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Abstract
Due to sparse charging infrastructure and short driving ranges, drivers of bat-
tery electric vehicles (BEVs) can experience range anxiety, which is the fear
of stranding with an empty battery. To help eliminate range anxiety and make
BEVs more attractive for customers, accurate range estimation methods need
to be developed. In recent years, many publications have suggested machine
learning algorithms as a fitting method to achieve accurate range estimations.
However, these algorithms use a large amount of data and have high computa-
tional requirements. A traditional placement of the software within a vehicle’s
electronic control unit could lead to high latencies and thus detrimental to
user experience. But since modern vehicles are connected to a backend, where
software modules can be implemented, high latencies can be prevented with
intelligent distribution of the algorithm parts. On the other hand, communi-
cation between vehicle and backend can be slow or expensive. In this article,
an intelligent deployment of a range estimation software based on ML is ana-
lyzed. We model hardware and software to enable performance evaluation in
early stages of the development process. Based on simulations, different system
architectures and module placements are then analyzed in terms of latency, net-
work usage, energy usage, and cost. We show that a distributed system with
cloud-based module placement reduces the end-to-end latency significantly,
when compared with a traditional vehicle-based placement. Furthermore, we
show that network usage is significantly reduced. This intelligent system enables
the application of complex, but accurate range estimation with low latencies,
resulting in an improved user experience, which enhances the practicality and
acceptance of BEVs.
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1 INTRODUCTION

Battery electric vehicles (BEVs) have the potential to solve future problems regarding greenhouse gas emissions from
passenger and commercial vehicles and establish independence from depleting fossil fuel resources. To increase driv-
ing range of BEVs, choosing a larger battery capacity is one option. However, a large battery corresponds to high vehicle
weight, costs, and demand for rare minerals. Therefore, a trade-off solution, where driving range can be fully utilized,
needs to be found. With poor charging infrastructure and inaccurate range estimation algorithms, drivers of BEVs expe-
rience range anxiety, which is the fear of stranding with an empty battery.1 As a consequence, drivers reserve battery
energy, so that the vehicle’s total driving range is not fully utilized.2 To counteract this problem, accurate range estima-
tion algorithms are required. These algorithms estimate the remaining driving range by predicting the energy consumed
on a given, planned route. If the distance to destination is greater than the remaining driving range, charge planning is
needed. Charge planning suggests suitable charging stations along the route, considering battery capacity and required
energy for the planned trip.

Driving range estimation is a problem that can be solved partially or completely with machine learning (ML). It relies
on data distributed between vehicles and cloud infrastructures. In the vehicle, information such as vehicle speed and
energy consumption are relevant. Information obtained from external infrastructure, such as live traffic and weather
forecasts, is also relevant for the range estimation. Unifying and integrating these sources is an issue that currently hinders
further development of range estimation and charge planning software.3 By applying ML algorithms, many different
features can be included in the range estimation, without the need of exact mathematical or physical modeling of the
influences. Furthermore, an ML algorithm automatically adapts to changes in system behavior, resulting in a robust
model. Not all devices and system architectures are ready for using ML software. This is a problem addressed in the
Machine Learning and Systems (MLSys) whitepaper,4 where the authors discuss problems regarding the widespread use
of ML systems in commercial applications, such as:

• How can ML algorithms and systems be designed for device constraints such as power, latency, and memory limits?
• How should distributed systems be designed to support ML training and serving?

These and similar problems have been analyzed generally in the context of the Internet of Things (IoT) paradigm
and how IoT with its cloud, edge, and fog computing can support the increasing amount of data that is transferred and
used, for example, for ML-based systems.5 An important aspect of system design is the user experience (UX) and how
applications can be deployed to ensure high Quality of Experience (QoE).6 Distributed computing in cloud, edge, and fog
systems is highly dependent on communication and exhibits high system complexity.7 Even with the emergence of 5G,
lean communications are still essential and resources need to be used efficiently.8 Despite these challenges, connected
vehicles can achieve significant improvements in efficiency, performance, and QoE with ML and IoT applications. Siegel
et al.9 studied the feasibility of different connected vehicle applications and even identified driving range estimation as
an application that could be deployed in connected vehicles. In recent years, fog- and cloud-based ML algorithms have
received increased attention. Due to the diversity of ML algorithms and their applications, corresponding systems are
analyzed individually. Tuli et al. analyzed a system for a fog–cloud-based object detection with deep learning,10 as well
as a deep learning based smart health-care system.11 Lin et al.12 proposed and analyzed a deep learning framework for
smart manufacturing inspection systems based on fog computing. In current literature about range estimation algorithms,
system architecture and the practicability of the proposed methods is rarely investigated. Researchers frequently propose
ML algorithms that rely on big data and distributed computing, yet the analysis from a systems aspect is neglected. In this
work, we analyze driving range estimation software and evaluate its performance. Our approach models and simulates the
software in a distributed computing setting and enables system architecture evaluation in early stages of the development.
Our main contributions are:

• We show that performance and QoE of range estimation and charge planning software is highly dependent on system
architecture. Therefore, software concepts should be evaluated with respect to system architecture.

• We propose estimating resource requirements based on route length, algorithm time complexity, and the number of
instructions in the compiled code. In that way, the software can be tested for different use cases to ensure a sufficient
QoE for routes of varying length.
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• We analyze system-architectures corresponding to modern commercial vehicles, as well as to concepts proposed in
related works. Furthermore, we propose promising alternatives to existing concepts.

