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1 Introduction

Simulation studies are often used to compare different clustering methods. This
paper collects some hopefully useful thoughts on key issues regarding running
and interpreting such simulation studies, inspired by my wide experience as
designer and reviewer of such studies. Some of these thoughts will be specific to
cluster analysis, but some apply to more general simulation studies for comparing
statistical methods.

The term “clustering method” here is meant very generally. Usually one
would probably think of comparing a new clustering method with :-means,
spectral clustering and other competitors, but what follows is also relevant for
comparing different versions of the same approach, such as comparing different
algorithm initialisations for :-means, or different choices of tuning parameters,
or for different methods for estimating the number of clusters used together with
one or more approaches for clustering with a given number of clusters.

There are various ways to compare clustering methods:

• Mathematical theory can take various forms such as asymptotic the-
ory (consistency, asymptotic normality) assuming probability models,
for which clustering methods are usually interpreted as estimators of
model parameters (such as the : means of clusters following a certain
cluster model), or axiomatic theory that investigates certain desirable
characteristics for clustering methods, c.f. Ackerman et al. (2010).

• Comparison on real datasets with known grouping by assessment of
the amount of misclassification (comparison on real datasets without
known grouping could also be done, but it is less clear then how to assess
the quality of a clustering solution).

• Simulation study with artificial datasets generated with known “ground
truth”.

All these have advantages and disadvantages. Mathematical theory comes with
a specified domain of validity; mathematical statements are general under the
conditions under which they are proven, and the proofs are not affected by
statistical uncertainty.
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However, mathematical theory of cluster analysis is often difficult, and existing
results are often either rather unspecific (e.g., just dividing methods into those
that have a certain property and those that do not), come with restrictive
assumptions, or give asymptotic characteristics that can be quite different from
the finite sample behaviour relevant in practice. Furthermore, my experience
is that cluster analysis is often rather sensitive to model assumptions, i.e., the
behaviour of methods may be quite different if model assumptions are only
slightly violated. An example for this is the issue of estimating the number
of mixture components (interpreted as clusters) in a Gaussian mixture model;
clusters that are approximately but not exactly Gaussian will be fitted by more
than one Gaussian component if there are enough observations that the deviation
from Gaussianity can be picked up.

The comparison based on real datasets is attractive because real datasets
may represent better what is relevant in reality than simplifying models. A
major problem is that it is not clear how results from a handful of real datasets
generalise to any situation other than just these datasets. Normally the used real
datasets are not a representative random sample of a well defined population of
datasets; if this were the case, results could be generalised to that population,
but in most situations such a sample is not available. Furthermore, even if a real
dataset comes with a “true” grouping, it cannot be ruled out that there are other
meaningful groupings in the same dataset, and therefore it cannot necessarily be
held against a clustering method if it finds a very different clustering; ultimately
science is about finding out something new, and reproducing what is already
known is not always better.

Simulation studies can explore situations for which theory is not available,
and compared to real datasets they can be used to explore more systematically a
space of potential situations of interest, such as different numbers of clusters,
different degrees of separation between clusters etc. Furthermore they can give
an idea about the variation of results for datasets generated from the same model.
They can also highlight ideal and problematic scenarios for specific methods. By
“scenario” I mean a complete specification of a simulation setup, i.e., probability
model and all its parameters, numbers of observations etc., but allowing for
replication with new realisations of the involved random variables. In principle,
artificial datasets can also be deterministic, but it is then inappropriate to speak
of a “simulation study”.
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However, it is also important to have limitations in mind. Artificial datasets
may deviate systematically from what happens in reality, and the issues of
generalisation and uniqueness of the “true” clusters is not fully solved by them,
see Key Issues 2, 3.

Theory, real datasets, and simulation studies with artificially generated
data all have their place in the assessment of quality of clustering methods,
because all of them deliver something that cannot be replaced by the other two
approaches. Part of the considerations when setting up a simulation study is to
what extent theory is available to compare the methods, and it should be done
consciously in order to give information that can neither come from theory nor
from analysing real datasets.

