291 125.088
12 190.018 102.359 97.408
13 103.761 76.280 49.144
14 82.052 118.415 100.529
15 89.313 87.232 61.959
16 193.824 60.500 112.702
17 100.953 97.991 79.588
18 87.889 93.470 96.903
19 86.435 60.791 97.528
20 108.915 72.372 103.536
21 92.718 59.813 100.144
22 85.351 218.646 149.104
23 153.241 121.517 79.267
24 141.748 93.011 62.485
25 137.070 115.503 77.055

mean 112.411 90.582 85.664
median 101.236 87.232 79.588

SD 35.611 34.569 22.678
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Table F.5: Error between measured trajectories and trajectories obtained with the DB approach

Subject pair �
x

�
u1 �

u2

1 44.224 57.090 55.853
2 101.985 61.651 77.223
3 73.849 67.249 53.884
4 96.832 102.442 69.903
5 77.725 66.479 67.224
6 85.592 60.670 73.956
7 116.169 105.058 78.649
8 92.483 70.193 70.751
9 91.977 62.021 78.398
10 68.201 76.293 64.553
11 89.672 80.611 120.724
12 94.118 81.256 87.326
13 58.457 76.280 38.762
14 85.817 93.916 83.197
15 83.445 85.230 59.801
16 107.501 58.896 86.753
17 99.877 70.717 70.081
18 79.049 75.170 82.617
19 73.561 54.234 89.718
20 87.378 59.884 85.506
21 74.819 53.756 83.710
22 143.719 76.626 57.984
23 95.018 107.129 73.908
24 100.738 86.762 63.648
25 95.582 114.574 71.243

mean 88.711 76.168 73.815
median 89.672 75.170 38.762

SD 19.372 17.459 15.723
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F.2.1 Statistical Test Results

The following Tables F.6 and F.7 give the p-values corresponding to the right-tailed Wilcoxon
signed-rank test conducted to the data sets of NSAE errors of states and controls, respectively.
In Table F.6, the hypothesis is always rejected with a signi�cance level of � = 0.01. The right-
tailed property leads to the validity of the alternative hypothesis which states that �x

median,row
−

�
x

median,column
> 0. The same holds for Table F.7 with the exception of the NSAE of the controls

obtained by the IOC and IRL methods. The hypothesis H0 cannot be rejected and thus their
di�erence is not statistically signi�cant.

Table F.6: p-values of the Wilcoxon signed-rank test with H0 ∶ ε�xmedian,row − �
x

median,column
comes from a distribution

with median zero".

IOC IRL DB
IOC – 1.249 ⋅ 10

−4
1.639 ⋅ 10

−6

IRL – – 1.085 ⋅ 10
−4

Table F.7: p-values of the Wilcoxon signed-rank test with H0 ∶ ε�umedian,row − �
u

median,column
comes from a distribution

with median zero" (** denotes the failure of hypothesis rejection).

IOC IRL DB
IOC – 0.594

∗∗
6.995 ⋅ 10

−5

IRL – – 1.597 ⋅ 10
−5
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