AT

Karlsruher Institut fur Technologie

Bachelor Thesis

Improved Branching Strategies for
Maximum Independent Sets

Christian Schorr

Date of submission: 16 September 2020

Reviewer: Prof. Dr. Peter Sanders
Second reviewer: Prof. Dr. Dorothea Wagner
Advisers: Demian Hespe
Sebastian Lamm

Institute of Theoretical Informatics, Algorithmics
Department of Informatics
Karlsruhe Institute of Technology

Abstract

The NP-complete graph problem mazimum independent set is that of finding a
set of pairwise non adjacent vertices of largest cardinality [14]. Applications of this
problem span multiple real-world domains such as computer graphics [35], network
analysis [34], route planning [23] and computational biology [5, 10]. One technique
for finding exact solutions are branch and reduce algorithms. Those algorithms
apply reduction rules to decrease the complexity of an instance, which is called ker-
nelization. Subsequently, if the instance can not be reduced further, they branch
into subproblems, which are then solved recursively. So far, most branch and reduce
algorithms for maximum independent set use the rather simple branching strategy
of greedily selecting a vertex of highest degree for branching [1, 13, 43]. In this the-
sis, we propose two different approaches to design improved branching strategies.
The first approach is to decompose the instance by branching on vertex separators.
This way, the resulting connected components can be solved separately. The sec-
ond approach is to break up structures which can not be reduced by kernelization.
Based on those ideas we implement multiple branching strategies and evaluate their
effectiveness by comparing them to the greedy strategy used in most state of the art
branch and reduce algorithms. The results of our experiments show that the first
approach performs better than the default branching strategy if the instance can
be decomposed easily. This is often the case for sparse networks. On such instances
this approach yields runtimes which are orders of magnitude better than with using
the default strategy. However, on denser graphs those branching strategies require
more branches and thus, additional runtime. Our second approach yields better
results on denser graphs. Following this approach, we develop a branching strategy
based on funnel reduction that performs better on many dense instances than de-
fault branching. Using this branching strategy reduces the total number of branches
by about ten percent on average and consequently, reduces the average runtime by
about five percent. An alternate branching strategy targeting twin reduction out-
performs the default branching strategy on sparse networks by up to twelve percent
in terms of runtime and stays competitive on denser graphs in our experiments.

Zusammenfassung

Das NP-schwere Graphenproblem der gréfSten unabhdngigen Menge besteht darin,
eine groBtmogliche Menge von paarweise nicht verbundenen Knoten zu finden [14].
Dieses Problem findet Anwendung in vielen Bereichen, wie zum Beispiel in der
Computergrafik [35], der Analyse von Netzwerken [34], der Routenplanung [23] und
der Bioinformatik [5, 10]. Eine Technik zum Finden exakter Lésungen sind branch
and reduce Algorithmen. Derartige Algorithmen verringern die Komplexitéit einer
Instanz mithilfe von Reduktionsregeln. Dieser Prozess wird als Problemkernreduk-
tion bezeichnet. Wenn die Instanz nicht weiter reduziert werden kann, verzweigt
der Algorithmus in einfachere Unterprobleme. Diese werden rekursiv gelost. Bisher
verwenden die meisten branch and reduce Algorithmen fiir die grofite unabhéngige
Menge eine sehr einfache Strategie zur Auswahl eines geeigneten Verzweigungskno-
tens [1, 13, 43]. In dieser Arbeit stellen wir zwei neue Ansétze fiir das Entwerfen
von verbesserten Verzweigungsstrategien vor. Der erste Ansatz besteht darin, In-
stanzen aufzuspalten, indem man auf Knotenseparatoren verzweigt. Auf diese Weise
konnen die dabei entstehenden Zusammenhangskomponenten des Graphen unab-
héngig voneinander gelost werden. Der zweite Ansatz ist das Aufbrechen von Struk-
turen, die nicht durch Problemkernreduktion vereinfacht werden kénnen. Basierend
auf diesen beiden Ideen implementieren wir mehrere Verzweigungsstrategien. An-
schlieend bewerten wir ihre jeweilige Effektivitat, indem wir sie mit der Strategie
vergleichen, die als Stand der Technik in den meisten Algorithmen eingesetzt wird.
Unsere Experimente zeigen, dass der erste Ansatz besser als die Standardstrate-
gie funktioniert, wenn sich die Instanz leicht aufspalten lasst. Das ist haufig fir
Graphen mit geringer Kantendichte der Fall. Auf solchen Instanzen liefern Strate-
gien mit diesem Ansatz Laufzeiten, die um Groflienordnungen besser sind als unter
Verwendung der Standardstrategie. Auf dichteren Graphen bendtigen solche Ver-
zweigungsstrategien jedoch mehr Verzweigungen und daher zusatzliche Laufzeit.
Auf dichteren Graphen liefert der zweite Ansatz bessere Ergebnisse. Basierend auf
dem zweiten Ansatz entwickeln wir eine Verzweigungsstrategie welche die Funnel
Reduktionsregel nutzt und auf vielen der dichten Graphen bessere Ergebnisse erzielt
als die Standardstrategie. Diese Verzweigungsstrategie reduziert die Gesamtzahl der
Verzweigungen um circa zehn Prozent und damit auch die Laufzeit um ungefihr
fiinf Prozent. Eine weitere Verzweigungsstrategie zielt auf die Twin Reduktionsregel
ab und tibertrifft auf Graphen mit geringer Kantendichte die Standardstrategie um
bis zu zwolf Prozent hinsichtlich der Laufzeit. Dariiber hinaus ist diese Strategie
auch auf dichteren Graphen konkurrenzfahig.

Acknowledgments

I am greatly indebted to Prof. Dr. Peter Sanders for the possibility to conduct this thesis
at his Institute. Further, I would like to express my cordial thanks to Demian Hespe and
Sebastian Lamm, who supervised this thesis. I very much enjoyed the inspiring discussions in
the fascinating field of algorithmics, and I am grateful for their openness and support at any
time during working on this exciting topic.

Hiermit versichere ich, dass ich diese Arbeit selbstédndig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wortlich oder inhaltlich {ibernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts fiir Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils giiltigen Fassung beachtet habe.

Karlsruhe, den 16.09.2020

CONTENTS

Contents

1. Introduction

1.1. Motivation
1.2. Contributions
1.3. Structure of Thesis

2. Preliminaries

2.1. Basic Definitions oo
2.2. Algorithm Framework o
2.3. Reduction and Branching Rules

3. Related Work

4. Branching Strategies

4.1. Branching Strategies Based on Decomposition
4.1.1. Branching on Articulation Points
4.1.2. Branching on Edge Cuts
4.1.3. Branching by Nested Dissection

4.2. Branching Strategies Based on Reduction Rules
4.2.1. Branching Based on Twin Reduction
4.2.2. Branching Based on Funnel Reduction
4.2.3. Branching Based on Dominance Reduction
4.2.4. Branching Based on Unconfined Reduction
4.2.5. Branching on Reduction Chains

5. Experimental Results

5.1. Experimental Setup
5.2. Parameter Tuning Lo
5.2.1. Tuning Branching on Edge Cuts
5.2.2. Tuning Branching by Nested Dissection
5.2.3. Tuning Branching Based on Reduction Rules
5.3. Evaluation

5.3.1. Evaluation of Decomposing Branching Strategies
5.3.2. Evaluation of Branching Strategies Based on Reduction Rules

6. Conclusion and Future Work

6.1. Conclusion s,
6.2. Future Work

A. Benchmark Instances

B. Algorithms

1 INTRODUCTION

1. Introduction

1.1. Motivation

The mazimum independent set problem is a classic NP-complete graph problem [14] and there-
fore has been well studied over the last decades. Recent events like the PACE 2019 imple-
mentation challenge [12] show that maximum independent set and related problems are still
of interest to researchers today. Given an undirected graph, the problem is finding a set of
pairwise non-adjacent vertices of largest cardinality.

Applications of maximum independent set and its complementary problems minimum vertex
cover and mazimum clique cover a variety of fields including computer graphics [35], network
analysis [34], route planning [23] and computational biology [5, 10], among others. In computer
graphics for instance, small vertex covers can be used to optimize the traversal of mesh edges
in a triangle mesh. The dual graph of such a mesh is the graph that contains a vertex for
each triangle and an edge between triangles that share a face. A minimum vertex cover in the
dual graph corresponds to a minimal number of triangles that contain each edge of the mesh.
Unfortunately, due to the complexity of those problems, finding exact solutions to most real-
world instances is computationally infeasible. Therefore, a lot of work is invested into finding
new techniques to handle complexity.

One of the best known techniques for finding exact solutions to those problems, both in
theory [43, 9] and practice [1], are branch and reduce algorithms. Such algorithms are generally
based on kernelization. This means applying a set of reduction rules to decrease the complexity
measure of an instance, i.e., in most cases the size, while still preserving solvabilty. A solution
to the original instance can then be constructed from a solution of the reduced instance in
subexponential time. If an instance can not be reduced further, the algorithm branches into
at least two subproblems of lower complexity which are then solved recursively. Branch and
reduce algorithms also use problem specific upper and lower bounds to a solution and prune
the search space by eliminating solutions which do not satisfy those bounds.

So far, most studies on branch and reduce algorithms for the maximum independent set
problem solely have focused on finding new and improved reduction rules and lower or upper
bounds, respectively. There are very few papers regarding alternate branching strategies. How-
ever, a comparison of three simple branching strategies by Akiba and Iwata [1] shows that the
branching strategy can have a huge impact on the runtime of an algorithm.

1.2. Contributions

This thesis experimentally examines various branching strategies for maximum independent
set. We essentially follow two main approaches. The first approach is to branch on vertices
that decompose the graph and then solve the resulting connected components independently.
The second approach is to break up complex structures by branching on vertices so that the
structure can be reduced by kernelization afterwards. We implement a variety of different
branching strategies following both approaches and compare them to the branching strategy
used by the state of the art branch and reduce algorithm for minimum vertex cover proposed
by Akiba and Iwata [1]. For testing we use instances from multiple graph classes that cover
both synthetic as well as real-world instances.

1.3 STRUCTURE OF THESIS

Branching strategies following the first approach can also be used for other graph problems,
but we did not evaluate this. We also did not analyze any of the branching strategies on a
theoretical level.

1.3. Structure of Thesis

Following the brief introduction (Section 1), in Section 2 we introduce the notation and problem
definitions used throughout this thesis. Here, we also explain the two variants of a branch and
reduce algorithm for maximum independent set which we used as a basic framework for testing
our branching strategies. In particular, we define the reduction rules used by the algorithm.
Section 3 gives an overview of related work focusing on branching strategies used by other
branch and reduce algorithms for maximum independent set or the equivalent problems mini-
mum vertex cover and maximum clique. In Section 4 we outline our approaches and explain the
implemented branching strategies in detail. Section 5 contains experimental results. We start
by explaining our testing methodology and then state our results. Subsequently, we compare
all branching strategies to each other and discuss the effectiveness of our approaches. Finally,
in Section 6 proposals for future work will be discussed based on the results of the thesis.

2 PRELIMINARIES

2. Preliminaries

This section introduces basic notation and problem definitions used throughout this thesis.

2.1. Basic Definitions

An undirected graph G = (V, E) is a tuple of a set V of vertices (also called nodes) and a set

EC (g) of edges. Two vertices v,u € V are called adjacent or neighbors if they are connected

by an edge, i.e. {v,u} € E. The set N(v) :={u € V | {v,u} € E} of all neighbors of a vertex
v € V is called the neighborhood of v and N[v] := N(v)U{v} denotes to the closed neighborhood
of v. The number d(v) := |N(v)| is called the degree of a vertex. The neighborhood of a set
of vertices S is defined as N(5) := Uyey N(v) \ S and N[S] := U,ey N|[v] denotes the closed
neighborhood of a set. For a vertex v € V we define N%(v) := N(NJ[v]). For a subset S C V

the graph Gg = (S, E N (‘;)) is called the subgraph induced by S.

A subset I C V is called an independent set (IS) of G, if no two vertices from I are adjacent,
so formally if Vo,u € I : {v,u} ¢ E. A mazimum independent set (MIS) of G is an independent
set of largest cardinality. The size of a maximum independent set is called the independence
number of G and is denoted by a(G).

A subset S C V is called a vertez cover of G if for all neighbors v and u in G either v or u (or
both) is in S, so formally if V{v,u} € E:v € SVu e S. A minimum vertex cover of G is a
vertex cover of minimal cardinality. If I is a (maximum) independent set in G, then V' \ I is a
(minimum) vertex cover in G.

A subset C' C V is called a clique of G, if any two vertices from C are adjacent, so formally
if Yo,u € C : {v,u} € E. A mazimum clique of G is a clique of largest cardinality. If I is an
(maximum) independent set in GG, then [is also a (maximum) clique in the complement graph

G = (5)\B).

A path P = (vq,...,vx) is a sequence of distinct vertices in G such that {v;,v;,1} € E for all
ie€{l,...,k—1}. A subgraph of G induced by a cardinality maximal subset of the vertices
such that any two vertices are connected by a path is called a connected component. A graph
that contains only one connected component is called connected.

A partition of V into (5,7T) is called a cut and the set C = {{v,u} € E|ve S, ueT}
is called its cut set. For two vertices s and ¢, a cut (S,7") such that s € S and t € T is
called a s-t-cut. A subset S C V' is called a separator, if G — S := (V \ S, E N (VQ\S)) has
more connected components than G i.e. the removal of S from the graph splits at least one
connected component of G. Analogous to cuts, a vertex separator that separates two vertices
s and t is called a s-t-separator.

2.2. Algorithm Framework

In this thesis we solely focus on testing new branching strategies. Thus, we do not implement our
own branch and reduce algorithm but rather use a state of the art algorithm for minimum vertex
cover by Akiba and Iwata [1] as a basis and modify the branching step within it. Since minimum
vertex cover and maximum independent set are complementary problems, the algorithm can
be used to find the latter one by just inverting its output. This subsection briefly covers an
overview of the algorithm (Algorithm 1) from the perspective of maximum independent set.

2.2 ALGORITHM FRAMEWORK

Algorithm 1: branch & reduce algorithm for MAX INDEPENDENT SET — Akiba and Iwata [1]

Input: A graph G, current solution size ¢, current best solution size k
Solve(G,c, k) begin

G, ¢ < Reduce (G, ¢) // kernelization
| + UpperBound (G) // calculate upper bounds
if ¢+ < k then return k // prune current branch

if G is empty then return k
if G is not connected then
foreach connected component G; of G do

L ¢+ ¢+ Solve(G;,0,k —¢) // solve connected components independently
return max{c, k}

v < GetBranchingVertex(G) // select vertex for branching

(Gy,c1, k), (G, ca, k) < Branch(G, v, ¢) // branch on vertez v into two subcases

k < max{k, Solve(Gy,ci,k)}
k < max{k, Solve(Gy,co, k)}
return k

Output: the size k of a maximum independent set or the size n — k of a minimum vertex cover

Given a graph as input, the algorithm starts with the kernelization step, i.e., reducing the
instance’s complexity by exhaustively applying a set of reduction rules (described in 2.3). Next,
the algorithm tries to prune the current branch by using different upper bounds to an optimal
solution. If pruning was not successful but the reduced graph is empty, the algorithm just
returns the current best solution size. Otherwise, the algorithm searches for an optimal solution
in every connected component of the graph independently. This is denoted as the decomposition
step. If a connected component can not be reduced further, the algorithm performs a branching
step. In the branching step the algorithm uses the branching strategy to choose a vertex v and
then branches into two subinstances. The first case is to include v into the current solution
and the second case is to exclude v from the current solution, including its neighbors instead.
Both subinstances are then solved recursively and the current optimal solution gets updated
accordingly. The algorithm also makes use of branching rules covered in 2.3 (not to confuse
with the actual branching strategy) that sometimes allow further reductions on branching.
The packing branching rule manages a set of constraints which is updated on every branch
and reduction step, and therefore is also handed to the recursive subcalls. For clarity, we omit
the details of this in the pseudo code and refer the reader to the original article by Akiba and
Iwata [1].

All of our branching strategies branch on a single vertex in each branching step. Thus, in
the algorithm we only need to change the method that selects the vertex to branch in most
cases. Some of our strategies also maintain additional information which gets updated in each
branching step and gets distributed to subinstances accordingly. Other branching strategies
require structural information which is obtained during each kernelization step. In those cases
we also modify the decompose step or the reduction rules, respectively.

Since our first approach is to branch on vertices that decompose the graph, we also test a
slightly modified version of the algorithm where we add an additional connected components
check before the kernelization step. This way, if the graph gets disconnected in a branching
step, the instance is decomposed and kernelization afterwards becomes more efficient.

2 PRELIMINARIES

2.3. Reduction and Branching Rules

In this subsection we explain the various reduction and branching rules used in the kernelization
and branching steps of the algorithm by Akiba and Iwata [1]. We formulate all reduction
and branching rules for the maximum independent set problem, although the algorithm was
originally designed for minimum vertex cover and therefore uses the equivalent counterparts
of those rules. The algorithm also keeps track of the order in which the reduction rules are
applied, such that a correct solution to the original instance (a specific maximum independent
set and not only the size of one) can be constructed from a solution in the reduced graph later
on. For clarity, we omit the details of this.