Another key issue to understand when setting up a simulation study, and
maybe even more importantly when appreciating the results of such studies,
is the following.

Key Issue 1. “Method-centred” vs. neutral simulation studies. Probably the
majority of simulation studies in clustering are found in papers in which a
new method is introduced, and the study then is used to demonstrate the
benefits and (far less often) drawbacks of the new method. I call such studies

“method-centred”. Obviously the authors of such studies cannot be neutral when
comparing their own method to others; by a “neutral” study I mean a study the
authors of which do not have any personal interest in the success of any of the
compared methods. This does not mean that any study can be perfectly neutral
and impartial, see below.

It is important to acknowledge that there is a place for method-centred studies;
not all of them should or can be neutral. Authors of a new method are for good
reasons expected to make a case for their method. They need to demonstrate
that the new method has something to offer that existing methods cannot offer
already. A simulation study is often appropriate for this. It is illusory to demand
that such studies should be fully impartial. The authors have to find scenarios
in which their new method performs well, so it is most likely that they arrived
at the scenarios that they finally present by looking around, trying out more
than they present, and potentially also by adapting their own method so that it
can deal better with the simulated scenarios. This often even happens before a
systematic simulation study is in fact run, because “developing” the method may
imply pre-testing it and improving it in case the pre-test fails; the model used for
pre-testing, or a very similar one, may later appear again in the simulation study.
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I think that this is legitimate as long as the authors do not try to convey that
their study were in fact neutral. It is important that readers of the study do not
interpret the study as neutral and as giving a general account of the performance
of the new method and its competitors. Certainly it is not appropriate to cite a
method-centred study to state in general terms that “as shown in the study (, the
new method " is superior to :-means, spectral clustering and other clustering
methods involved in the study”, as can sometimes be seen in the literature!

Method-centred studies should still be fair, see Key Issue 4. Another desirable
feature of a method-centred study is that it should also highlight limitations,
i.e., situations in which the new method could be expected to perform well but
does not. Authors may be reluctant to show weaknesses of their own method,
but this contributes to the better understanding of the new method and can
guide a potential user regarding when to use and when better not to use the new
method. Obviously, reviewers should not use such aspects of a simulation study
to reject the paper!

There is a strong need for neutral studies for comparing clustering methods.
The authors of such a study should not only not be the authors of one or more
of the involved methods, they should neither have an interest in any of the
methods in particular for other reasons, be it because they are connected in
some way to the authors of the methods, or be it that they lean toward one of the
involved methods for other reasons, for example because they have used this
method in their work and/or defended its use in a discussion. Ultimately it is
hard or even impossible to avoid such bias as author, and we cannot hope for
anything better than an honest “as-neutral-as-possible” attitude; as experts
in cluster analysis, study authors may know method authors personally, and
may have applied many methods in their own work. A certain unconscious bias
can never be ruled out.

An alternative approach is that simulation studies could be put together
involving all method authors, and giving all these authors the chance to provide
a simulation scenario that they believe is favourable for their own method.

The paper will go through the following major steps in designing and running
simulation studies:

• Problem definition (Section 2)

• What scenarios to simulate? (Section 3)
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• What methods to include? (Section 4)

• How to evaluate performance? (Section 5)

The thoughts in this paper are a side product of my work in the IFCS (Inter-
national Federation of Classification Societies) Cluster Benchmarking Task
Force. This Task Force has produced a “White Paper” on cluster benchmarking
(Van Mechelen et al. (2018)), in which the comparison of clustering methods is
discussed systematically. There is some limited overlap with that paper (and some
influence of the other Task Force members on this paper, which I acknowledge,
as well as helpful comments by Tim Morris and two reviewers). The present
paper is meant as a collection of thoughts rather than a systematic guideline for
running simulation studies. See Morris et al. (2019) for a general tutorial on
comparative simulation studies with some further interesting references.

