
A Parallel Network Flow-Based Refinement
Techinque for Multilevel Hypergraph

Partitioning

Master’s Thesis of

Lukas Reister

at the Department of Informatics

Institute of Theoretical Informatics, Algorithmics

Reviewer: Prof. Dr. Peter Sanders

Advisor: M.Sc. Tobias Heuer

Date of submission: 19 August 2020

I declare that I have developed and written the enclosed thesis completely by myself, and have

not used sources or means without declaration in the text.

Karlsruhe, 19 August 2020

. .

(Lukas Reister)

Abstract

Recently, a re�nement technique that uses max-�ow-min-cut computations to improve a k-way

partition of a hypergraph was presented. The algorithm was integrated into the sequential

hypergraph partitioner KaHyPar and outperforms other state-of-the-art partitioner on a wide

range of benchmarks with the drawback of signi�cantly higher running times. In this thesis

we present a parallel �ow-based re�nement algorithm and integrate it in the shared-memory

multilevel hypergraph partitioner Mt-KaHyPar.

To improve a given k-way partition, the sequential algorithm grows a region around the

cut of two adjacent blocks and improves the cut between them using a max-�ow computation

on a �ow network induced by that region. We make use of the fact, that for k > 2 multiple of

these pairwise re�nement calculations can be executed in parallel. We work out the theoretical

foundations to determine which of these pairwise re�nements are applicable for a parallel

execution. Based on that, we present multiple techniques to schedule the pairwise re�nements

in parallel and improve the running time of the algorithm. We start with a simple approach,

only executing independent calculations on disjoint block-pairs in parallel. To further improve

the scaling, we then loosen the restrictions and allow multiple �ow calculations that include

the same block simultaneously. We further integrate our parallel re�nement algorithm in

Mt-KaHyPar and combine it with other move-based approaches.

For k ≥ 16 and 16 threads, we achieve a harmonic mean speedup of 5.68 for the �ow-based

re�nement. Compared to the quality preset of PaToH, we achieve a better solution quality on

67,2% of our benchmark instances while being the factor of 1.95 faster by using 10 threads. We

also achieve a comparable solution quality as hMetis-R while we are an order of magnitude

faster.

i

Zusammenfassung

Kürzlich wurde ein Algorithmus vorgestellt, der Max-Flow-Min-Cut-Berechnungen verwendet

um eine k-teilige Partition eines Hypergraphen zu verbessern. Der Algorithmus wurde in den

sequentiellen Hypergraph-Partitionierer KaHyPar integriert und liefert bessere Ergebnisse

als andere moderne Partitionierer für einen großen Teil von Benchmark Instanzen mit dem

Nachteil deutlich höherer Laufzeiten. In dieser Arbeit stellen wir einen parallelen �ussbasierten

Algorithmus vor und integrieren ihn in den parallelen Multilevel-Hypergraph-Partitionierer

Mt-KaHyPar.

Um eine gegebene Partition zu verbessern, konstruiert der sequentielle Algorithmus einen

Bereich um den cut zweier benachbarter Blöcke und verbessert die Partition zwischen ihnen

unter Verwendung einer Max-Flow-Berechnung in einem durch diesen Bereich induzierten

Flussnetzwerk. Wir nutzen die Tatsache, dass für k > 2 mehrere dieser paarweisen Berechnun-

gen parallel ausgeführt werden können. Wir erarbeiten die theoretischen Grundlagen, um zu

entscheiden, welche dieser paarweisen Berechnungen für eine parallele Ausführung geeignet

sind. Basierend darauf präsentieren wir mehrere Techniken, um die paarweisen Berechnun-

gen parallel auszuführen und die Laufzeit des Algorithmus zu verbessern. Wir beginnen mit

einem einfachen Ansatz, bei dem nur unabhängige Berechnungen auf disjunkten Blockpaaren

parallel ausgeführt werden. Um die Skalierung weiter zu verbessern, lockern wir dann die

Voraussetzungen und erlauben mehrere Flussberechnungen, die denselben Block enthalten.

Desweiteren integrieren wir unseren parallelen Algorithmus in Mt-KaHyPar und kombinieren

ihn mit anderen bewegungsbasierten Ansätzen.

Für k ≥ 16 und 16 Threads erreichen wir einen mittleren harmonischen Speedup von 5,68 für

die �ussbasierten Berechnungen. Im Vergleich zur Qualitätskon�guration von PaToH erzielen

wir auf 67,2% unserer Benchmark-Instanzen eine bessere Partitions-Qualität, während wir mit

10 Threads um den Faktor 1,95 schneller sind. Wir erreichen außerdem eine vergleichbare

Qualität der Partitionen wie hMetis-R, während wir deutlich schneller sind.

ii

Contents

Abstract i

Zusammenfassung ii

1. Introduction 1
1.1. Problem Statement . 1

1.2. Contributions . 2

1.3. Outline . 2

2. Preliminiaries 3
2.1. Graphs . 3

2.1.1. Contraction . 3

2.2. Flows . 4

2.2.1. Max-Flow Min-Cut Theorem . 5

2.2.2. Max-Flow Algorithms . 6

2.3. Hypergraphs . 7

2.4. Hypergraph Partitioning . 8

3. RelatedWork 10
3.1. Hypergraph Partitioning . 10

3.1.1. Multilevel Paradigm . 10

3.1.2. Parallelism in (Hyper-)Graph Partitioner Systems 11

3.1.3. Mt-KaHyPar . 13

3.2. Flow-Based Re�nement . 13

3.2.1. Flow-Based Re�nement for Graphs . 13

3.2.2. Flow-Based Re�nement for Hypergraphs 15

3.2.3. Max-Flow-Min-Cut Re�nement Framework 16

4. Parallel Flow-Based Refinement Framework 19
4.1. Algorithm Overview . 19

4.2. Parallel Flow Calculations . 21

4.2.1. Parallel Flow Calculations on Disjoint Block-Pairs 24

4.2.2. Parallel Flow Calculation on All Block-Pairs 24

4.2.3. An Optimized Approach for Parallel Flow Calculations on All Block-Pairs 26

4.2.4. Removing Synchronization-Steps . 28

4.2.5. Parallel Most Balanced Minimum Cut 30

5. Experiments 33
5.1. Instances . 33

iii

Contents

5.2. System and Methodology . 33

5.3. Comparison of the di�erent Scheduling Approaches 34

5.4. Re�nement Con�guration . 36

5.5. Scalability . 38

5.6. Comparison with other Hypergraph Partitioner 40

6. Conclusion 43
6.1. Future Work . 44

Bibliography 45

A. Appendix 48

iv

1. Introduction

A hypergraph is a generalization of a graph, where a (hyper)edge connects an arbitrary amount

of nodes instead of two. The hypergraph partitioning problem is about to partition a hypergraph

into k disjoint blocks of a bounded size (≤ 1 + ϵ times the average block size) while we

simultaneously want to minimize an objective function.

Fields of application for the hypergraph partitioning problem are VLSI design [31], sim-

plifying SAT formulas [35, 37] and prallelizing sparse matrix-vector multiplication [6]. The

challenge of VLSI design is to divide a circuit in two or more blocks and simultaneously keep

the wires required to connect the elements in di�erent blocks as short as possible. This reduces

signal delays, wiring cost and the total layout area. As wires can connect more than two

electrical circuit elements, a hypergraph models the problem more accurately than a graph.

To help solving SAT formulas, hypergraph partitioning can be used to decompose them into

smaller subformulas, that are easier to solve [35].

Solving the hypergraph partitioning problem is known to be NP-hard [33]. Thus to obtain

a partition in a practicable amount of time, heuristics are used. The heuristic used by most

state of the art hypergraph partitioning sytems is the multilevel paradigm [40, 28, 7, 41, 11].

The main idea is to shrink the hypergraph successively to create a hierarchy of hypergraphs

(coarsening phase). On the smallest hypergraph an initial partition is obtained using more

sophisticated techniques (initial partitioning phase). Then we traverse backwards through

the levels of the hierarchy. On each level of the hierarchy, a re�nement algorithm is used to

improve the partition quality (re�nement phase).
Recently, Heuer and Schlag [24] introduced a re�nement algorithm that makes use of the

max-�ow min-cut theorem [16]. The re�nement is done by growing a region around the cut

of two adjacent blocks and calculate a minimum (s, t)-cut induced by a maximum �ow on a

�ow network corresponding to that region. They combined their approach with the classical

move-based FM algorithm [15] and showed that the algorithm produces the best partition

quality for a wide range of applications. The main advantage of a �ow-based re�nement over

the traditional move-based techniques is that it provides a more global view on the problem

and does not tend to get stuck in local minima. While it can signi�cantly improve the solution

quality, a maximum �ow calculation can incur high computational overheads. Therefore, lower

running time of the algorithm is an interesting avenue of research. As hypergraph partitioning

in many cases is a trade-o� between running time and solution quality, decreasing the running

time of the algorithm opens up potential to further improve the solution quality.

1.1. Problem Statement

The biggest drawback of the �ow-based re�nement algorithm by Heuer and Schlag [24] is its

high running time, we want to tackle this problem by using parallelism of nowadays available

1

1. Introduction

shared-memory systems. The fundamental question of this thesis is how parallelism can be

used to speedup a �ow-based re�nement technique while simultaneously keep the bene�ts of

a good partition quality. We therefore want to develop a parallel framework for �ow-based

re�nement algorithms using shared memory parallelism. The algorithm by Heuer and Schlag

[24] will be used as a basis to our work. The goal is to improve the running time of the algorithm

while preserving the partition quality and achieve a good scaling when executing on multiple

cores.

1.2. Contributions

We present a parallel �ow-based re�nement algorithm that executes multiple pairwise re�ne-

ments on adjacent blocks in parallel. We work out the theoretical foundations to determine

which of these pairwise re�nements are applicable for a parallel execution. Based on that, we

present multiple techniques to execute the pairwise calculations in parallel, starting by only

executing independent calculations on disjoint block-pairs in parallel. To improve the scaling,

we then loosen the restrictions and allow multiple �ow calculations that include the same

block simultaneously. We introduce several techniques to prevent or handle the side e�ects,

that occur in a parallel execution. To achieve this we adjust parts of the sequential algorithm.

We will show with experiments, that we improved the running time of the algorithm while

preserving the partition quality. As we only execute �ow calculations on block-pairs in parallel,

our approach only improves the running time for k > 2.

We integrate our techniques in the parallel hypergraph partitioner Mt-KaHyPar that is

currently under development. We analyze the impact of combining our algorithm with other

re�nement techniques that are implemented in Mt-KaHyPar and determine an optimal con�g-

uration. Finally we compare our algorithm with other state of the art hypergraph partitioning

systems in terms of running time and partition quality. Using 10 threads, we achieve better

solution quality on 67.2% of the instances when compared to the quality preset of PaToH, while

being a factor of 1.95 faster. Compared directly to hMetis-R, we are an order of magnitude

faster and still achieve a comparable solution quality. For k ≥ 16 and 16 threads, we achieve a

harmonic mean speedup of 5.68 for the �ow-based re�nement.

1.3. Outline

We start by introducing the basic principles, that are used throughout this thesis in Chapter 2

and present the related work in Chapter 3. Afterwards we introduce our parallel framework in

Chapter 4. Additionally we present the multiple techniques used to realize a parallel execution

and the integration in Mt-KaHyPar. In Chapter 5 we present the experimental evaluation of

our approaches and conclude this thesis with Chapter 6.

2

2. Preliminiaries

This Chapter introduces the general de�nitions and terminology used throughout this thesis.

As the research presented in this thesis is strongly build on the work of [23] and [40], the

terminology used is similar.

2.1. Graphs

A directed weighted graph G = (V ,E, c,ω) consists of two �nite Sets V and E and two weight

functions c andω. The elements ofV are called nodes and the elements of E are called edges. An

edge e = (u,v) is a relation between two nodes u,v ∈ V . The node weight function c : V → R≥0
and the edge weight function ω : E → R≥0 assign non negative weights to the nodes and edges

of G.

We call two nodes u and v adjacent if there exists an (u,v) ∈ E. If two edges e1 and e2 share

a node e1 ∩ e2 , ∅ they are referred to as incident. The set of neighbors Γ(v) of a node consists

of all nodes adjacent to it. The degree d of a node is de�ned as the size of its neighborhood

d(v) = |Γ(v)|.

2.1.1. Contraction

A contraction on a graph G is an operation to merge two nodes together. The result of the

contraction of two nodes u and v is G(u,v) = (V \v,E
′, c′,ω′). Every edge (v,w) ∈ E is replaced

with (u,w) in E′ and every edge (w,v) ∈ E is replaced with (w,u) in E′. c′(u) = c(u) + c(v) is

the new weight of the contracted node. The edge weights of the transformed edges remain the

same.

1

2

3

4

5

6
contract(1,2) 1

3

4

5

6

G G(1,2)

Figure 2.1.: A graph G with a path 〈1, 5, 4, 6〉 on the left side and the corresponding G(1,2) after

the contraction of nodes 1 and 2 on the right side.

3

2. Preliminiaries

A path P = 〈v1,v2, ...,vk〉 is a sequence of nodes, where each pair of consecutive nodes is

connected by a directed edge. When the �rst node of a path equals the last node it is called a

cycle. Figure 2.1 shows a directed graph G with 6 nodes and a path 〈1, 5, 4, 6〉 marked in red.

G(1,2) shows the graph after a contraction of the nodes 1 and 2.

A strongly connected component (SCC)C ⊆ V is a subset of V, where for each pair of nodes in

C there exists a path between them. A directed graph that does not contain any cycles is called

an directed acyclic graph (DAG). In DAGs it is possible to �nd an ordering of the nodes, such

that a directed edge between two nodes u and v indicates u ≺ v . Such an ordering is called

topological ordering.

2.2. Flows

A �ow-network G = (V ,E, c) is a directed Graph with a set of nodesV , a set of edges E : V → V
and a capacity function c : E → R≥0. The purpose of a �ow-network is to model the �ow from

a speci�c source s ∈ V to a sink t ∈ V . The �ow is modeled with a function f : E → R≥0 and

has to satisfy the following constraints:

1. Capacity constraint: ∀(u,v) ∈ E : f (u,v) ≤ c(u,v)

2. Conservation of �ow constraint: ∀v ∈ V \ {s, t} : ∑(u,v)∈E f (u,v) = ∑
(v,u)∈E f (v,u)

The capacity constraint guarantees that the �ow does not exceed the capacity of the edge.