The first reduction rule, the degree one reduction, is completely contained in the dominance
and unconfined reductions (covered later in this section). Nevertheless, due to its low compu-
tational costs, it is used in addition to those more general rules.

Theorem 1. (Degree One Reduction) Let G = (V, E) be a graph with a vertex v of degree one
and let u be the only neighbor of v. Then, there is a maximum independent set that includes v
and therefore excludes u.

Proof. Consider a maximum independent set I in G. I has to contain either u or v because
otherwise I U {v} would be an independent set of larger size. If I contains u, it can not contain
v and thus, (I'\ {u}) U {v} is another maximum independent set that include v and excludes
u. [l

At the beginning of each kernelization step the algorithm searches for vertices of degree one,
includes them into the current solution and deletes their neighbors from the graph. The al-
gorithm also checks whether removing a neighbor from the graph produces new degree one
vertices, and in this case further applies the degree one reduction.

The next reduction rule deals with vertices of degree two that are not part of a triangle, i.e.,
whose neighbors are not adjacent. This rule is introduced by Chen et al. [8].

Theorem 2. (Degree Two Folding) Let G = (V, E) be a graph with a vertex v of degree two
and let u,w be the neighbors of v. Let G' = (V' E') be the graph with V' = (V' \ N[v]) U{z}
where x ¢ V and E' = (EN (‘;)) U{{z,y} |y € (N(u)UN(w))\{v}} and let I' be a maximum
independent set of G'. Then,

I:{I’U{v} cifr gl
(I'\ {z}) U{u,w}) , else

s a maximum independent set in G.

Proof. Consider any maximum independent set I of GG. If I contains v, then it can not contain
w and w. Thus, I\ {v} is an independent set in G’ of size |I| — 1. Otherwise, if I does not
contain v, I has to include at least one neighbor of v (since I is maximal). If I contains only
one neighbor of v, removing this neighbor from [yields an independent set in G’ of size |I| — 1.
If I contains both u and w, then I’ = (I \ {u,w}) U {z} is an independent set in G’ of size
|[I| = 1. So, in total a(G") > a(G) — 1. On the other hand, I constructed from a maximum
independent set I’ of G’ is an independent set of G of size |I| = |I'|+1 and thus, I is a maximum
independent set in G. [

10

2.3 REDUCTION AND BRANCHING RULES

So, if the algorithm finds a vertex v of degree two whose neighbors are not adjacent, the algo-
rithm reduces the size of the graph by removing N|[v] adding a new vertex connected to N?(v)
instead (see Figure 1). This procedure is called folding the closed neighborhood of v, hence the
name degree two folding.

degree 2

w /: folding &Z.
N

N

Figure 1: Degree two folding: vertices u, v and w are replaced with a single vertex x. The
remaining neighbors of v and w are connected to x.

"4

The next two reduction rules can be used to delete single vertices that are not required in a
maximum independent set. The first of those rules (the dominance reduction) is fully contained
in the second rule (the unconfined reduction) and therefore the algorithm only uses the latter
one. However, we used the concept of dominance to design one of our branching strategies.
For this reason the dominance reduction rule proposed by Fomin et al. [13] is also featured in
detail.

Definition 1. (Dominance) In a graph G = (V, E) a vertezx u is called dominated by a neighbor
v, if N[u] C N[v].

Theorem 3. (Dominance Reduction) In a graph G = (V, E), if a vertex u is dominated by a
neighbor v, then, there always exists a maximum independent set that does not include v, i.e.

a(G) = a(G —v)

Proof. Consider a maximum independent set I that does contain v. Since N[u] C Nlv], I
can neither contain u nor any of its neighbors. But then, clearly, I’ = (I \ {v}) U {u} is an
independent set of the same size as I that does not include v. Il

Thus, if a vertex v dominates another vertex u, one could safely remove v from the graph
without compromising the solvabilty of the instance. This is illustrated in Figure 2.

U / dominance Y it

reduction e
g e
,U\. /I,,;~..'“~.

Figure 2: Dominance reduction: vertex u is dominated by vertex v. Thus, v can be removed
safely.

The core idea of the unconfined reduction proposed by Xiao and Nagamochi [43] is to detect a
vertex that is not required for a maximum independent set and therefore can be removed from
the graph by algorithmically contradicting the assumption that every maximum independent
set contains the vertex.

11

[B N S

e}

2 PRELIMINARIES

Definition 2. (Removable Vertex) In a graph G = (V, E) a vertex v is called removable, if
a(G) = a(G —0)

Definition 3. (Child, Parent) In a graph G = (V, E) with an independent set I, a vertex v is
called a child of I, if |N(v) N I| =1 and the unique neighbor of v in I is called the parent of v.

Theorem 4. In a graph G = (V, E) let S be an independent set that is not maximal but is
contained in every maximum independent set of G and let v be any child of S. Then, every
mazximum independent set includes at least one vertex from N(v) \ N[S].

Proof. Assume that there is a maximum independent set I that includes S but no vertex from
N(v)\ N[S] and let u be the parent of v in S. Then, I’ = (I'\ {u}) U{v} is an independent set
of the same size as I, since I contains no neighbor of v other than w. This contradicts the fact
that every maximum independent set includes S. Il

Based on Theorem 4 Algorithm 2 detects so called unconfined vertices.

Algorithm 2: Unconfined — Xiao and Nagamochi [42]
Input: A graph G, a vertex v
Unconfined (G, v) begin
S« {v}
while S has child u with |[N(u) \ N[S]| <1 do
if |[N(u)\ N[S]| =0 then
| return true // contradiction to Theorem 4
else
{w} < N(u)\ N[v] // by assumption w also has to
L S« SU{w} // be contained in every MIS

return false

Output: true if v is unconfined, false otherwise

Theorem 5. (Unconfined Reduction) In a graph G = (V, E), if Algorithm 2 returns true for an
unconfined vertex v, then there is always a maximum independent set that does not contain v.

Proof. Assume v is included in every maximum independent set. Every vertex added to S by
the algorithm is the unique neighbor of a child of S. Therefore, by Theorem 4 this vertex also
has to be contained in every maximum independent set, and thus can be added to S. If the
algorithm returns true, then there is a child of S that has no neighbor that can be included in
S. Thus, by Theorem 4 the assumption that v is included in every maximum independent set
was false and therefore v is removable. m

During kernelization the branch and reduce algorithm uses Algorithm 2 to detect and remove
unconfined vertices.

The twin reduction by Xiao and Nagamochi [42] deals with pairs of degree three vertices that
share the same neighborhood.

Definition 4. (Twins) In a graph G = (V, E) two vertices u and v are called twins, if N(u) =
N(v) and d(u) = d(v) = 3.

12

2.3 REDUCTION AND BRANCHING RULES

Theorem 6. (Twin Reduction) In a graph G = (V. E) let vertices u and v be twins. If
there is an edge among N(u), then there is always a maximum independent set that includes
{u,v} and therefore excludes N(u). Otherwise, let G' = (V',E') be the graph with V' =
(V\N{u, 0})) U{w} where w ¢ V and E' = (E0 (%)) U {{w,z} | x € N*(u)})} and let I' be

a maximum vertex cover in G'. Then,

{I’U{u,v} Lifwée I’
(I'\ {w}) UN(u) , else

s a maximum independent set in G.

Proof. For the first case, i.e., there is an edge among N (u), consider a maximum independent
set I that does not contain u or v. Then, I has to include at least one neighbor of u and v,
because otherwise IU{u, v} would be an independent set larger than I. On the other hand, since
there are neighbors of u and v that are adjacent, I can only contain at most two neighbors
of uw and v. But then, I’ = (I \ N(u)) U {u,v} is an independent set of the same size as |
that includes v and v. For the second case, i.e., there are no edges among N (u), note that
the reduction produces a set which in both cases contains exactly two vertices more than a
maximum independent set in G’. Now consider a maximum independent set I in G. If N(u)
is completely contained in I (N(U) C I), then I can not contain any vertex of N%(u), i.e., any
neighbor of w in G’. Thus, I’ = (I \ N(u)) U {w} is an independent set of G’ of size |I| — 2.
Otherwise, I contains at most two vertices from N(u) U {u,v} (either u and v or two vertices
from N(u)). But then, I’ = I'\ (N(u) U {u,v}) is also an independent set of G’ of size |I| — 2.
In total a(G) < a(G’) + 2 and thus, [is a maximum independent set of G O

During the kernelization step the algorithm searches for twins u and v. If there is an edge
among N (u), the algorithm includes u and v to the current solution and deletes {u, v} U N (u).
Otherwise, the algorithm still deletes {u,v} U N(u) introducing a new vertex connected to
N(u) \ {u,v} instead. Both cases of the twin reduction are depicted in Figure 3.

The next reduction rule as well as its featured special cases are also proposed by Xiao and
Nagamochi [42].

Definition 5. (Alternative Sets) In a graph G = (V, E) two non empty, disjoint subsets A, B C
V' are called alternatives, if |A| = |B| and there is a maximum independent set I in G such
that I N (AU B) is either A or B.

Theorem 7. (Alternative Reduction) In a graph G = (V, E) let A and B be alternative sets. Let
G' = (V', E') the graph with V' = V\(AUBU(N(A)NN(B))) and E' = (E\ (/PPN WINED)
{{z,y} |z € N(A)\ N[Bl,y € N[B]\ N(A)} and let I' be a maximum independent set in G'.

Then,

(T'UA i (NA\N[B)NT =0
B {I’UB , else if (N(B)\ N[A)NTI' =0

is a maximum independent set in G.

Proof. Consider a maximum independent set I in G and without loss of generality let A C

I
(by definition A or B C I). Thus, IN((AUBU(N(A)NN(B))) = Aand IN(N(A)\N[B]) = 0.

13

2 PRELIMINARIES

twin

reduction ‘ X X : X

(a) Case one: there is an edge between any two neighbors of u and v. Thus, the neighborhood of u
and v is excluded from the current independent set, whereas u and v are included into the current
independent set.

u v

twin

. YA/

(b) Case two: there are no edges between neighbors of u and v. Thus, u, v and the neighborhood of
u and v are replaced with a single vertex w. Each vertex from N?(v) is connected to w.

Figure 3: Twin reduction: vertices u and v are twins

Now let I’ = I\ A. I is an independent set in G', since each added edge (from E’\ E) is incident
to a vertex from N(A)\ N[B] and also |I'| = |I| — |A|]. This implies a(G") + |A]| > a(G).

Conversely, let I’ be a maximum independent set of G'. Obviously, I’ is also an independent
set of G. Since vertices from N(A) \ N[B] are pairwise adjacent to vertices form N(B)\ N[A4],
I’ can only contain vertices from either N(A) \ N[B] or N(B) \ N[A]. But then, / = I"UA
or I = I' U B, respectively, is an independent set in G. Thus, a(G') + |A| < a(G) In total
a(G") + |A] = a(G) and [is a maximum independent set in G. O

Note that the alternative reduction adds new edges between existing vertices of the graph. For
this reason, applying the alternative reduction is not beneficial in every case. To counteract
this, the algorithm only uses the following special cases of the alternative reduction.

Definition 6. (Funnel) In a graph G = (V, E) two adjacent vertices u and v are called funnels,
if GN)\{uy 5 @ complete graph, i.e, if N(v)\ {u} is a clique.

Theorem 8. (Funnel Reduction) In a graph G = (V, E) let u and v be funnels. Then, {u} and
{v} are alternative sets.

Proof. We have to show that there is a maximum independent set that contains either v or w.
So, consider a maximum independent set I that excludes both u and v. Then, I has to include
at least one vertex from N (v) \ {u}, because otherwise I U {v} would be an independent set of
larger size. On the other hand, I can only contain at most one vertex x from N (v)\ {u}, since
N(v)\{u} is a clique. But then (I \ {z})U{v} is an independent set of the same size as I that
does contain v. Thus {u} and {v} are alternative sets. O

Definition 7. (Desk) In a graph G = (V, E) a cycle uyususuy of length four with no chords (i.e.,
an induced 4-cycle) is called a desk, if each of the vertices has at least degree three, N ({uy,us})N
N({ug,us}) =0 and |[N({ug,us}) \ {ug, us}| < 2 as well as |N({ug, us}) \ {u,us}| < 2.

14

2.3 REDUCTION AND BRANCHING RULES

Theorem 9. (Desk Reduction) In a graph G = (V| E) let ujuguszuy be a desk. Then {uy,us}
and {us,us} are alternative sets.

Proof. Consider a maximum independent set I of G. If |I N {wuy,uz,us, us}| > 1, then clearly

IN{uy, ug, ug, ug} is either {uy, uz} or {ug, ug}. Otherwise, without loss of generality us, us, uy ¢
I and |I N N[{uy,u3}]| = 2. The last equation holds because |N({u1,us}) \ {uz,us}| < 2 by
definition, and u; has at least one neighbor in N({uy,us}) \ {ue,us} (d(uy;) > 3). But then
(I \ {N({u1,us})}) U{u1,us} is an independent set of the same size as I that does contain
{uy,ug}. Thus, {u;,us} and {us,us} are alternative sets. O

During kernelization the algorithm searches for funnels or desks and reduces those structures
according to the alternative reduction. Examples for structures which admit funnel or desk
reduction, respectively, are illustrated in Figure 4 and 5.

U
funnel
reduction
—
v

Figure 4: Funnel reduction: vertices v and v are funnels. The clique induced by N(v) \ {u} is
highlighted in blue. The vertices u, v and their common neighborhood (N (u) NN (v))
are removed from the graph. Vertices from N(u)\ N[v] are pairwise connected to the
vertices from N (v) \ Nlu].

L]

reduction

Figure 5: Desk reduction: vertices wuy, ug, uz and uy form a desk structure. Thus, they are
removed from the graph and vertices from N ({uy,us}) \ N[{usz,us}] are pairwise
connected to the vertices from N ({ug,us}) \ N[{ui, us}].

The algorithm also uses a reduction based on a solution to the LP-Relaxation of maximum
independent set.

maximize Z Ty
veV
0<z, <1 YveV

Ty +x, <1 Yu,0} € F

15

2 PRELIMINARIES

Nemhauser and Trotter [33] show that there always exists an optimal half integral solution
to the LP-Relaxation, i.e., an optimal solution where z, € {0,1,1} for all v € V. They
also show that given an optimal half integral solution to the LP-Relaxation, there is always
a maximum independent set that includes all vertices v with z, = 1 and excludes all vertices
u with x, = 0. Furthermore, they show that finding an optimal half integral solution can be
reduced to computing a mazimum matching in a bipartite graph. Iwata et al. [20] propose an
algorithm that given any optimal half integral solution constructs another half integral solution
that minimizes the number of variables with half integral value in linear time. The branch and
reduce algorithm uses this solution to the LP-Relaxation to reduce the graph and also as an

upper bound to an optimal solution.

Apart from reduction rules, the algorithm also uses branching rules that allow further reduc-
tions on branching when certain conditions hold. The first branching rule, mirror branching,
is introduced by Fomin et al. [13]. According to Kneis et al. [24] it is potentially useful, if the
branching vertex has a rather low degree and thus, most likely has some mirror.

Definition 8. (Mirror) In a graph G = (V, E) a vertex u is called a mirror of a vertex v, if
u € N?(v) and Gnwy\N(w) s a (possibly empty) complete graph, i.e. N(v)\ N(u) is a (possibly
empty) clique. The set of all mirrors of v is denoted by M(v) and M]v] := M(v) U {v}.

Theorem 10. (Mirror Branching) In a graph G = (V, E), if there is no maximum independent
set that contains a vertex v, then every mazimum independent set also excludes M{v].

Proof. Consider any maximum independent set I of G. Then [has to contain at least two
neighbors of v because otherwise, we could get a maximum independent set I’ = (I\ N (v))U{v}
that includes v. Now let u € M(v) be a mirror of v. Since N(v) \ N(u) is a clique, I can only
contain at most one vertex from N(v) \ N(u). Thus, I contains at least another vertex from
N(v) N N(u) and therefore has to exclude u. O

So, when branching on a vertex v, the algorithm finds its mirrors M(v) and considers two
possible cases. The first cases is that there is a maximum independent set that includes v and
therefore excludes N(v). The second case is that no maximum independent set includes v. In
this case, the vertices from M (v) can also be discarded from the graph.

v v v v
Uu Uu Uu Uu
Figure 6: Mirror branching: vertex u is a mirror of v. The possibly empty clique induced by

N(v) \ N(u) is highlighted in blue. When either u or v is excluded from the current
independent set by branching, the other vertex is also discarded.

The packing branching rule by Akiba and Iwata [1] is a generalization of the idea behind
the satellite branching rule by Kneis et al. [24]. The core idea behind those rules is that
when branching in the case of excluding a vertex v from the solution, one can assume that
no maximum independent set contains v. Otherwise, if there is a maximum independent set
that contains v, the algorithm finds it in the branch that includes v. Based on the assumption
that no maximum independent set includes a vertex v, constraints for the remaining vertices

16

2.3 REDUCTION AND BRANCHING RULES

can be derived. For example, a maximum independent set that does not contain v has to
include at least two neighbors of v. The corresponding constraint is 3°,c () Tu > 2, where
is a binary variable that indicates whether a vertex is included in the current solution. The
algorithm creates such constraints when branching, and updates them accordingly during the
kernelization and branching steps. The constraints can then be used to reduce the graph or to
prune the current branch when a constraint can not be fulfilled by the current solution.