2 Problem Definition

Normally, in cluster analysis, a clustering is seen as “good” if it matches the
“true” clustering closely, assuming that such a true clustering exists (this point
was made in the pioneering clustering simulation study of Milligan (1980) and
has been taken up ever since). But there is no unique definition of a cluster;
several definitions exist that in some models may define different “true” clusters.
A simulation study should therefore come with a specific definition.

Key Issue 2. Definition of “true clusters” Much literature suggests that given
a dataset or mode, it is clear what the “true” clusters are that a clustering
method can be expected to find. Usually, a formal definition of the clustering
problem is not given, and often the “true clusters” are defined by fiat, appealing
to intuition, often using two-dimensional images (which cannot easily be done
for higher dimensional data). This is not good practice. There should be a clear
definition of the clustering problem that the simulation study is meant to deal
with. In Hennig (2015) I have discussed different possible definitions of clusters.
Here are some that are explicitly or implicitly used in some literature:

• Clusters can be defined as components of a mixture probability model.
Without further constraints such models are not identifiable, and therefore



Some Thoughts on Simulation Studies to Compare Clustering Methods 7

this approach needs an identifiable specification of the parametric form
or shape of the components (e.g., Gaussian).

• Clusters can be defined as density level sets or as associated to density
modes (in which case there needs to be a specification how observations
are assigned to modes).

• Clusters can be defined as represented by centroids minimising a certain
criterion that formalises how observations are assigned to centroids.

• Clusters can be defined as sets between which there is sufficiently strong
separation (there is more than one possibility what exactly that means).

• Clusters can correspond to distributions formalising certain geometrical
shapes such as spherical or linear.

• Clusters can be defined as optimal for serving other aims, e.g., clustering
may be used for data compression, dimension reduction through clustering
of variables, or prediction of external variables, and suitable optimality
criteria can assess such uses.
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Figure 1: Artificial dataset generated from a three-component Gaussian mixture, illustrating different
cluster definitions. Left side: if clusters are defined as Gaussian mixture components, there are three
clusters here, as indicated by the three colours. If clusters are associated to density modes, there are
two clusters here (the green one, and the red and black components taken together). If clusters are
defined as linear patterns, there are two clusters here (the red one, and the green and black components
taken together). Right side: optimal representation of the data by three centroids according to 3-means.
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These definitions do not necessarily agree, as is illustrated in Figure 1. The
assessment of cluster quality (Section 5) and also the decision of what to simulate
(Section 3) needs to depend on the kind of clusters that are of interest, and
therefore this should be explicitly defined.

A formal definition of true clusters may be seen as too restrictive, for
example, the experimenter (study author) may be interested in approximately
but not necessarily precisely Gaussian clusters that are also well separated,
excluding outliers. Giving such informal descriptions of the kind of clusters
of interest is certainly better than not giving a definition at all and appealing
to the reader’s intuition. The study design and performance measurement can
then be chosen accordingly.

Some definitions may seem inappropriate for certain datasets. For example, one
may think that the clustering on the right side of Figure 1 looks counter-intuitive
and :-means is just inappropriate for these data. However, there are applications
such as data compression, for which such a definition may still be useful (Jain
(2010)). The experimenter may be interested in the chosen cluster definition
in general, or only in certain situations, for example situations in which it
is in agreement with their intuition or with other definitions (i.e., centroid-
representation only if there also is separation). The simulated scenarios (see
Section 3) can be chosen accordingly. Actually, by choosing particular scenarios,
the study design always implies a certain restricted problem definition.