• We consider both learning and inference of ML-based driving range estimation. The system analysis is divided into
inference and learning. Inference is the task of performing prediction or estimation with a learned model. Most research
focuses on the learning procedure, whereas in terms of user experience, inference is just as important.13 Thereby, the
focus of our work is on model inference and the performance of the system as a whole.

The article is organized as follows. Section 2 introduces the state of the art of driving range estimation and connected
vehicles and gives an overview of different techniques for evaluating the performance of distributed systems. In Section 3,
the necessary hardware and software is described and modeled to enable system simulation. In Section 4, the performance
of possible systems is evaluated through simulations. Section 5 concludes the article and provides an outlook.

2 RELATED WORK

2.1 Range estimation, routing, and charge planning

A driving range estimation algorithm is used to determine the distance-to-empty on a given route. Moreover, range esti-
mation is essential in the planning of long-distance trips, where the driving range is shorter than the distance to the
destination and charging stops are necessary. The principle of most range estimation algorithms is to first estimate the
energy required for the given route. By comparing the required energy with the battery’s estimated state of energy (SoE),
the driving range and destination attainability can be determined. Figure 1 shows the process of routing, range estimation,
and charge planning as a flowchart.

Using street maps and the corresponding graphs, routing algorithms calculate the fastest route from the starting point
to the destination. A myriad of routing algorithms exist, the most famous one being Dijkstra’s algorithm.14 Commer-
cial navigation software suppliers do not publish the exact details of their proprietary methods. A relatively fast routing

F I G U R E 1 A simplified flowchart for routing, range
estimation, and charge planning [Color figure can be viewed at
wileyonlinelibrary.com]
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algorithm is the A-star algorithm.15 The A-star algorithm can be implemented with different heuristics that speed up
the algorithm, such as highway hierarchies, where highway connections are preferred.16 For BEVs, it is also common to
include energy efficiency in the route calculation (eco-routing). In this case, edge weights representing energy consump-
tion could be negative, since BEVs are able to regenerate energy when decelerating or driving downhill. The Bellman–Ford
algorithm17,18 can handle negative edge weights and has been used in eco-routing.19,20

The estimation of future energy consumption is frequently performed using ML algorithms.21-23 Thereby, information
from the vehicle, such as mass or current tractive energy consumption, is used together with predictive information about
the selected route. This information comprises the map data on each link of the route (e.g., legal speed limit, curvature,
slope) as well as live traffic data from other connected vehicles. The ML algorithm is trained to find the relation between
the available predictive information and the resulting tractive energy consumption. Thus, a range estimation algorithm
uses both data from the vehicle and from other connected vehicles via the cloud. Depending on the ML algorithm and
the amount of data, the range estimation algorithm can demand a lot of resources. The data origin and the computing
latencies require a smart system architecture. Future energy consumption can moreover be estimated using mechanistic
models based on physical principles and equations.24-26 In addition, a hybrid model combining a mechanistic model and
ML can as well be applied.19,27 Traditionally, automotive software is implemented on electronic control units within the
vehicle and uses mostly data from the vehicle itself. This is also true for range estimation and charge planning. Some
research articles, however, have proposed distributed systems with software placed partially or completely in the cloud.
Table 1 shows a summary of these related works. The articles are classified by the method used for range estimation and by
the system architecture which corresponds to the proposed concepts. We differentiate between ML models, mechanistic
models, and hybrid models combining the two. Regarding system architecture, we observed whether the software modules
are placed mainly in the cloud, in the vehicle or divided uniformly between the two in a hybrid manner.

In the articles, the system architectures are only vaguely described and the feasibility of the proposed concepts regard-
ing system performance is not investigated. In further research articles, proposed algorithms rely on live-information such
as traffic or weather, which is normally not available in the vehicle without some sort of connectivity.21,23,32-35 However,
system architecture and performance are not investigated.

2.2 Connected vehicles and vehicular networks

In connected vehicles, communication with other vehicles (V2V) and with infrastructure (V2I) is possible. Mobile inter-
net (4G, 5G) and direct short-range communication (DSRC) are two competing communication technologies used in
vehicle-to-everything (V2X) settings, which can be seen in a survey conducted by Abboud et al.36 Different computing
principles are possible in connected vehicles, such as cloud, edge, and fog computing.37 In the vehicles, resources such as
computing performance and storage are limited. In turn, cloud resources are ample and a synergistic distribution in a sys-
tem with vehicles and clouds is reasonable. Deploying software in such systems is a challenge, as the module placement
has a significant impact on their performance and latency. Brogi et al.38 give an overview of existing methodologies for
optimally solving module placement problems in fog infrastructures. The vehicle communication platform Cloud-Think
was developed to securely enable software functionality divided between vehicle and cloud. Its system architecture con-
sists of vehicle ECUs as well as data and gateway servers that communicate over wireless connections.39 Cloud-based