17

3 RELATED WORK

3. Related Work

This section discusses related work. It focuses on presenting branching strategies used by
other branch and reduce algorithms for maximum independent set or its equivalent problems
minimum vertex cover and maximum clique.

There are various approaches to tackle the maximum independent set problem and its equiv-
alent problems. These approaches comprise exact as well as heuristic methods. A technique
frequently used for both exact and inexact algorithms is kernelization. We already covered the
most important reduction rules used for kernelization in Section 2.

Due to the NP-Hardness of the maximum independent set problem, inexact algorithms have
been well studied. One of the best techniques used for finding large independent sets is local
search [3, 32]. Local search algorithms start with an initial solution and then utilize simple
operations to iteratively improve the current solution. In practice, local search algorithms
often find near optimal solutions very fast. However, most of them can not give any guarantee
for the actual quality of a solution. Ome of the best local search algorithms for maximum
independent set, called ARW, is proposed by Andrade et al. [3]. Their algorithm uses the
concept of (j, k)-swaps, i.e., removing j vertices from the current solution and replacing them
with k vertices instead. In every iteration of their algorithm, they perform a (1,2)-swap to
improve the current solution. A valid (1, 2)-swap can be found in linear time. To escape local
optima, ARW occasionally disturbs the current solution by randomly inserting vertices into it
and removing their neighbors instead.

Chang et al. [7] propose a linear time kernelization algorithm which reduces vertices of degree
one and two. In fact, Strash [40] shows that using those simple reduction rules alone is sufficient
to solve many real-world instances. Another variant of their algorithm, called NearLinear, ad-
ditionally applies the dominance and LP reduction rule, but has only near-linear runtime. The
authors also show that applying their kernelization algorithm iteratively followed by removing
vertices of high degree, results in a large initial solution which, in turn, speeds up the ARW
local search algorithm.

The most powerful exact exponential time algorithms for maximum independent set are, on
a theoretical basis, branch and reduce algorithms [43, 9]. These algorithms use kernelization
to compute a kernel of the input instance. After that they branch into subinstances with lower
complexity which are then solved recursively. We now discuss the branching strategies used in
various different branch and reduce algorithms.

The most common branching strategy used for maximum independent set and minimum
vertex cover is branching on a vertex of maximum degree. Fomin et al. [13] give a theoreti-
cal analysis of this using the measure and conquer technique with a weighted degree sum as
measure. The authors show that choosing a vertex of maximum degree that also minimizes
the number of edges in its neighborhood is optimal with respect to their complexity measure.
This greedy strategy is also used by the algorithm of Akiba and Iwata [1] and serves as a base-
line for comparison in our experiments. Akiba and Iwata already compare this strategy with
branching on a vertex of minimum degree and the strategy of choosing a branching vertex at
random. Their experiments show that those strategies are significantly worse than branching
on maximum degree vertices.

18

3 RELATED WORK

Xiao and Nagamochi [43] propose a branch and reduce algorithm for maximum independent
set that, in most cases, branches on a vertex of maximum degree but also uses a special
edge branching strategy to handle dense subgraphs. Edge branching is based on the principle
of alternative subsets like in alternative reduction. Given an edge {u,v} € E a maximum
independent set can only contain u or v but not both of them. So, if there is a maximum
independet set that includes u or v, then {u} and {v} are alternative sets. Thus, branching on
the edge {u,v} € E yields two cases. The first case is to remove both u and v and to search for
a maximum independent set that does not include v and v. The second case is to compute the
alternative reduction of {u} and {v}, i.e., to remove {u,v} U (N(u) N N(v)) and insert an edge
{z,y} between any nonadjacent vertices x € N(u)\ N(v) and y € N(v) \ N[u] and to search
for a maximum independent set that includes either u or v.

The algorithm by Xiao and Nagamochi uses edge branching in degree bounded graphs on edges
{u,v} € E, where |N(u) N N(v)| is sufficiently large, i.e., the concrete values depend on the
maximum degree of the graph.

Bourgeois et al. [4] present a branch and reduce algorithm for maximum independent set
that relies on fast algorithms for graphs with low average degree. If the average degree of the
graph is greater than 4, the algorithm branches on a vertex of maximum degree. Otherwise,
if the average degree of the graph is at most 4, they use a specialized algorithm to solve the
instance. If there is no vertex with degree of at least 5, this algorithm branches on vertices
contained in 3- or 4-cycles.

Chen, Kanj and Xia [9] propose a branch and reduce algorithm for the problem minimum
vertex cover parameterized by the size k of the vertex cover, i.e., the problem of finding a vertex
cover of size not larger than k. In their algorithm they use the concept of so called tuples and
good pairs. A good pair is a pair of adjacent vertices that are advantageous for branching (the
details are omitted here). A tuple is a set S of vertices together with the number of vertices in S
that can be excluded from a minimum vertex cover. This information can be exploited during
the branching to eliminate additional vertices. For example, consider the pair ({u,v},1). We
know that either u or v can be excluded from a minimum vertex cover and thus, if we include «
to the vertex cover, we can exclude v. Otherwise, if we exclude u from the vertex cover, we can
include v. Akiba and Iwata [1] use the same idea in their packing reduction. The algorithm
by Chen, Kanj and Xia maintains a set of these structures as well as vertices of high degree
and updates them accordingly during kernelization and branching. At each branching step the
algorithm chooses the best structure and branches on it.

Most branch and reduce algorithms for maximum clique use some sort of greedy coloring to
find an upper bound to the size of a maximum clique and also to reduce the number of possible
vertices for branching [38]. Given a coloring ¢ : V' — N and the size ¢y of a current best
solution, it is easy to see that for A = {v € V' | ¢(v) < ¢max}, G can not contain a clique larger
than the current best solution. Thus, only vertices from V' \ A are considered for branching.

More sophisticated algorithms use a MaxSAT encoding of maximum clique to achieve better
upper bounds and to further reduce the set of branching vertices [28, 29]. Maximum clique can
be reduced to MaxSAT by introducing a binary variable z, for every vertex v € V and a hard
clause T, VT, for each pair of non adjacent vertices. The set {z, | v € V'} of unit literals forms
the soft clauses. A solution to this MaxSAT instance yields a maximum clique where the value
of a variable indicates whether the corresponding vertex is included in the clique or not. A

19

3 RELATED WORK

more efficient MaxSAT enconding of maximum clique is proposed by Li and Quan [31]. Given
a partition of V into independent sets (i.e. a coloring), instead of introducing a soft clause for
each vertex, they merely formulate a single clause V¢, 2; for each independent set I; in the
partition. Using this encoding they apply techniques from SAT solving like unit propagation
and failed literal detection to identify conflicting independent sets. A set of ¢ independent sets
is called conflicting if there is no clique of size ¢ in the subgraph induced by those independent
sets. If conflicting independent sets are detected, the soft clauses get weakened by conjugating
the clauses in a respective manner. The authors show that if a graph can be partitioned into
k independent sets with ¢ disjoint conflicting subsets, then the size of a maximum clique is
bounded by k£ —t. This way, they achieve an upper bound which is often better than the bound
obtained by the coloring.

Li et al. [30] use a similar MaxSAT reasoning to reduce the number of vertices that are
considered for branching. They initially use a coloring to obtain a partition of V' into parts A
and V' \ A, where A is defined as A = {v € V' | ¢(v) < ¢max} and cpayx is the size of the current
best solution. After that they construct a MaxSAT instance where they add a soft clause for
each color class (i.e. the set of vertices with the same color) in A. Then, they iteratively add
a soft clause x,, for each vertex v; € V' '\ A and apply unit propagation to it. If a conflict is
detected, the affected soft clauses get weakened. This process is repeated until no more conflicts
are detected or V' \ A becomes empty. The authors show that if there are conflicts for literals
Tyy, - .. Ty, With v; € V'\ A, then the graph induced by AU {v; ... v} does not contain a clique
larger than the current best solution cy.x. Thus, those vertices do not have to be considered
for branching.

Another approach to decrease the number of branches in branch and reduce algorithms for
maximum clique is to choose branching vertices in a specific beneficial order. A common
strategy for choosing the branching vertex is to calculate a so called degeneracy ordering v, <
Vg < -+ < v, where v; is a vertex of smallest degree in G — {vq,...,v;_1}, and to choose the
vertices for branching in descending order [6]. Li et al. [28] introduce another vertex ordering
for branching using maximum independent sets. While G is not empty, they repeatedly search
for maximum independent sets and remove them from the graph. Then the vertex ordering is
defined in the following way using the degeneracy ordering for tie breaking. For two vertices u
and v, u < v if u has been removed later than v or if u and v have been removed at the same
time but u < v in the degeneracy ordering.

Most of the exact algorithms for maximum independent set and its equivalent problems have
been analyzed on a theoretical level but are not very well tested on real instances. In practice,
the best algorithms use a combination of multiple techniques. For example, the winning solver
of the PACE challenge by Hespe et al. [18] uses kernelization, iterated local search, a branch
and reduce algorithm for vertex cover and a branch and bound algorithm for maximum clique.
Their algorithm starts by applying the same set of reduction rules as Akiba and Iwata [1] do in
their branch and reduce algorithm to obtain a kernel as small as possible. After that, they use
iterated local search to find a large initial solution and prime the branch and reduce algorithm
with it. Subsequently, the branch and reduce algorithm is run for a short period of time. If
no solution is found during that time, they run a branch and bound maximum clique solver on
the complement of kernel and, thereafter, on the complement of the original instance. Again,
if no solution has been found so far, they re-run the branch and reduce algorithm for a longer
time followed by the clique solver, if needed.

20

4 BRANCHING STRATEGIES

4. Branching Strategies

In this section we outline our approaches for designing the different branching strategies. We
also give the details on the implementation itself and on the observations we made during the
implementation. As mentioned in the introduction, we follow two main approaches in designing
our branching strategies.

The first approach is to decompose the graph by branching. This way, the resulting connected
components can be solved independently speeding up kernelization and, potentially, reducing
the total size of the search space. For this thesis we implemented three branching strategies
using this approach which are described in Section 4.1.

The second approach is to break up complex structures that can not be reduced by ker-
nelization. Our main idea behind this approach is to identify vertices that prevent a certain
reduction rule from being applicable, and subsequently branch on them. This way, the respec-
tive reduction rule can be applied afterwards, and the graph gets further reduced. Also, such
vertices can be found during kernelization which is continuously performed before every branch-
ing step. Therefore, the overhead of those branching strategies is rather small compared to the
strategies following our first approach. We implemented branching strategies that target four
different reduction rules and also tested a combination of those; branching strategies following
this approach are covered in section 4.2.

For almost all of our branching strategies it is not guaranteed that they find a suitable
vertex for branching in every branching step. Consequently, all of them use a default branching
strategy as a fallback. In our implementation we used branching on a vertex with maximum
degree that also minimizes the number of edges among its neighborhood as default branching
strategy. This corresponds to the strategy proposed by Fomin et al. [13], and is already
implemented in the algorithm by Akiba and Iwata [1].

4.1. Branching Strategies Based on Decomposition
4.1.1. Branching on Articulation Points

Since the branch and reduce algorithm, which we used as our basis, was designed for branching
on a single vertex, our first idea is to find articulation points (i.e. cut vertices) of the graph and
to branch on them. Articulation points of a graph G are single vertices that form a separator
of size one in GG. Hence, by removing an articulation point the graph becomes disconnected.
Given any spanning tree of GG, each articulation point v separates the vertices in the subtree
rooted by a child of v from the rest of the graph. Thus, in a spanning tree obtained by a depth
first search (DFS) there are no back edges from the graph induced by the subtree rooted at
this child to the predecessors of v in the DFS tree.

Using this observation, articulation points in a connected graph can be found in linear time
using the following algorithm (Algorithm 11) based on a depth first search scheme. The algo-
rithm performs a depth first search starting at an arbitrary vertex of the graph. In every step
of the DFS; the visited vertex is labeled with the current DF'S number. If a back edge is found
during the DF'S run, the label of the currently visited vertex is updated to the minimum of the
labels of both endpoints of the back edge. After the child of a vertex has been scanned by the

21

L

ot

10
11

12

4 BRANCHING STRATEGIES

DFS, the algorithm checks whether there were any back edges from the subtree rooted at the
child to a predecessor of the vertex in the DFS tree. This is the case, if the label of the child
is not smaller than the current label of the vertex. If there are no such back edges, then the
current vertex is an articulation point. Eventually, the algorithm has to consider a special case
for the root of the DFS tree, i.e., the start vertex. Obviously, there is no predecessor to the
root vertex. However, the root can be an articulation point, too. Since there are no cross edges
in a DF'S tree, this is the case, if and only if the root has more than one child. Thus, the root
separates the subtrees rooted at the children from each other.

In our first branching strategy (Algorithm 3) we manage a set of articulation points of
the graph. During a branching step we first remove vertices from the set that are no longer
contained in the graph, e.g., vertices removed by kernelization. Subsequently, we check if the
set still contains any articulation points. If so, we remove a vertex from the set and return
it for branching. Otherwise, we use Algorithm 11 to find the articulation points of the graph
and insert them into the set. If there are no articulation points, we use the default branching
strategy as fallback.

Algorithm 3: ArticulationPointsBranching
Global variables: A set of articulation points AP
Input: A graph G = (V, E)
ArticulationPointsBranching((G) begin
foreach u € AP do
if u ¢ V then
L L AP < AP\ {u} // remove vertices no longer contained in G

if AP = () then

L AP + GetArticulationPoints(G) // search new articulation points in G
v L
if AP = () then

| v < MaxDegBranching(G) // use default branching
else

L v u€ AP ; AP < AP\ {u} // use any articulation point for branching
return v

Output: a vertex v for branching

Although this branching strategy has only little overhead, a major drawback is that articu-
lation points are rarely found even in sparse graphs. Thus, in practice, the fallback strategy is
used most of the time. So, we further develop our initial idea by also considering more general
vertex separators, i.e., minimal separators that contain more than one vertex.

4.1.2. Branching on Edge Cuts

Since minimum edge cuts are generally easier to find than minimum vertex separators and can
also be used to obtain small vertex separators, we opted to use edge cuts instead. In fact, finding
a minimum vertex separator can be reduced to finding a minimum edge cut in a transformed
graph. A disadvantage of this approach is that vertex separators induced by minimum edge
cuts are not necessarily minimal. Nevertheless, for our purpose the trade off between separator

22

4.1 BRANCHING STRATEGIES BASED ON DECOMPOSITION

size and computation time may be worth it. Given an edge cut, a vertex separator can be
obtained easily by just taking one of the incident vertices to each edge in the cut set. However,
in our implementations we use a slightly more sophisticated method which yields potentially
smaller vertex separators. Given an edge cut (S,7") with cut set C, we construct an auxiliary
graph G' = (V',C) with V' = {z,y € V | {z,y} € C}. By construction, G’ is bipartite with
parts A =V'NS and B =V'NT. Thus, we can run the Hopcroft-Karp algorithm on G’ to
obtain a minimum vertex cover S’ of G'. Since each edge of the cut set is incident to at least
one vertex in the vertex cover, S’ is indeed a vertex separator. Clearly, S’ has at most as many
vertices as there are edges in C.

Besides that, the most crucial part of our next branching strategy is the calculation of the
actual cut. Altogether, we test four methods for finding small edge cuts. For our first attempt
we use a heuristic algorithm for global minimum cuts by Henzinger et al. [17]. Unfortunately,
during implementation we noticed that searching a global minimum cut in our benchmark
instances almost always results in a trivial cut with a part that only contains a vertex of
minimum degree. Hence, our next approach is to use s-t-cuts instead. This evidently raises
the question which vertices should be used for s and ¢t. At first, we try choosing s and t
at random. However this frequently results in rather large and unbalanced cuts. Our next
attempt is to use a pair of vertices that are as far apart as possible. The idea behind this is
that this procedure might produce more balanced cuts. In our implementation we realized this
by running a breadth first search (BFS) twice. The first BFS run is started at an arbitrary
vertex, and the last vertex visited by the BFS is used for s. After that we start another BFS
at s letting the vertex visited last become t. But choosing s and ¢ this way also results in very
unbalanced cuts similar to the global minimum cuts. This is due to the fact that the selected
vertices almost always have low degree. Using the two vertices of highest degree as s and ¢
delivers the best results on our benchmark instances of all three variants.

To calculate the actual minimum s-t-cut we use an implementation of a preflow push max-
imum flow algorithm from the KaHIP library [36]. Finally, it has to be considered how to
branch on a vertex separator that contains more than one vertex. In our implementation we
decide to branch on each vertex one after another.

Bringing all together, our second branching strategy (Algorithm 4) manages a set of branching
vertices contained in the vertex separator currently. If the set is not empty, the branching
strategy just removes and returns a vertex from that set. Otherwise, it searches a new vertex
separator (Algorithm 12). For this purpose, we first retrieve the two vertices s and ¢t in G
with highest degree. After that, we use the preflow push algorithm to obtain a minimum s-t-
cut. Using this cut, the branching strategy calculates a vertex separator by constructing the
bipartite auxiliary graph induced by the cut set and then applies the Hopcroft-Karp algorithm
to it. The new vertex separator, i.e., the minimum vertex cover returned by the Hopcroft-Karp
algorithm, is then inserted in the set of branching vertices and one of those vertices is returned.