Here is an example for considerations connected to the problem definition.
In Coretto and Hennig (2016) we were interested in robust clustering in the
presence of outliers. The clusters were modelled by Gaussian distributions, but
we did not want to restrict considerations to precisely Gaussian distributions; we
also wanted to know how methods performed with distributions that generate
clusters for which in practice a Gaussian distribution would not be seen as totally
inappropriate. In particular, we generated data from mixtures of (multivariate)
t-distributions. The issue with t-distributions with a low number of degrees of
freedom is that they also generate data that looks outlying, and we were interested
as well in the correct detection of outliers. Therefore we needed a definition that
allowed us to declare the centre part of the data generated by a t-distribution
as “true cluster” and the outlying part as “true outlier”. We achieved this by
defining a robust covariance matrix functional for distributions, and by declaring
data “outliers” that are “too far” away from the (robust) cluster mean, where
a threshold for “too far” was required that was chosen so that the probability
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of being a “true outlier” was very low given that the data indeed was defined
by a Gaussian distribution. The resulting definition reproduced truly Gaussian
clusters almost perfectly, but was applicable also to other distributions, defining
certain low probability regions formally as “outlying”, and also defining what is
meant by a “true cluster” generated by a non-Gaussian distribution, but with a
Gaussian shape defining the kind of clusters that we were interested in.

3 What Scenarios to Simulate?

The performance of clustering methods can depend strongly on many factors,
e.g.,

• the number of clusters,

• distributions within clusters, including dependence/covariance structure,
geometrical “shape” etc.

• whether and how these differ between clusters,

• the relative position of the clusters (separation etc.),

• the absolute and relative size of the clusters,

• existence of outliers or “noise”,

• the type of distance (for distance-based methods),

• dimensionality of the dataset.

It is hardly possible to cover all these aspects exhaustively in a single simulation
study, particularly because there are very many possibilities for aspects such
as the distributional shape of clusters and outliers and their relative position.
Therefore a simulation study in cluster analysis will always be restricted in certain
ways. A systematical study may choose to vary some of these factors, holding
others constant, optimally using a factorial experimental design combining
a number of levels per factor. Fractional factorial designs allow for a larger
number of factors, but sometimes interactions between factors are important
and a fractional design loses too much information. The decision what not to
simulate is important and unavoidable. Ultimately the study needs to differentiate



10 Christian Hennig

between the compared methods, so aspects are of most interest where different
levels may imply different relative performances of the different methods. In my
experience, almost all simulation studies in clustering vary the dataset size, and
this is very often the least interesting factor.

In some literature the impossibility to run an “exhaustive” experiment is used
as an excuse to only run a tiny one, with only, say, one or two different scenarios.
This is hardly informative, and authors of method-centred studies give far more
credibility to their new method if they make an effort to test it over a wide
range of scenarios.In particular, this makes it far more difficult to cherry-pick
scenarios in which the new method works well if these are difficult to find.

In method-centred simulations, authors could look for

• a “proof of concept”, i.e., a scenario in which the new method is optimal,
in order to show that at least there exist situations for which it is more
valuable than anything else in the literature,

• scenarios that are not perfect for the new method (for example because
model assumptions are slightly violated, outliers added etc.). but where
one could in reality reasonably expect that the new method should work,

• scenarios in which one could reasonably expect the new method to work,
but it does not (or rather, another method works better); as discussed
earlier, such scenarios contribute strongly to the understanding of the
new method.

Key Issue 3. Generalisation The hope is that a simulation study can give us
general information about the performance of the involved methods, not only for
the specific datasets that are generated. In order to achieve this at least within
the simulated scenarios, replication is required in order to explore the variation
of results. To what extent we can generalise outside the simulated scenarios is
more difficult to assess.

Generalisability is made possible by equivariance (or invariance) results,
i.e., theoretical results that state that a clustering method behaves in a cer-
tain appropriate way if the dataset is transformed in specific ways, e.g., all
distances are multiplied by a constant. Equivariance results are often easy to
obtain, but unfortunately they only allow generalisation to a rather restricted
set of further situations.
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Apart from such results generalisability cannot be taken for granted. If there are
simulation results for scenarios with 2 and 5 clusters, say, can it be expected
that 3 and 4 clusters would produce results in between? This will probably
happen more often than not, but exceptions exist. Particularly, the relative
position of the clusters often matters a lot, and relative positions of clusters for
certain numbers of clusters do not imply relative positions for other numbers
that automatically allow generalisation. Generalisation outside the simulated
range is even more problematic.