The Conservation of �ow constraint ensures that the amount of �ows entering a node equals

the amount leaving it. The value of the �ow | f | is the amount that is sent from s to t. It can

be measured by the sum of �ows leaving the source or the sum of �ows entering the sink

| f | =
∑
(s,v)∈E f (s,v) =

∑
(v,t)∈E f (v, t). A �ow f is a maximum �ow if no other �ow | f ′| > | f |

exists.

A useful concept to �nd a maximum �ow of a �ow-network are residual networks. A residual

network to a �ow network G with regard to a �ow f is de�ned as G f = (V ,E f) with:

E f = {(u,v) ∈ E |c f (u,v)}

c f is called the residual capacity of a node and is de�ned as:

c f (u,v) = c(u,v) − f (u,v) + f (v,u)

The residual capacity models how much more �ow can be pushed through an edge e ∈ E
till it is saturated. The residual network also contains reverse edges

←−e < E where the residual

capacity represents the �ow currently pushed through e . A path from s to t in the residual

network is called an augmenting path. Figure 2.2 illustrates the concept of a �ow-network and

its corresponding residual-graph. On the left side the �ow-network G with the edge capacities

and a �ow is shown. In the residual-networkG f the �ow is illustrated in red and an augmenting

path from s to t is highlighted in purple. The current value of the �ow in this example is 4.

A multi-source multi-sink maximum �ow problem is a maximum �ow problem with sets of

multiple sources S and sinks T instead of a single s and t. The problem is to �nd a maximum

�ow from all sources s ∈ S to all sinks t ∈ T . The problem can be transformed into a maximum

4

2. Preliminiaries

s

a b

c d

t

3/4

1/3

0/1 1/1

2/3

1/2

2/2

2/5

s

a b

c d

t

2

1

1

3

1

1

1

0

1

0

2

3

2
1

2

Flow-network G Residual-network Gf

Figure 2.2.: Illustration of concepts related to the maximum �ow problem. An example of a

�ow-network G (left side) and the corresponding residual-network G f with regard

to the �ow f (| f | = 4).

�ow problem with a single source and sink by adding two additional nodes s* and t*. For all

s ∈ S we add an edge (s∗, s) with in�nite capacity and for all t ∈ T we add an edge (t , t∗) with

in�nite capacity.

2.2.1. Max-FlowMin-Cut Theorem

The max-�ow min-cut theorem is the basis to improve partitions using max-�ow calculations:

Theorem 2.2.1 (Max-Flow Min-Cut) The value of a maximum �ow in a �ow-network equals
the value of a minimum s-t cut.

A s-t cut of a �ow-network G is the partition of V in two disjoint sets (S,V \ S) with s ∈ S and

t < S . The value of a s-t cut is de�ned as:

c(S) =
∑
(u,v)∈E
u∈S
v<S

c(u,v)

Knowing a minimum �ow of a �ow-network it is possible to calculate a minimum s-t cut using

the residual network [16]. Flow-networks can be used to solve many related problems like

maximum bipartite matching or �nding a minimum vertex separator. To solve these problems a

speci�c transformation of the Graph to a �ow-network is sometimes necessary. A fundamental

problem used in [23] is the minimum-weight s-t vertex separator problem.

De�nition 2.2.2 (Vertex Seperator Problem) Let G = (V ,E, c) be a graph with the node
weight function c : V → R>0. A subset S ⊂ V is called a s-t vertex separator, when after the
removal of all nodes contained in S , s and t are separated in the resulting graph. The weight of a
separator c(S) =

∑
v∈S c(v) is the sum of its node weights. A vertex separator S is minimal when

there exists no S′ with c(S′) < c(S).

5

2. Preliminiaries

To �nd a minimum-weight s-t vertex separator we can use the following transformation

to a �ow network [23, 45]:

De�nition 2.2.3 (Vertex Seperator Transformation) Let TV be a transformation of a graph
G = (V ,E, c) into a �ow network TV (G) = (VV ,EV ,uV) with (uV : EV → R>0). TV is de�ned as
follows:

• VV =
⋃
v∈V {v

′,v′′}

• ∀v ∈ V : add a directed edge (v′,v′′) with capacity uV (v′,v′′) = c(v)

• ∀(u,v) ∈ E : add two directed edges (u′′,v′) and (v′′,u′) with capacity uV (u
′′,v′) =

uV (v
′′,u′) = ∞

To obtain the vertex separator we need to get a minimum cut of the network by �nding a

maximum �ow. Only edges of the form (v′,v′′) will be in the minimum cut set, as all other

edges have in�nite capacity. The vertex separator is consisting of the corresponding nodes to

the cut set.

2.2.2. Max-Flow Algorithms

There exist two main families of algorithms to solve the maximum �ow problem. One are

the pre�ow-based algorithms which are based on the push relabel algorithm by Goldberg and

Tarjan [18]. The other family is based on augmenting paths in residual networks. They make

direct use of the following theorem:

Theorem 2.2.4 (Ford-Fulkerson) f is a maximum �ow if there exists no augmenting path
in G f [16].

The theorem can easily be understood, as an augmenting path is a path from s to t con-

taining only unsaturated edges. It is therefore possible to increase the �ow on an augmenting

path and with that also the �ow from s to t . The main idea is to push as much �ow as possible

through an augmenting path while there still exists one. The Ford-Fulkersonn algorithm [17]

does exactly that and uses a depth �rst search to �nd augmenting paths. The maximum running

time of this algorithm is O(|E | | fmax |). The problem is that there exist instances where the value

of the maximum �ow is exponential in the problem size [14].

Edmonds and Karp improved the algorithm and presented a polynomial-time version [14].

They used breadth-�rst search to �nd augmenting paths and therefore always pushed �ow on

the shortest existing path. The complexity of this algorithm is O(|E |2 |V |).
Another algorithm with a di�erent approach to �nd augmenting paths was introduced

by Boykov and Kolmogorov [5]. The algorithm was designed for the special application of

global energy minimization in computer vision and outperformed all existing algorithms in

this category. Augmenting paths are found by growing two spanning trees starting by s and t .
All edges contained in the trees are unsaturated. When the trees touch, an augmenting path is

found and �ow is pushed through it. This causes edges to become saturated and therefore be

removed from the tree. The algorithm then tries to reconnect the nodes, that are no longer

6

2. Preliminiaries

connected to the tree, by �nding new paths to them. The idea is to restore the tree structure

and reuse as much as possible. After that, the trees continue to grow and �nd new augmenting

paths. Because the algorithm does not guarantee to �nd the shortest augmenting paths it

has a worst case running time of O(|E | |V |2 | fmax |) but still performs remarkably well on many

instances.

An extension of the algorithm from Boykov and Kolomogrov is presented in [20] and [19].

The incremental breath �rst search algorithm (IBFS) ensures that the augmenting paths found

are always the shortest existing paths and therefore guarantees a polynomial running time of

O(|E | |V |2). To achieve this the algorithm stores the distance of nodes to the source and the

sink and grows the trees in a breath �rst manner. The algorithm has been shown to perform

comparable and often better than the Boykov Kolomogrov algorithm.

2.3. Hypergraphs

A hypergraph is a generalization of a graph, where the edges are not always connecting two

nodes but instead connect a arbitrary amount of nodes.

De�nition 2.3.1 (Hypergraph) A weighted undirected hypergraph H = (V ,E, c,ω) is de�ned
as a set of hypernodes V and a set of hyperedges E with hypernode-weights c : V → R>0 and
hyperedge-weights ω : E → R>0. Each hyperedge is a subset of V.

In this thesis we use hypernodes/vertices and hyperedges/nets when referring to hypergraphs

and nodes and edges when referring to graphs. The vertices of a net are called pins. We extend

the weight functions c and ω for sets of hypernodes V ′ ⊆ V and sets of hyperedges E′ ⊆ E as

follows: c(V ′) =
∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E ′ ω(e). A hypernode v is incident to a hyperedge

e when v ∈ e . The set of all incident hyperedges of a vertex is called I (v). Vertices are called

adjacent when there exists a net that has both vertices as a pin. The degree of a hypernode

v is d(v) = |I (v)|. The size of a net |e | is the number of its pins. Because hyperedges have an

arbitrary amount of pins there are multiple concepts to describe subgraphs:

De�nition 2.3.2 (Subhypergraph) A subhypergraph HA induced by A ⊆ V is de�ned as
HA = (A,E

′, c,ω) with E′ = {e ∩A|e ∈ E ∧ e ∩A , ∅}.

De�nition 2.3.3 (Section Hypergraph) A section hypergraph H × A is de�ned as H × A =
(A,E′, c,ω) with E′ = {e |e ∈ E ∧ e ⊆ A}.

Both graphs are induced by removing vertices, but a section hypergraph only contains hyper-

edges, that are fully contained in A ⊆ V .

It is possible to represent a hypergraph as an undirected graph. The two most common

ways are the clique and the bipartite representation [27]. In the clique representation each

hyperedge is replaced with an edge for each pair of vertices in the hyperedge. In the bipartite

representation each hyperedge is replaced with an additional node. The node is connected to

each pin of the hyperedge. The node weights c and edge weights ω depend on the problem

7

2. Preliminiaries

e1

e2

e4

e3
e1

e2
e3

e4

e1

e2
e3

e4

Figure 2.3.: A hypergraph (left) with its corresponding bipartite (middle) and clique (right)

representations.

domain. Figure 2.3 shows an example of a hypergraph with 9 hypernodes and 4 hyperedges

and the corresponding clique and bipartite representations.

2.4. Hypergraph Partitioning

De�nition 2.4.1 (Hypergraph Partition) The k-way hypergraph partitioning problem is to
�nd an ϵ-balanced k-way partition Π of a hypergraph H that minimizes an objective function
over the cut nets.

A k-way partition is a partition of the vertices of a hypergraph in k disjoint blocks Π =
{V1, ...,Vk} with

⋃k
i=0Vi = V and Vi , ∅. A k-way partition is ϵ-balanced when every block

Vi ∈ Π satis�es the balance constraint: c(Vi) ≤ (1 + ϵ)d
c(V)
k e.

The set of blocks that a hyperedge e has pins in, is called connectivity set Λ(e,Π) = {Vi ∈
Π |Vi ∩ e , ∅}. The conncetivity λ(e,Π) of a net with respect to a partition Π is de�ned as the

cardinality of its connectivity set. Hyperedges with a connectivity greater than one are called

cut nets. There are several objective functions to minimize over cut nets, the two most common

functions are the cut metric ωH (Π) and the connectivity metric (λ − 1)H (Π)[13]. The goal of the

cut metric is to minimize the sum of the weight of all cut nets:

ωH (Π) =
∑
e∈E

λ(Π,e)>1

ω(e)

8

2. Preliminiaries

The connectivity metric also considers how many blocks a cut net is connecting. The connec-

tivity minus one is added as factor to the sum:

(λ − 1)H (Π) =
∑
e∈E

λ(Π,e)>1

(λ(e,Π) − 1) ∗ ω(e)

The optimization of both functions is known to be NP-hard [33].

Another concept used a lot in this thesis is the quotient graph. It connects all adjacent blocks

of a partition. Blocks are called adjacent when there exists a cut net connecting them.

De�nition 2.4.2 (Quotient Graph) Q = (Π,E′) is a graph which contains an edge between
each pair of adjacent blocks of a k-way partition Π of a hypergraph H with E′ = {(Vi ,Vj)|∃e ∈ E :

Vi ,Vj ∈ Λ(e,Π)}.

9

3. RelatedWork

In this Chapter we give an brief overview of the current state of hypergraph partitioning and

introduce the basic concepts used by state of the art hypergraph partitioners. We also show

how parallelism is currently used in hypergraph partitioning and how �ow-based approaches

are used as re�nement techniques.

3.1. Hypergraph Partitioning

There exist a wide range of hypergraph partitioning systems and algorithms used in them. The

most commonly used systems are KaHyPar[40], hMetis[28] and PaToH[7]. The algorithms

presented in this thesis are integrated in the KaHyPar hypergraph partitioner family, more

speci�cally the shared-memory hypergraph partitioner Mt-KaHyPar that is currently under

development. Zoltan [11] and Parkway [41] are two other partitioners supporting parallelism.

All of the named partitioners use the multilevel approach presented in Section 3.1. The parti-

tioners can also di�er in the way that they partition the hypergraph in k blocks. The direct
k-way approach splits the hypergraph directly in k blocks while the recursive bisection method

splits the graph in two blocks and continues to do so recursively until k blocks are reached.

Due to the relevance to this thesis we give a brief introduction to the parallelism used in other

systems in Section 3.1.2 and the Mt-KaHyPar framework in Section 3.1.3.

3.1.1. Multilevel Paradigm

As the hypergraph partitioning problem is known to be NP-hard, it is not feasible to calculate

a perfect partition. Therefore heuristics are used to �nd partitions in an acceptable amount

of time. The most prominent heuristic used by most partitioning systems is the multilevel
paradigm. The multilevel paradigm was �rst introduced by Barnard and Simon [3] to improve

the running time of a graph partitioning algorithm. It consists of three main phases, namely

the coarsening phase, the initial-partitioning phase and the uncoarsening/ re�nement phase.
The idea behind the multilevel paradigm is to shrink the hypergraph using contractions

and create a hierarchy of successively smaller instances. Then �nding an initial partition on

the smallest hypergraph using an algorithm of choice. The last phase is to propagate back

through the hierarchy by undoing the contractions. On each level of the the hierarchy a

re�nement-algorithm is executed to improve the partition. Figure 3.1 shows an illustration of

the multilevel paradigm.

To �nd a good initial partition, the smallest hypergraph should still represent the structure of

the input hypergraph. To achieve this matching- or clustering-algorithms are used during the

coarsening phase. The algorithm used to �nd a good initial partition can have a comparatively

high running time as it is only executed on a small hypergraph.