Work Estimation method System architecture

Thibault et al.19 Hybrid model Hybrid

Fukushima et al.22 ML model Cloud-based

Yi and Bauer24 Mechanistic model Vehicle-based

Grubwinkler et al.25,28 Mechanistic model Cloud-based

Jayakumar et al.26 Mechanistic model Hybrid

Scheubner et al.27 Hybrid model Vehicle-based

Ferreira et al.29 ML model Vehicle-based

Lee et al.30,31 ML model Cloud-based

T A B L E 1 Summary of related works on
driving range estimation in distributed systems
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vehicle functions have been classified into four different models: only cloud, fall-back method, duplicate function, and
elastic application. In this article, we focus on the class elastic application, where the software consists of several mod-
ules distributed between the vehicle and cloud.40 One of the identified use cases includes predictive functions relying
on predictive cloud information, where the range estimation operates precisely in such a fashion. Examples for elas-
tic applications are functions using computation offloading. In such applications, computational and/or data intensive
tasks, such as image processing and ML, are offloaded to the cloud. This offloading can either be permanent or adap-
tive, but in both cases the module placement is intelligently performed to minimize parameters such as latency, energy,
and cost.41

There are many examples in the literature where cloud or fog computing is used in vehicular technology. Siegel et al.42

give an overview of the state of the art of connected vehicles and their applications. Lee et al.31 use ML to analyze driving
behavior in the cloud using data from connected BEVs. Wu et al.43 use cloud computing in electric vehicle charging control
and dispatch optimization. Ozatay et al.44 implemented a velocity profile optimization with dynamic programming where
computationally intensive calculations were performed in the cloud. Saini et al.45 propose a middleware for vehicular
infotainment systems where computation tasks are carried out in the cloud and only relevant content is forwarded to the
vehicle. Yaseen et al.46 perform cloud-based video analytics using convolutional neural networks.

Connectivity is necessary for accurate routing, range estimation, and charge planning. Live route and traffic informa-
tion are already available in many production vehicles. Traditionally, this is transmitted over the traffic message channel
(TMC). Another standard, OpenLR, allows more flexibility and a higher resolution. An overview of live traffic related data
formats and protocols is given by Henrickson et al.47 With improved connectivity, application programming interfaces
(APIs) with even greater flexibility are available, where additional information such as weather forecasts can be included.
In this work, all external information is requested and delivered through APIs.

2.3 Evaluation and simulation frameworks for distributed systems

For optimal system design and module placement, performance evaluation is important. In the early stages of develop-
ment, measurements are rarely possible, but simulations can be performed to approximately evaluate performance of
different system architectures and module placements. However, simulating the performance of distributed systems is a
challenging task. Cloud, edge, and fog computing concepts introduce increased complexity with high diversity of devices
and high numbers of possible system architecture variants. An overview of simulation scenarios in fog and edge com-
puting is given by Svorobej et al. In addition, their review includes a brief comparison of simulation tools.48 Cloudsim is
a widely used toolkit for the modeling and simulation of cloud computing environments.49 In an analysis of cloud and
fog simulation tools, three of six tools were extensions of Cloudsim.50 The most used tool according to a citation count is
iFogSim, which enables the simulation of cloud, edge, and fog computing settings to evaluate the impact of different mod-
ule placements and resource management techniques on different QoE and QoS (Quality of Service) metrics.51 Ghosal
et al.52 defined and proposed metrics for the evaluation of system architectures divided into nonfunctional requirements,
degree to accommodate changes, customer requirements, and compatibility to legacy designs. iFogSim fulfills all our require-
ments, allows for variable modeling of resource requirements, evaluates the correct metrics, and is well established in the
scientific community. Therefore, we choose iFogSim for our work.

3 MODELING OF SOFTWARE AND HARDWARE SYSTEMS

To investigate performance through simulations, the range estimation software and the corresponding hardware must be
modeled. In the following sections, the modeling of the software and hardware is discussed.

3.1 Hardware and connectivity

In hardware modeling, memory, storage, and bandwidth properties are trivial to determine and model. Modeling the
computational performance is not as trivial and several different approaches and metrics exist. One option is to measure
processor capacity and load or the number of cores or virtual cores.53 Alternatively, generic and traditional metrics such
as FLOPS (FLoating-point Operations Per Second) and MIPS (Million Instructions Per Second) can be used.54 Several
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variants and derivative metrics have been defined and a good overview is given by Wang et al.55 iFogSim defines hardware
units with the following indicators:

• processor performance (MIPS)
• RAM (e.g., GB)
• cost rate per MIPS used (e.g., $)
• busy and idle power (W)

Each hardware unit is thus modeled with these parameters. MIPS is not a perfect performance indicator, its main
defect is that it is architecture-dependent. However, for reduced instruction set computing (RISC), it is an acceptable
performance indicator.56

For the range estimation and charge planning, several dedicated hardware units are needed. Figure 2 shows an
overview of the hardware units and their topology. The vehicle’s central ECU is the main processing unit, whereas a con-
nectivity module establishes a connection with the backend and handles data transfer over wireless or mobile internet.
In the cloud, an OEM (Original Equipment Manufacturer) backend is used for all processing except the route calcula-
tion, which is performed in a third-party backend from the navigation provider. Table 2 shows these devices and their
specified memory size, processor speed in MIPS, power usage, and instruction set of the processor. In contrast to a dedi-
cated cloud server, an ECU needs to perform multiple tasks simultaneously, that is, a single function does not generally
have full access to the processor’s performance and memory. Therefore, an available processor speed in the magnitude
of 103 MIPS is assumed for the ECUs.56 The backend units should be significantly more powerful than the ECUs; there-
fore an estimated processor speed of 105 MIPS is assumed.49 One difference between processors of a cloud and a vehicle
ECU is the architecture and instruction set. Usually, RISC architecture chips are used in ECUs, whereas CISC (complex
instruction set computing) architecture processors are more commonly used in servers and backend units. This means
that different compilers are required, which can affect the number of instructions of a software module and is there-
fore considered in the module placement analysis.57 The power usage of different hardware units is estimated based on