Distributional shapes within clusters also often matter a lot, and good
simulation results for Gaussian clusters will not necessarily imply good results
for other cluster-wise distributions, not even for elliptical ones. The best that
can probably be done is to think hard about heuristic reasons why or why not
some not simulated scenarios can be expected to behave in line or differently
from the simulated ones. At least simulation studies offer a better framework for
such thoughts than experiments based on real datasets.

An approach used by some experimenters to improve generalisability is
to define scenarios involving randomly generated parameters of the data
generating distributions, i.e., to use newly generated parameter values for every
simulation run (see DeSarbo and Cron (1988) for an example of combining
random parameters with exploring several deterministic factors). For example,
if data is generated from Gaussian mixtures, mean vectors or even covariance
matrix entries could be randomly generated, covering different levels of cluster
separation, shape, and within-cluster dependence. The hope in doing this is that
results can then be generalised over the whole range of the space of simulated
parameters. To what extent this is justified depends on the variation in results
depending on the generating parameters. Certainly it will require a large number
of replicates. Different parameters may produce systematically different results,
and aggregating results over a distribution of parameters may hide the fact that
and how strongly results depend on the specific parameters. Another disadvantage
is that two possible sources of variation, namely different parameters, and
random variation given fixed parameters, can no longer be told apart. To some
extent these issues can be treated by relating the results to the underlying
parameter values using techniques such as regression or visualisation.

Here is a last remark on the scenarios to be simulated. There are a number
of existing software packages that generate data to be clustered for simulation
studies fulfilling certain specifications. Using these is certainly tempting and has
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some advantages, for example the possibility to directly compare results with
other studies that used the same generator. Also, some choices that are required
for the simulation study are not trivial, such as the precise definition of separation,
and some of these may be handled intelligently in some of these packages.
An important issue with using such packages is reproducibility. Packages may
change over time, and occasionally package documentations are deficient.

Simulations should always be documented in such a way that a reader can
reproduce them (if necessary using appendixes and online supplements to
journals), and a simple reference to a data generation package is not enough,
even if parameters are given. The experimenter should always precisely know,
and write down in terms of probability models with full specification, how data is
generated. If this is not clearly and fully explained in the package documentation,
the package should not be used.

4 What Methods to Include?

The definition of what the study is meant to achieve also involves the choice
of methods to be compared; often an experimenter aims at comparing the best
available methods for the chosen cluster definition and population of datasets,
but occasionally the scope is more restricted. For example, the experimenter
may be only interested in comparing different algorithms for optimising the
same objective function, or two specific methods that have been discussed in the
literature for a specific aim. Actually, there are thousands of clustering methods
in the literature, and simulation studies can only ever cover a very restricted set
of methods.

In any case, the experimenter needs to consider the literature and should
include methods that can be expected, for example from past performance, to
be good for the range of scenarios under investigation, or that are in widespread
use for such data. This also applies to studies with a restricted scope, because
the relevance of comparing some algorithms optimising the same objective
function, say, is questionable if other clustering methods can produce better
clusterings in the simulated scenarios than the objective function of interest.

Key Issue 4. Fair comparison Most clustering methods require some kind
of tuning, may exist with different implementations, or require initialisation
for which there are different options. This can be a major factor causing the
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simulation results. As long as the aim of the study is not the comparison of
such different versions of the same clustering approach, it is important that the
methods to be compared are run in ways that put them on equal footing. In method-
centred studies there is always a danger that authors of new methods work
hard on tuning their own method to optimal performance, whereas competing
methods are used in a much less sophisticated out-of-the-box fashion.