An important optimization is that the branching strategy only considers vertex separators
which are not larger than a certain size and at the same time meet certain balancing constraints.
Otherwise, too many branching steps are required to remove all vertices of the separator and
the decomposition of the graph is not worth it. Furthermore, we noticed that if no suitable
vertex separator is found, this is also going to happen in the next couple of branches. For this
reason, the branching strategy only searches for a vertex separator every few branching steps

23

O S

4 BRANCHING STRATEGIES

to reduce the overhead using the default fallback during this phase. The exact numbers used
in our implementation are tuning parameters. The details of choosing those tuning parameters
are discussed in Section 5 and are omitted in the pseudo code.

Algorithm 4: CutBranching

Global variables: A set BV of vertices considered for branching, and a counter
NumFallbacks for the number of fallbacks between two searches for edge cuts

Input: A graph G = (V, E)

CutBranching () begin

foreach u € BV do

if u ¢ V then

L BV « BV \ {u} // remove vertices no longer contained in G

if BV =0 A NumFallbacks = SearchFrequency then
BV <+ GetSeparatorFromEdgeCut (G)
| NumFallbacks < 0 // reset fallback counter

v L

if BV # () then

| v<ue BV ;BV <+ BV\{u} // use any vertezx of the separator
else

L v 4~ MaxDegBranching(G) // no suitable cut; use fallback instead

NumFallbacks <+ NumFallbacks + 1

return v

Output: a vertex v for branching

4.1.3. Branching by Nested Dissection

Both of our branching strategies so far perform calculation of the branching vertex dynamically
in every branching step. This has the advantage that branching vertices are always chosen
based on the current graph, but comes with the disadvantage of computation overhead in
every branching step. Thus, our next approach is to use static ordering, in which vertices are
considered for branching, and which is calculated only once before the first branching step. For
this purpose we decided to use nested dissection ordering.

Nested dissection ordering is mainly applied as a heuristic to minimize the number of fill ins
in factorization of sparse symmetric matrices [15], or for computing good contraction hierarchies
in route planning [16]. Nested dissection ordering of the vertices of a graph G is obtained by
calculating a balanced bipartition of the graph into parts A and B using a vertex separator S.
Subsequently, orderings of G4 and G g are calculated recursively. Finally, the nested dissection
ordering of GG is composed by concatenating the orderings of A and B followed by the separator
S. For vertices of the separator S, the relative order among each other is arbitrary. By
choosing the branching vertices in reverse nested dissection ordering, the algorithm branches
on the separators used for the bipartition at each level of the nested dissection. Consequently,
the graph is getting decomposed piece by piece.

In the implementation of our following branching strategy (Algorithm 5) a nested dissection
ordering is computed immediately prior to the first branching step, i.e., after the initial kernel-
ization step. To calculate the nested dissection ordering, we use an algorithm provided in the

24

4.1 BRANCHING STRATEGIES BASED ON DECOMPOSITION

L/

Vg 10 V11 12 V13 14 /1115 16
v17 K V19 V20 V21 V22 /U23 V24
® [L L]

V25 ° 26 ‘7127 . 28 ‘1129 ° 30 ‘1131 ° 32

Vertex ordering of G obtained with two levels of nested dissection:

123910112025 262728/1718 19|56 7 13 14 16 23 24 30 31 32|8 15 22|4 12 21 29|
part 1 part 2 part 3 part 4

parts separators
1

Sizes Array : [6]5]5]6[3[3[4[1] Branching order : |4 12 21 29|[17 18 19|]8 15 22|

Figure 7: Possible vertex ordering of the 8 by 4 grid obtained with two levels of nested dissection
along with the sizes array and the extracted branching order

METTIS library [22]. We do not apply a custom configuration to the algorithm, but rather use
the default settings of the METIS library. Afterwards, the vertices are inserted into a queue in
reverse nested dissection ordering. In each branching step, the branching strategy removes ver-
tices from the queue until it finds a vertex that is still contained in the current graph. Finally,
the respective vertex is returned for branching.

During initial tests of our implementation we noticed that branching on separators which
come later in the reversed nested dissection ordering (i. e., separators obtained in a recursive
call of higher depth), frequently does not result in decomposition of the graph. This is due to
the fact that in addition to branching, the graph is also reduced by kernelization in each step
of the algorithm. Thus, separators in the original graph are not necessarily separators in the
current graph at the time of branching. Counteracting this, we optimized our branching strategy
by performing a restricted number of levels of recursions instead of calculating a full nested
dissection ordering. Then the branching order is composed solely by the separators obtained in
those levels of recursion. In a branching step, if there are no more vertices left in the ordering,
the default branching strategy is used as a fallback. The exact number of recursions used is a
tuning parameter. Details are discussed in the following section (Section 5).

To implement this optimization, we used an alternate method provided by the METIS library,
which just performs a specified number of resursive calls of the nested dissection algorithm.
Nevertheless, the problem remains that the algorithm still returns an ordering of all vertices
of the graph. We are, however, only interested in the vertices contained in the separators of
each recursive call. Luckily, the METIS library provides an array that stores the sizes of the
parts as well as the separators for each level of recursion. The following recursive algorithm
(Algorithm 13) capitalizes on this feature by extracting the individual separators from the
vertex ordering and constructing the branching ordering in the following manner.

25

w

0 N O Ut

10

11
12
13
14
15

16
17

18

4 BRANCHING STRATEGIES

Algorithm 5: NestedDissectionBranching

Global variables: A vertex ordering BO for branching, and a boolean BOComputed which

indicates whether an ordering has been computed

Input: A graph G = (V, E)

NestedDissectionBranching((G) begin

if =BOComputed then

(0, sizes) <— METIS_NodeNDP (G, LevelsO f Recursions) // compute nested dissecton
// ordering with respective sizes array

BOComputed < true
for i € {2LevelsOfRecu7‘sions + 1. .. 2LevelsOfRecu7“sz'ons+1 o 1} do
if sizes[i] > MaxSeparatorSize then
BOComputed < false // separator is to large
break

if BOComputed then
L BO <+ ExtractSeparators (o, LevelsO f Recursions, sizes)

v L

if BOComputed then
fori e {l,...,|BO|} do
L if BO[i] € V then

L return BOJi] // find next vertex in the branching order
else
L v < MaxDegBranching(G) // use fallback
return v

Oatput: a branching order

26

4.2 BRANCHING STRATEGIES BASED ON REDUCTION RULES

The algorithm receives the vertex ordering and the sizes array as input. Initially, the branch-
ing order is empty. In each recursive call the algorithm starts by retrieving the size k of the top
level separator from the sizes array. Thereafter, the top level separator, which just contains the
last k vertices of the vertex ordering is inserted into the branching order. Then the algorithm
splits the rest of the vertex ordering and the sizes array in accordance to the recursion. This
results in orderings for each part of the bipartition and the two corresponding sizes arrays.
Subsequently, the separators residing in those parts are extracted recursively and are added to
the branching order.

As in the previous branching strategy using edge cuts, we optimize our implementation by
considering a vertex ordering only if the sizes of the vertex separators computed at each level
of recursion are not exceeding a certain threshold. The exact value of the threshold is a tuning
parameter. In contrast to the previous branching strategy, we did not tweak the balancing
constraints used by the nested dissection algorithm.

Another optimization we tested was to compute a new nested dissection ordering (with
restricted levels of recursion) following removal of all vertices of the previous ordering from the
graph. This way, we attempt to combine the advantage of using a static branching ordering with
choosing vertices dynamically on the current graph. However, tests showed that this variant
of the branching strategy performs worse than computing the vertex ordering only once. A
possible explanation is that branches at a lower depth of recursion have a greater impact on the
total number of branches needed than such at a higher depth. Hence, decomposing the graph
at an early stage in the algorithm is more powerful than at later stages. An alternate reason
might be that branches at a higher depth of recursion are more likely to be pruned before all
vertices of a separator have been removed by branching.

4.2. Branching Strategies Based on Reduction Rules

The branching strategies described in this section are essentially based on the break up of
structures that can not be reduced by kernelization. The core idea behind this is to identify
vertices such that branching on those enables the application of reduction rules afterwards. Our
initial approaches using this concept are rather simple and attempt to find single vertices that
prevent a certain reduction rule from being applicable. It is generally advantageous that finding
of such vertices can be accomplished during kernelization without noticeable time overhead.

Following this idea, we implemented and tested four branching strategies each targeting
a different reduction rule. Finding of potential candidates for branching, i.e., vertices that
prevent the corresponding reduction rule from being applicable, works differently depending
on the targeted reduction rule. However, the actual branching step is the same for all these
variants (see Algorithm 6). In a branching step, a vertex for branching is chosen from a set of
vertices managed by the respective branching strategies. Vertices considered for branching are
inserted into this set during kernelization. Notice that at the time of branching, vertices in the
set could have already been removed from the graph by another reduction rule. Thus, reduced
vertices have to be filtered out first. Subsequently, if the set of branching vertices is not empty,
all four branching strategies choose a vertex of highest degree from the set and return it for
branching. Otherwise, if there are no vertices in the set, the default branching strategy is used
as a fallback.

27

S Ut s W N

-~

4 BRANCHING STRATEGIES

As in the case of the branching strategies described in Section 4.1, our implementations are
optimized to the effect that even if the set of potential branching vertices is not empty, only
vertices of a certain degree are considered for branching. Details on how the tuning parameter
is chosen are explained in Section 5.

Algorithm 6: ReductionBranching

Global variables: A set BV of vertices considered for branching
Input: A graph G = (V| E)
ModifiedTwinReduction((G) begin
v L ;dv<+— -1
for u € BV do
if d(u) > d(v) then
VU // find vertex with maximum degree of all vertices considered
L dv « d(u)

if v =1 Vdv < A(G) — DegThreshold then
L v <— MaxDegBranching(G) // use fallback

return v

Oatput: a vertex v for branching

In the following, we describe for each of the four branching strategies how vertices considered
for branching are found during kernelization.

4.2.1. Branching Based on Twin Reduction

The first branching strategy in this subsection is based on the Twin reduction rule (covered in
Section 2.3). To characterize the structure in which a single vertex prevents the twin reduction
from being applicable, consider the following definition.

Definition 9. (Almost Twins) In a graph G = (V, E) two non adjacent vertices v and v are
called almost twins if d(u) =4, d(v) =3 and N(v) € N(u) (i.e. N(u) = N(v)U {w}).

Clearly, after removing w, it holds that d(u) = d(v) = 3 and N(u) = N(v). Thus, by removing
w, the vertices u and v become twins. Consequently, the twin reduction rule is applicable af-
terwards. Thus, when using this branching strategy, the branch and reduce algorithm searches
for pairs of vertices that are almost twins during each kernelization step. Finding those vertices
can be done while already searching for twins. The twin reduction rule checks for each vertex
v of degree three if there is a vertex u € N%(v) such that d(u) = 3 and N(u) = N(v). To find
almost twins, we modify this routine (Algorithm 7) in order to simultaneously check if there
is a vertex u € N?(v) with d(u) = 4 and N(v) C N(u). If such a pair of vertices u and v is
found, the single vertex w € (N(u) U N(v)) \ (N(u) N N(v)) is inserted into the set of vertices
considered for branching. An example for almost twins is depicted in Figure 8.

4.2.2. Branching Based on Funnel Reduction

For the second branching strategy we attempt to find vertices preventing application of the al-
ternative reduction. As mentioned in Section 2.3, the branch and reduce algorithm only utilizes

28

N O Ot W N

[e)

10

4.2 BRANCHING STRATEGIES BASED ON REDUCTION RULES

u (%

A\

Figure 8: The vertices u and v are almost twins. Upon removal of vertex w, u and w become
twins and, consequently, twin reduction can be applied.

Algorithm 7: ModifiedTwinReduction
Global variables: A set BV of vertices considered for branching
Input: A graph G = (V, E)
ModifiedTwinReduction((G) begin
BV « () // Vertices considered for branching
foreach v € V do
if d(v) = 3 then
foreach u € N?(v) do
if d(u) =3 A N(u) = N(v) then
L ApplyTwinReduction (v, u) // v and u are twins; apply reduction

else if d(u) =4 A N(v) C N(u) then
L BV < BV U (N(u) \ N(v)) // v and u are almost twins

return BV

Output: a set of verices considered for branching

the special cases funnel and desk reduction, hence providing a further restriction in regards to
eligible reduction rules. However, desk reduction is based on a very concrete graph structure
and therefore is rarely applied in our benchmark instances; in contrast, funnel reduction is ap-
plied more often. Also, it is difficult to determine if a vertex prevents the desk reduction from
being applicable, since a multitude of cases would have to be considered. For those reasons, we
do not target the desk reduction, but exploit the funnel reduction rule instead.

Similar to the first branching strategy, we define the structure within which the funnel re-
duction can be applied upon removing a single vertex.

Definition 10. (Almost Funnel) In a graph G = (V, E) two adjacent vertices w and v are
called almost funnels if u and v are not funnels and there is a vertex w such that N(v) \ {u,w}
induces a clique.

By removing the single vertex w, u and v become funnels and, thus, u can be reduced afterwards.
Pairs of vertices that are almost funnels can be found easily during the funnel reduction. To
check whether two vertices u and v are funnels, the funnel reduction rule iterates over the
vertices in N(v) \ {u} and checks, if they are adjacent to the previous vertices in the iteration.
Once it finds a vertex that is not adjacent to all prior vertices, the reduction rule concludes
that v and v are not funnels and stops checking the remaining neighbors of v. To find almost
funnels we modify this procedure as follows (Algorithm 8). We still iterate over N(v)\ {u} and
check for adjacency. Once a vertex w is found that is not adjacent to all prior vertices, two

29

4 BRANCHING STRATEGIES

cases are considered. Firstly, if w is not adjacent to at least two preceding vertices, then u and
v representing almost funnels can be verified by checking if N(v) \ {u,w} induces a clique. In
the second case there is only one vertex w’ prior to w such that w’ and w are not neighbors.
Then u and v are almost funnels, if N(v) \ {u,w} or N(v) \ {u,w'} induces a clique. In both
cases, if u and v are almost funnels, the neighbor of v, which is not contained in the induced
clique (i.e. w or w’ respectively), is inserted into the set of vertices considered for branching.
A structure with almost funnels is shown as an example in Figure 9.

&

/
\w2

Figure 9: The vertices u and v are almost funnels. N(v) \ {u} is highlighted in blue. After
removing either w; or we, N(v)\ {u} induces a clique. Thus, u and v become funnels
and consequently, funnel reduction can be applied.

4.2.3. Branching Based on Dominance Reduction

The third branching strategy is making use of the dominance reduction rule. Again, we define
the structure which contains a vertex enabling dominance reduction upon removal.

Definition 11. (Almost Dominance) In a graph G = (V, E) a vertex u is called almost domi-
nated by a neighbor v if [N (u) \ N(v)| =1 and N[v] € N(u).

The condition N[v] € N(u) ensures that v is not already dominated by u. By removing the
single vertex w € N(u)\ N (v), the vertex u becomes dominated by v, since (N[u]\{w}) C N(v).
Similar to the previous branching strategy, we search for pairs of vertices v and v such that u
is almost dominated by v. The dominance reduction verifies whether a vertex u is dominated
by v through checking if all neighbors of u are also neighbors of v. Once it finds a vertex that
is adjacent to u but not a neighbor of v, it is concluded that u is not dominated by v and the
remaining vertices are not going to be checked anymore. We modify the dominance reduction
to test if the neighbors of u are adjacent to v until either all neighbors have been checked or,
alternatively, a second vertex adjacent to u is found that is not also a neighbor of v. When all
vertices have been checked and there is no vertex w € N(u) \ N(v), then u is dominated by
v. Otherwise, w is inserted into the set of vertices considered for branching. An example for
almost dominance is illustrated in Figure 10.

A fundamental difference to the two preceding branching strategies is that the dominance re-
duction rule is not actually used by the branch and reduce algorithm. Nevertheless, dominance
reduction is fully contained in the unconfined reduction rule used by the algorithm so that
dominating vertices still get reduced. It is a major drawback, however, that vertices considered
for branching making the dominance rule become applicable, can not be found during kernel-
ization. Instead, one has to search for such vertices separately after kernelization resulting in
a non-negligible time overhead.

30

16
17

18
19

20
21
22

23
24

25

4.2 BRANCHING STRATEGIES BASED ON REDUCTION RULES

Algorithm 8: CheckAlmostFunnel

Global variables: A set BV of vertices considered for branching
Input: A graph G = (V, E), vertice v and u
CheckAlmostFunnel (G, v, u) begin

x4 L;y+ L;C+«+) foreach w € N(v)\ {u} do

if C C N(w) then

| O+ CuU{w}

else

if |C'\ N(w)| > 1 then

if x # 1 then

L return // v and u are neither funnels nor almost funnels

T~ w

else

if x # L then

L return // v and u are neither funnels nor almost funnels

T w
y« z€C\ Nw)={z}
L O C\{y}

ifx =1L ANy = _1 then
L ApplyFunnelReduction (v, u) // v and u are funnels; apply reduction

else if y = 1 then
L BV « BV U{x} // v and u are almost funnels; consider x for branching

else
if C' C N(x) then
L BV «+ BV U{y} // v and u are almost funnels; consider y for branching
else if C' C N(y) then
L BV «+ BV U {x} // v and u are almost funnels; consider x for branching

return BV

4.2.4. Branching Based on Unconfined Reduction

Therefore, in the fourth branching strategy we generalize the previous strategy in order to
exploit the unconfined reduction rule. We define an almost unconfined vertex analogously to
the previous definitions.