F I G U R E 2 Cloud-vehicle hardware topology [Color figure can
be viewed at wileyonlinelibrary.com]

T A B L E 2 Specifications of the hardware units considered

Device Location RAM (GB) CPU speed (MIPS) Power A//I (W) Instruction set

OEM backend Cloud 200 1 ⋅ 105 1 ⋅ 104 // 8 ⋅ 103 CISC

Navigation backend Cloud 400 2 ⋅ 105 2 ⋅ 104 // 1.6 ⋅ 104 CISC

Connectivity module Vehicle 0.2 1 ⋅ 103 45 // 20 RISC

Central ECU Vehicle 0.5 5 ⋅ 103 90 // 80 RISC

http://wileyonlinelibrary.com
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commercial device information.58,59 The cost of using cloud instances is estimated to be 1$ per instance per hour, based
on commercial cloud services.49,59

Wired and wireless connections between hardware units in iFogSim are defined by bandwidth and average network
communication latency. The vehicle is connected to the cloud via 4G mobile internet. The vehicle ECUs can be connected
internally via CAN, ethernet, or similar.60 It is assumed that the cloud units have a high-speed and low-latency wired
connection. In Table 3, the estimated connection speeds and communication latencies are shown. We assume that up to
100 vehicles will simultaneously use the service.

3.2 Software modules and resource requirements

In this section, the modules of the proposed range estimation and charge planning software are introduced. Figure 3 shows
a software block diagram, where modules and their connections are visualized. The software consists of a user-interface,
route calculation, energy consumption estimation, charge planning, as well as a vehicle configuration module. In the
following, each step of the range estimation is described.

In iFogSim, software modules are modeled by the number of processor instructions required for the computational
tasks, measured in million instructions (MI). The running time or latency for a certain task is then calculated using
the processor speed in MIPS. The time required for a processor instruction is dependent on the type of instruction,
that is, performing some instruction may take a shorter or longer time than another instruction. The instructions are
dependent on the processor architecture, such as RISC or CISC and the number of instructions for a software module
is therefore dependent on the processor. Simple instructions running in a single clock cycle is a typical characteristic
of RISC architecture, whereas many instructions in CISC architectures run over several clock cycles. To determine the
number of instructions, iFogSim or CloudSim give no specific directions. We suggest counting the instructions directly
in the compiled assembly code. Another possibility is to measure execution time on a certain processor with a known
speed in MIPS and then determine the number of instructions. As some modules are dependent on route length, we
use the algorithm’s time complexity (big-O notation) to describe the number of instructions as a function of route
length. In iFogSim, the modules are defined as described, with some definitions being functions of route length or
graph size.

T A B L E 3 Data transfer rate from (row) to (column) in (Mbit/s) and communication latency in (ms)

Device OEM backend Navigation backend Connectivity module Central ECU

OEM backend – 100 Mbit/s // 50 ms 15Mbit/s // 100 ms N/A

Navigation backend 100 Mbit/s // 50 ms – N/A N/A

Connectivity module 10 Mbit/s // 100 ms N/A – 10 Mbit/s // 1 ms

Central ECU N/A N/A 10 Mbit/s // 1 ms –

F I G U R E 3 Software block
diagram
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3.2.1 User interface

In this module, the driver chooses the destination in the user interface (UI) and the destination is sent to the route calcu-
lation module. The drivers input is a string with the destination address or name. Before the communication is initiated,
the vehicle must be authenticated through a TLS (transport layer security) handshake. The vehicle and backend exchange
messages to establish a secure connection. The duration of the TLS handshake comprises time for cryptoprocessing,
network latency and other delays due to message parsing.61

3.2.2 Routing

After receiving starting position, destination, and routing options, this module calculates the fastest possible route,
with regard to actual traffic information. The performance of a routing algorithm is strongly dependent on the graph
that represents the road network. The complexity is dependent on the number of edges |E| and vertices |V | in the
graph, as well as its sparsity and the branching factor. For the A-star algorithm, the time complexity is between
(|V |) and (|E| + |V | log |V |), depending on heuristic and graph type.62 In our implementation, we estimate the
time complexity to be (|E| + |V |). Thereby, the number of instructions needed for a route calculation in a sub-
graph with |E| edges and |V | vertices is linearly dependent on the sum |E|+ |V |. Based on real graphs for USA63

and Germany,64 we assume that for a unit length route and a given heuristic, a subgraph with V(l)= 1600 vertices
and E(l)= 4200 edges is required. In our implementation, the number of instructions for one iteration of the A-star
algorithm is 345 I. In addition, a baseline computation of 100 MI is assumed. The total number of instructions is
thus:

CPURouting
req (l) = 100MI + 345I(E(l) + V(l))

= 100 MI + 345 I
iter.