Particularly, methods should not be tuned for optimising the performance in the
specific simulated scenarios. Firstly, this produces selection bias, and secondly,
it cannot represent the methods in the way they are used in practice, because in
practice the “true” clustering or true parameter values (as used for measuring
performance) are not known, so in practice a default tuning or implementation
will be used and performance optimisation is not possible. Methods need to
be run in the simulation study in the same way in which the authors would
recommend to run them in practice without knowing the truth.

Generally it is desirable that experimenters try to make the same amount of
effort for tuning all competing methods, and this should not involve comparing
performances between different tunings on the simulated setups. Possible
considerations are for example whether the same initialisation can be used for
all methods, or whether it is possible to tune all methods to the same speed (in
case that existing algorithms allow performance improvement at the expense of
computing time, for example, in :-means, by initialising the algorithm randomly
many times and choosing the best solution according to the objective function,
which of course is observable also in practice).

In method-based studies, sometimes authors of competing methods may
be available to suggest specific tunings of “their” method. In any case the
used tunings need to be seen as essential part of the methods compared
in the simulation study, and results cannot be expected to generalise to
different ways of tuning.

5 How to Evaluate Performance?

Key Issue 5. Performance measurement on a single dataset. The most popular
way to measure the performance of clustering methods in a simulation study is
probably the comparison between the “true” clustering and the one produced
by a clustering method, where a clustering is understood as a set of subsets
(clusters) of the data, based on counts of observations that are in a particular
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cluster in the “true” clustering and in a particular cluster in the one generated
by the method. Meila (2016) lists and discusses a number of criteria to measure
distances between partitions. The most popular is probably the adjusted Rand
index (ARI; Hubert and Arabie (1985)), which is based on classifying and
counting pairs of observations depending on which they are in the same or
different clusters in the two compared partitions. Note that this approach does
neither require a matching of clusters in the different clusterings, nor that
the numbers of clusters are the same. The definition of “misclassification
rates”, as often used in supervised classification, requires that every found
cluster is assigned to a true cluster; this is probably done best by finding the
permutation of cluster numbers that minimises the misclassification rate; if the
found clustering structure is essentially different from the true one, this may be
seen as inappropriate.

The ARI has certain disadvantages (see Meila (2016) and references given
there), but in my experience overall simulation results will rarely differ strongly
from what other existing indexes deliver. However, in the study in Coretto
and Hennig (2016), already discussed in Section 2, we decided to compute
misclassification rates based on optimal matching, under the side condition that
observations classified as outliers are mapped to “true outliers” (which cannot
be done using the ARI). Other performance measures may occasionally be of
interest, depending on the problem definition:

• parameter estimation where clustering is done based on estimating a
parametric model (mean squared error etc.),

• quality of the approximation of the true density, where the clustering
method involves (parametric or nonparametric) density estimation,

• a target criterion formalising the cluster concept (e.g. for representation
of objects by centroids),

• measuring aspects of specific interest of the clustering such as how often
the true number of clusters is estimated,

• indirect criteria if clustering is done for serving other aims (e.g., quality
of prediction of an external variable using the clusters as predictors).

It is often worthwhile to consider the implications of such measures. For example,
very different clusterings may go with similar density estimates (and the quality
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of density estimation may therefore not be suitable if the clustering of the
observations is the primary interest). One issue with estimating the number
of clusters and counting how often the true number of clusters is found is that
arguably a good clustering with the wrong number of clusters is better than
a bad clustering with the correct number of clusters, see Figure 2. Therefore
even in studies comparing methods to estimate the number of clusters, it may
be worthwhile to use the ARI together with some measurement based on the
estimated numbers of clusters to assess the performance.
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Figure 2: Artificial dataset generated from a mixture with two Gaussian and one uniform component
with 3-means (left) and 4-means (right) clustering. The true number of clusters can be reasonably
defined to be three (e.g., based on separation), corresponding to the mixture components, and then
the 4-means solution looks better than the 3-means solution.

