KIT | KIT-Bibliothek | Impressum | Datenschutz

Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells

Malekshahi Byranvand, M. 1,2; Behboodi-Sadabad, F. 3; Alrhman Eliwi, A. 1; Trouillet, V. 4; Welle, A. ORCID iD icon 3,4; Ternes, S. 1,2; Hossain, I. M. 1,2; Khan, M. R. 1; Schwenzer, J. A. 1; Farooq, A. 1,2; Richards, B. S. ORCID iD icon 1,2; Lahann, J. 3; Paetzold, U. W. ORCID iD icon 1,2
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)


Reducing non-radiative recombination losses by advanced passivation strategies is pivotal to maximize the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Previously, polymers such as poly(methyl methacrylate), poly(ethylene oxide), and polystyrene were successfully applied in solution-processed passivation layers. However, controlling the thickness and homogeneity of these ultra-thin passivation layers on top of polycrystalline perovskite thin films is a major challenge. In response to this challenge, this work reports on chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) layers at controlled substrate temperatures (14–16 °C) for efficient surface passivation of perovskite thin films. Prototype double-cation PSCs using a ∼1 nm PPX passivation layer exhibit an increase in open-circuit voltage (V$_{OC}$) of ∼40 mV along with an enhanced fill factor (FF) compared to a non-passivated PSC. These improvements result in a substantially enhanced PCE of 20.4% compared to 19.4% for the non-passivated PSC. Moreover, the power output measurements over 30 days under ambient atmosphere (relative humidity ∼40–50%) confirm that the passivated PSCs are more resilient towards humidity-induced degradation. ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000125660
Veröffentlicht am 05.11.2020
DOI: 10.1039/d0ta06646j
Zitationen: 29
Zitationen: 29
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Mikrostrukturtechnik (IMT)
Karlsruhe Nano Micro Facility (KNMF)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2050-7488, 2050-7496
KITopen-ID: 1000125660
HGF-Programm 49.02.07 (POF III, LK 02) XPS
Erschienen in Journal of materials chemistry / A
Verlag Royal Society of Chemistry (RSC)
Band 8
Heft 38
Seiten 20122-20132
Schlagwörter KNMF 2019-023-027730 ToF-SIMS XPS
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page