Definition 12. (Almost Unconfined) In a graph G = (V, E) a vertex v is called almost uncon-
fined if v is not unconfined but there is a vertex u such that v is unconfined in G — u.

By definition, v becomes unconfined after removing » and, thus, by means of the unconfined
reduction rule can also be removed. However, it is not clear how to determine whether a vertex
u is almost unconfined and, moreover, how to find the specific vertex u preventing v from being
unconfined. There are basically two cases to be considered. Firstly, at some point during the
execution of the unconfined algorithm (Algorithm 2) there is an extending child, i. e., a child
w with {u} = N(w) \ N[S], and, coincidentally, inclusion of u into the set S leads to v not
being unconfined. By removing u, vertex w becomes a child devoid of neighbors not being
already contained in N[S]. Thus, v becomes unconfined. In the second case, at the end of the

31

0 N O Utk W N =

10
11
12

4 BRANCHING STRATEGIES

v Uu
\\ .
Figure 10: The vertex u is almost dominated by v. After removing w, u is dominated by v and
thus, v can be removed by dominance reduction.

Algorithm 9: CheckAlmostDominance
Global variables: A set BV of vertices considered for branching
Input: A graph G = (V, E), vertices v and u
ModifiedDominanceReduction(G, v, u) begin
T+ L
foreach w € N(u) \ {v} do
if w ¢ N(v) then
if x = 1 then
\ r=w
else
L return // u is neither dominated nor almost dominated by v

if x = 1 then

‘ ApplyDominanceReduction (v, u) // w is dominated by v; apply reduction
else
| BV « BV U{xz} // wis almost dominated by v; consider x for branching

unconfined algorithm there is a child w with {u,z} = N(w) \ N[S]. Upon removing u, the
vertex w becomes an extending child. Therefore, the unconfined algorithm has to include z
into the set S and eventually concludes that v is unconfined.

It is easy to check whether the first case occurs, assuming there is only one extending child
at some point during the algorithm. In each step of the modified unconfined algorithm (see
Algorithm 10), if there is only one extending child w with {u} = N(w)\ N[S], we insert u into
a buffer. When the algorithm terminates, the following condition applies. If it returns false
and the buffer is not empty, then v is almost unconfined and removal of any vertex from the
buffer makes v unconfined. Hence, all vertices from the buffer can be considered for branching.
Unfortunately, this approach does not work, if there are more than one extending child in every
step of the unconfined algorithm.

Notably, there is also an obstacle in detecting the second case. If the unconfined algorithm
concludes a vertex v is not unconfined, we can in fact check if at the end of the unconfined
algorithm there is a child w with {u, 2z} = N(w)\ N[S]; but we do not know if removal of either
w or x is going to result in v becoming unconfined. Hence, in this case we can not easily check
whether v is almost unconfined or not.

Thus, during kernelization almost unconfined vertices can only be identified, if case one
applies. Unfortunately, it is not clear whether this is true if a vertex u is almost dominated
by another vertex v. It holds that v is either unconfined (then v is reduced anyway) or,
alternatively, v is almost unconfined, since by removing the single vertex w € N(u) \ N(v), u
becomes dominated by v; hence, v becomes unconfined. Also, during the unconfined procedure,

32

4.2 BRANCHING STRATEGIES BASED ON REDUCTION RULES

1 step of the T
- %

unconfined

Algorithm

(a) Case one: the vertex u is an extending child and thus, w is included into the set S. Subsequently x
is the only child of S. However, |N(z)\ N[S]| = 2 and therefore v is not unconfined. By removing
w, u becomes a child with |N(u) \ N[S]| = 0 and thus, v is unconfined.

1 step of the

> Y
unconfined
Algorithm

(b) Case two: the vertex w is the only child of S with |N(u) \ N(S)| = 2. Thus, v is not unconfined.
By removing w, the vertex u becomes an extending child and y is included into S. Subsequently,
x becomes a child with |N(z) \ N[S]| = 0 and v is unconfined.

Figure 11: The vertex v is almost unconfined.

u is an extending child as long as the set S does not contain w € N(u) \ N(v) following from
N(u)\{w} € N(v). Hence, if u is the only extending child at any point during the unconfined
algorithm, then case one applies. However, there can also be another extending child being
considered prior to u by the unconfined algorithm, consequently forcing w into the set S. In
this instance, u is no longer a child of S and, eventually, case two might prevail. Moreover, if a
vertex v is almost unconfined, there can also be a vertex such that removing the latter results
in v being neither unconfined nor almost unconfined anymore. Notably, this vertex can also be
removed during a branching step by the mirror branching rule (covered in Section 2.3).

4.2.5. Branching on Reduction Chains

During initial test runs using the first four branching strategies covered in this section, we
observed that branching on a vertex may result in a whole series of reductions. There are two
main causes for this. First, within one branching step multiple vertices frequently get removed
from the graph. Specifically, this is the case when the branching vertex is included into the
current solution and therefore its neighbors are excluded or, alternatively, when the branching
vertex has mirrors (see Mirror branching rule in Section 2.3). Then, each of the removed
vertices might enable a reduction during the following kernelization. The second cause is that
removal of a vertex during branching might lead to a reduction which, in turn, enables further
reductions.

We make use of this observation in our fifth branching strategy. Here, the main idea is
to choose a vertex with the effect that branching on this vertex is going to trigger a largest
possible chain of reductions. Consider the following example shown in Figure 12. By removing
the vertex w, v becomes dominated by u, and therefore u can be removed by dominance
reduction. Subsequently, z and y become twins, and, finally, twin reduction can be applied.

33

10
11

12
13

4 BRANCHING STRATEGIES

Algorithm 10: ModifiedUnconfinedReduction
Global variables: A set BV of vertices considered for branching
Input: A graph G, a vertex v
ModifiedUnconfinedReduction((, v) begin
B+ 0
S« {v}
while S has child u with |N(u) \ N[S]| <1 do
if |N(u) \ N[S]| =0 then
| return true // Contradiction to Theorem 4
else
if w is the only child with |[N(u)\ N[S] =1 then
| B+ BU{w}

{w} < N(u) \ N[v] // By assumption w also has to
S+ Su{w} // be contained in every MIS

BV «+ BV UB //if B#0, v is almost unconfined; consider vertices in B for branching
return false

Output: true if v is unconfined, false otherwise

Figure 12: Example for a reduction chain highlighted in blue

To find large reduction chains we define the following directed graph R = (V, E’) where V/
is just the vertex set of the original graph; further there is an edge from a vertex u to another
vertex v, if the removal of u causes the reduction of v based on a single reduction rule (we omit
transitive edges). We call this a reduction graph. Given the reduction graph R, the number of
vertices which can be reduced after removing a vertex v at best corresponds to the number of
vertices reachable from v in R. We can compute this number with a simple BFS run starting
at v.

Unfortunately, in practice the exact reduction graph is hard to construct as there are a few
pitfalls. We can in fact use the results of our previous branching strategies to identify vertices
that enable the reduction of other vertices upon their removal so that parts of the reduction
graph can be constructed. However, in doing so, we do not consider all reduction rules used by
the branch and reduce algorithm. Folding reductions, e.g., degree two folding or twin reduction
add new vertices while alternative reductions introduce new edges between existing vertices.
Consequently, those reductions might prevent other reductions. Also, we disregard the order
in which the reduction rules are applied. Since the reduction rules are not executed iteratively
but rather in a fixed order, it is therefore not guaranteed that the whole chain of reductions is
performed in the right order. Moreover, the kernel sizes can be affected by the order in which
reduction rules are applied. Thus, the number of vertices reachable in the reduction graph
starting at a specific vertex does not necessarily correspond to the exact number of reductions

34

4.2 BRANCHING STRATEGIES BASED ON REDUCTION RULES

caused by removal of that vertex.

In our preliminary implementation, we only consider almost dominated and almost uncon-
fined vertices for constructing an approximation to the reduction graph, as the unconfined
reduction does not introduce new vertices or edges. We use the modified variants of the dom-
inance and unconfined reduction to find vertices that enable reductions upon removal. In a
branching step, initially, the reduction graph is constructed. Subsequently, we perform BFS
runs starting at each vertex of the graph to compute the number of vertices reachable. These
numbers are utilized to find the vertex starting from which the highest number of vertices are
reachable. The same vertex is finally used for branching if it has a certain degree.

35

5 EXPERIMENTAL RESULTS

5. Experimental Results

In this section we evaluate our branching strategies by testing them using a set of benchmark
instances from multiple graph classes. We start with an explanation of our testing methodology.
Then, we outline our approaches for tuning the various parameters. Finally, we compare the
branching strategies to each other and discuss the results with respect to their effectiveness.

5.1. Experimental Setup

In our experiments we use a C++ implementation of the branch and reduce algorithm by Akiba
and Iwata [1] as a basis. For each branching strategy we extend the existing source code with
the respective implementation as explained in Section 4. The code is compiled using gcc 9.3.0
with full optimizations (-O3 flag) enabled. We run all our tests on a machine equipped with
four Intel Xeon E5-4640 8-core processors clocked at 2.4 GHz and 512 GiB of ECC DDR3
RAM. The installed operating system is Ubuntu version 20.04.1 LTS running the Linux Kernel
5.4.0-42-generic. Since all of our branching strategies as well as the actual branch and reduce
algorithms run single threaded, we made full use of the cores of our machine by executing
multiple tests simultaneously with GNU Parallel [41].

For testing the various branching strategies, we choose a similar benchmark set as Akiba
and Iwata [1] did for their original algorithm. This set consists of real-world sparse network,
complements of instances from DIMACS Implementation Challenge on the maximum clique
problem [21] and instances from the Odd Cycle Traversal (OCT) problem. We transform the
latter to independent set instances in the following way. Given an OCT instance G = (V| E),
we construct an independent set instance G' = (V' E’) with V' = {l,,r, | v € V} and
E' = {{l,,l.},{ru,ro} | {u,v} € E}YU{{l,,r.} | v € V}. Moreover, we use 40 of the public
instances from the PACE 2019 implementation challenge’s vertex cover track. Since our focus is
on comparing branching strategies, we only consider instances that require at least 50 branches
using the default strategy. Furthermore, we omit instances that did not finish within 24 hours
in the experiments of Akiba and Iwata. In total, there are five sparse networks, 15 complements
of DIMACS instances, 13 graphs transformed from OCT instances left. A list of all benchmark
instances along with their sources can be found in the Appendix (Table 11).

We run all tests with a time limit of 24 hours per sparse network and 30 minutes per instance
from any other graph class. In each test run, we track the time and total number of branches
needed to solve an instance as well as the number of decompositions and fallbacks to the default
strategy. Most of our branching strategies are not optimized in terms of runtime. Therefore, we
further consider the total number of branches in order to comparatively evaluate our strategies.
Since the absolute values for both the runtime and the total number of branching steps vary
greatly between the individual instances, we compare the respective measurements relative to
a baseline measurement. This way, results from different benchmark instances can be put in
relation to each other. In tuning experiments (Section 5.2) we use results obtained with the
default branching strategy as a baseline. When comparing the strategies in Section 5.3, results
are put in relation to the best strategy, respectively, on a per instance basis.

During initial testing we noticed only negligible deviations in the runtime of an instance when
multiple test runs were performed. In the case of the branching strategy using nested dissection,
we made similar observations for the number of branching steps. This follows from the fact

36

5.2 PARAMETER TUNING

that the METIS library uses non deterministic methods in its nested dissection algorithms.
Therefore, we repeat all tests three times per instance in order to obtain reliable measurements.
The final test results are obtained by taking the average of those measurements.

5.2. Parameter Tuning

Prior to evaluating the effectiveness of our branching strategies, it has to be ensured that tuning
parameters have been chosen in a meaningful way. For this purpose, we conduct a series of
experiments in which parameters are systematically varied in order to find the best possible
combination of values. In each experiment we test a different assignment of tuning parameters
with our benchmark instances. In order to avoid over-fitting of tuning parameters in regards to
our specific benchmark set, we ultimately use a subset of the benchmark instances comprising
representatives from all graph classes. A list of all instances used for parameter tuning can
be found in the Appendix (Table 12). Concrete values for the tuning parameters are selected
from a domain that we choose based on observations we have made during implementation and
initial testing, i. e., based on a start configuration that produces reasonably good results. To
find the best combination of values we calculate the geometric mean over the measurements
of all instances obtained with a certain configuration. We choose the geometric instead of the
arithmetic mean as no absolute differences are determined. Instead, we aim at comparing the
ratio of the runtime and the total number of branching steps relative to the default branching
strategy.

5.2.1. Tuning Branching on Edge Cuts

For optimization of the strategy based on edge cuts, three different parameters were selected
for tuning. The first parameter is the maximum cardinality of a vertex separator (obtained
from an edge cut) so that it is considered for branching. The second parameter is the required
balance of an edge cut, i.e., the minimum percentage of vertices that have to be contained in
each part of the cut. Finally, we tune the frequency of searching edge cuts on branching, i.e.,
the number of fallbacks to the default strategy between two searches if no suitable edge cut has
been found.

Since the total number of possible value combinations grows exponentially with the number
of parameters, we do not optimize all three tuning parameters simultaneously. Instead, we
start by optimizing only two of them with a fixed value for the third one. Once we find the
optimal combination for those two parameters, we tune the third one independently. Note
that in this case the first two parameters, i. e., maximum separator size and cut balance, both
determine whether the separator is considered for branching or not. Also, we noticed that the
third parameter, i.e, search frequency, may have a great impact on the runtime if rather few
suitable cuts are found. In this case, however, the impact on the total number of branches is
very small. Therefore, we tune the first two parameters separately from the third.

During implementation we tried different tradeoffs between separator size and cut balance.
More specifically, we tested branching on small unbalanced cuts versus branching on larger,
more balanced cuts. However, the latter was not successful, because we only encountered
rather unbalanced separators with separator sizes below ten, and parts that contained less than
ten percent of all vertices. Based on these observations, we chose the maximum separator size
from the set {5,6,7,8,9,10} and the minimum percentage of vertices that have to be contained

37

5 EXPERIMENTAL RESULTS

in each part of the cut from the set {0.01,0.025,0.05,0.075,0.1}. In all experiments, in which
those two parameters are tuned, we fix the third parameter to 10. After finding the optimal
combination of the first two parameters we test the remaining values for the third parameter
from the set {1, 5,10, 15,20}.

Results from tuning the first two parameters are plotted in Figures 13 to 15. The data
shows that the branching strategy using edge cuts is performing generally well on real-world
sparse networks. The experiments also confirmed our observation that cuts with a balance of at
least ten percent of the vertices in each part are almost never found. Surprisingly, considering
separators with a size larger than eight has a non-negligible impact on the runtime despite
only very few cuts of such separator sizes being encountered. On DIMACS, PACE and OCT
instances the branching strategy performs worse than default branching. This is due to the
fact that in most of the cases unbalanced cuts with parts containing less than 2.5 percent of
all vertices are found. On theses instances the size of the separator has almost no influence on
the runtime. An explanation for this can be found as follows. Based on the constraint that
both parts of the cut must contain at least 2.5 percent of the nodes, the fallback strategy will
be applied most of the time. Cuts with less than 2.5 percent of the vertices in one part, on the
contrary, often yield small separators. Hence, branching on such cuts is not beneficial. Overall,
best performance is obtained by choosing the value 7 for the maximum separator size and 0.05
for the balance of a cut.