Most simulation studies will be so big that it is not practical to present the results
of every method on every single dataset. Furthermore, often the experimenter
may want to produce an overall ranking of the compared methods, or (often
more appropriately) a differentiated set of recommendations or rankings, recom-
mending for example one method for low dimensional and another one for high
dimensional data. This requires the aggregation of results from the potentially
many simulated datasets.
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Key Issue 6. Aggregation (single scenario). Consider aggregating results
from a single scenario, and assume that on a single dataset the performance is
measured by a single real number. The most popular choice for aggregation
is certainly to take the mean. One particular issue with the mean is that it is
sensitive to outliers. This can mean that the “mean performance” of a certain
method looks bad because out of, say, 100 replicates one was really bad whereas
the other 99 were fine. If the performance measure is bounded (such as the ARI
between -1 and 1), the effect of outliers on the mean is bounded as well and may
sometimes not be a problem. However, if the variation of the non-outlying results
is low, outliers may still have a strong impact. One could instead use robust
aggregation such as taking the median, but that is not really satisfactory either,
because although one would not want one bad result to dominate the overall
performance, one would still want to have a measure in which it is reflected that
occasionally the method does badly. There are more sensitive robust estimators
that are good compromises between means and medians such as M-estimators
or U-trimmed means with small U, meaning that if a very small proportion
of results is really bad, it does not influence the result how bad exactly they
are; however, the aggregate is still sensitive to changes in the vast majority
of results. If one can specify a threshold for “a performance so bad that it
is fundamentally wrong and it is no longer of interest how bad it is exactly”,
one could assign a constant to these results (e.g., the threshold value itself),
and take a plain mean afterwards.

Another issue is with missing values. Many clustering methods are imple-
mented in such a way that occasionally the implementation does not deliver a
result (this can happen because of lack of convergence, singularity issues etc.).
It would be a mistake in such cases to just aggregate the non-missing results,
because a missing result indicates that something undesirable has happened.
If missing values are discarded, methods that produce several missing values
but do well where they give results have an unfair advantage in comparison
to methods that produce results more often; particularly it may be the most

“difficult” datasets that attract missing values. A valid approach would be to
compute an aggregate without the missing values, but to report the percentages
of missing values separately, with the understanding that an overall good
performance does not only require a good aggregate result but also a low or
zero percentage of missings.
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Key Issue 7. Aggregation of several scenarios. When aggregating results from
several scenarios, an additional problem is that it may not be straightforward
to compare the results in the different scenarios. For example, certain scenarios
may be more difficult or less stable than others, which may lead to substantially
different value ranges and variances, and aggregating the different results in a
straightforward manner may implicitly mean that the results of some scenarios
dominate the overall aggregate and others have hardly any impact. One could
standardise results for each scenario separately before aggregation, but this
may be undesirable for the opposite reason: It may be that if the variation
of results in a certain scenario is low, one can say that more or less all the
methods are of the same quality there, and one would not want to weight this
scenario up by standardising to unit variance, say. This depends strongly on
the specific performance measure in use, and whether the meaning of absolute
differences is the same or different in different regions of its range. Furthermore,
the variance in a given scenario consists of both the variance between the
different methods and the variance within the same method between replicates.
If the within-method variance is high, results in the scenario are unstable and
should potentially have low weight, whereas the between-methods variance
points at strong differences between the methods that can be of primary interest,
in which case it is not desirable to weight them down.

For example, a 1% difference in misclassification rates has the same meaning
regardless of the actual values of the misclassification rates, so one would not
want to standardise these to unit variance, because a low variance means in
the first place that there is not much relevant difference between the different
methods. However, there is little “space” for low misclassification rates to vary
and within-method variances are often low but differences between methods are
very meaningful, and very large misclassification rates may just indicate that
a method gets the clustering structure totally wrong, and then a few percents
difference between two large rates may not be of interest.