10

3. Related Work

e1
e2

e4

e3

Input Hypergraph

e1
e2

e4

e3

cluster + contract

cluster + contract

Coarsening

uncontract + refine

uncontract + refine

Initial Partitioning

Uncoarsening

Output Partition

Figure 3.1.: Illustration of the partitioning process using the multilevel paradigm

During the re�nement phase, after each uncontractioning-step a re�nement algorithm is

executed to improve the partition. This is possible as higher levels of the hierarchy o�er

more degrees of freedom. It is possible to use multiple re�nement techniques consecutively

or for example use a expensive re�nement algorithms on only a few levels. How much

level a hierarchy has, varies between the di�erent re�nement systems. Most of them use a

approximately logarithmic number of levels, but it is also possible to contract only one node

per level as shown in the n-level approach by KaHyPar [40]. The number of levels is a trade-o�

between running time and solution quality.

3.1.2. Parallelism in (Hyper-)Graph Partitioner Systems

In this Section we give a brief overview of other graph and hypergraph partitioning systems

using parallelism. As the purpose of this thesis is to construct a parallel re�nement algorithm

we will mainly focus on this phase. Most partitioners use a distributed memory approach for

parallelism. ParMetis [29] and ParHIP [36] are examples for graph partitioners, Zoltan [11] and

Parkway [41] for hypergraph-partitioners using distributed memory. The only frameworks

using shared memory are the graph partitioners MT-Metis[30] and MT-KaHIP[1]. Other than

Mt-KaHyPar there currently does not exist any shared memory hypergraph partitioner except

for [8] which only executes the coarsening phase in parallel.

In the coarsening phase there exist two main approaches to preserve the global structure of

the graph. The �rst one being matching based techniques [8, 11]. The problem with searching

for matchings in parallel is that there can be con�icts where two di�erent vertices get matched

to the same vertex. To solve this problem in a distributed memory environment an additional

11

3. Related Work

communication step is executed before applying the matchings. In a shared memory environ-

ment a global matching vector on which con�icts can be resolved before applying them or a

lock-based approach can be used. The second approach is to use a clustering based algorithm.

The problem here is to prevent contracted vertices from getting to heavy. The shared memory

version presented by [8] uses a locking mechanism for this. ParHIP [36] and MT-KAHIP [1]

use an adapted version of the parallel size-constraint label propagation algorithm [26].

In the initial partitioning phase it is common to execute the initial partitioning algorithm

multiple times as the graph on the coarsest level is comparatively small. Afterwards the parti-

tion with the best quality is chosen. In a parallel environment it is common that the sequential

algorithm is executed on each processor a de�ned number of times and the best solution out of

all is chosen afterwards.

For the re�nement phase there exist multiple algorithms to improve the quality on each

level of the hierarchy. The most prominent being the greedy move/ Label Propagation algorithm.

For each boundary vertex a gain is calculated. The gain implies how a move of the vertex

would a�ect the quality of the partition. The vertex with the highest gain is selected to move,

if the move would not violate the balance constraint. The algorithm is executed in rounds. If

a vertex is moved in a round, itself and its neighbors are locked for the rest of the round but

become candidates to move in the next round. This greedy algorithm is used by the majority

of parallel (hyper)graph partitioners [1, 11, 29, 42, 30, 36].

As moves are executed in parallel there can occur problems. When two adjacent vertices

switch their blocks concurrently in di�erent directions, it can have a negative impact on the

partition quality despite both having a positive gain value before the move. To prevent this

several techniques are used. One way is to apply moves in two alternating phases only allowing

vertices to move from blocks with a lower index to a higher one and vise versa in the second

round[41, 30]. Another method used by [29] is to compute a coloring of the graph, such that

adjacent vertices have a di�erent color. The moves are split in steps where only vertices of the

same color can move, to prevent con�icts.

Another problem is to maintain the balance constraint while moving vertices concurrently. In

distributed systems the balance can be maintained locally [42]. After each round a communica-

tion step between the processors is executed to update the balance. In case of a balance-violation

the corresponding moves are reverted. Another solution is to commit the moves to a root

processor which applies the moves sequentially after a phase and rejects moves that would

violate the balance constraint[41, 11].

MT-Metis [30] extends the greedy algorithm to the hill-climbing algorithm. Instead of single

moves, a sequence of moves, so called hills, are executed. The hills are build using a priority

queue associated with a gain. If the move of a complete hill has positive gain it is executed.

This technique helps to better escape local minima.

Another re�nement algorithm that produces better quality partitions than the greedy one

is the FM algorithm[15]. The �rst phase of the algorithm is to �nd a sequence of feasible

moves always using the move with the best gain. In the second phase the moves are reverted

back to the pre�x with the best quality in that sequence. The problem with parallelizing this

algorithm is that the best gain moves are stored in a priority queue which is hard to maintain in

parallel. To solve this PT-Scotch [9], KaPPa [26] and Parkway [41] execute a sequential 2-way

12

3. Related Work

FM re�nement pairwise on adjacent blocks in the quotient graph. The disadvantage of this

approach is that the scalability is dependent on the number of blocks.

The only framework using a parallel version of the direct k-way FM algorithm with rollback

ability is [1]. They start a local search on each processor using di�erent boundary nodes. After

the local search, a root thread recalculates the gains sequentially and rolls back to the partition

with the best quality. In Mt-KaHyPar this approach is extended to hypergraphs and improved

by also parallelizing the second phase.

Another re�nement algorithm that will be introduced in Section 3.2 is the �ow-based re-

�nement. There currently does not exist a parallel version of a �ow-based re�nement for

hypergraphs.

3.1.3. Mt-KaHyPar

The algorithms presented in this thesis are integrated into the Mt-KaHyPar framework. Mt-

KaHyPar is a hypergraph partitioning system using shared memory parallelism that is currently

in development. It uses the multi-level paradigm. All three phases of the multilevel approach

are executed in parallel.

In the coarsening phase a parallel clustering based approach is implemented. On each level,

the hypergraph is reduced by a factor of up to 2.5, making the amount of levels approximately

algorithmic in the size of the hypergraph. The procedure is repeated until the contraction limit

c = 160k is reached. In the initial partitioning phase the same approach as in KaHyPar [22] is

executed in parallel.

For the re�nement, on each level of the hierarchy, two di�erent algorithms are implemented.

The �rst one being a parallel version of the greedy algorithm used by hMetis-K[28] called

size constrained label propagation in MT-KaHiP [1]. The second algorithm is a parallel version

of the FM local-search algorithm [15]. The approach by [1] is extended for hypergraphs and

improved by also executing the second phase of the algorithm in parallel. The subject of this

thesis is to add a parallel version of the �ow-based re�nement by Heuer and Schlag [23, 24] as

a third re�nement algorithm. The parallel algorithm will be presented in Chapter 4.

During all three algorithms the balance constraint can be guaranteed, but intermediate

violations to the balance constraint have shown to substantially improve the solution quality.

To make sure that the �nal partition is balanced an additional rebalancing step is executed at

the end.

3.2. Flow-Based Refinement

In this Section we will show how �ow-based approaches are used as a re�nement algorithm

for hypergraphs. We will �rst summarize how �ows are used for re�nement on graphs an then

show how the approach was generalized and improved for hypergraphs.

3.2.1. Flow-Based Refinement for Graphs

The max �ow min cut theorem 2.2.1 naturally suggests to use max �ow calculations to improve

a cut-based metric of graph partition. Sanders and Schulz use a �ow-based re�nement in

13

3. Related Work

s t

V1
V2

B

δB ∩ V2δB ∩ V1

Cut

Figure 3.2.: Illustration of the �ow-network build by KaFFPa [39].

the multilevel graph partitioner KaFFPa [39]. They extract a region around the cut between

two blocks and construct a �ow network corresponding to that region. They improve the cut

between the blocks using a max-�ow computation on the �ow network. The region is build

using two Breath-First-Searches (BFS) in the involved blocks. The BFS is initialized with all

nodes adjacent to the cut nets connecting both blocks and stops when the weight of the nodes

would exceed (1 + ϵ)dc(V)
2
e − c(V2). The upper bound for the weight of the region ensures that

the balance constraint still holds after the Max-Flow-Min-Cut computation.

For a region B ⊆ V they de�ne its border δB = {u ∈ B |∃(u,v) ∈ E : v < B}. To construct

the �ow network all border nodes of the �rst block δB ∩V1 are connected to a source node

and all border nodes of the second block δB ∩V2 are connected to a sink node. This ensures

that no additional edge becomes a cut edge and the max-�ow-min-cut computation results in a

partition with an equal or better quality than before. Figure 3.2 illustrates the region and the

�ow network build by [39].

3.2.1.1. Adaptive Flow Iterations

Sanders and Schulz introduced several techniques to improve the �ow-based re�nement. One is

to execute the maximum �ow calculation multiple times and adapt the size of region depending

on the result of the computations. The size depends on an input parameter α . ϵ is replaced with

ϵ′ = αϵ in the upper bound for the weight of the region. If a calculation found an improvement

α is increased tomin{2α ,α ′}, where α ′ is a prede�ned upper bound. If no improvement was

found α is decreased tomax{α
2
, 1}. This technique is called adaptive �ow iterations.

3.2.1.2. Active Block Scheduling

Active block scheduling is a technique to use a two way re�nement algorithm for direct k-way

partitioning. It operates on the quotient graph and sequentially schedules adjacent blocks

pairwise. The scheduling is executed in rounds. A block-pair is scheduled in a round if

at least one block is active. In the �rst round all blocks are active and all adjacent block-

14

3. Related Work

e1

e2

e4

e3

ω(e1)

ω(e2)

ω(e3)

ω(e4)

ω(e1)

ω(e2)

ω(e3)

ω(e4)

H TL(H)G∗(H)

Figure 3.3.: Transformation of a hypergraph H (left) to its bipartite graph representationG∗(H)
(middle) and the corresponding Lawler network TL(H) (right).

pairs are scheduled. When a re�nement �nds an improvement on a block-pair, both are set

active in the next round. The algorithm terminates when there are no more active blocks.

As re�nement algorithm, any two-way technique can be used, like the FM-algorithm or a

�ow-based re�nement.

3.2.2. Flow-Based Refinement for Hypergraphs

To use a �ow-based algorithm for the re�nement of a hypergraph partition, parts of the hyper-

graph need to be transformed to �ow networks. The problem of �nding a minimum (s, t)-cutset

of a hypergraph can be transformed to the problem of �nding a minimum (s, t)-vertex separator

in its bipartite graph representation G∗(H). In G∗(H) each node representing a hypernode of H
has in�nite capacity and each node representing a hyperedge has its edge-weight ω(e) as ca-

pacity. Lawler [32] presented a way to transform the vertex separator problem to a �ow problem:

De�nition 3.2.1 (Lawler Transformation) Let TL be the transformation of a hypergraph
H = (V ,E, c,ω) into a �ow networkTL(H) = (VL,EL, cL) proposed by Lawler [32]. TL(H) is de�ned
as follows:

• VL = V ∪
⋃
e∈E

{e′, e′′}

• ∀e ∈ E : we add a directed edge (e′, e′′) with capacity cL(e′, e′′) = ω(e)

• ∀v ∈ V and ∀e ∈ I (v) : we add tow directed edges (v, e′) and (e′′,v) with capacity
cL(v, e

′) = cL(e
′′,v) = ∞

15

3. Related Work

H TL(H)

Remove Hyperedge

e1

ω(e1)

ω(e1)

ω(e1)

TLW (H)

Figure 3.4.: Illustration of the removal of a hyperedge with two pins in the Lawler network and

replacing it with graph-edges.

By �nding a maximum �ow in TL(H) we are able to obtain a minimum cut in TL(H). The

minimum cut can be mapped directly to a minimum (s, t)-vertex separator of G∗(H) and

therefore minimizes the cut metric in H . Figure 3.3 illustrates the transformations.

In Section 2.2.2 we explained that the runtime of max-�ow algorithms strongly depends on

the number of nodes and edges in the �ow-network. Liu and Wong [34] and Heuer and Schlag

[24] improve the Lawler network by introducing and combining multiple techniques to reduce

the number of nodes and edges in the network.

[34] shows that it is possible to remove the corresponding nodes e′ and e′′ of a hyperedge with

two pins in the Lawler network. Let v and u be the hypernodes connected by the hyperedge e
in H , then two directed graph-edges (v,u) and (u,v) with the capacity c(v,u) = c(u,v) = ω(e)
are added to the �ow-network instead. The di�erent transformations are illustrated in Figure

3.4. We refer to the network that is retrieved with this method as TLW (H).
Another technique introduced by [24] is to remove hypernodes from the network and replace

them with shortcut edges. Figure 3.5 illustrates the removal of hypernode with three adjacent

hyperedges. To minimize the number of nodes and edges [24] proposes the networkTL(H ,Vd(3))
where all hypernodes with a degree less or equal than three are removed.

[24] combines the two approaches to be e�ective on all types of hypergraphs. TheTHybrid(H)
network makes use of both techniques. All hypernodes v with d(v) ≤ 3 are removed if they

are not adjacent to a hyperedge of size two. All hyperedges of size two are removed as shown

in TG(H).

3.2.3. Max-Flow-Min-Cut Refinement Framework

[24] presents a dircet k-way �ow-based re�nement algorithm that can be used in a multilevel

hypergraph re�ner system. The algorithm is executed on pairs of blocks from the quotient

graph. The block-pairs are scheduled using the active block scheduling from Section 3.2.1.2.

16

3. Related Work

H TL(H)G∗(H)

Remove Hypernode

Figure 3.5.: Illustration of the removal of a hypernode and replacing it with shortcut edges.

The algorithm �rst builds a region B around the cut of the two blocks using two BFS. Then

builds a �ow network T (HB) using the techniques from Section 3.2.2 on the subhypergraph

HB = (VB,EB) induced by the region B.

To con�gure the �ow problem, two additional nodes s and t are added to the network and

connected to some nodes of T (HB). The sets of nodes that are connected to s and t are called

S and T . To chose S and T [24] extends the de�nition of a border for hypergraphs. They

distinguish between internal border nodes

−→
B = {v ∈ VB |∃e ∈ E : {u,v} ⊆ e ∧ u < VB} and

external border nodes

←−
B = {u < VB |∃e ∈ E : {u,v} ⊆ e ∧ v ∈ VB}. The sources and sinks are

chosen to minimize the according metric. For the connectivity metric the sources S and sinks

T are chosen as follows:

• S = {e′|e ∈ I (
←−
B ∩V1)}

• T = {e′′|e ∈ I (
←−
B ∩V2)}

[23] shows that this source and sink con�guration guarantees that the re�nement does not

worsen the partition quality (λ − 1)(Πnew) ≤ (λ − 1)(Πold) and the improvement of cut value in

the �ow network equals the global improvement of the connectivity metric when applied to

the hypergraph.