⋅ (4200 + 1600) iter.
km

⋅ lkm

= (100 + 2 ⋅ l)MI, (1)

where l is the route length in kilometers. For a calculated route, its attributes for each route segment are sent to the energy
consumption estimation. On average, the length of a segment is approximately 200 m, that is, there are N = 5 segments
per l= 1 km.65 For each segment, 2 ⋅ k attributes are stored as doubles (8 Bytes). Additionally, a constant 2000B is used to
account for HTTP header and other data and overhead not dependent on route length. The total response size for a route
is therefore

SRouting(l) = 2000 B + 2k ⋅ N(l) ⋅ 8 B
= 2000 B + 2k ⋅ 5l ⋅ 8 B
= (2000 + 80k ⋅ l)B. (2)

3.2.3 Energy consumption estimation

For the calculated route, the route specific energy consumption (EC) is estimated with the ML algorithm using attributes
for the planned route as input parameters. In this regression problem, we use a neural network (NN). The learning of
the NN is a non-event-based process which runs in the background and is not considered in the control loop, but rather
analyzed separately in Section 4.3. The time complexity of the inference is (|N|), where N is the number of segments in
the route. In our implementation, inference with NNs can be efficiently performed with 200I.

CPUEC
req(l) = 100 MI + 200 I

seg.
⋅ N(l)

= 100 MI + 200 I
seg.

⋅ 5
seg.
km

⋅ lkm

= (100 + 10−3 ⋅ l)MI. (3)
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By comparing the required energy with the battery’s SoE, the destination attainability can be determined. If the current
SoE is sufficient to reach the destination, route and energy information can be sent back to the driver. If the destination
is not attainable, a charging point search and a charging plan calculation are triggered. The response includes the energy
consumption for each route segment, represented by 2 ⋅N variables. Thereby, the response size is

SEC(l) = 2000 B + 2 ⋅ N(l) ⋅ 8 B
= 2000 B + 2 ⋅ l ⋅ 5 ⋅ 8 B
= (2000 + 80 ⋅ l)B, (4)

where the 2000 B represent HTTP header and other overhead.

3.2.4 Charging point search and planner

When triggered, the search finds applicable charging points (CPs) in a geographical corridor along the route. These charg-
ing points are then sent to the routing module. With an analysis of the charging infrastructure in western Europe,66 we
established that the mean distance between fast chargers (P≥ 100k W) along major routes is approximately 50 km, that
is, the number of charging points along an l km long route is

nCPs(l) = 0.02 ⋅ l. (5)

The complexity of the charging point search is dependent on the number of possible charging points, that is, it is depen-
dent on route length. When implemented with linear search, the time complexity of therefore is (l) and the resource
requirements are

CPUCPs
req (l) = (100 + 10−5 ⋅ l)MI. (6)

The charging points GPS coordinates are given by two variables and the response size is therefore

SCPs(l) = 2000 B + 2 vars
CP

⋅ 0.02 CPs
km

⋅ l km ⋅ 8 B

= (2000 + 0.32 ⋅ l)B, (7)

where the 2000 B represents HTTP header and other overhead.
Through all reasonable combinations of these charging points, the fastest route is calculated. Depending on battery

SoE and maximum driving range, the number of reasonable charging point combinations for a route of length l can be
up to

nCP-Comb.(l) = 2nCPs(l) = 20.02⋅l
. (8)

Subsequently, the energy for each subroute between the charging points is estimated and charging times at each
charger are determined. Thereby, the total travel time is calculated. The charging planner sends multiple requests to the
routing and energy consumption estimation, dependent on the number of possible and reasonable routes. Ideally, the
routes and waypoints overlap to a certain extent, which means that a previously calculated route and energy consumption
can be partially used for another route. In the worst case, all possible routes are different, which means that each route and
its energy consumption is calculated individually. The number of possible routes is given by Equation (8). The resulting
worst-case resource requirements are

CPURouting, Mult.
req (l) = nCP-Comb.(l) ⋅ CPURouting

req (l)

= (100 + 20.02⋅l+1 ⋅ l)MI (9)
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and

CPUEC, Mult.
req (l) = nCP-Comb.(l) ⋅ CPUEC

req(l)

= (100 + 20.02⋅l ⋅ 10−3 ⋅ l)MI. (10)

3.2.5 Route selection and sending

The final step is to choose the fastest route and charging plan and to deliver this information to the user interface. Finding
the fastest route means searching in the list of calculated routes for the shortest travel time and can be achieved through
linear search. The time complexity of linear search is (n) where n is the number of routes. Each comparison in the linear
search requires approximately 10 I, so the resource requirements are

CPURate
req (l) = 100MI + 10 ⋅ 10−6 ⋅ nCP-Comb.(l)MI

= 100MI + 10 ⋅ 10−6 ⋅ 20.02⋅lMI
= (100 + 10−5 ⋅ 20.02⋅l)MI (11)

and the response size is assumed to be 1 kB. Sending the final response, that is, the route, range estimation, and charging
plan, to the user interface requires 50 MI. The route is represented by one 8 B variable for each route segment, so the
response size is

SResp.(l) = 2000B + N(l) ⋅ 8B
= 2000B + 5 ⋅ l ⋅ 8B
= (2000 + 40 ⋅ l)B, (12)

where the 2000 B represent HTTP header and the display values for range estimation and charge plan, which are
independent on route length.

