KIT | KIT-Bibliothek | Impressum | Datenschutz

Finite element discretization of semilinear acoustic wave equations with kinetic boundary conditions

Hochbruck, Marlis 1; Leibold, Jan 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error bounds in terms of interpolation, data, and conformity errors. The theory applies to a large class of problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis.


Download
Originalveröffentlichung
DOI: 10.1553/ETNA_VOL53S522
Scopus
Zitationen: 9
Dimensions
Zitationen: 9
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1068-9613, 1097-4067
KITopen-ID: 1000125675
Erschienen in Electronic transactions on numerical analysis
Verlag Kent State University
Band 53
Seiten 522–540
Schlagwörter wave equation, dynamic boundary conditions, nonconforming space discretization, error analysis, a-priori error bounds, semilinear evolution equations, operator semigroups, isoparametric finite elements
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page