To solve the max �ow-problem, multiple max-�ow algorithms like the Edmonds Karp algo-

rithm [14] or IBFS [19] are supported. In a most balanced minimum cut step a well balanced

partition with an optimal quality is chosen. Picard and Queyranne [38] showed that it is possible

to compute all minimum (s, t)-cuts of a graph with one maximum (s, t)-�ow computation. An

adjusted version of the algorithm is used to �nd a good balanced partition with the min-cut

property. If the quality or the balance is improved, the vertices are moved accordingly in the

hypergraph. The algorithm additionally uses the approach of adaptive �ow iterations from

Section 3.2.1.1. As only a minority of the max-�ow calculations lead to an improvement several

heuristics are used to abort unpromising �ow executions and speed up the algorithm.

17

3. Related Work

Gottesbüren [21] further improved the �ow based re�nement algorithm, by solving a se-

quence of incremental maximum �ow problems directly on the hypergraph. They add vertices

to the �ow problem dynamically till a partition induced by the max �ow calculation satis�es

the balance constraint. The algorithm also uses the active block scheduling technique and is

executed on block-pairs that correspond to edges of the quotient graph.

18

4. Parallel Flow-Based Refinement
Framework

In Section 3.2.2 we presented a �ow-based re�nement algorithm for multilevel hypergraph

partitioning. In this Chapter we will introduce techniques to parallelize the algorithm for a

shared-memory environment. The presented techniques will be integrated in the Mt-KaHyPar

framework introduced in Section 3.1.3. In general, our approach is to schedule pairwise �ow-

based re�nements of adjacent blocks in parallel. We will �rst give a brief introduction to our

parallel framework and how it interacts with the di�erent scheduling approaches. We will

then present multiple scheduling techniques, starting with a simple approach scheduling only

independent block-pairs. We will then loosen the restriction and allow multiple max-�ow

re�nements on one block, to improve the scaling. We present several techniques to handle the

problems coming with this and to improve the partition quality of the results.

4.1. AlgorithmOverview

In this Section we will introduce the general framework of our algorithm. We will present the

work�ow of our �ow-based re�nement, that is executed on each level of the multilevel-hierarchy.

We show where and how parallelism is used to speedup the algorithm.

The basis of our parallel algorithm is the �ow-based re�nement technique by Heuer and

Schlag [24] presented in Section 3.2. First, we construct the quotient graph , containing an

edge between each adjacent pair of blocks in the partition. With all the block-pairs we execute

the active block scheduling strategy from Section 3.2.1.2. On each block-pair we execute the

adaptive �ow iterations technique presented in Section 3.2.1.1. An iteration includes growing a

region around the cut between the involved blocks, building the corresponding �ow-network,

calculating the maximum �ow and �nding the most balanced minimum cut induced by the

maximum �ow. If a �ow calculation found an improvement, the moves are applied to the

hypergraph and the size of the region is doubled for the next round of �ow-based re�nement

on the same blocks. If no improvement was found, the size of the region is halved in the next

round until its size of the region is again equal to the original/starting region.

For k > 2 the quotient graph can contain multiple edges and therefore induce multiple

pairwise �ow re�nements per round of the active block scheduling strategy. Our extension

of the algorithm is to execute as much as possible of this pairwise re�nements in parallel. To

decide which block-pairs should be executed in parallel we use a scheduling-interface. The

work�ow of our framework and the interactions with the scheduler are illustrated in Figure 4.1.

At the beginning of each round of the active block scheduling algorithm, the block-pairs that

are initially executed in parallel are obtained from the scheduler. After one of these pairwise

19

4. Parallel Flow-Based Re�nement Framework

build quotient graph

Scheduler

initial block-pairs

build
flow-region

build
flow-network

calculate
max-flow

get
MBMC

has next round?

schedule
next blocks

Flow Refinement

A
ct

iv
e

B
lo

ck
S
ch

ed
u
li
n
g

R
ou

n
d

Adaptive Flow
Iterations on a
block-pair

execute parallel

Figure 4.1.: Illustration of the framework for our parallel �ow re�nement showing interactions

with the scheduler.

20

4. Parallel Flow-Based Re�nement Framework

re�nements terminates, the scheduler decides which block-pairs should be scheduled next. We

repeat this process for each round of the active block scheduling.

In the following we will introduce multiple scheduling techniques that implement our

scheduling interface. Scheduling multiple �ow problems in parallel requires that they satisfy

some constraint, such that they full�l the cut property if we apply the resulting min-cuts to the

partition. Section 4.2 will introduce our central lemma that multiple �ow problem must satisfy

if we schedule them in parallel. The Sections 4.2.1 - 4.2.3 discuss parallel scheduling techniques

that are derived from our lemma. In Section 4.2.4 we further improve the scaling by removing

unnecessary synchronization steps from the algorithm. Section 4.2.5 covers how we need to

modify the most balanced minimum cut heuristic, to be able to execute it in parallel.

4.2. Parallel Flow Calculations

In this Section we will introduce our di�erent scheduling techniques. We will show when

we can safely execute two �ow calculations in parallel and then derive the actual scheduling

techniques from that.

To formally describe the �ow calculations, we will introduce some terminology that is also

used in [24]. We de�ne HB = (VB,EB) as the subhypergraph of H = (V ,E) induced by a corridor

B computed in the bipartition Πi,j = (Vi ,Vj). A hypergraph �ow problem F (B) consists of a �ow

problem NB = (VB, EB) derived from HB and two additional nodes s and t that are connected

to some nodes v ∈ VB . A �ow problem has the cut property if the resulting min-cut bipartition

ΠF (B) induced by the max-�ow calculation of HB does not increase the (λ − 1)-metric when

applied to H . This is the case, when applying the moves induced by ΠF (B) to the hypergraph

results in a less or equal cut value than cutH (Πi,j). Additionally we de�ne the set of all border

nets

←→
EB = I(

←−
B) ∩ I(

−→
B) for a �ow problem F (B).

To ensure that all �ow problems satisfy the cut property in [24], all border nets that contain

a pin, which is an external border node and is contained in one of the involved blocks, are

added to the source resp. the sink set:

De�nition 4.1. (Sources and Sinks) For a �ow problem F (B) induced by the region B on the
block pair (Vi ,Vj) with the set of border nets

←→
EB and the external border nodes

←−
B , the source set S

and the sink set T are de�ned as follows:

• S = e′ for all e ∈
←→
EB : e ⊂

←−
B ∩Vi

• T = e′′ for all e ∈
←→
EB : e ⊂

←−
B ∩Vj

This ensures that each �ow problem satis�es the cut property if executed sequential. In

parallel, one �ow problem can move external border nodes of another �ow problem which

might change S and T . This can cause a violation of the cut property for a �ow problem as

illustrated in Figure 4.2. At the beginning (top-left) we have a fraction of a hypergraph that

shows three blocks V1,V2 and V3. On the block-pair (V1,V2) a �ow calculation is executed. The

region B1,2 induced by the calculation is indicated in blue. v1 even though it is adjacent to the

cut net e1 is not part of the region. This is possible as it can be part of another region what we

will show later. v1 therefore is part of

←−
B ∩V1 and e1 is part of the source set. On the bottom left

21

4. Parallel Flow-Based Re�nement Framework

V1 V2

V3

B1,2

←−
B

v1

e1

←−
B ∩ V1 = {v1}
S = {e1}

V1 V2

V3

←−
B

v2

v3

V1 V2

e1

v3v2

s

V1 V2

e1

v3

v2

s

moving v2 from V2 to V1 in

V1 V2

V3

v1

v2 v3

build flow-network

move v1 from V1 to V3
performed parallel

move v2 from V2 to V1 on H
G∗

HB1,2
with ∆cut = 0 with ∆(λ− 1)H = ω(e1)

B1,2

v2

v3

v1
e1

e1

Figure 4.2.: Illustration of the problem with the modi�cation of the source and sink con�gura-

tion in parallel. The concurrent move of v1 causes a violation to the cut property of

the �ow calculation on block-pair (V1,V2).

22

4. Parallel Flow-Based Re�nement Framework

a move induced by the max-�ow min-cut calculation is illustrated. The move is shown in the

bipartite graph representation corresponding to the �ow-network. The move has no impact

on the local cut value of the graph. Parallel another �ow calculation on the block-pair (V1,V3)

moves v1 from V1 to V3 (top-right). In this partition v1 would no longer be part of

←−
B ∩V1 and

e1 would not become a source node in the �ow graph of (V1,V2), but the sources can not get

updated in the middle of the calculation. On the bottom right the local move is submitted to

the hypergraph, but has a negative impact on the partition quality. Thus the cut property of

the �ow problem F (B1,2) could be violated.

The following lemma de�nes properties that two �ow problems must satisfy such that both

full�l the cut property if executed in parallel:

Lemma 4.2. Let Π = {V1, . . . ,Vk} be a k-way partition of a hypergraph H = (V ,E) and F (Bi,j)
and F (Bk,l) two hypergraph �ow problems induced by the corridors Bi,j and Bk,l computed in the
bipartitions Πi,j and Πk,l with s and t connected to vertices as de�ned in De�ntion 4.1. Applying
the resulting min-cut bipartitions ΠF (Bi, j) and ΠF (Bk,l) on Π improves the (λ − 1)-metric in H if

1. Bi,j ∩ Bk,l = ∅ and

2. if {i, j} ∩ {k, l} , ∅ then
←−
B i,j ∩ Bk,l = ∅ (or vice versa).

Proof. Bi,j ∩ Bk,l = ∅ ensures that both �ow problems consist of disjoint sets of vertices.

Therefore they never move the same vertex. For both �ow problmes, F (Bi,j) and F (Bk,l), if

executed sequential , [23] already showed that the cut property is satis�ed if the source and sink

is con�gured as de�ned in De�ntion 4.1. Therefore, we have to show that each source and sink

con�guration is not changed by the other �ow calculation. The source and sink con�guration

of F (Bi,j) depends on the sets

←−
B i,j ∩Vi and

←−
B i,j ∩Vj . To a�ect the sources and sinks of F (Bi,j),

a move induced by F (Bk,l) needs to move a vertex in or out of these volumes. The same holds

vice versa. A �ow calculation can only induce a move of a vertex that is contained in its corridor.

If the block-pairs of the �ow problems are disjoint ({i, j} ∩ {k, l} = ∅), the moves induced by

the �ow problems can not include a block of the other �ow problem and therefore the source

and sink con�gurations of the other problem are not a�ected.

If the �ow problems share a block, we additionally have to show that condition 2.) ensures

that

←−
B i,j ∩Vi and

←−
B i,j ∩Vj are not modi�ed. To move a vertex that is contained in the external

border nodes of the other �ow problem, an external border node must be part of the corridor

of the �ow problem, that induces the move. Condition 2.) ensures that none of the external

border nodes of one �ow problem are contained in the other one. Therefore the external border

nodes of both �ow problems can not change their blocks. Thus the sets

←−
B i,j ∩Vi and

←−
B i,j ∩Vj

are not e�ected by moves induced by F (Bk,l) and vice versa. The source and sink con�guration

of F (Bi,j) and F (Bk,l) are therefore not in�uenced by each other and both cut properties are

still satis�ed when executed in parallel.

With the help of lemma 4.2 we can determine block-pairs on which we can execute �ow

problems in parallel while still maintaining their cut property. The easiest way to satisfy the

conditions of lemma 4.2 is to schedule only disjoint block-pairs in parallel. By doing this

{i, j} ∩ {k, l} = ∅ always holds between two �ow calculations F (Bi,j) and F (Bk,l). If we want

to schedule more than one �ow problem on a block, we need to modify our �ow problems

23

4. Parallel Flow-Based Re�nement Framework

to make sure that

←−
B i,j ∩ Bk,l = ∅ or

←−
B k,l ∩ Bi,j = ∅ holds for all �ow calculations F (Bi,j) and

F (Bk,l) that are executed in parallel. We will start by presenting a simple scheduling technique

that only executes disjoint block-pairs in parallel.

4.2.1. Parallel Flow Calculations on Disjoint Block-Pairs

As described before, by only scheduling disjoint block-pairs in parallel, lemma 4.2 ensures the

cut property for all �ow problems. Therefore our �rst approach aims to schedule a maximum

number of pairwise �ow-based re�nement between blocks that form a matching in the quotient

graph. The algorithm starts by computing an initial matching M greedily. All edges (Vi ,Vj) ∈
M are eligible for parallel execution according to Lemma 4.2. Once a pairwise �ow-based

re�nement terminates, our scheduler removes the corresponding edge from M and tries to

extend M with the next non-scheduled block-pair. To guarantee that the edges in M form

a matching in the quotient graph, our algorithms maintains a vector of size k that indicates

whether a block is part of the current matching M or not. Read and writes to that vector are

protected via an exclusive lock. The �rst approach of our parallel algorithm is called Matching
Scheduling.

4.2.2. Parallel Flow Calculation on All Block-Pairs

The disadvantage of our �rst approach is that we can only schedule disjoint block-pairs in

parallel, which unnecessarily restricts scalability, if the number of blocks is rather small. The

advantage of the matching scheduling is, that lemma 4.2 guarantees us the cut property for all

scheduled �ow problems without further modi�cation to them. But according to lemma 4.2,

all block-pairs are feasible for a parallel execution. When two block-pairs share a block, we

additionally need to modify our �ow problems to still meet the conditions of lemma 4.2.

Typically, the vertices that are involved in a pairwise �ow-based re�nement are only a

fraction of the vertices contained in the corresponding blocks. Therefore, our next approach

aims to release the matching restriction and tries to schedule �ow problems with disjoint

vertex sets. In the following, we will present a postprocessing technique for the �ow regions,

that ensures the cut property of all �ow problems that run in parallel according to lemma

4.2. However, the proposed approach can worsen solution quality. Therefore, we additionally

implement a variant that does not aim to satisfy the cut property and show how to handle

con�icting moves.

4.2.2.1. Hypernode Ownership

To construct the region of a �ow problem we start two BFS around the cut of both involved

blocks. To make sure that two di�erent �ow calculations do not move the same vertices, we

need to make sure that both regions induced by the calculations are disjoint sets of hypernodes.