In Table 4, we summarize resource requirements of each module. The complete process of the range estimation and
charge planning is shown in Figure 4. The figure shows a sequence diagram describing the process beginning from when
the driver enters a destination ending with the display of the route, driving range, and charge plan.

In Figure 5, we further visualize the resource requirement of the software modules for different route lengths.
Figure 5(A) shows the response size and Figure 5(B) shows the number of instructions of the route-length-dependent
software modules as a function of route length. According to Figure 5, it is clear that the routing algorithm and the energy
consumption estimation output the most data and also require the most instructions. This gives a hint that the data out-
put from these modules should not be transmitted over mobile internet connection and that placing these in the cloud
would result in lower end-to-end latencies.

T A B L E 4 Resource requirements of driving range estimation modules for a single route

Component Complexity Number of instructions (MI) Response size (kB)

enterDest() (1) 11 1.4

getConfig() (1) 20 1

getRoute() (l) 100+ 2 ⋅ l 2+ 80k ⋅ l ⋅ 10−3

getEnergy() (l) 100+ 10−3 ⋅ l 1+ 80 ⋅ l ⋅ 10−3

checkAttainability() (1) 100 1

getCPs() (l) 100+ l ⋅ 10−5 1+ 0.32 ⋅ 10−3 ⋅ l

rateRoutes() (l) 100+ 10−5 ⋅ 20.02 ⋅ l 1

writeResults() (1) 50 2+ 40 ⋅ 10−3 ⋅ l
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interface:UI :Controller :VehicleConfiguration :Routing :EnergyConsumption :ChargingPoints

enterDest

getConfig()

getRoute()

getEnergy()

checkAttainability()

R

getCPs()

getRoutes()

getEnergies()

rateRoutes()

== 0R == 0 Route with charging stop(s)

Response

Run Control LoopRun Control Loop

F I G U R E 4 Sequence diagram for route calculation, driving range estimation, and optional charging planner
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F I G U R E 5 Resource requirements of route planning, range estimation, and charge planning [Color figure can be viewed at
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http://wileyonlinelibrary.com


12 THORGEIRSSON et al.

4 PERFORMANCE EVALUATION

To evaluate the performance of the systems described in Section 3, we simulate these with iFogSim. The metrics of great-
est importance are: timing, network usage, reliability, availability, flexibility, scalability, expandability, security, energy
efficiency, and cost. Timing, energy efficiency, network usage, and cost of cloud execution are all measurable with sim-
ulations in iFogSim and monetary cost of network communication can be derived from network usage, if the network
provider’s conditions are known. The other metrics must be assessed subjectively. The control loop shown in Figure 4 is
analyzed with different route lengths and module placements. For the control loop, we measure following performance
indicators:

• Latency
• Network usage
• Cost of cloud execution
• Energy usage in cloud and vehicle

An optimal module placement maximizes all performance indicators for all route lengths. In this work, the number of
possible and reasonable combinations is low. Therefore, all of these combinations can be analyzed to determine the opti-
mal module placement. For each module placement variation, the performance indicators are calculated. Figure 6 shows
four module placement variants between the vehicle and cloud. The placement in Figure 6(A) is the classical vehicle-based
placement used as a baseline for the evaluation. The vehicle-based placement is commonly applied in current day BEVs.
Furthermore, it was suggested by Yi and Bauer,24 Scheubner et al.,27 and Ferreira et al.29 In that placement, all software
modules are placed in the vehicle except for the routing algorithm, which is based in the cloud. The routing algorithm
relies on real-time information on traffic and road conditions and can be seen as an external service. In the cloud-based
placement shown in Figure 6(B), all but the UI and vehicle configuration module are placed in the cloud. In terms of

UI Controller

Routing Energy Cons. Est.

Charging PointsVehicle Configuration

Vehicle

Cloud

(A) Vehicle-based placement

UI Controller

Routing Energy Cons. Est.

Charging PointsVehicle Configuration

Vehicle Cloud

(B) Cloud-based placement

UI Controller

Routing Energy Cons. Est.

Charging PointsVehicleConfiguration

Vehicle Cloud

(C) Hybrid 1

UI Controller

Routing Energy Cons. Est.

Charging PointsVehicle Configuration

Vehicle Cloud

(D) Hybrid 2

F I G U R E 6 Software component diagram showing the four module placement variants [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


THORGEIRSSON et al. 13

inference, this placement corresponds to the systems suggested by Fukushima et al.,22 Grubwinkler et al.,25,28 and Lee
et al.31 The placement shown in Figure 6(C) is a hybrid between the cloud- and vehicle-based placements, where the
routing algorithm and the charging point search are implemented in the cloud and the energy consumption estimation
module is placed dynamically both in the cloud and in the vehicle. The second hybrid placement shown in Figure 6(D) is
the same as Hybrid 1, except the energy consumption estimation module is only implemented in the cloud. This place-
ment corresponds to the systems suggested by Thibault et al.19 and Jayakumar et al.26 In the following, the simulations and
their results are discussed. In Section 4.1, the setup of our experiments in iFogSim is presented. In Section 4.2, inference
with the range estimation algorithm is analyzed. In Section 4.3, the learning of the range estimation model is examined.