1135 1.05
PACE instances - runtime PACE instances - number of branches

1.130
1.0506] 1.0506] 1.0506 | 1.0506 | 1.0506
1.04

1.03

[NOIRS 1.1348]1.1349]11.1348]1.1342]1.1352]1.1349

-
- R
- NN
g]

s 6 7 8 9 10

1.125

1.120

1.115

saouelsul ||e 10y

(suloseq/Aba3e3s) JoA0 uesw dL3PWoab
saoueisul ||e 10}

(auloseq/Aba3eis) JoA0 uesw dL3PWoab

=
o
N

1.110

1.105

=

.01

min. perc. of vtcs. in each part of the cut
min. perc. of vtcs. in each part of the cut

maximum separator size maximum separator size

1.100

le-5+1.003 le—5+1

DIMACS instances - runtime DIMACS instances - number of branches

0.01- 1.0036 ... 1.0036 1.0036 0_01
-EEE -
0.05- 1.0036 1.0036 1.0036 005......
@ -EE -
O ErEE |

‘ T A 9 10 s 6 7 8 9 1o

maximum separator size maximum separator size 0.0

o
N

=

N

o
hH

=

<)

o
o

w
o
saduejsul ||e Joy
(suleseq/Abajelis) JoA0 uesw du3PWoab

o

.8

saoue)sul ||e Joy
(suleseq/Abajel3s) JoA0 uesaw dl3RWoab

%
©

N

IS

(&
~

min. perc. of vtcs. in each part of the cut
min. perc. of vtcs. in each part of the cut

o
N

[S
o

Figure 13: Results from tuning the maximum separator size and the balance of an edge cut
considered by the branching strategy utilizing edge cuts on PACE and DIMACS
instances

38

5.2 PARAMETER TUNING

5 6 7 8 9 10 5 6 7 8

0.1730

sparse networks - runtime sparse networks - number of branches [0.1244
5 Q 5 Q
: [INo} 0:1725 0.1730]0.1730]0.1730 0.1725 g : 0.01-0.1240 0.1245]0.1245 0.1243 g
£ 2 £ 3
5 A & 01242 &
£ 0.025- 01720 3 £ 555] 0.1238 3
a 38 = S8
S 2> 5 01241 53
© =g g =g
¢ 0.05-0.1710 0.1722 0171555 2 (0s5- 0.1238 0.1239 e
= (LS = 0.1240 & ~
w Qu w g 23
E i3 £ i
% 0.075- 0.1726|0.1725 0171048 & ¢ 075-0.1239 0.12440.1244 01239 4§
Y R s
g 2 & 01238 @&
S 01- 0.1708 0.1713 0.1727]0.1725 01705 2 = 01-0.1240 0.1244|0.1244 S
E ‘ | e E ‘ ‘ B 01237 &

9 10
. . 0.1700 ' ,
maximum separator size maximum separator size 0.1236
1.200 1.014
OCT instances - runtime OCT instances - number of branches
1.195 1.012

1.1753

1.010

-
=
©o
o

£ 3 £ H
G : & 5 B
£ 1.1766 WL 1.1777 3 £ 0.025 -l 0129]1.0129]1.0129]1.0129]1.0129 3
o >0 a 1.008 o0
< 118558 ¢ 55
=2 8 =2
s 1.1717 1.1793 1.1759 1180 X IR 1.0144 | 1.0144 | 1.0144 | 1.0144 | 1.0144 | 1.0144 1.006 53
g RET)
s 5e S 100488
6 0.075- 1.1793 1.1792 1.1783 1.175 "’§ A YER 1.0144 | 1.0144 | 1.0144 | 1.0144 144]1.0144 "‘§
G s g 1.002 =

j3 Q
g 1170 8 8 8
£ 0.1-1.1746 1.1766 [EiLcEL] ’ SR 1.0144 | 1.0144]1.0144]1.0144]1.0144]1.0144 1.000 5
€ e € o

s 6 7 8 9 10 1.165 s 6 7 8 9 10 0.998
maximum separator size maximum separator size

Figure 14: Results from tuning the maximum separator size and the balance of an edge cut
considered by the branching strategy utilizing edge cuts on OCT instances and on
all instances

0.8676
all instances - runtime 0.9199 all instances - number of branches

0.8675
0.01- 0.9199 10.9198 0.9200 0.9198 W& 0.8676 | 0.86

0.9197 0.8674

0.025 -] 0.9195 0.9193 0.9194 0.025-]
0.9196 0.8673
' ; 0.8672

0.075- 0.9193 0.9194 0.075-
; 0.8671

0.9193

0.1- 0.9195 0.1-
0.867
..... 0.9192 8670

5 6 7 8 9 10

maximum separator size 0.9191 maximum separator size 0.8669

o
o
=
o
w
saouejsul [|e 1oy
(aul@seq/ABa3eu3s) JOA0 ueaw dPwWwoab
saouejsul [|e 1o}
(aul@seq/ABa3eu3s) JOA0 ueaw dPwWoab

min. perc. of vtcs. in each part of the cut
o
o
w

min. perc. of vtcs. in each part of the cut

Figure 15: Results from tuning the maximum separator size and the balance of an edge cut
considered by the branching strategy utilizing edge cuts on all instances

Results from tuning the third parameter, i.e. frequency cuts are being searched, are shown in
Table 1 and 2. However, tuning the third parameter does not give any new insight. Obviously,
on sparse networks, where the branching strategy performs very well, it is advantageous to
search for edge cuts in each branching step. On the other instances, however, best performance
is achieved by setting the highest possible value for the third parameter, as suitable cuts are

39

5 EXPERIMENTAL RESULTS

rarely found. Therefore searching for cuts with a high frequency produces unnecessary overhead.
Considering all instances used for tuning, searching for edge cuts every 10 branching steps (if
no suitable edge cuts are found) yields the best outcome in regards to runtime.

Frequency of searching edge cuts
Instances 1 5 10 15 20
PACE 1.1437 1.0933 1.0965 1.0983 1.0537
DIMACS 1.1542 1.0564 1.0036 1.0025 1.0021
sparse networks | 0.0867 0.1239 0.1698 0.1743 0.1742
ocCT 1.3774 1.1787 1.1642 1.1571 1.1285
All instances 1.2516 1.0271 0.9191 1.0984 1.0991

Table 1: Geometric mean over the runtime relative to the default strategy with different fre-
quencies of searching edge cuts

Frequency of searching edge cuts
Instances 1) 10 15 20
PACE 1.0023 1.0023 1.0023 1.0023 1.0023
DIMACS 1.0000 1.0000 1.0000 1.0000 1.0000
sparse networks | 0.0255 0.0319 0.1236 0.1278 0.1281
oCcT 1.0144 1.0144 1.0144 1.0144 1.0144
All instances 0.8255 0.8348 0.8669 0.8634 0.8620

Table 2: Geometric mean over the total number of branches relative to the default strategy
with different frequencies of searching edge cuts

5.2.2. Tuning Branching by Nested Dissection

Next, we optimize the branching strategy based on nested dissection. We have already shown
that the balance of a separator can be important for the effectiveness of a decomposing strategy.
However, tuning the various settings of the actual nested dissection algorithm was out of scope
for this thesis. Instead, we selected the number of recursions performed by the nested dissection
algorithm and the maximum cardinality of the vertex separators at each level of recursion as
parameters for tuning.

The number of recursions does not influence the sizes of the separators found at each level of
recursion by the nested dissection algorithm. For this reason we decide to tune both parameters
separately in order to reduce the number of experiments needed.

Since the nested dissection algorithm from the METIS library uses balanced bipartitions,
the calculation of a complete nested dissection ordering using METIS requires O(logn) levels
of recursion where n denotes the remaining number of vertices in the current graph when
calculating the ordering. However, as explained in Section 4, it is advantageous to perform a
restricted number of recursions. Therefore, we choose the number of levels of recursion from the
set {2,3,4,5logn—6,logn—>5,logn—4,logn—3}. For the parameter relating to the maximum
separator sizes we also tried constant values as well as thresholds depending on the number of
vertices in the initial kernel of the instance, i.e., the graph right after the first kernelization
step. Overall, we tried the following values {20, 30, 40, 50, 0.05n,0.1n, 0.2n, logn}.

40

5.2 PARAMETER TUNING

The results of our experiments involving tuning of the number of recursions, depicted in
Table 3 an 4, show that the branching strategy performs best with logn — 5 levels of recursion.
On our tuning instances this corresponds to a range of two to four levels of recursion. However,
choosing a constant number from this range performs definitely worse. A possible explanation
for this is that initial kernelization often produces few relatively small connected components
which are solved separately. Consequently, a branching order is calculated for each of them.
Depending on the size of the components, different numbers of recursion are required to obtain
optimal performance. Tuning the maximum separator size yields best results (Table 5 and 6)
when choosing a non constant threshold of ten percent of the remaining vertices.

number of levels of recursion
Instances 2 3 4 5
PACE 16.1889 16.4489 12.6748 21.0732
DIMACS 1.2103 1.2418 1.1844 1.1287
sparse networks | 1.5532 1.6651 1.4912 1.7683
OCT 1.1662 1.1229 1.2173 1.2870
All 2.5410 2.5717 2.3286 2.8669

number of levels of recursion
Instances logn —6 logn—5 logn—4 logn—3
PACE 12.5689 10.4004 15.6870 13.0480
DIMACS 1.0235 1.2107 1.1968 1.1780
sparse networks | 1.5603 1.3335 1.4517 1.6611
ocCT 1.1407 1.1254 1.3410 1.2222
All 2.2073 2.0773 2.5841 2.3791

Table 3: Geometric mean over the runtime relative to the default strategy with different num-

bers of levels of recursion

number of levels of recursion
Instances 2 3 4 5
PACE 7.9015 7.9533 6.0542 10.4971
DIMACS 1.0416 1.0611 0.9682 0.9490
sparse networks | 1.4704 1.6043 1.4943 1.6226
ocCT 1.2415 1.1823 1.3472 1.3710
All 1.9675 1.9983 1.8537 2.1698

number of levels of recursion
Instances logn —6 logn—5 logn—4 logn—3
PACE 6.0542 4.8960 7.6291 6.2406
DIMACS 0.8726 1.0447 1.0301 0.9917
sparse networks | 1.5305 1.3441 1.3463 1.5603
ocCT 1.1689 1.1816 1.4252 1.2448
All 1.7576 1.6880 1.9705 1.8621

Table 4: Geometric mean over the total number of branches relative to the default strategy
with different numbers of levels of recursion

41

5 EXPERIMENTAL RESULTS

maximum separator size at each recursion

Instances 20 30 40 50
PACE 16.0360 11.3461 10.6191 13.3114
DIMACS 1.0136 1.2107 1.3165 1.3230
sparse networks | 1.6152 1.5372 1.5118 1.6392
ocT 1.1177 1.1194 1.1167 1.1488
All 2.3281 2.2053 2.2039 2.2811
Instances logn 0.005n 0.1n 0.2n
PACE 13.9448 23.3915 10.4004 15.7568
DIMACS 1.1175 1.1507 1.2107 1.1506
sparse networks | 1.4890 1.3571 1.3335 1.3337
ocT 1.1262 1.1346 1.1254 1.1197
All 2.2610 2.5373 2.0773 2.2811

Table 5: Geometric mean over the runtime relative to the default strategy with different max-

imum separator size

maximum separator size at each recursion

Instances 20 30 40 50
PACE 7.8498 5.3488 4.7668 6.3484
DIMACS 0.8196 1.0447 1.1176 1.1280
sparse networks | 1.6077 1.5308 1.5115 1.6388
ocCT 1.1816 1.1816 1.1816 1.1816
All 1.8701 1.7838 1.7563 1.9322
Instances logn 0.005m 0.1n 0.2n
PACE 6.6870 11.8011 4.8960 7.7225
DIMACS 0.8651 0.9850 1.0447 0.8950
sparse networks | 1.4873 1.3499 1.3441 1.3341
OoCT 1.1816 1.1816 1.1816 1.1816
All 1.7863 2.0761 1.6880 1.8174

Table 6: Geometric mean over the total number of branches relative to the default strategy
with different maximum separator size

5.2.3. Tuning Branching Based on Reduction Rules

Finally, we optimize the branching strategies utilizing reduction rules (i.e., first four branching
strategies in Section 4.2). Those strategies only have one tuning parameter, which is the
minimum degree required in order for a vertex to be considered for branching by the respective
branching strategy. In general, the degree distribution in a graph depends on the graph class
and the size of the graph. Furthermore, applying dominance, unconfined or twin reduction,
respectively, only reduces a constant number of vertices. Thus, we do not use a fixed threshold.
Instead, our strategies consider vertices whose degrees differ from the maximum degree of the
current graph by a certain constant value at the time of branching. We choose the concrete
values from the set {1,2,3,4}. The results of tuning experiments are shown in Tables 7 to
10. They suggest that the branching strategies based on dominance and unconfined reduction
perform best when only vertices with degree greater or equal one less than the current maximum
degree are considered. This was expected, as both unconfined and dominance reduction rule
each eliminate one vertex of the graph. The branching strategy based on the twin reduction
achieves the best results when choosing 2 for the value of the tuning parameter (see Table 9

42

5.2 PARAMETER TUNING

and 10). Applying twin reduction rule reduces either four or five vertices from the graph. Using
the branching strategy based on funnel reduction, best results are obtained with 2 as value for
the tuning parameter.

almost dominance almost unconfined
Instances 0 1 2 3 0 1 2 3
PACE 1.0118 0.9889 1.0010 1.0059 | 1.0358 1.0216 1.0306 1.0449
DIMACS 1.0189 1.0225 1.0216 1.0096 | 0.9768 0.9767 0.9744 0.9405
sparse Networks | 0.9560 0.9399 0.9590 1.0667 | 0.9739 0.9589 0.9754 1.1130
OCT 1.0721 1.0342 1.0570 1.0382 | 1.0747 1.0680 1.0612 1.0486
All 1.0230 1.0057 1.0165 1.0197 | 1.0218 1.0135 1.0161 1.0207

Table 7: Geometric mean over the runtime relative to the default strategy with different thresh-
olds for the minimum degree so that a vertex is considered for branching

almost dominance almost unconfined
Instances 0 1 2 3 0 1 2 3
PACE 1.0003 0.9897 0.9875 0.9931 | 1.0016 0.9962 1.0027 1.0225
DIMACS 0.9949 1.0009 1.0010 0.9909 | 0.9916 0.9822 0.9791 0.9659
sparse Networks | 1.0682 1.0494 1.1361 1.3363 | 1.0686 1.0472 1.1518 1.4241
OCT 1.0106 1.0084 1.0075 1.0060 | 1.0038 0.9848 0.9847 0.9547
All 1.0077 1.0032 1.0099 1.0245 | 1.0055 0.9941 1.0046 1.0207

Table 8: Geometric mean over the number of branches relative to the default strategy with
different thresholds for the minimum degree so that a vertex is considered for branching

almost twins

almost funnels

Instances 0 1 2 3 0 1 2 3

PACE 0.9767 0.9841 0.9617 0.9856 | 1.0152 0.9532 0.9148 0.9634
DIMACS 0.9424 09710 0.9346 0.9735 | 0.9870 1.0236 0.9836 1.0121
sparse Networks | 0.9394 0.9382 0.9387 0.9429 | 0.9986 0.9724 0.9810 1.1417
OoCT 0.9903 1.0031 0.9969 0.9983 | 1.1523 1.1111 1.1041 1.0731
All 0.9664 0.9805 0.9602 0.9811 | 1.0377 1.0129 0.9857 1.0204

Table 9: Geometric mean over the runtime relative to the default strategy with different thresh-
olds for the minimum degree so that a vertex is considered for branching

almost twins

almost funnels

Instances 0 1 2 3 0 1 2 3

PACE 1.0025 1.0025 1.0023 1.0022 | 0.9649 0.8973 0.8924 0.9247
DIMACS 0.9957 0.9957 0.9957 0.9957 | 0.9984 0.9963 0.9919 0.9815
sparse Networks | 1.0791 1.0745 1.0659 1.0659 | 1.0697 1.0143 1.0468 1.3213
oCT 1.0094 1.0059 1.0050 1.0057 | 1.0016 0.9320 0.9101 0.9274
All 1.0094 1.0081 1.0069 1.0072 | 0.9934 0.9447 0.9388 0.9743

Table 10: Geometric mean over the number of branches relative to the default strategy with
different thresholds for the minimum degree so that a vertex is considered for branch-

ing

43

5 EXPERIMENTAL RESULTS

5.3. Evaluation

Having tuned the branching strategies, we can now evaluate their effectiveness. To compare
different strategies we utilize performance plots introduced in [37]. These plots depict the
performance of a strategy in relation to the best strategy on a per instance basis. The y-axis
shows 1 — (best strategy/strategy). For each branching strategy, these values are sorted in
decreasing order. Smaller values indicate performance is closer to the best strategy, whereas
values close to one show that the strategy performed considerably worse. A value of zero
signifies the strategy performed best on an instance. Timeouts are placed above one. We use
a square root scale in order to increase the visible details in the area close to zero.

5.3.1. Evaluation of Decomposing Branching Strategies

We start by comparing the strategies following our first approach which is decomposing the
graph by branching. Results of testing these strategies are plotted in Figures 16 to 20. Results
show that for most of the PACE and DIMACS instances the branching strategy utilizing artic-
ulation points turns out to be slower than the default branching strategy. The same is true for
the graphs obtained from the OCT instances. The reason for this is that almost no articulation
points are found on these graphs. Consequently, default branching is applied anyway, resulting
in unnecessary overhead by searching for articulation points in the first place. Nevertheless,
there are two outliers among the sparse networks, where branching on articulation points sig-
nificantly outperforms the default branching strategy. The most notable of these exceptions
is the web-Stanford instance (sparse network), which is intractable on our machine within 24
hours using the default branching strategy. The same instance, however, is solved in less than
20 seconds utilizing branching on articulation points, although only 35 articulation points are
discovered throughout the whole run. In fact, 34 of the 35 articulation points are found at
recursion depths lower than 12. This supports the hypothesis that decompositions performed
at early stages of the algorithm are highly effective. Furthermore, articulation points can be
found very efficiently in linear time using a DF'S scheme. Thus, the additional overhead needed
for searching articulation points, even if none exists, is very small. In our experiments this
branching strategy is about five percent slower on average than the default branching strategy,
if almost no articulation points are found. Obviously, the total number of branching steps
needed to solve the respective instances is almost equal to default branching.