To ensure this, we use an atomic bit set of size |V |. Hypernodes are acquired by raising the

corresponding bit to one via a compare-and-swap operation. Only if a thread successfully

performs the compare-and-swap operation, the vertex is added to the region. After each

iteration of the adaptive block scheduling the hypernodes are released and a new region with a

di�erent size is grown. Unlike to the sequential algorithm it is no longer guaranteed, that a

24

4. Parallel Flow-Based Re�nement Framework

V1

V2

V3

V1

V2

V3

v1 v1

Figure 4.3.: Examples of a hypernode being adjacent to cut nets between multiple block-pairs.

BFS starting with the same vertices, always acquires the same region. Thus the regions built in

parallel can di�er from the regions built sequential.

The two BFS are initialized with all hypernodes adjacent to cut-nets connecting both blocks

involved in the �ow calculation. When we execute multiple �ow calculations on one block, we

can not guarantee that all of these nodes are included in the region. As illustrated in Figure 4.3,

a hypernode can be adjacent to cut nets of multiple block-pairs. In both examples v1 would be

element of the initial hypernodes to start the BFS for B1,2 and for B1,3. As previously stated a

hypernode can only be owned by one �ow calculation. Such hypernodes are acquired according

to the "�rst come, �rst serve" principle.

4.2.2.2. Building the Flow-Problems

Without further modi�cation to the �ow problems, we can no longer guarantees the cut

property for our �ow problems with lemma 4.2. The problem is that two �ow problems that

share a block, can in�uence the source and sink con�guration of each other when executed in

parallel. In the following we will present two di�erent approaches to deal with this problem.

The fact that the regions are disjoint vertex sets is not su�cient to guarantee the cut property.

Additionally we need to make sure, that if two �ow problems share a block, that no �ow problem

includes an external border node of the other �ow problem. To achieve this we exclude some

vertices from the regions before building the �ow problem. Per de�nition of the external border

nodes, it is su�cient to exclude all external border nodes of �ow problems that are currently

running, when we build a new �ow problem. By doing this we also ensure that a running �ow

problem does not include an external border node of our new problem.

To formally describe all vertices, that we need to exclude, we de�ne B∗ as the set of all

regions currently induced by a �ow calculation. For a region Bi,j we de�ne B+(Bi,j) := {Bk,l ∈
B∗ \Bi,j : {k, l} ∩ {i, j} , ∅} as all regions that share a block with Bi,j . Further we de�ne the set:

←−
B B+(B) :=

⋃
B′∈B+(B)

←−
B B′

For a region B the set

←−
B B+(B) contains all vertices, that are currently external border nodes

of �ow problems that share a block with B. We ensure the cut-property de�ned in lemma 4.2

by removing all vertices contained in B ∩
←−
B B+(B) from B. The �ow problem induced by B

therefore does only contain the vertices B \ B ∩
←−
B B+(B) instead of all vertices of B.

25

4. Parallel Flow-Based Re�nement Framework

We remove the vertices after growing the region and before building the �ow network. With

this modi�cation and lemma 4.2 follows that all �ow problems still have the cut property even

in a parallel execution. A problem with the proposed approach is that growing a region and

building the according �ow network are not atomic operations. We therefore do not have a

strict "happens before" relation between the steps. But for a single �ow problem, we can always

guarantee that its region is fully grown, when it begins to remove vertices from it. Considering

two �ow problems executed in parallel, the �ow problem reaching the vertex removal step

later, will therefore always remove vertices after both regions are fully grown. This makes

sure that the conditions of lemma 4.2 are always satis�ed and both �ow problems have the cut

property. When both �ow problems remove vertices concurrently, it is possible that the �ow

problem, that reaches the hypernode removal step �rst, unnecessarily removes vertices.

We determine the vertices, that need to be excluded from a region B, by iterating over all

hypernodes v ∈ B and check for every adjacent hyperedge e ∈ I (v), if it contains a pin that is

acquired by another calculation. Per de�nition of the external border nodes, such an edge exists

for each vertex that we have to exclude from the �ow problem. All pins of such an hyperedge,

that are part of the region, need to be excluded from the �ow network. To realize this, we need

to store for each hypernode by which �ow calculation it is owned. More speci�c other �ow

calculations need to be able to �nd out by which block-pair a hypernode is owned to check if

they share a block. We realize this by considering the nodes with an atomic integer instead of

a bit. Zero indicating the vertex is not owned by a �ow calculation and ik + j indicating it is

owned by the block-pair (Vi ,Vj). We guarantee correctness via compare-and-swap operations.

4.2.2.3. Scheduling Multiple Flow Calculations on One Block

Now we present how the actual scheduling is done to minimize the side e�ects while simul-

taneously maximizing the degree of parallelism. To schedule a new block-pair, we introduce

a new method called getMostIndependentEdge. To schedule a new block-pair we keep track

of the number of �ow calculations scheduled on each block. Let t(Vi) be the number of �ow

calculations currently running that includeVi . To �nd the most independent block-pair (or edge

of the quotient graph), we iterate over all block-pairs that still need to be scheduled in this

round and schedule the one that minimizes the following function:

dependence(Vi ,Vj) =max(t(Vi), t(Vj))

The number of threads available for the application is available during run-time as an

input parameter. To maximize the utilization of the hardware, we initially schedule as many

block-pairs as we have threads available. To determine these block-pairs, we us our new

method. When a calculation terminates we schedule exactly one new, if available, using the

getMostIndependentEdge method again. By doing this we maximize the parallelism while

simultaneously minimizing the side e�ects between the calculations. The new scheduling

approach is called All-Block Scheduling.

4.2.3. An Optimized Approach for Parallel Flow Calculations on All Block-Pairs

With the matching scheduling approach we can execute independent �ow problems without

further modi�cation, but limit the scalability. With our second approach we improved the

26

4. Parallel Flow-Based Re�nement Framework

V1 V2

V3

B1,2

←−
B

v1

e1

←−
B ∩ V1 = {v1}
S = {e1}

V1 V2

V3

B1,2

←−
B

e1

v1

v2 v3

V1 V2

e1

v3v2

s

V1 V2

e1

v3

v2

s

moving v2 from V1 to V2 in

v2

v3

V1 V2

V3

e1

v1

v2

v3

build flow-network

move v1 from V1 to V3
performed parallel

move v2 from V1 to V2 on H
G∗

HB1,2
with ∆cut = 0 with ∆(λ− 1)H = −ω(e1)

Figure 4.4.: Illustration of a possible positive impact by the modi�cation of the source and sink

con�guration in parallel. The concurrent move ofv1 leads to an improvement of the

connectivity metric in H when the calculation on (V1,V2) applies its move, despite

the move having no impact on the cut value in G∗HB
1,2

.

scalability, but during test experiments it was observed that it has a noticeable negative impact

on the partition quality. We remove more vertices than actually necessary. But it is impossible

to predict which vertices will actually be moved by other �ow calculations in parallel. It would

be desirable to have an approach that combines the best of both approaches.

The reason why we excluded some vertices from the �ow network, was that we lost the

guarantee that our �ow problems satisfy the cut property. In Figure 4.2 we presented an

example where this had a negative impact on connectivity metric of the hypergraph. In Figure

4.4 we see an example where this problem can actually have a positive impact on the global

partition quality. It shows a slightly di�erent scenario. Note that the move performed by the

calculation on (V1,V3) (top-right) worsens the connectivity of the partition in our picture. Such

a move is still plausible as we only consider a fraction of the hypergraph and the move could

remove a heavier edge ,that is not displayed, from the cut. The move of v2 has no impact on the

cut value of the �ow network, but can still be performed to improve the balance. Applying the

move to the hypergraph (bottom-right) improves the connectivity metric of the hypergraph by

ω(e1).

27

4. Parallel Flow-Based Re�nement Framework

Max-flow calculation

cut in F
improved?

yes

no
α = α

2

apply
moves

∆(λ− 1)H

revert
moves

> 0

= 0

α = min(2α, α′)

set blocks active

< 0

a > 1

a = 1

Figure 4.5.: Adapted work�ow of an adaptive �ow iteration without removing vertices. After

the moves are applied to the hypergraph, we determine the real impact on the

connectivity metric and update the parameters accordingly. If the moves had a

negative impact, we revert them.

Our next approach is therefore to build the �ow network with all hypernodes of the region

and assume that the side e�ects will overall have a less negative impact than removing the

vertices. By doing this we give up the cut property of the �ow problems and have to handle

the con�icts explicitly. The main problem is that we can no longer decide if we found an

improvement as before, since parallel �ow calculations can in�uence each other. Moves were

only applied if the cut value was reduced. Also the update of the adaptive �ow iteration variable

α and if we set the involved blocks active in the next round of the active block scheduling

depends on the fact that an improvement was found or not.

To solve this, we calculate the actual impact on the connectivity of the partition when

applying the moves to the hypergraph. Moving a node v in our framework includes an atomic

update to the Φ values of all incident nets e ∈ I (v) and all blocks Vi ∈ Π. We can calculate the

actual gain of a move by tracking if a move reduced a Φ(e,Vi) value of an adjacent hyperedge

to zero or increased it to one. By adding up the gain values of all applied moves we obtain

the impact of our �ow calculation. As the incident nets are locked one at a time it is possible

that this scheme attributes the contributions to a move executed in parallel by another thread.

But this happens much less frequently than two �ow problems in�uencing each other and the

consequences of one inaccurate gain are acceptable. We therefore treat the value obtained

with this method as the real impact of the moves. We then update α and set the blocks active

according to the obtained value. It is possible that we have a negative impact on the connectivity.

In this case we reverse our applied moves. If the impact is zero, we do not reverse the moves to

minimize side e�ects with other calculations. In Figure 4.5 the new procedure of an adaptive

�ow iteration is illustrated.

4.2.4. Removing Synchronization-Steps

Our last optimization technique tackles a di�erent problem of the algorithm that comes with

the active block scheduling approach. Previously, we only executed a single round of the

28

4. Parallel Flow-Based Re�nement Framework

Time

p1

p2

p3

p4

p1

p2

p3

p4

Figure 4.6.: Illustration of the negative e�ect that multiple synchronization steps can have on

the running time.

active block scheduling in parallel. In each round we process each block-pair of the quotient

graph exactly once. The end of each round worked like a synchronization step. In Figure

4.6 the negative e�ects that multiple synchronization steps can have on the running-time

of an algorithm are illustrated. The blue and green rectangles illustrate work-packages (e.g.

the �ow calculation on a block pair) that are executed in parallel. The red lines represent

synchronization steps. In both cases the same amount of work is done, but one synchronization

step less signi�cantly reduces the running-time.

Often synchronization steps are inevitable, as some things can only be done sequentially. In

our case the only thing that is done sequentially between two rounds is �nding all block-pairs

that must be executed in the next round and select the ones that initially should be executed in

parallel. The goal of the last optimization is to remove the synchronization steps between the

rounds of the active block scheduling by executing all calculation in as long as there are active

blocks. We call this technique No-Sync. An important note is that all �ow calculations are still

assigned to a speci�c round of the active block scheduling to keep the bene�ts of the technique.

A problem coming with this approach is that we do not know all block-pairs, that need to

be executed, at the beginning of the parallel execution. We de�ne the set R that contains all

block-pairs, that are currently executed, and X that contains all block-pairs that still need to be

executed. Which block-pairs need to be executed in a round depends on the results of the last

round. Therefore block-pairs need to be added dynamically to X . We perform a �ow-based

re�nement on two blocks if at least one of both blocks is active in this round. Previously we

stored the status of all blocks in a vector containing an entry for each block. After determining

which edges need to be executed in a round, we reseted the vector, setting all blocks inactive.

As we now want to execute multiple rounds in parallel, we can never safely reset the vector.

29

4. Parallel Flow-Based Re�nement Framework

Therefore we store the information for active blocks in a two-dimensional data-structure a that

is growing with each round. a(x ,Vi) = true indicating that Vi is active in round x .

When a block-pair (Vi ,Vj) is set active in round x we determine if we have to add new

block-pairs to X . The only dependency we have between �ow calculations is that we can not

schedule multiple calculations on the same block-pair. We de�ne N (Vi ,x , j) ∪ N (Vj ,x , i) as the

set of block-pairs we add to X when we set (Vi ,Vj) active in round x with:

N (Vi ,x , j) =
i−1⋃
z=1

{(Vz,Vi) : z , j, (Vz,Vi) < X ∪ R}∪

k⋃
z=i+1

{(Vi ,Vz) : z , j, (Vi ,Vz) < X ∪ R}

To make sure (Vi ,Vj) is also scheduled in the next round we add it to X after the �ow

calculation is done. With this technique we nearly realize the sequential active block scheduling.

All block-pairs that would be scheduled in the next round caused by the activation of our blocks

are either added to X , are already in X or are currently running (∈ R). Meaning they will be

executed in the future or are already running. If the block-pair is currently running in a round

y = x − 1 the pair will be added to X again, even if no improvement was found on it. The only

scenario where an adjacent block-pair is not re�ned after �nding an improvement, is when the

block-pair is already running in a roundy , x −1 and does not �nd an improvement. We accept

this modi�cation to the algorithm as it most likely has very little e�ect on the partition-quality.

Note that the quotient graph can dynamically change, since moves can introduce new cut

nets which induce new edges between two blocks of the partition in the quotient graph. To

deal with this we consider every block-pair as an edge of the quotient graph and use one of the

speedup heuristics by [24], which aborts a �ow calculation immediately if the cut between two

blocks is smaller than a �xed threshold.

As setting the blocks active is done in parallel we need to make sure that only the �rst �ow

calculation, that is setting a block active, schedules the new block-pairs. We ensure this by

using atomic variables in a and executing a compare-and-swap operation to determine if the

block was already active. When two �ow calculations would add new block-pairs at the same

time it can happen that a block-pair is added to X twice. To prevent this we use an exclusive

lock while adding the block-pairs.

As we add block-pairs to X dynamically it is possible that at some point we have less parallel

�ow calculations available than threads, but add more block-pairs in the future. Instead of

scheduling exactly one new block-pair after a �ow calculation terminates, we therefore try to

schedule till we have as much parallel executions as threads available.

4.2.5. Parallel Most Balanced Minimum Cut

Another part of the algorithm we did not cover so far is the most balanced minimum cut heuristic.