4.1 Experiment setup

To analyze the driving range estimation and charge planning software, iFogSim is configured for the simulation of the
systems presented in Section 3. In the following, we describe which classes of iFogSim we use to set up our experiments.
A FogDevice is created for each of the hardware units in Table 2 with the given specifications. According to the topology
shown in Figure 2, a direct hierarchy of FogDevices is defined. The parent–child pair communication in the hierarchy
is configured according to the specification in Table 3. In addition, appropriate Sensors are configured in the vehicle
to measure velocity, energy consumption, and so on. Finally, one sensor and an actuator are configured to represent
the UI. The latency between a sensor/actuator and the vehicle’s central ECU is estimated to be 5 ms. An AppModule is
created for each of the modules in the driving range estimation and charge planning software shown in Figure 3. For
each of the edges between the software blocks in Figure 3, an AppEdge is created. Each edge carries a tuple that defines
the function of the edge. The processing requirements of the edges’ tuples are specified according to Table 4, where
the variable l is used to specify the length of the route. The edges are event-based and their function is triggered by
an incoming tuple from a source software module. To monitor and measure the end-to-end latency of the control loop
shown in Figure 4, an AppLoop is specified according to the sequence diagram. With the class ModulePlacement, the
mapping of the AppModules on the FogDevices is defined. Thereby, the module placement variants shown in Figure 6 can
be configured for the simulations. The results of the simulations include the end-to-end latency of the control loop, as
well as the network usage. Furthermore, each FogDevice measures the energy used during the simulation and the cost of
using cloud instances is calculated. In the following section, we present an analysis of these results.

4.2 Inference

For the driving range estimation and charge planning software, we simulated four different module placement variants,
each for different route lengths. The route lengths simulated are {10, 50,100, 200,300, 400,500}km. The mean results based
on the simulations are shown in Table 5. The table shows the performance indicators control loop latency, cost of cloud
execution, energy usage in the cloud, energy usage in the vehicle, and total network usage, in proportion to the baseline
vehicle-based placement. As the simulation includes uncertainty, we show the results in proportion to the baseline and
not the absolute values. In that way, the absolute system specifications are of lower importance compared with the ratio of
the specifications of different system architectures. For all performance indicators, the cloud-based placement is the best.
The control loop latency, cost of execution in cloud, and total network usage are significantly lower in the cloud-based
placement than in the other three placements. The energy usage, both in the cloud and in the vehicle, is similar for all
four module placements. The first hybrid placement shows significantly better results than the vehicle-based placement,

T A B L E 5 Performance indicators of module placements in proportion to the baseline, vehicle-based, placement

Placement Latency (–) Cost (–) Energy cloud (–) Energy ECU (–) Network usage (–)

Vehicle-based 1 1 1 1 1

Cloud-based 0.09 0.03 0.92 0.99 0.03

Hybrid 1 0.56 0.68 0.98 1.00 0.60

Hybrid 2 0.80 1.07 1.00 1.00 0.98
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F I G U R E 7 Relative latency and network usage of range estimation of a route with charging stops [Color figure can be viewed at
wileyonlinelibrary.com]

but still fails to attain the performance of the cloud based placement, which achieves more than 10-fold improvement in
latency, cost, and network usage.

Figure 7 shows the control loop latency and network usage of different module placements in proportion to the
vehicle-based placement for different route lengths. For the driver, these performance indicators are most important in
terms of user experience. Figure 7(A) shows the latency of the control loop and Figure 7(B) shows the network usage. For
both latency and network usage, the cloud-based placement is consistently better than the vehicle-based placement. The
improvement in latency is approximately 10-fold for all route lengths. The network usage of the cloud-based placement
is approximately 10 times lower than that of the vehicle-based placement for a route length of 500 km and even lower for
shorter route lengths. The Hybrid 1 placement’s performance is similar to the cloud-based placement for shorter routes,
but with increasing route length the performance worsens and becomes similar to that of the vehicle-based placement.
The second hybrid placement’s performance is similar to that of the vehicle-based placement, apart from an improve-
ment in relative latency with increasing route length. The cloud-based placement achieves clearly the highest over-all
performance.

If we analyze the causes for the differences, the most important factor is the time used down- or uploading data
needed for the range estimation and charge planning. In the cloud-based placement, the range estimation uses the route,
road, and traffic information directly within the cloud and only transmits the final display values to the vehicle, which
are considerably smaller in size. Furthermore, computation in the cloud is faster, which also improves the control loop’s
latency. Of the four module placement variants analyzed, cloud-based inference is clearly superior. Our proposed system
architecture can enable driving range estimation concepts such as those of Fukushima et al.,22 Grubwinkler et al.25,28 and
Lee et al.30,31 to perform efficiently.

4.3 Learning

In the previous section, we observed that inference can be done efficiently when the software modules are distributed
between vehicle and cloud; however, the learning of models has yet to be considered. In this section, we compare latency
and network usage of two different strategies: vehicle-based (on-device) learning and cloud-based learning, utilizing
either batch or online learning algorithms.67 In related works on cloud-based-driving range estimation, cloud-based
learning has to date been the preferred choice.22,30,31

The training data in the range estimation are streaming data that arrive sequentially with a frequency of up to 10 Hz
and can be non-IID.68 For streaming training data, online learning algorithms are a good choice.69 With this, the learning
can be done with a single pass of the observed data, which is then discarded. Optionally, the data may be saved, which
lead to a traditional training data set, enabling the application of batch learning algorithms. A significant benefit of online
learning algorithms is that the range estimation model is maintained live and can improve the estimation on-the-go. This
can also be seen as a requirement for the software, which makes other learning algorithms undesirable.