Similar to branching on articulation points, the branching strategy using edge cuts performs
worse than the default branching strategy on PACE and DIMACS instances as well as on the
graphs obtained from OCT instances. Our experiments show that cuts suitable for branching
are rarely found. Thus, the fallback strategy is getting applied almost always, which results in a
nearly equal number of branches as with the default strategy, i.e., within a range of plus minus
one percent relative to the default strategy. However, the overhead of calculating the edge
cut is considerably higher than detecting articulation points. Using the configuration obtained
by parameter tuning, solving PACE and DIMACS instances takes about seven percent longer
on average than with the default branching strategy. OCT instances require about thirteen
percent more runtime on average. Nevertheless, just as branching on articulation points, this
strategy performs considerably well on two of the sparse networks. For instance, solving the
web-Stanford instance requires about five minutes using this branching strategy. That is
because a lot of small and reasonable well balanced cuts are found on those instances which
are therefore easily decomposable. However, branching on articulation points overall performs
better, since less overhead is produced.

44

5.3 EVALUATION

Using the branching strategy based on nested dissection yields mixed results in our exper-
iments. On the PACE instances, this strategy performs a lot worse than default branching
and the other two strategies examined so far had done. The runtime solving PACE instances
is about ten times higher on average than with using the default strategy. However, there is
one outlier for which this branching strategy gives the best result compared to all branching
strategies. Furthermore, nested dissection branching performs slightly better than default on
DIMACS instances. Eleven of the fifteen benchmark instances can be solved quicker using the
branching strategy based on nested dissection. Contrary, there are also two DIMACS instances
where this strategy is up to five times slower than default branching. Overall, the performance
on DIMACS instances is surprising as both, branching on articulation points and branching on
edge cuts, each perform more or less equal on PACE and DIMACS instances. Unfortunately,
we do not have an explanation for this. On sparse networks, the results are mixed. For two
of the instances nested dissection branching yields better runtimes than the default branching
strategies. On one of them it even performs best out of all branching strategies. However, on
the remaining three instances this branching strategy performs very badly.

Summarizing, the results so far show that our approach to decompose instances by branching
is often effective on sparse networks. The reason for this is that those instances are easily
decomposable. Also, sparse networks have a low average degree. Thus, branching on vertices of
maximum degree becomes ineffective as soon as all vertices of high degree have been removed.
Unfortunately, this approach does not work on denser graphs. The experiments also indicate
that decomposing the graph at an early stage of the algorithm is much more powerful than in
later stages.

45

5 EXPERIMENTAL RESULTS

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

PACE instances - runtime

.OOTimeouts
e
o000 0000000000,
*t%0400000,
L 2K PN
* e
°
- ® maximum degree (default)
m articulation points
A st-cuts
& nested dissection
A ¢ o
A
’AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
l..
.I.llllllllll.....
® o200 "ammg,,
0 5 10 15 20 25 30 35 40
Instances

(a) runtime

PACE instances - number of branches

LI Timeouts
¢ *
*
””000000000000.
&
® 0000 *
L *
L 4
o>
® maximum degree (default)
= articulation points
A st-cuts
AW & nested dissection
*
A EH m ¢
2
:::::lllllllllllllllllll’:l
0 5 10 15 20 25 30 35 40
Instances

(b) number of branches

Figure 16: Performance plots of decomposing branching strategies on PACE instances

46

5.3 EVALUATION

DIMACS instances - runtime

Timeouts
1.00
0.80 *
*
0.60
A
E0.40 ® .
= A R ® maximum degree (default)
E\ articulation points
f_,\‘: ® ® A st-cuts
£ 0.20 & nested dissection
i ¢
¢ ¢
0.10 'y
2 ° o '
A A
0.05 . 2 . R R .
*
0.01 ® °
2 4 6 8 10 12 14
Instances
(a) runtime
DIMACS instances - number of branches
Timeouts
1.00
0.80 'S
*
0.60
E =
5 0.40 ™
%]
<
)
a 0.20
— u
0.10 u ’
*] [] °
0.05 - -
® maximum degree (default)
articulation points A M
0.01{ 4 st-cuts u []
& nested dissection
2 4 6 8 10 12 14
Instances

(b) number of branches

Figure 17: Performance plots of decomposing branching strategies on DIMACS instances

47

5 EXPERIMENTAL RESULTS

48

1-(Best/Algorithm)

1-(Best/Algorithm)

sparse networks - runtime

° Timeouts
1.00
*
0.80
0.60 *
*
0.40
°
A
0.20 A
0.10 A
® A
0.05 ® maximum degree (default) *
articulation points
0.01 A st-cuts
nested dissection
0.00 -
1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0
Instances
(a) runtime
sparse networks - number of branches
° Timeouts
1.00
0.80 *
*
0.60
0.40
A
0.20
A
0.10 ° a
0.05 ® maximum degree (default)
articulation points
0.01 A st-cuts
& nested dissection Y A
0.00 - - -
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Instances

(b) number of branches

Figure 18: Performance plots of decomposing branching strategies on sparse networks

5.3 EVALUATION

OCT instances - runtime

Timeouts
1.00
0.80
0.60 *
Eoua0 * :
= * ® maximum degree (default)
S * . articulation points
< *> A stcuts
g 0.20 N & nested dissection
— A A N R * .
0.10 A A A A A A
A A
0.05 .
*
o
0.01 Y
2 4 6 8 10 12
Instances
(a) runtime
OCT instances - number of branches
Timeouts
1.00
0.80
0.60
&
’g ’
< 0.40 * * -
ES * * ® maximum degree (default)
53 articulation points
<(D PS A st-cuts
g 0.20 ¢ nested dissection
A
*
0.10
0.05
*
A L
0.01
[) A ¢
0.00 - - - - - - - - - - -~ -~
2 4 6 8 10 12

Instances

(b) number of branches

Figure 19: Performance plots of decomposing branching strategies on graphs obtained from
OCT instances

49

5 EXPERIMENTAL RESULTS

50

1-(Best/Algorithm)

1-(Best/Algorithm)

all instances - runtime

tte Timeouts
1.00
A 00‘
0.80 ”00000000000000.,,
000000y,
0.60 o0
. . "0"
]
0.40 .: L 4 e maximum degree (default)
* m articulation points
ud L 4
ole Q‘ A st-cuts
A # nested dissection
0.20 A,
A 0
° . Aaa,, . oo,
AAaa
0.10 ...'... AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA,
-l FY ‘0 VYN
0.05 L Ji " Adia,
llllll..... .0
L} |
0.01 o, ...llllllllllll........ .
00 Ry,
° oy mm
0.00 0 10 20 30 40 50 60 70
Instances
(a) runtime
all instances - number of branches
tte Timeouts
1.00 —9
00
0.80 *0
““’000000000000.
’0000000., .
0.60 ° 0’
*
[] o0
0.40 E%e L 'S e maximum degree (default)
’Q = articulation points
ue t-cut
A st-cuts
o { * @ nested dissection
0.20
.ll.
*
®
o 30y, .
0.05 = o‘
et IT "’
0.01 o0 _AA T !
Co AN NN NN NEEEEENEE *
0.00 bl ¥ 1 1 M
' 0 10 20 30 40 50 60 70
Instances

(b) number of branches

Figure 20: Performance plots of decomposing branching strategies on all instances

5.3 EVALUATION

5.3.2. Evaluation of Branching Strategies Based on Reduction Rules

Next, we compare the branching strategies following our second approach which is to branch
on vertices so that reduction rules become applicable afterwards. The experimental results are
depicted in Figures 21 to 25. Unfortunately, due to the restricted scope of this thesis, we have
only implement a preliminary version of our branching strategy targeting reduction chains.
This implementation performs considerably worse than default branching on all instances. For
the sake of clarity, we omitted these results in our plots.

Using the branching strategy based on dominance reduction almost always reduces the total
number of branching steps needed for solving PACE and DIMACS instances to a minor extent,
i.e., less than two percent on average. Unfortunately, dominance reduction is not applied in the
branch and reduce algorithm, since it is fully contained in the unconfined reduction. Therefore,
finding suitable vertices that enable the application of dominance reduction upon removal comes
with additional time overhead of up to five percent of the total runtime.

The branching strategy based on unconfined reduction reduces the total number of branching
on PACE instances by a similar amount than the strategy based on dominance reduction.
However, vertices considered for branching can be found during kernelization while searching
unconfined vertices. Nevertheless, this still produces a non negligible time overhead. On PACE
instances this strategy performs roughly equal to the branching strategy based on dominance
reduction. It is about three percent slower on average than the default branching strategy.
On seven of the DIMACS instances, however, this strategy performs up to ten percent better
than default branching and is at most five percent slower on the other DIMACS instances.
Considering all DIMACS instances this branching strategy is about two percent faster than
default branching.

In total, the branching strategies utilizing dominance and unconfined reduction perform
worse than the default branching strategy on PACE instances. On DIMACS instances the
latter strategy has a small advantage over default branching.

On sparse networks both strategies perform better than default branching on two of the
instances. A reason for this may be that the average vertex degree on those graphs is much
lower than on denser graphs. Moreover, vertices with high degree are quickly removed by
branching at an early stage of the algorithm. Thus, verifying whether a vertex is almost
dominated or almost unconfined is much faster in relation to overall kernelization time since
fewer adjacencies have to be checked.

The branching strategy based on the twin reduction rule overall performs slightly better than
the default strategy on PACE and DIMACS instances. However, the speedup is only about
two percent on average considering all PACE and DIMACS instances. This is due to the fact
that on those graphs almost twins are rarely found. Nevertheless, finding vertices that enable
twin reduction produces very little overhead. Also, applying twin reduction is very efficient,
since the number of vertices in the graph is reduced by four to five. For those reasons, this
branching strategy has an advantage over default branching on four of the five sparse networks
tested. Using this branching strategy reduces the running time by up to twelve percent. Since
the average degree on those graphs is very low, vertices considered for branching are found
more often. On OCT instances the performance of this branching strategy is roughly equal to
default branching.

51

5 EXPERIMENTAL RESULTS

Our last branching strategy targeting the funnel reduction overall requires the least number
of branching steps, i.e., about ten percent less on average, to solve PACE instances. There
are only two PACE instances where the strategy based on unconfined reduction requires less
branching steps. Except on these two instances this strategy also reduces the required runtime
compared to default branching by about five percent on average. Also, on seven of the DIMACS
instances, this branching strategy performs best in terms of total number of branching steps
needed. However, the reduction in branching steps does not compensate for the time overhead
caused by finding almost funnels on all of theses instances. Overall, this strategy performs
worse than the default branching strategy on DIMACS instances with runtimes which are
two percent higher on average. On sparse networks this branching strategy also seems to be
competitive to default branching. On two instances it requires the least number of branching
steps. Considering the runtime it is, however, worse than default branching on all but two
instance. In total, it is about three percent slower than default branching. Furthermore, it is
outperformed by the strategy based on twin reduction on every instance. A possible explanation
for this is that funnel reduction removes the common neighbors of both parts of the funnel.
On denser graphs the common neighborhood of a funnel is potentially larger. Thus, funnel
reduction is more effective on those graphs than on sparse networks.

The experiments using branching strategies following our second approach demonstrate that
branching in order to enable reduction rules can effectively reduce the total number of branches
needed to solve an instance. Contrary to our first approach, this also works on denser graphs.
These branching strategies also yield more constant results with fewer outliers. Unfortunately,
the reduction in branching steps does not always compensate for the additional overhead caused
by finding suitable branching vertices. Overall, targeting funnel and twin reduction worked very
well where as targeting dominance and unconfined reductions do not improve the algorithms
runtime in most cases. A reason for this might be that, as shown by Stallmann et al. [39],
dominance and unconfined reduction are also applied often on dense graph using the default
branching strategy.

52

5.3 EVALUATION

PACE instances - runtime

‘ * Timeouts
1.00
0.80
0.60 v
- | |
E ® maximum degree (default)
‘£0.40 v almost dominance
<—c: m almost twin
g A almost funnel
@ .20 4 almost unconfined
-]
8 o
0.10 | § i 3
AR R RN R I I I
M ® 00 0 o * S
0.05 N M S0
A I mmmmmEf® o ”“0‘
g ' ' ' Y $v
i, tage
0.01 LN "
g ™Y
000 A A A A A A 4 A A A A 4 A A A A e A A A A A A A A A A - - - i
0 5 10 15 20 25 30 35 40
Instances
(a) runtime
PACE instances - number of branches
Timeouts
1.00 =
0.80
v
0.60 -
§0.40 [] ® maximum degree (default)
s v almost dominance
g m almost twin
g A almost funnel
03,020 L - 4 almost unconfined
- (RN N |
2
0.10 ””””‘i!tvvttttuli!l!
$1:
0.05 $! fg.
o
A ¢ H
0.01 * e
0.00 A A e A A A A e A A A A e A A A A e A A A A e A A A A e A A A A e A A A A
0 5 10 15 20 25 30 35 40

Instances

(b) number of branches

Figure 21: Performance plots of branching strategies targeting reductions on PACE instances

53

5 EXPERIMENTAL RESULTS

DIMACS instances - runtime

Timeouts
1.00
0.80
0.60
€ .
£ 0.40 ® maximum degree (default)
5 almost dominance
g m almost twin
7 A almost funnel
[.
] 0.20 N ¢ almost unconfined
- ¢
¢ .
0.10
é ® °
A
0.05 1 4 2 A A A A A s
] - * ° ° A A
] - . .
0.01 P'S .
L] - L § * * PS *
u *
2 4 6 8 10 12 14
Instances
(a) runtime
DIMACS instances - number of branches
Timeouts
1.00
0.80
0.60
B :
£ 0.40 ® maximum degree (default)
s almost dominance
<—? m almost twin
<
@ A almost funnel
[.
] 0.20 4 almost unconfined
—
t
0.10 °
]] a
0.05 < | | []
[a
0.01 ¢ ¢ 3 X ’ v v |) .
* * e * \ [|
0.00 A V' V' V' A V' -
2 4 6 8 10 12 14

Instances

(b) number of branches

Figure 22: Performance plots of branching strategies targeting reductions on DIMACS instances

54

5.3 EVALUATION

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

sparse networks - runtime

‘ Timeouts
*
°
® maximum degree (default) A A
almost dominance - *
m almost twin a
A almost funnel M *
% almost unconfined
1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0
Instances
(a) runtime
sparse networks - number of branches
‘ Timeouts
°]
]
. L 4
® maximum degree (default)
almost dominance ° ¢
m almost twin
A almost funnel
4 almost unconfined A
- 8
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Instances

(b) number of branches

Figure 23: Performance plots of branching strategies targeting reductions on sparse networks

95

5 EXPERIMENTAL RESULTS

OCT instances - runtime

Timeouts
1.00
0.80
0.60
E 0.40 i
<0 ® maximum degree (default)
5 A almost dominance
[.
< . m almost twin
2 A almost funnel
[.
] 0.20 A A R R ¢ almost unconfined
— * A a A
0.10 . .
L & P A A
A
0.05 ¢ *
* *
[] [] m ¢
0.01
o o . H] n A
° °
]]
0.00 - - - - - - - -
2 4 6 8 10 12
Instances
(a) runtime
OCT instances - number of branches
Tim t:
1.00 eouts
0.80
0.60
E 0.40 | | i
5 ° ® maximum degree (default)
s almost dominance
o .
< m almost twin
Z A almost funnel
4 0.20 *)
S} & almost unconfined
- A » . .
0.10 A M *
[]
0.05 A H s ¢ 7S
o] ™1 ']
A A A []
0.01 []
]
0.00 A e A V' A - -
2 4 6 8 10 12
Instances

(b) number of branches

Figure 24: Performance plots of branching strategies targeting reductions on graphs obtained
from OCT instances

56

5.3 EVALUATION

all instances - runtime

‘.‘ Timeouts

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

1.00

0.80

0.60

0.40

1-(Best/Algorithm)

0.10

0.05

0.01

0.00

oV
]
® maximum degree (default)
a v almost dominance
m almost twin
* A almost funnel
¢ almost unconfined
HyhA,,
° !*' AA,,
u .“‘; A
ey Oo““** “;;;;;
EEmmg i- ’”’ggg“““““““‘xvVvvy
'II---...... be, .o, 10222222 350 3400AAAAR TR
iEm .-ll.. 00qe *¢
| T 1] L4 L 28
‘A:.'l 2 0’0.. v
S T T TTYT IS *o0
o > % 4OA.A.A.A“5.0“A------G.O---------;O
Instances
(a) runtime
all instances - number of branches
. Timeouts
oV
|]
® maximum degree (default)
il v almost dominance
* ®m almost twin
A almost funnel
A’i: & almost unconfined
A i,,
A ‘.‘.‘.
) ttunuuwwwuuuuu”.
A
R $3880g,,
...I
* LT]
EYYW 00e e,
Aa, 00, "' .
3 o ZAOAAAAAAAAABAOAAAAAAAAA4A0AAAAAAAAAsAOAAAAAAAAAGO -
Instances

(b) number of branches

Figure 25: Performance plots of branching strategies targeting reductions on all instances

57

6 CONCLUSION AND FUTURE WORK

6. Conclusion and Future Work

6.1. Conclusion

In this thesis, we examined multiple branching strategies for a branch and reduce maximum in-
dependent set algorithm. Essentially, we evaluated two different approaches. The first approach
is to branch on vertices that decompose the graph. Following this approach we presented three
different branching strategies. All of them proved to be effective on sparse networks, that can
easily be decomposed by branching. However, this approach does not work very well on denser
graphs with low skewness, i.e., graphs with a more symmetric degree distribution. The reason
for this is that on those instances small and at the same time reasonably balanced separators
are rarely found. Furthermore, those graphs contain many vertices of high degree. Hence, the
greedy strategy of branching on vertices of maximum degree (i.e., the default strategy) is over-
all more competitive than on sparse graphs. In summary, we ascertained that decomposing a
graph by branching can drastically reduce the total number of branching steps needed to solve
a suitable instance, and therefore boost the runtime of the algorithm greatly.