As [24] and [39] we make use of the fact that with one maximum (s, t)-�ow calculation it is

possible to obtain all minimum (s, t)-cuts. After calculating a maximum �ow we iterate over a

number of possible minimum (s, t)-cuts and chose the one with the best balance. Heuer and

30

4. Parallel Flow-Based Re�nement Framework

Schlag [24] uses as the global imbalance of the partition imbalance(Π) =max(c(Vi)
d
c(V)
k e
− 1),Vi ∈

Π. If the best partition induced by the max-�ow calculation is feasible (imbalance(Π) ≤ ϵ)

and either improves the metric or the balance of the partition, the moves are applied to the

hypergraph. In parallel the global imbalance is additionally in�uenced by moves performed

by other calculations. We therefore have to consider the impact of multiple �ow calculations

within the same block, before applying the (s, t)-cut to the hypergraph.

As a �ow calculation on a block-pair (Vi ,Vj) only moves vertices between the involved blocks,

the only values that change and a�ect the imbalance are c(Vi) and c(Vj). In the matching

scheduling approach we can simply consider the two involved blocks in isolation, as they are

not in�uenced by other calculations. Therefore we de�ne the local imbalance of a block-pair

imbalance(Vi ,Vj) =max(c(Vi)
d
c(V)
k e
− 1,

c(Vj)

d
c(V)
k e
− 1).

For the other two scheduling approaches, that allow more than one calculation on a block,

additional work is required. The values of c(Vi) and c(Vj) can be in�uenced by other calculations

in parallel. As we have an ownership of hypernodes by a �ow calculation, the calculation

also owns a fraction of the part-weight c(Vi) of a block. For a �ow calculation on a block-

pair (Vi ,Vj) with the region Bi,j we de�ne the acquired part weights qi(Bi,j) := c(Vi ∩ Bi,j) and

qj(Bi,j) := c(Vj ∩ Bi,j). This is the fraction of the part weight that is controlled by the �ow

calculation on (Vi ,Vj) and can not be in�uenced by other calculations. To determine the local

balance between two blocks we additionally need the values of the not acquired part weights
ni(Bi,j) := c(Vi \ Bi,j) and nj(Bi,j) := c(Vj \ Bi,j). This fraction of the block-weight can be owned

and changed by other calculations in parallel.

To be able to obtain the acquired and not acquired part weights in parallel we introduce

a two dimensional data structure W . For every block i , W (i, i) contains the fraction of the

block weight that is currently not owned by any calculation. When we build a region Bi,j , we

update the valuesW (i, j) = qi(Bi,j) andW (i, i) =W (i, i) −qi(Bi,j) for both blocks. Therefore the

acquired part weights of a block i are stored inW (i, j) = qi(Bi,j), j ∈ (1, ...,k). The not acquired

part weight for a block-pair (Vi ,Vj) can be obtained as follows:

ni(Bi,j) =
∑

x∈(1,..,k)
x,j

W (i,x)

nj(Bi,j) =
∑

x∈(1,..,k)
x,i

W (j,x)

To protect the parallel access toW , we use a read-write lock for each block. We obtain the not

acquired part weights before we execute the most balanced minimum cut heuristic. If a feasible

partition is found and the moves are applied to the hypergraph, the calculation releases the

acquired weights and updates the values inW accordingly. To make sure no other calculation

in�uenced the balance and the imbalance calculations done during the most balanced minimum

cut are still correct, we can check if the not acquired part weight still equals our earlier obtained

value. If the not acquired part weight changed during the most balanced minimum cut step, we

could restart the procedure. With that technique we are able to guarantee a balanced partition,

31

4. Parallel Flow-Based Re�nement Framework

part-weight

acquired part-weight not acquired part-weight

fixed part-weight movable part-weightb
lo
ck

i
b
lo
ck

j

part-weight

acquired part-weight

fixed part-weight movable part-weight

not acquired part-weight

Figure 4.7.: Fractions of the part-weight used by the most balanced minimum cut calculations.

The movable part-weights and the not acquired part-weights can be in�uenced by

other calculations executed in parallel.

but the possible repetition of the most balanced minimum cut step could have negative impact

on the running time. As our framework includes an rebalancing step after the re�nement, we

omit the check after the most balanced minimum cut and accept the possibility of a temporarily

imbalanced partition.

Additionally we introduce another optimization to the most balanced minimum cut process.

We can further split the acquired fraction of the part weight into �xed part weight and movable
part weight. Fixed meaning here the part weight that is corresponding to vertices that will

remain in their block in every minimum (s,t)-cut. We can determine these by checking which

nodes are reachable from the source resp. the sink in the residual graph after the maximum �ow

calculation. For each vertex ,that is part of the movable part weight, there exists a minimum

(s,t)-cut where the vertex has to change its block. The di�erent fractions of the part weights are

illustrated in Figure 4.7. After determining all �xed hypernodes in the residual graph, we can

check if one of the �xed part weights added to the not acquired part weight already exceeds

(1 + ϵ)dc(V)k e. If that is the case, we can abort the most balanced minimum cut, because no

minimum (s, t)-cut induces a feasible partition.

As we can never safely compute the global balance of our partition in parallel, determining

if applying a minimum (s, t)-cut to the hypergraph improves the balance is di�cult. We

therefore only calculate a most balanced minimum cut if the (s, t)-cut induces a strictly positive

improvement to the cut value in the �ow network and not to only improve the balance.

32

5. Experiments

In this Chapter we will evaluate the performance of the presented parallel max-�ow-min-cut

re�nement technique. First, we will compare the di�erent scheduling techniques and �nd

an optimal con�guration for our parallel �ow-based re�nement. Then we will combine the

�ow-based re�nement with other re�nement algorithms implemented in Mt-KaHyPar and

compare the di�erent combinations in running time and quality. We will further inspect the

scaling of our algorithm for di�erent numbers of threads. Finally we will compare our optimal

setup with other state of the art hypergraph partitioning systems.

5.1. Instances

To evaluate our algorithms, we use multiple benchmark sets. Our full benchmark set (A) is

the set from Heuer and Schlag [25]. It contains 488 hypergraphs from di�erent application

areas. The instances are derived from the ISPD98 VLSI Circuit Benchmark Suite [2], the DAC

2012 Routability-Driven Placement Contest [43], the SuiteSparse Matrix Collection [10] and

the international SAT Competition 2014 [4]. For parameter tuning experiments we use a

representative subset of the full benchmark set containing 100 instances (set B). For our scaling

experiments we use a random subset (set C), of 30 hypergraphs, from a benchmark set originally

containing 90 large hypergraphs.
1

5.2. System andMethodology

For our experiments we use a machine consisting of two Intel(R) Xeon(R) E5-2683 clocked at 2.10

GHz with 16 cores each and 504 GB main memory. In the following we refer to this machine

as P1. For the comparison with other sequential hypergraph partitioning systems on the full

benchmark set, we used nodes of a cluster with Intel Xeon Gold 6230 (2 Sockets with 20 cores

each) clocked at 2.1 GHz with 96 GB main memory (P2). For the comparison with the parallel

hypergraph partitioner Zoltan we used an AMD EPYC ROME 7702P with one socket and 64

cores clocked at 2.0-3.5 GHz and 1025GB main memory (P3). The executed code is written in

C++17 and compiled using g++9.2 with the �ags -O3 -mtune=native -march=native. We use

the Intel Thread Building Blocks library as parallelization library [44].

To indicate a parallel execution with multiple threads, we add a su�x with the number of

threads to the algorithm description in the plots. For sequential partitioners we omit the su�x.

For each hypergraph we execute multiple runs with di�erent k . For each k we additionally

execute multiple seeds. To aggregate the running time and the solution quality for a hypergraph

and a speci�c k , we use the arithmetic mean over all seeds. To further aggregate over multiple

1
The full set can be found under http://algo2.iti.kit.edu/heuer/alenex21/ (Set B).

33

http://algo2.iti.kit.edu/heuer/alenex21/

5. Experiments

instances (hypergraph andk), we use the geometric mean for the running time and the harmonic

mean for speedups. In the comparison with other partitioners, we used a time limit of 8 hours

for a single execution. We use U to indicate that an instance exceeded the time limit and 7

when all seeds produced an imbalanced partition.

To compare the solution quality of di�erent algorithms, the performance pro�les introduced

by [12] are used. For a set of algorithmsA and a set of instances I, qA(I) describes the quality

of an algorithm A ∈ A on an instance I ∈ I. On the y-axis we plot for each algorithm the

fraction of instances, that is better than the best solution times τ , where τ is on the x-axis:

qA(I) ≤ τ ·minA′∈AqA′(I). For τ = 1 the y-value of an algorithm therefore indicates for how

many percent of the instances the algorithm produced the best solution.

For all executions our algorithm is con�gured as proposed by [23]. The adaptive �ow iteration

variable α is set to 16 and as a maximum �ow algorithm IBFS [19] is used. We always use the

most balanced minimum cut heuristic and all speedup heuristics proposed by [23]. As objective

function we use the connectivity metric and an imbalance parameter of ϵ = 0.03.

5.3. Comparison of the di�erent Scheduling Approaches

In our �rst experiment we compare the di�erent scheduling techniques and optimizations, that

we presented in Section 4. We compare the matching scheduling (match) and the all-blocks

scheduling (all-blocks). The all-blocks scheduling is con�gured with the optimization described

in Section 4.2.3 (Opt) and the no-sync approach from section 4.2.4 (S). A + in the algorithm de-

scription is indicating that the corresponding optimization was used. E.g. all-blocks(+Opt,-S)

refers to our all blocks scheduler with the optimization from Section 4.2.3 and without the

no-sync approach. We evaluate the performance of our scheduling algorithm by executing

them on our subset (B) using machine P1 and 16 threads. We executed 5 seeds for every instance

and every k ∈ {4, 8, 16, 32, 64}.
Figure 5.1 shows the di�erent running times of the algorithms per k as well as their geometric

mean. As expected, is the matching scheduling slower than the other approaches, because due

to the matching restriction, we potentially schedule less block-pairs in parallel. The di�erence

is more signi�cant for smaller k . As there are overall less block-pairs to execute in parallel,

the matching restriction has a larger impact. For larger k the running time of the matching

scheduling is similar to the other algorithms. For larger k , we fully utilize all cores even with

the matching scheduling and the advantages of scheduling multiple calculations on one block

become less relevant.

When we compare the all-blocks scheduling with and without the no-sync optimization, we

see that removing the synchronization steps between the rounds of the active bock scheduling,

overall improved the running time. The impact is smaller than removing the matching restric-

tion, but it is also more signi�cant for smaller k . The more block-pairs we schedule in parallel,

the less impact the synchronization steps seem to have on the overall running time.

When we examine the impact of removing vertices in terms of running time, the results

di�er for increasing k . For k = 4 removing the vertices is slower. For k = 8 and k = 16 we

observe the opposite and for larger k the running times become nearly equal.

Based on the running times, our best scheduling con�guration is the all-blocks scheduling

with or without removing vertices. To determine the best con�guration for our parallel

34

5. Experiments

2.72 2.71 2.41 2.48 2.17

3.11 2.15 2.33 1.94 2.02

2.92 1.98 2.17 1.82 1.98

2.76 2.22 2.26 2.09 2.17

2.92 2.64 2.66 2.6 2.63

2.33 2.24 1.97 2.03 1.76

2.46 1.51 1.7 1.32 1.41

2.02 1.12 1.29 0.98 1.11

1.48 0.98 1.03 0.87 0.95

1.11 0.85 0.87 0.81 0.84

Total Time Flow Re�nement

k
:

4
k

:
8

k
:

1
6

k
:

3
2

k
:

6
4

matc
h

all-
bloc

ks(-
Opt,

-S)

all-
bloc

ks(+
Opt,

-S)

all-
bloc

ks(-
Opt,

+S)

all-
bloc

ks(+
Opt,

+S) matc
h

all-
bloc

ks(-
Opt,

-S)

all-
bloc

ks(+
Opt,

-S)

all-
bloc

ks(-
Opt,

+S)

all-
bloc

ks(+
Opt,

+S)

0

10
0

10
1

10
2

0

10
0

10
1

10
2

0

10
0

10
1

10
2

0

10
0

10
1

10
2

0

10
0

10
1

10
2

R
u

n
n

i
n

g
T

i
m

e
[s
]

Figure 5.1.: Running times per k and their geometric mean values for the di�erent scheduling

approaches and optimization techniques presented in Chapter 4.

35

5. Experiments

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
match
all-blocks(+Opt,-S)
all-blocks(+Opt,+S)

all-blocks(-Opt,+S)
all-blocks(-Opt,-S)

10 100 7U

Figure 5.2.: Comparison of the partition quality for the di�erent scheduling approaches and

optimization techniques presented in Chapter 4.

framework, we will further inspect the in�uence of the di�erent approaches on the partition

quality. In Figure 5.2 the quality of the di�erent approaches are illustrated. As we see, not

removing the vertices, produces the best solution quality. Test experiments showed, that if we

are not removing vertices, we actually improve the solution quality by using multiple threads.

The matching scheduling remains very stable in terms of solution quality, when executed with

multiple threads.

The direct comparison of the all-blocks scheduling with both optimizations activated to the

other approaches is shown in Figure A.1. Using the all-blocks scheduling, not removing the

vertices, produces the best solution quality on 70.2% of the instances when compared directly

to removing the vertices. Not using the no-sync approach shows a slight improvement to

the solution quality in the all-blocks scheduling. Further test experiments showed that this

di�erence diminishes when we combine our �ow-based re�nement with other re�nement

algorithms. As we will show in the next section, combining the �ow-based re�nement with

other re�nement algorithms is always preferable. Due to the slight advantage in running time,

we therefore chose the all-blocks scheduling with both optimization techniques active as our

best con�guration.

5.4. Refinement Configuration

As we integrate our approach in the Mt-KaHyPar framework, we additionally need to examine

how our �ow-based re�nement works together with other re�nement algorithms. In Mt-

KaHyPar two additional re�nement algorithms, namely a variant of the classical FM algorithm

[15] and a greedy re�nement technique based on label propagation (LP) [1], are implemented.