http://wileyonlinelibrary.com
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As discussed in Section 2.1, some of the input parameters for the range estimation algorithms are traffic, navigation,
and weather information. This information is also necessary in the learning of the model. However, only a description
of the current situation is needed, which can be observed in the vehicle directly. For example, the temperature can be
measured with the appropriate sensor and the traffic can be observed with on-board cameras and other sensors.27

Stochastic gradient descent (SGD) and its variants are widely used learning algorithms.70 SGD and variance-reduced
versions such as stochastic variance reduced gradient (SVRG) and STRSAGA, can be implemented for the online,
single-pass setting.71 Furthermore, it has been shown that the learning can be implemented in linear time.72 For the per-
formance of the software, the placement of the learning module must be decided. We compare the options of vehicle-based
learning and cloud-based learning.

Consider the number of iterations  needed for an algorithm, such as SGD, to converge to an acceptable level. The
time needed for each iteration is  and therefore the total time for the learning of an estimation model in a nondistributed
setting is

T =  ⋅  . (13)

In a distributed setting, the communication between vehicle and backend is also important. If c is the latency of the
communication, the total time needed for a distributed learning of the model is

T =  ⋅ (c + ), (14)

if communication in each iteration is assumed. Since algorithms, such as SGD, require many fast iterations, even fast
communications result in poor performance, as c ≫  .73 The learning algorithm can be deployed in a vehicle ECU as
well as in the cloud. We estimate the communication latency c based on the data size of the training data for cloud-based
learning, compared with the model size for vehicle-based learning. In Figure 8, we show our estimation of the com-
munication cost. In the figure, the size of the 10-Hz training data stream (TD) is shown dependent on driving time in
minutes. Additionally, the estimated model size of neural networks with five and 10 hidden layers (NN5 and NN10) is
visualized.

The preferred placement of the learning module is dependent on the required frequency of the recalculation of the
range estimation. If the required frequency is high, the communication cost of the 1-Hz cloud-based setting is lower
than that of the vehicle-based setting. For the 10-Hz cloud-based setting, the communication cost is higher than in the
vehicle-based setting if the time interval between recalculations is greater than 20 or 36 s for the five and 10 hidden layer
networks, respectively.

To minimize total network usage and communication cost c, the recalculation frequency should be as low as possible
and as high as necessary for the optimal user experience. From Figure 8 it can be seen that placing the learning algorithm
in the vehicle will reduce the communication cost, as the model size is effectively smaller than the size of the training data.
In terms of communication and computation cost, vehicle-based learning can be significantly better than cloud-based
learning. In this respect, the vehicle-based ML concepts for driving range estimation by Scheubner et al.27 and Ferreira
et al.29 can therefore be implemented with our proposed system architecture in an efficient way. Related works such as by
Fukushima et al.22 and Lee et al.,30,31 which have favored cloud-based learning, could benefit from placing the learning
modules directly in the vehicles.

F I G U R E 8 Size of the 10-Hz training data stream (TD) and estimated
model size of neural networks with five and 10 hidden layers (NN5 and NN10) in
kB, dependent on driving time in minutes [Color figure can be viewed at
wileyonlinelibrary.com]
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5 CONCLUSIONS AND FUTURE WORK

In this work, we evaluated the performance of an electric vehicle driving range estimation software in different system
architectures. Our evaluation is intended for the early stages of the development and enables the comparison of different
module placements regarding latency, network usage, cost, and energy usage. By modeling the software and the hardware,
simulations with iFogSim could be performed. The results show that for inference, a cloud-based module placement is
superior to other investigated placements. The cloud-based module placement is significantly better than the current
day baseline, the vehicle-based placement. We estimate that the end-to-end latency from the input of the destination to
the display of the route and driving range can be improved by a factor of 10. Furthermore, network usage is drastically
reduced. Additionally, we analyzed different settings for the learning of the model and found a vehicle-based learning
setting to be a more feasible choice than cloud-based learning, which was favored in related works. The result obtained
with our analysis can be used in early stages of the development to rate possible solutions, identify which are promising
and which are not practicable. To confirm the conclusions drawn from this work, future work will concentrate on further
experiments and empirical evaluations. In doing so, the performance of different system architectures shall be tested
using a fleet of connected vehicles. In addition, a strategy for deploying the proposed system in large scale shall be devised.
Here, frameworks such as FogBus,74 iGateLink,75 or Aneka76 can be applied to ensure a secure, scalable, and cost efficient
deployment.

The criteria reliability, availability, flexibility, scalability, expandability, and security cannot be assessed from our sim-
ulation results. Our subjective point of view is that the proposed cloud-based module placement offers more flexibility,
scalability, and expandability than a traditional vehicle-based placement, as software updates and changes are simpler
in the cloud than in the vehicle. As with all connected vehicle functions, the proposed system is dependent on mobile
connectivity, which may have negative impact on availability and thus, reliability. With the extension of mobile networks
and the development of 5G connectivity, availability, and reliability continues to improve.

Our research shows that the right system architecture for driving range estimation can improve the user experience
significantly, by reducing latency and network usage. Hopefully, more accurate range estimation with improved user
experience will drive the acceptance of battery electric vehicles.
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