In such a situation, instead of standardising to unit variance, it may be
sensible to standardise by dividing by the mean misclassification rate for the
given setting, or for a set of “similar and comparable” settings (it should be
avoided to divide by something that is very close to zero because very small
differences should not dominate the aggregation too much even where it seems
justified to weight them up a bit).
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Key Issue 8. Visualisation. Visualisation allows to show more differentiated
information than computing a single aggregate, and is therefore often preferable.
The considerations regarding aggregation apply to some extent as well to
visualisation. Sometimes it pays off to use nonstandard displays.
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Figure 3: Relative performance in ARI of 10 clustering methods (along the G-axis) compared with
method “CU” computed as ARI of the method minus ARI of CU on the same dataset, divided by the
average ARI over a set of comparable scenarios, for details see Hennig et al. (2019)..

Figure 3 shows an example for the visualisation of results for lots of scenarios
at the same time (it would have taken very many pages to show such graphs for
every single scenario), taken from Hennig et al. (2019). A problem here was that
there were many missing values (imputed by ARI= 0, as bad as a totally random
clustering) that had substantial influence on scenario means and medians.
Therefore we decided to make the different scenarios comparable by comparing
all methods to a reference method (called “CU” in Hennig et al. (2019) that
never yielded missing values; this was actually a method-centred simulation
study) and dividing by the mean ARI over a set of comparable scenarios to
make sure that this mean was sufficiently far away from zero; the division was
chosen because without it the different scenarios would still have been visually
so different that differences between methods would have been dominated by
differences between scenarios.

This is not something that I generally recommend but it was chosen based on
the specific results of that study, but not in order to make a particular method
look better or worse, but rather in order to produce an image (for which we
used standard boxplots), of which the most striking features corresponded to the
most relevant results of the comparison.
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Key Issue 9. Variation and testing. A major benefit of a simulation study
based on artificial data compared to using a number of real datasets is that
the simulation study can be used to assess the variability of results on data
generated from the same scenario. Particularly, a method A can look better
than another method B in a study based on some aggregate result, but it is of
interest to assess whether this can be explained by random variation alone,
in which case it would not be clear that method A is really better even in
that specific scenario. The practice to show scenario-wise standard errors of
simulation results is rather widespread and certainly better than not giving any
indication of variation. But if the different methods are run on the same datasets
in the simulation study (which is advisable because it reduces the variation
of the comparison between methods) the methods’ results are dependent, and
therefore the standard errors do not allow to compute a straightforward test of
the difference between two methods. This requires paired tests, which one could
apply to all pairwise comparisons between methods of interest (potentially with
appropriate correction for multiple testing), or random effects model based tests
in case that more than two methods are compared at the same time. Tests may
be run on nonstandard aggregates (for the reasons discussed in Key Issue 6)
using bootstrap or other resampling approaches.

6 Conclusion

I have presented a number of thoughts to take into account when designing and
evaluating simulation studies comparing different methods, particularly in cluster
analysis. Major issues are the distinction between method-centered and neutral
studies and its implications; the necessity to give a proper problem definition of
what kind of “true” clusters are of interest; threats to generalisability; fairness
of comparisons, particularly regarding method tuning; issues with evaluation
and aggregation of results, in particular the treatment of “performance outliers”
and missing results, and making results from different scenarios comparable;
the importance of results visualisation; and how to assess variation and whether
differences between methods are meaningful.

I end with another recommendation from painful own experience. Sometimes
simulations come up with very surprising results (and it would be good if the
experimenter had in advance at least a rough idea of what kinds of results
to expect). It is very important in such cases to find the reasons for these.
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If a certain method performs very differently from what the experimenter
thinks of as realistic, it means that the experimenter needs to improve his/her
understanding of the methods. But if a convincing data analytic explanation
cannot be given, a coding error is a far more likely explanation than the belief
that something astonishing has been discovered. Coding errors happen all the
time. Sometimes the method-centred study author’s favourite method “wins”
a study not because it is best, but rather because the author is very critical
about good looking results of competing methods and much less critical of
good looking results of their own.
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