In the following we refer to our �ow-based re�nement as Maximum Flow (MF). To determine

the best con�guration, we tested all possible combinations of the three available re�nement

algorithms. As it is preferable that an improvement is found by a faster algorithm, we always

36

5. Experiments

0.21 0.26 1.74 0.26 1.67 1.67 1.66

0.64 0.8 1.95 0.8 1.6 1.54 1.53

0.44 0.55 2.02 0.54 1.56 1.45 1.42

1.41 1.94 2.63 1.93 2.37 2.75 2.72

k: 16 k: 64

k: 2 k: 8

0

10
0

10
1

10
2

0

10
0

10
1

10
2

R
u

n
n

i
n

g
T

i
m

e
[s
]

(+LP,-FM,-MF)

(-LP,+FM,-MF)

(-LP,-FM,+MF)

(+LP,+FM,-MF)

(+LP,-FM,+MF)

(-LP,+FM,+MF)

(+LP,+FM,+MF)

Figure 5.3.: E�ect on the running time, when combining the di�erent re�nement algorithms

implemented in Mt-KaHyPar with our �ow-based approach. Illustrates the running

times per k and their geometric mean for the di�erent combinations.

execute the algorithms in the following order: (1) LP (2) FM (3) MF. For the experiment, we again

used machine P1, the subset B and executed 5 seeds for every instance with k ∈ {2, 8, 16, 64}.
We �rst consider the running times of the di�erent combinations. Figure 5.3 shows the

running times and the geometric mean per k for all combinations of the di�erent re�nement

algorithms. The �rst thing one notices, is that all combinations including the �ow-based

re�nement have a longer running time than the ones without it. For smaller k the di�erence is

more signi�cant. Another observation is that combining the �ow-based re�nement with other

algorithms reduces the running time in most cases. The best combination in terms of running

time with the �ow-based re�nement activated is using all three algorithms.

To determine the best combination of re�nement techniques, we will further inspect the

impact on the partition quality. In Figure 5.4 the solution quality of the di�erent combinations is

shown. The two best con�gurations in terms of quality are the ones including the FM-algorithm

and the �ow-based re�nement. When the FM-algorithm is active, the label propagation al-

gorithm has no impact on the solution quality. As they are both move based algorithms, the

37

5. Experiments

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(+LP,-FM,+MF)
(-LP,-FM,+MF)
(+LP,-FM,-MF)
(-LP,+FM,-MF)

(+LP,+FM,-MF)
(-LP,+FM,+MF)
(+LP,+FM,+MF)

10 100 7U

Figure 5.4.: Impact on the partition quality by the di�erent combinations of re�nement algo-

rithms. Direct comparisons can be found in the Appendix in Figure A.2

greedy label propagation approach will very rarely �nd improvements, that the FM-algorithm

can not �nd. Another observation is that the �ow-based re�nement as a single re�nement

algorithm is comparable to the greedy label propagation approach. The direct comparison

of some of the combinations is added in the Appendix in Figure A.2. Adding a move based

approach to the �ow-based re�nement signi�cantly improves the partition quality. Combining

the �ow-based re�nement with both move based approaches improves the solution quality

on 91% of the instances. Adding the �ow-based re�nement to both move based approaches

improves the best partition on 75.3% of the instances.

The conclusion of these experiments is that the �ow-based re�nement should never be used

as a single re�nement algorithm, as combining it with a move based approach signi�cantly

improves the partition quality and mostly even the running time. Even though the label

propagation has very little impact in terms of solution quality we still activate it in our best

con�guration due to a slight improvement in running time. We therefore choose (+LP,+FM,+MF)

as our best con�guration. In the following we refer to this algorithm as Mt-KaHyPar-MF.

5.5. Scalability

To determine the scalability of our algorithm, we executed it on our large hypergraph set C

using machine P1. For every hypergraph and k ∈ {2, 8, 16, 64, 128} we executed three seeds

using 1, 4, 16 and 32 threads. As our machine consists of two CPU’s with 16 cores each, for 32

threads, we additionally have NUMA-a�ects that negatively in�uence our running time. In

Figure 5.5 and Table 5.1 the speedup per k for the total running time and the �ow re�nement

are illustrated. We represent the speedup of each instance as a point and the harmonic mean

speedup over all instances with with a single-threaded running time ≥ x seconds with a line.

As expected, we have no speedup for k = 2 in the �ow re�nement. Only considering the

�ow re�nement time for k = 2, more threads actually result in a worse running time. The more

we increase k , the better the speedup of the �ow re�nement. Using 32 threads compared to

38

5. Experiments

10
2

10
3

10
4

10
2

10
3

10
4

10
2

10
3

10
4

10
2

10
3

10
2

10
3

10
2

10
3

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

1

2

4

8

16

32

Single-Threaded Running Time [s]

H
a
r
m

o
n

i
c

M
e
a
n

S
p

e
e
d

U
p
[≥

x
]

Mt-KaHyPar-MF 4 Mt-KaHyPar-MF 16 Mt-KaHyPar-MF 32

k
:

2
k

:
8

k
:

1
6

k
:

6
4

k
:

1
2
8

Total Time Flow Re�nement

Figure 5.5.: Arithmetic mean speedup per instance and the cumulative harmonic mean speedup

(lines) of the total running time and the �ow-based re�nement per k .

39

5. Experiments

k
2 8 16 64 128

4 0.98 2.60 2.74 2.91 3.06

t
h

r
e
a
d

s

16 0.88 3.58 4.75 6.12 6.49
32 0.74 3.37 4.50 5.79 6.57

Table 5.1.: Harmonic mean speedup per k of the �ow-based re�nement using 4, 16 and 32

threads.

16, barely increases the speed up for most of the instances. Only for large k and a high single

threaded running time, a signi�cant improvement compared to 16 threads is observable. The

speedup using 16 threads is mostly stable for di�erent single threaded running times.

Further experiments using the Intel Vtune Pro�ler showed that the scaling of our algorithm

is mainly limited by memory bandwidth. Using more threads, the percentage of memory bound

instructions signi�cantly increases. This prevents a better scalability of our algorithm.

5.6. Comparison with other Hypergraph Partitioner

We now compare our algorithm with other state of the art hypergraph partitioning systems.

We compare us to PaToH [7] using three di�erent con�gurations: PaToH-D (default), PaToH-

S (speed) and PaToH-Q (quality). We also use hMetis-R [28] and two variants of KaHyPar.

KaHypar-CA being a n-level partitioner using similar move based approaches as Mt-KaHyPar

and KaHyPar-HFC, that additionally uses the �ow-based re�nement by [21]. We also added

the default version of Mt-KaHypar without the �ow-based re�nement to the comparison. With

all partitioners, we executed the full benchmark set A for k ∈ {2, 4, 8, 16, 32, 64, 128}. For each

instance, we executed 10 seeds on machine P2. We executed Mt-KaHyPar-MF using 1, 10 and

20 threads and Mt-KaHyPar with 10 threads.

Figure 5.6 shows the running times for each partitioner. Considering the running times,

we categorize the partitioners in two di�erent categories. Algorithms in the �rst group are

KaHyPar-Ca, KaHyPar-HFC and hMetis-r. These partitioning systems invest a substantial

running time and aim for a high-quality solution. The second category, consisting of the three

variants of Patoh, aims for good quality-time trade-o�. We can assign our algorithm to the

second group. We achieve a better mean running time compared to Patoh-Q with 10 threads.

Incorporating the �ow-based re�nement slows down Mt-KaHyPar by a factor of two. The

detailed running times per k are added in the Appendix (Figure A.3). As expected, does our

algorithm slow down Mt-KaHyPar less for large k .

The partition quality of our algorithm does not decrease signi�cantly when using multiple

threads (Figure A.4). As it achieves a better quality than PaThoH-Q while being faster by a

factor of two and in general we can assume, that a system with 10 threads is available, we will

use Mt-KaHyPar-MF 10 to compare our algorithm with the other hypergraph paritioners in

terms of solution quality.

To better classify our algorithm, we will compare it with our de�ned categories separately.

In Figure 5.7 we compare the partitioner in both categories in terms of solution quality. On the

40

5. Experiments

13.79 2.95 2.41 1.48 1.15 5.75 0.77 27.5 47.86 91.220

10
0

10
1

10
2

10
3

10
4

10
5

7
U

Mt-K
aHyP

ar-M
F 1

Mt-K
aHyP

ar-M
F 10

Mt-K
aHyP

ar-M
F 20

Mt-K
aHyP

ar 10PaTo
H-D

PaTo
H-Q

PaTo
H-S
KaHy

Par-
Ca

KaHy
Par-

HFC
hMet

is-R

R
u

n
n

i
n

g
T

i
m

e
[s
]

Figure 5.6.: Comparison of the running time of Mt-KaHyPar-MF with other state of the art

hypergraph partitioners on the full benchmark set A using machine P2.

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
PaToH-D
PaToH-Q
PaToH-S

Mt-KaHyPar-MF 10
Mt-KaHyPar 10

10 1007U

A

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
KaHyPar-Ca
KaHyPar-HFC

hMetis-R
Mt-KaHyPar-MF 10

10 1007U

B

Figure 5.7.: Performance Pro�les comparing the solution quality of Mt-KaHyPar-MF with other

hypergraph partitioners.

41

5. Experiments

26.33 6.020

10
0

10
1

10
2

10
3

Mt-K
aHyP

ar-M
F 64

Zolt
an 64

R
u

n
n

i
n

g
T

i
m

e
[s
]

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Zoltan 64
Mt-KaHyPar-MF 64

10 1007U

Figure 5.8.: Direct comparison in terms of running time and solution quality with Zoltan using

machine P3 and 64 threads on our large hypergraph set C.

left side (A) we compare our algorithm with the partitioners aiming for a good quality-time

trade-o� and on the right side (B) we compare it to the partitioners with a signi�cantly higher

running time. In A, we can see that we outperform all partitioners with a comparable or better

running time than ours. Our algorithm produced the best solution quality for 53.1% of the

instances. The only version of PaToH being competitive is Patoh-Q, which we also outperform

in terms of running time. When compared directly to the other algorithms, MT-KaHyPar-MF

produced the best partition for 96.6%(PaToH-S), 86.6%(PaToH-D), 74.6% (Mt-KaHyPar) and

67.2% (PaToH-Q) of the instances. The plots showing the direct comparison can be found in

the Appendix in Figure A.5.

In B we can see that our solution quality is comparable to hMetis-R and KaHyPar-CA,

although they have a considerably larger running time than our algorithm. When compared

directly to hMetis-R we produced the best solution quality for 47.9% ot the instances (Figure

A.5). The clearly best algorithm in terms of solution quality is KaHyPar-HFC.

Finally we compare our algorithm with the parallel hypergraph partitioner Zoltan on

machine P3 and our large hypergraph set C. We executed 5 seeds for every instance and

k ∈ {2, 4, 8, 16, 32, 64, 128} using 64 threads. Figure 5.8 shows the direct comparison in running

time and solution quality. While Zoltan is faster by a factor of 4.37 in the mean running time,

we outperform it in terms of solution quality on 95.7% of the instances. The detailed comparison

of the running times per k can be found in Figure A.6 in the Appendix.

42

6. Conclusion

In this thesis we present a parallel �ow-based re�nement algorithm for shared-memory multi-

level hypergraph partitioning. We schedule multiple pairwise �ow calculations on adjacent

blocks of the quotient graph in parallel, to improve the running time and scalability of the

algorithm. The �ow-based re�nement by Heuer and Schlag [24] was used as a basis for our

parallel framework. For large k , we achieve a signi�cant improvement of the running time

with multiple threads. For k ≥ 16 and 16 threads, we achieve a harmonic mean speedup of 5.68

for the �ow based re�nement. The main weakness of our approach is that we only improve the

running time for k > 2, as for a bipartition only one pairwise re�nement is executed.

We work out the theoretical basis and present multiple techniques to schedule pairwise

�ow-based re�nements in parallel. We start by only scheduling disjoint block-pairs, that

form a matching in the quotient graph. To further improve the level of parallelism, we allow

multiple �ow-based re�nements on one block. We introduce a technique, which still guarantees

the correctness of the �ow-based calculations in parallel, but has a negative impact on the

partition quality. To improve the partition quality, we loosen restrictions that were necessary

for the correctness of our parallel �ow calculations and show how to ensure correctness in a

postprocessing step.

We integrate our algorithm in the shared-memory multilevel hypergraph partitioning frame-

work Mt-KaHyPar, which is currently under development. We combine the �ow-based re�ne-

ment with other implemented re�nement algorithms and call our approach Mt-KaHyPar-MF.

Incorporating the �ow-based re�nement signi�cantly improves the solution quality, while it

slows down the running time by a factor of two. As a standalone re�nement algorithm the

�ow-based re�nement does not perform well in terms of running time and partition quality

when compared to a move-based algorithm. Therefore the �ow-based re�nement should always

be used in combination with a move-based approach. For small k , our �ow-based re�nement

dominates the running time. For larger k the �ow-based re�nement has still a non neglible

impact on the running time, but the share on the total running time becomes less signi�cant.

Finally we compared our approach with other state of the art hypergraph partitioning

systems. We achieve a better solution quality on 67,2% of the instances, when compared to the

quality preset of PaToH, while having a better mean running time by a factor 1.95 by using

10 threads. Compared to hMetis-R, we achieve a comparable solution quality, while being an

order of magnitude faster. Directly compared to the default version of Mt-KaHyPar, we achieve

a better solution quality on 74.6% of the instances by including our �ow-based re�nement

algorithm, while slowing down the geometric mean running time by a factor of 2. The only

partitioners that outperform us in terms of solution quality are the two versions of KaHyPar.

Especially KaHyPar-HFC, using the �ow-based re�nement by [21], signi�cantly improves the

solution quality compared to our algorithm, but is slower than our algorithm (executed with

10 threads) by a factor of 16. Our approach therefore o�ers a good trade o� between solution

quality and running time, compared to other state of the art hypergraph paritioners.

43

6. Conclusion

6.1. Future Work

As we only execute multiple �ow calculations on block-pairs in parallel, our algorithm does

not scale for small k . To further improve the scaling a way to speed up a single �ow calculation

on a block-pair using parallelism should be developed. One way to achieve this could be to

further split the �ow problems, while trying to preserve the solution quality.