Our second approach concerns branching on vertices so that reduction rules become ap-
plicable afterwards. For sparse networks, branching on vertices that prevent twin reductions
performs better than the default strategy in all cases. The reason for this is that the average
degree in those graphs is low, and therefore almost twins are found quite often. Stallmann
et al. [39] showed that the dominance and unconfined reduction rules are highly effective on
dense graphs with a high degree variation. Therefore, the reduction step prior to branching is
key to minimizing the complexity of those instances. In fact, our experiments show that using
branching strategies, which enable the application of the dominance and unconfined reduction
rules, in many cases decreases the total number of branching steps on graphs displaying those
properties (e.g. DIMACS an PACE instances). Unfortunately, in our implementations the
reduction in branching steps is very small and therefore does not compensate for the addi-
tional time overhead of finding suitable branching vertices. Here, the situation is different with
the branching strategy utilizing funnel reduction, which has proven to be the best strategy
for almost all PACE instances. In conclusion, we believe that targeting reduction rule is very
promising for reducing the number of branching steps on highly connected dense graphs.

6.2. Future Work

In this subsection we discuss possible options to further develop and optimize our branching
strategies described in this thesis. Moreover, we outline new ideas for alternate approaches
which may pave the way for future progress in this field.

As already mentioned in Section 5, the aim of this thesis was not to optimize certain strategies
down to the last detail. Instead, we examined a range of different strategies following multiple
approaches to comparatively evaluate the basic potential of those solutions. For this purpose
we also considered the total number of branching steps. Hence, for most of our implementations
there is a lot of leeway to optimize runtime. For instance, we did not implement our own variant
of a preflow push algorithm, but instead used an implementation from the KaHIP library [36].
Consequently, the current graph must be converted to the format used by the KaHIP library at
each branching step creating additional overhead. Another possible optimization regarding this
branching strategy is to find better choices for the source and sink vertices (s and t) utilized in
calculating the edge cut.

58

6.2 FUTURE WORK

Utilizing nested dissection for branching has proven to be competitive to the default strategy,
at least on DIMACS instances. Therefore, we see potential for further optimization involving
this strategy. Like branching using edge cuts, we must convert the graph into another format
in order to use the nested dissection algorithm from the METIS library. This, however, causes
a non-negligible runtime overhead. Furthermore, the METIS library provides many settings
that can be used to tweak the nested dissection algorithm and, thus, the branching strategy.
Tuning our edge cut based strategy, we already showed that the balance of a separator has a big
influence on the effectiveness of a strategy. Thus, it might be interesting to examine whether
there is a tradeoff between the balance of the bipartitions and the size of the separators used
in the nested dissection algorithm. Also, a partitioning algorithm that produces higher quality
bipartitions at the cost of computation time could improve the strategy further.

Our experiments show that branching strategies which target reduction rules are generally
very effective even though our respective implementations are rather simple. For instance,
when searching vertices that enable reduction rules upon removal, we assume that the respec-
tive vertex is eliminated by branching. However, we do not take into consideration that the
neighborhood of a vertex is also removed from the graph when the vertex is included into the
current solution by branching. Therefore, we believe that there is a lot of potential for further
development in following this approach.

Furthermore, we believe that the branching concept aiming at the application of reduction
rules can also be adopted for the packing branching rule. During kernelization one can find
vertices whose removal forces the reduction of other vertices to satisfy the constraints resulting
from the packing rule. It might be worth branching on such vertices, if their degree is large
enough.

Unfortunately, our test results show that branching on articulation points is ineffective most
of the time. However, there are two sparse network instances for which this strategy produces
results being orders of magnitude better than default branching. Unfortunately, we did not find
a satisfying explanation for these outliers. Analyzing different graph parameters on the initial
kernel of those instances showed that one of the outliers seem to have a significantly higher
average betweenness centrality than other sparse network instances. However, when looking
at all instances together, we could not find any correlation between the effectiveness of this
branching strategy and betweenness centrality. Nevertheless, we believe that exploring relations
between the effectiveness of branching strategies and graph characteristics can help optimizing
existing strategies or even finding new ones. Stallmann et al. [39] previously proposed a similar
approach involving reduction rules. They showed that there is a correlation between certain
graph parameters and the effectiveness of the reduction rules. Furthermore, they presented an
improved variant of the branch and reduce algorithm by Akiba and Iwata [1], where they only
apply a subset of reduction rules based on simple graph parameters of the instance. This way,
they reduced kernelization time and significantly speeded up the algorithm.

During the testing of our branching strategies we discovered evidence that branches at lower
depth of recursion have a much greater influence on the runtime of the algorithm than such at
a higher depth. For this reason, it might be worth investing much execution time into finding
branching vertices at the start of recursion, compensating for the time spent by using a simple
branching strategy at higher depth of recursion.

29

A BENCHMARK INSTANCES

A. Benchmark Instances

Table 11 lists all of our benchmark instances along with the source we obtained them from.

Name type source
Inst. 36 to 75 PACE (11, 12]
brock200_1 DIMACS [21]
brock200_2 DIMACS [21]
brock200_3 DIMACS [21]
brock200_4 DIMACS [21]
gen200_p0.9_44 DIMACS [21]
gen200_p0.9_55 DIMACS [21]
hamming6-4 DIMACS [21]
hamming8-4 DIMACS [21]
johnson8-2-4 DIMACS [21]
johnson8-4-4 DIMACS [21]
johnson16-2-4 DIMACS [21]
p_hat300-1 DIMACS [21]
p_hat300-2 DIMACS [21]
p_hat500-1 DIMACS [21]
p_hat500-2 DIMACS [21]
web-Stanford sparse network [27]
web-BerkStan sparse network [27]
web-NotreDame | sparse network 2]
as-Skitter sparse network [26]
libimseti sparse network [25]
afro-17 OCT [19]
afro-19 OCT [19]
afro-28 OoCT [19]
afro-29 OCT [19]
afro-32 OCT [19]
afro-38 OoCT [19]
afro-39 OoCT [19]
afro-40 OoCT [19]
afro-41 OCT [19]
afro-42 OCT [19]
afro-45 OoCT [19]
afro-46 OCT [19]
afro-54 OCT [19]

Table 11: Benchmark instances used in this thesis

60

A BENCHMARK INSTANCES

Table 12 lists all instances used for parameter tuning.

Name type source
Inst. 41 to 45 PACE (11, 12]
Inst. 51 to 55 PACE (11, 12]
brock200_2 DIMACS [21]
brock200_3 DIMACS [21]
gen200_p0.9_44 DIMACS [21]
hamming6-4 DIMACS [21]
johnson8-2-4 DIMACS [21]
johnson16-2-4 DIMACS [21]
p_hat300-1 DIMACS [21]
p_hat500-2 DIMACS [21]
web-Stanford sparse network [27]
web-BerkStan sparse network [27]
as-Skitter sparse network [26]
afro-17 OCT [19]
afro-19 OCT [19]
afro-32 OoCT [19]
afro-38 OoCT [19]
afro-42 OCT [19]

Table 12: Benchmark instances used in this thesis

61

© 00 N O Ut ks W N

= =
= o

12
13
14
15

16
17

B

ALGORITHMS

B.

Algorithms

Algorithm 11: GetArticulationPoints

Global variables: A set of articulation points AP

Input: A graph G = (V, E)

AP ()

veueV

current DF'Snum < 1 ; rootDeg < (
ArticulationPoints(G, v, w) begin

label(v) < current D FSnum
current DFSnum < current DFSnum + 1
foreach u € N(v) \ {w} do
if label(u) = L then
if v = w then
L rootDeg < rootDeg + 1

ArticulationPoints(G, u, v)
label(v) = min{label(v), label(u)}
if label(u) > label(v) then

| AP« AP U{v}

else

L label(v) = min{label(v), label(u)}

if rootDeg < 2 then
| AP« AP\ {v}

return AP
Output: the set AP of articulation points

// pick arbitrary start vertex

// v is oot
// {v,u} tree edge

// no back edge: v is articulation point

// {v,u} back edge

// root is no articulation point

62

Tt W N =

=2}

10
11

12
13
14
15
16
17
18

B ALGORITHMS

Algorithm 12: GetSeparatorFromEdgeCut

Input: A graph G = (V) E)
GetSeparatorFromEdgeCut (G) begin
s <— MaxDegVertex ()
t < MaxDegVertex (G — {s})
(S,T) < MinCut (s, t)
if % < MinBalance V % < MinBalance then
| return)
G’ < ConstructAuxiliaryGraph(S,7)
U < HopcroftKarp(G')
if |U| > MaxSeparatorSize then
| return ()

return U

Oatput: a set of vertices for branching

// utilizes a mazx flow algorithm

// cut is to unbalanced

// separator is to large

Algorithm 13: ExtractSeparators

Input: A vertex ordering o[l]---o[n], the number of levels of recursions [and the sizes array

s obtained by METIS_NodeNDP
ExtractSeparators(o, [, s) begin
BO <+ L
TopLevelSeparatorSize < s[2] — 1]
for i € {0,...,(TopLevelSeparatorSize — 1)} do
| BO «+ BO -o[n—i]
if [=1 then
L return BO

LeftPartSize < 0 ; RightPartSize < 0;
fori€ {1,...,2"1} do
LeftPartSize < LeftPartSize + s|i]
L Right PartSize < RightPartSize + s[i + 2171

o, < o[l]---o[LeftPartSize]

o, < o[LeftPartSize + 1] - - - o[Right PartSize]
s s[1,...271) - s[2P + 1,.. . 2P 4 2P71]

Sp 4= s[2P7 1, 2P) - s[2P 4 2P 1, 2P
BO < BO - ExtractSeparators(o;, [— 1, s;)
BO < BO - ExtractSeparators(o,, [— 1, s,)
return BO

O?ltput: a branching order BO

// extract top level separator

// no more recursion levels

// nested dissection of the left part
// nested dissection of the right part
// sizes array for the left part

// sizes array for the right part

63

REFERENCES

References

[1]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

64

Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in prac-
tice: A case study of vertex cover. Theoretical Computer Science, 609:211-225, 2016.

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabéasi. The diameter of the world
wide web. CoRR, cond-mat/9907038, 1999.

Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck. Fast
local search for the maximum independent set problem. J. Heuristics, 18(4):525-547, 2012.

Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van Rooij.
Fast algorithms for max independent set. Algorithmica, 62(1-2):382-415, 2012.

Sergiy Butenko and Wilbert E. Wilhelm. Clique-detection models in computational bio-
chemistry and genomics. Fur. J. Oper. Res., 173(1):1-17, 2006.

Randy Carraghan and Panos M. Pardalos. An exact algorithm for the maximum clique
problem. Oper. Res. Lett., 9(6):375382, 1990.

Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set in
linear time by reducing-peeling. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1181-1196. ACM, 2017.

Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41(2):280-301, 2001.

Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theo-
retical Computer Science, 411(40-42):3736-3756, 2010.

Tammy M. K. Cheng, Yu-En Lu, Michele Vendruscolo, Pietro Lio, and Tom L. Blundell.
Prediction by graph theoretic measures of structural effects in proteins arising from non-
synonymous single nucleotide polymorphisms. PLoS Computational Biology, 4(7), 2008.

M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. Pace2019: Track 1 - vertex
cover instances, 2019.

M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. The PACE 2019 Param-
eterized Algorithms and Computational Experiments Challenge: The Fourth Iteration.
In 174th International Symposium on Parameterized and Exact Computation, volume 148,
pages 25:1-25:23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Nu-
merical Analysis, 10(2):345-363, 1973.

Lars Gottesbiiren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster
and better nested dissection orders for customizable contraction hierarchies. Algorithms,
12(9):196, 2019.

Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical mini-
mum cut algorithms. ACM J. Exp. Algorithmics, 23, 2018.

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. Wegotyoucovered:
The winning solver from the PACE 2019 challenge, vertex cover track. In Proceedings of
the STAM Workshop on Combinatorial Scientific Computing, pages 1-11. STAM, 2020.

Falk Hiiffner. Algorithm engineering for optimal graph bipartization. J. Graph Algorithms
Appl., 13(2):77-98, 20009.

REFERENCES

[20]

[21]

Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1749-1761. SIAM, 2014.

David S. Johnson and Michael A. Trick. Introduction to the second DIMACS challenge:
Cliques, coloring, and satisfiability. In Cliques, Coloring, and Satisfiability, Proceedings of
a DIMACS Workshop, volume 26, pages 1-7. DIMACS/AMS, 1993.

George Karypis. METIS and parmetis. In FEncyclopedia of Parallel Computing, pages
1117-1124. Springer, 2011.

Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed time-
dependent contraction hierarchies. In Ezperimental Algorithms, 9th International Sym-
posium, volume 6049, pages 83-93. Springer, 2010.

Joachim Kneis, Alexander Langer, and Peter Rossmanith. A fine-grained analysis of a sim-
ple independent set algorithm. In TARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 4, pages 287-298. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2009.

Jérome Kunegis. KONECT: the koblenz network collection. In 22nd International World
Wide Web Conference, pages 1343-1350. ACM, 2013.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification
laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 177—
187. ACM, 2005.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Math., 6(1):29-123, 2009.

Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining maxsat reasoning and incremental
upper bound for the maximum clique problem. In 25th IEEFE International Conference on
Tools with Artificial Intelligence, pages 939-946. IEEE. Computer Society, 2013.

Chu-Min Li, Hua Jiang, and Felip Manya. On minimization of the number of branches
in branch-and-bound algorithms for the maximum clique problem. Comput. Oper. Res.,
84:1-15, 2017.

Chu-Min Li, Hua Jiang, and Ruchu Xu. Incremental maxsat reasoning to reduce branches
in a branch-and-bound algorithm for maxclique. In Learning and Intelligent Optimization
- 9th International Conference, volume 8994, pages 268—-274. Springer, 2015.

Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on maxsat for
the maximum clique problem. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence. AAAI Press, 2010.

Yuanjie Li, Shaowei Cai, and Wenying Hou. An efficient local search algorithm for min-
imum weighted vertex cover on massive graphs. In Simulated Evolution and Learning -
11th International Conference, volume 10593, pages 145-157. Springer, 2017.

George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Math. Program., 8(1):232-248, 1975.

Deepak Puthal, Surya Nepal, Cécile Paris, Rajiv Ranjan, and Jinjun Chen. Efficient
algorithms for social network coverage and reach. In IEEE International Congress on Big
Data, pages 467-474. IEEE Computer Society, 2015.

Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient traversal of
mesh edges using adjacency primitives. ACM Trans. Graph., 27(5):144, 2008.

65

REFERENCES

[36]

[37]

66

Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In FExperimental Algorithms, 12th International Symposium, volume 7933,
pages 164-175. Springer, 2013.

Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and
Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection. In Pro-
ceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, pages
53-67. STAM, 2016.

Pablo San Segundo and Cristébal Tapia. Relaxed approximate coloring in exact maximum
clique search. Comput. Oper. Res., 44:185-192, 2014.

Matthias F. Stallmann, Yang Ho, and Timothy D. Goodrich. Graph profiling for vertex
cover: Targeted reductions in a branch and reduce solver. CoRR, abs/2003.06639, 2020.

Darren Strash. On the power of simple reductions for the maximum independent set
problem. In Computing and Combinatorics - 22nd International Conference, volume 9797,
pages 345—-356. Springer, 2016.

Ole Tange. GNU parallel: The command-line power tool. login Useniz Mag., 36(1), 2011.

Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoiding bottleneck cases: A
simple maximum independent set algorithm in degree-3 graphs. Theoretical Computer
Science, 469:92-104, 2013.

Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set.
Inf. Comput., 255:126-146, 2017.

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of Thesis

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Algorithm Framework
	2.3 Reduction and Branching Rules

	3 Related Work
	4 Branching Strategies
	4.1 Branching Strategies Based on Decomposition
	4.1.1 Branching on Articulation Points
	4.1.2 Branching on Edge Cuts
	4.1.3 Branching by Nested Dissection

	4.2 Branching Strategies Based on Reduction Rules
	4.2.1 Branching Based on Twin Reduction
	4.2.2 Branching Based on Funnel Reduction
	4.2.3 Branching Based on Dominance Reduction
	4.2.4 Branching Based on Unconfined Reduction
	4.2.5 Branching on Reduction Chains

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Parameter Tuning
	5.2.1 Tuning Branching on Edge Cuts
	5.2.2 Tuning Branching by Nested Dissection
	5.2.3 Tuning Branching Based on Reduction Rules

	5.3 Evaluation
	5.3.1 Evaluation of Decomposing Branching Strategies
	5.3.2 Evaluation of Branching Strategies Based on Reduction Rules

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Benchmark Instances
	B Algorithms