As shown by the comparison with other hypergraph partitioning systems, the KaHyPar-HFC

algorithm clearly outperforms our approach in terms of partition quality. As the algorithm also

uses the active block scheduling and executes multiple �ow calculations on block-pairs, some

of our techniques could be used to parallelize the algorithm and integrate it in Mt-KaHyPar. To

execute multiple �ow calculations on one block some adjustments are necessary, as the �ow

problems in [21] are growing dynamically.

Additionally, constructing the �ow network is responsible for a large amount of our running

time. This causes our algorithm to be memory bound and prevents a better scaling. As the

HFC-algorithm works directly on the hypergraph a further improvement in scalability should

be achievable.

44

Bibliography

[1] Y. Akhremtsev, P. Sanders, and C. Schulz. “High-Quality Shared-Memory Graph Parti-

tioning”. In: European Conference on Parallel Processing (Euro-Par). Springer-Verlag, Aug.

2017, pp. 659–671.

[2] C. J. Alpert. “The ISPD98 Circuit Benchmark Suite”. In: Proceedings of the 1998 Interna-
tional Symposium on Physical Design (1998), pp. 80–85.

[3] S. T. Barnard and H. D. Simon. “A Fast Multilevel Implementation of Recursive Spec-

tral Bisection for Partitioning Unstructured Problems”. In: Concurrency: Practice and
Experience 6.2 (1994), pp. 101–117.

[4] A. Belov et al., eds. Proceedings of SAT Competition 2014: Solver and Benchmark Descrip-
tions. Department of Computer Science Series of Publications B. Finland: University of

Helsinki, 2014.

[5] Y. Boykov and V. Kolmogorov. “An Experimental Comparison of Min-Cut/Max-Flow

Algorithms for Energy Minimization in Vision”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 26.9 (2004), pp. 1124–1137.

[6] Ü. V. Catalyurek and C. Aykanat. “Hypergraph-Partitioning-Based Decomposition for

Parallel Sparse-Matrix Vector Multiplication”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 10 (1999), pp. 673–693.

[7] Ü. V. Catalyurek and Cevdet Ph.D. “PaToH (Partitioning Tool for Hypergraphs)”. In: Jan.

2011, pp. 1479–1487.

[8] Ü. V. Catalyurek et al. “Multithreaded Clustering for Multi-level Hypergraph Partitioning”.

In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, IPDPS 2012 (2012), pp. 848–859.

[9] C. Chevalier and F. Pellegrini. “PT-Scotch: A Tool for E�cient Parallel Graph Ordering”.

In: Parallel Computing 34.6–8 (July 2008), pp. 318–331.

[10] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection”. In: ACM
Transactions on Mathematical Software 38.1 (2011), 1:1–1:25.

[11] K. D. Devine et al. “Parallel Hypergraph Partitioning for Scienti�c Computing”. In:

Proceedings of the 20th International Conference on Parallel and Distributed Processing
(2006), 10–pp.

[12] E. Dolan and J. Moré. “Benchmarking Optimization Software with Performance Pro�les”.

In: Mathematical Programming 91 (2001), pp. 201–213.

[13] W. E. Donath. “Logic Partitioning”. In: Physical Design Automation of VLSI Systems (1988),

pp. 65–86.

45

Bibliography

[14] J. Edmonds and R. M. Karp. “Theoretical Improvements in Algorithmic E�ciency for

Network Flow Problems”. In: J. ACM 19 (1972), pp. 248–264.

[15] C. M. Fiduccia and R. M. Mattheyses. “A Linear-Time Heuristic for Improving Network

Partitions”. In: Proceedings of the 19th Design Automation Conference. DAC ’82 (1982),

pp. 175–181.

[16] D. R. Ford and D. R. Fulkerson. Flows in Networks. USA: Princeton University Press, 2010.

[17] L. R. Ford and D. R. Fulkerson. “Maximal Flow Through a Network”. In: Canadian Journal
of Mathematics 8 (1956), pp. 399–404. doi: 10.4153/CJM-1956-045-5.

[18] A. V. Goldberg and R. E. Tarjan. “A New Approach to the Maximum Flow Problem”. In:

JOURNAL OF THE ACM 35.4 (1988), pp. 921–940.

[19] A. V. Goldberg et al. “Faster and More Dynamic Maximum Flow by Incremental Breadth-

First Search”. In: Algorithms - ESA 2015 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings 9294 (Sept. 2015), pp. 619–630.

[20] A. Goldberg et al. “Maximum Flows by Incremental Breadth-First Search”. In: 19th
European Symposium on Algorithms (ESA 2011) (Jan. 2011).

[21] L. Gottesbüren et al. “Advanced Flow-Based Multilevel Hypergraph Partitioning”. In:

18th International Symposium on Experimental Algorithms (SEA 2020) (2020), 11:1–11:15.

[22] T. Heuer. “Engineering Initial Partitioning Algorithms for direct k-way Hypergraph

Partitioning”. Bachelor Thesis. Karlsruhe Institute of Technology, 2015.

[23] T. Heuer. “High Quality Hypergraph Partitioning via Max-Flow-Min-Cut Computations”.

Masters Thesis. Karlsruhe Institute of Technology, 2018.

[24] T. Heuer, P. Sanders, and S. Schlag. “Network Flow-Based Re�nement for Multilevel

Hypergraph Partitioning”. In: Journal of Experimental Algorithmics 24 (Sept. 2019), 2.3:1–

2.3:36.

[25] T. Heuer and S. Schlag. “Improving Coarsening Schemes for Hypergraph Partitioning

by Exploiting Community Structure”. In: 16th International Symposium on Experimental
Algorithms (SEA 2017). Leibniz International Proceedings in Informatics (LIPIcs) (2017),

21:1–21:19.

[26] M. Holtgrewe, P. Sanders, and C. Schulz. “Engineering a Scalable High Quality Graph Par-

titioner”. In: Proceedings of the 24th IEEE International Parallel and Distributed Processing
Symposium (2010), pp. 1–12.

[27] T. C. J. Hu and K. E. Moerder, eds. Multiterminal Flows in a Hyper-graph. 1985.

[28] G. Karypis and V. Kumar. “Multilevel k-way Hypergraph Partitioning”. In: Proceedings -
Design Automation Conference 11 (Dec. 1998).

[29] G. Karypis and V. Kumar. “Parallel Multilevel k-Way Partitioning Scheme for Irregular

Graphs”. In: Siam Review 41.2 (1999), pp. 278–300.

[30] G. Karypis and D. Lasalle. “A Parallel Hill-Climbing Re�nement Algorithm for Graph

Partitioning”. In: Proceedings of the International Conference on Parallel Processing

(2016), pp. 236–241.

46

https://doi.org/10.4153/CJM-1956-045-5

Bibliography

[31] G. Karypis et al. “Multilevel Hypergraph Partitioning: Applications in VLSI Domain”. In:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7.1 (1999), pp. 69–79.

[32] E. L. Lawler. “Cutsets and Partitions of Hypergraphs”. In: Networks 3 (1973), pp. 275–285.

[33] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons,

Inc., 1990.

[34] H. Liu and D. F. Wong. “Network Flow Based Multi-Way Partitioning with Area and Pin

Constraints”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 17 (1998), pp. 50–59.

[35] Z. Mann and P. Papp. “Formula Partitioning Revisited”. In: Fifth Pragmatics of SAT
workshop. 2014, pp. 41–56.

[36] H. Meyerhenke, P. Sanders, and C. Schulz. “Parallel Graph Partitioning for Complex

Networks”. In: IEEE Transactions on Parallel and Distributed Systems 28.9 (2017), pp. 2625–

2638.

[37] D. Papa and I. Markov. “Hypergraph Partitioning and Clustering”. In: Handbook of
Approximation Algorithms and Metaheuristics (2007).

[38] J. Picard and M. Queyranne. “On the Structure of All Minimum Cuts in a Network and

Applications”. In: Math. Program. 22 (1982), p. 121.

[39] P. Sanders and C. Schulz. “Engineering Multilevel Graph Partitioning Algorithms”. In:

19th European Symposium on Algorithms (ESA). Springer, 2011, pp. 469–480.

[40] S. Schlag. “High-Quality Hypergraph Partitioning”. In: (2020).

[41] A. Trifunović and W. J. Knottenbelt. “Parallel Multilevel Algorithms for Hypergraph

Partitioning”. In: Journal of Parallel and Distributed Computing 68.5 (2008), pp. 563–581.

[42] A. Trifunović and W. J. Knottenbelt. “Towards a Parallel Disk-Based Algorithm for

Multilevel k-way Hypergraph Partitioning”. In: 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings. (Apr. 2004).

[43] N. Viswanathan et al. “The DAC 2012 Routability-Driven Placement Contest and Bench-

mark Suite”. In: DAC Design Automation Conference 2012 (2012), pp. 774–782.

[44] M. Voss, R. Asenjo, and J. Reinders. Pro TBB: C++ Parallel Programming with Threading
Building Blocks. 1st. USA: Apress, 2019.

[45] D. B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall, Sept. 2000.

47

A. Appendix

48

A. Appendix

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
match
all-blocks(+Opt,+S)

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
all-blocks(-Opt,+S)
all-blocks(+Opt,+S)

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
all-blocks(+Opt,-S)
all-blocks(+Opt,+S)

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
all-blocks(-Opt,-S)
all-blocks(+Opt,+S)

10 1007U

Figure A.1.: Performance Pro�les comparing the solution quality of the all-blocks scheduling

approach using both optimization techniques (all-blocks(+Opt,+S)) with other

scheduling techniques.

49

A. Appendix

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(-LP,-FM,+MF) (+LP,-FM,-MF)

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(-LP,-FM,+MF) (-LP,+FM,-MF)

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(-LP,-FM,+MF) (+LP,-FM,+MF)

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(-LP,-FM,+MF) (-LP,+FM,+MF)

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(-LP,-FM,+MF) (+LP,+FM,+MF)

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
(+LP,+FM,+MF) (+LP,+FM,-MF)

10 1007U

Figure A.2.: Direct comparison of the di�erent combinations of re�nement algorithms in terms

of solution quality.

50

A. Appendix

4.43 2.36 2.31 0.43 0.4 1.81 0.28 10.31 18.81 30.51

9.7 2 1.82 0.96 1.02 5.06 0.69 19.78 40.76 81.72

19.32 3.18 2.36 2.19 1.63 8.36 1.06 38.58 62.73 127.8

42.98 5.81 4.08 5.47 2.23 11.74 1.42 71.94 95.76 180.22

6.91 2.17 2.04 0.65 0.72 3.45 0.5 14.43 31.71 57.51

13.69 2.44 1.89 1.44 1.32 6.71 0.88 27.5 49.95 104.81

28.06 4.21 3.05 3.43 1.92 10.02 1.24 52.93 78.88 151.83

k: 128

k: 32 k: 64

k: 8 k: 16

k: 2 k: 4

0

10
0

10
1

10
2

10
3

10
4

10
5

7
U

0

10
0

10
1

10
2

10
3

10
4

10
5

7
U

0

10
0

10
1

10
2

10
3

10
4

10
5

7
U

0

10
0

10
1

10
2

10
3

10
4

10
5

7
U

R
u

n
n

i
n

g
T

i
m

e
[s
]

Mt-KaHyPar-MF 1

Mt-KaHyPar-MF 10

Mt-KaHyPar-MF 20

Mt-KaHyPar 10

PaToH-D

PaToH-Q

PaToH-S

KaHyPar-Ca

KaHyPar-HFC

hMetis-R

Figure A.3.: Absolute running times perk and their geometric mean for the di�erent hypergraph

partitioner. The values were obtained by executing our full benchmark set A on

machine P2 with a time limit of 8 hours.

51

A. Appendix

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 1
Mt-KaHyPar-MF 10

Mt-KaHyPar-MF 20

10 100 7 U

Figure A.4.: Performance plot comparing the solution quality of Mt-KaHyPar-MF with an

increasing number of threads.

52

A. Appendix

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
Mt-KaHyPar 10

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
PaToH-Q

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
PaToH-D

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
PaToH-S

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
hMetis-R

10 1007U
0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
KaHyPar-CA

10 1007U

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
r
a
c
t
i
o

n
o

f
i
n

s
t
a
n

c
e
s

1 1.05 1.1 1.5 2

τ
Mt-KaHyPar-MF 10
KaHyPar-HFC

10 1007U

Figure A.5.: Performance plots directly comparing the solution quality of Mt-KaHyPar-MF

(using 10 threads) with other state of the art hypergraph partitioners on our full

benchmark set A.

53

A. Appendix

38.49 3.08

23.56 6.08

20.23 7.42

31.26 7.98

31.9 4.86

19.77 6.87

24.22 7.74

k: 128

k: 32 k: 64

k: 8 k: 16

k: 2 k: 4

0

10
0

10
1

10
2

10
3

0

10
0

10
1

10
2

10
3

0

10
0

10
1

10
2

10
3

0

10
0

10
1

10
2

10
3

R
u

n
n

i
n

g
T

i
m

e
[s
]

Mt-KaHyPar-MF 64 Zoltan 64

Figure A.6.: Direct comparison of the running time per k with Zoltan on our large hypergraph

set C using machine P3 with 64 threads.

54

	Abstract
	Zusammenfassung
	Introduction
	Problem Statement
	Contributions
	Outline

	Preliminiaries
	Graphs
	Contraction

	Flows
	Max-Flow Min-Cut Theorem
	Max-Flow Algorithms

	Hypergraphs
	Hypergraph Partitioning

	Related Work
	Hypergraph Partitioning
	Multilevel Paradigm
	Parallelism in (Hyper-)Graph Partitioner Systems
	Mt-KaHyPar

	Flow-Based Refinement
	Flow-Based Refinement for Graphs
	Flow-Based Refinement for Hypergraphs
	Max-Flow-Min-Cut Refinement Framework

	Parallel Flow-Based Refinement Framework
	Algorithm Overview
	Parallel Flow Calculations
	Parallel Flow Calculations on Disjoint Block-Pairs
	Parallel Flow Calculation on All Block-Pairs
	An Optimized Approach for Parallel Flow Calculations on All Block-Pairs
	Removing Synchronization-Steps
	Parallel Most Balanced Minimum Cut

	Experiments
	Instances
	System and Methodology
	Comparison of the different Scheduling Approaches
	Refinement Configuration
	Scalability
	Comparison with other Hypergraph Partitioner

	Conclusion
	Future Work

	Bibliography
	Appendix

