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Abstract Generally, the unknown coefficients of neural nets are estimated by
nonlinear least squares. Therefore, prediction intervals for the true value of the
target feature exist. The paper proposes to use such intervals for class prediction
and model selection. Only in this way, the uncertainty of class predictions can
be indicated.
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1 Introduction

The consideration of the uncertainty of class probabilities appears to be not that
much in use in methods for class prediction. Only a few classification methods
like discriminant analysis and logistic regression (the “statistical methods”) are
constructed to directly estimate class probabilities. Other methods like support
vector machines and neural nets (the “machine learning methods”) utilize
softmax transformations to approximate probabilities (Hastie et al, 2001, p.
351, 384). In the cases where such (approximations of) probabilities are used
to decide upon the predicted class, most of the time only its maximum is
determined (maximum rule) (Hastie et al, 2001, p. 195) and the relative size
of the probabilities is ignored. Moreover, the uncertainty of the probability
estimates is not even considered. This way, an important statistical aspect of
prediction, namely its uncertainty, is neglected.

This paper develops a statistical view on class prediction by utilizing prediction
intervals for the estimated class probabilities in neural nets. Since the unknown
coefficients of neural nets are estimated by nonlinear least squares, prediction
intervals for the true value of the target feature exist. The paper proposes to use
such intervals for class prediction and model selection. Only in this way, the
uncertainty of class predictions can be indicated.
In Section 2.1, we will introduce the considered neural nets. Parameter

estimation is discussed in Section 2.2 and identifiability problems in Section 2.3.
Classification formulations of neural nets are introduced in Section 2.4 and
prediction intervals for neural nets in Section 3. Model selection in neural nets
for classification is defined in Section 4 and an example is given in Section 5.
Section 6 concludes the paper.

2 Neural Nets

In this section we will reconsider the basics of the neural nets we will discuss in
this paper.



Class Prediction by Prediction Intervals for Neural Nets 3

2.1 Single Layer Nets

In this paper, we will concentrate on so-called single layer neural nets (SLNN)
in order to show properties more easily. In principle, analogue properties are
also valid for multi-layer nets or even deep nets. An SLNN is defined as the
model (cp. Figure 1).

. = U0 +
3∑
8=1

U86( ®V)8 ®- + V80) + Y =: 5 ( ®-; ®\) + Y, (1)

with. the output, ®- = (-1, . . . , - )) the vector of inputs, ®V)
8
= (V81, . . . , V8 )

the vector of weights of the inputs for the 8-th node of the hidden layer, V80 the
constant input weight for the 8-th node of the hidden layer, ®U) = (U1, . . . , U3)
the vector of the weights of the outputs of the nodes in the hidden layer, U0 the
bias (overall constant), and Y a random input with expectation 0 (Hwang and
Ding, 1997).

Figure 1: Neural Net with one hidden layer (SLNN)..

The so-called activation function 6(G) makes the model nonlinear in that it is
generally chosen as a continuous symmetric sigmoid approximation to a jump
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function (’firing’ at a prefixed activation potential):

6(G) → 0 for G → −∞, (2)
6(G) → 1 for G →∞, and (3)

6(G) + 6(−G) = 1. (4)

We will concentrate on the logistic activation function (also called softmax
transformation, see Section 2.4) (Figure 2):

6(G) = 1
1 + 4−G . (5)

Other possibilities are symmetric distribution functions.

Figure 2: Logistic Activation Function..

2.2 Estimation

Altogether, there are the unknown model coefficients
®\ = (U0, . . . , U3 , V10, . . . , V30, ®V)1 , . . . , ®V

)
3
)) . These coefficients ®\ are esti-

mated via the nonlinear ordinary least squares method, minimizing

1
2

=∑
9=1
( 5 (®G 9 ; ®\) − H 9)2 =:

=∑
9=1
4(®G 9 , ®\) (6)

with the so-called error function 4(®G, ®\). The standard estimation method is
backpropagation, a gradient descent method of the form:
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\<; = \<−1
; − C<

m4(®G 9 , ®\<−1)
m\;

, (7)

where \; ∈ ®\ = (U0, . . . , U3 , V10, . . . , V30, ®V)1 , . . . , ®V
)
3
)) , < is the iteration

index, and C< > 0 the learning rate (step length) in iteration <. Weights are
adapted backwards from output to input, motivating the term backpropagation.
To mimic gradient steepest descent, observations have to be presented repeatedly
to the net.
The error function is highly non-linear and non-convex (because of the

activation function). Thus, every descent method can only find a local minimum.
Different starting values may help approaching the global minimum.
For large datasets, backpropagation is more efficient than more advanced

(second order) methods like Levenberg-Marquardt, because the inversion of (an
approximation to) the Hessian is avoided (cp. Weihs et al (2014, pp. 164, 186,
204)).

2.3 Non-Identifiability

The main problem with neural nets is that model (1) is never identifiable, i.e.
that always multiple coefficient vectors lead to the same value of the model
function 5 ( ®-; ®\). Hwang and Ding (1997) derived the following results.

Theorem 1 (Non-Identifiability of Neural Nets) Neural Nets with the logistic
activation function (Equation 5) are never identifiable, since two kinds of
transformations of the model coefficients ®\ leave the model function invariant:

(i) Permutations of the neurons or rather the coefficients ®̀8 = (U8 , V80, ®V)8 )) .

(ii) Transformations: (U0, ®̀1, . . . , ®̀8 , . . . , ®̀3) → (U0+U8 , ®̀1, . . . ,− ®̀8 , . . . , ®̀3).

However, for the logistic activation function, transformations (i) and (ii) are the
only transformations to leave the model function invariant (maximal identifia-
bility) if the model is not reducible:

Definition 1 (Reducibility) A coefficient vector
®\ = (U0, . . . , U3 , V10, . . . , V30, ®V)1 , . . . , ®V

)
3
)) is called reducible, if one the

following three conditions are met
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(a) U8 = 0 for any 8 = 1, . . . , 3,

(b) ®V8 = 0 for any 8 = 1, . . . , 3, where 0 is the null vector of length  , or

(c) (V80, ®V)8 ) = ±(V 90, ®V)9 ) for any 8 ≠ 9 .

Decisive for maximal identifiability is that all neurons in the hidden layer
independently contribute to the model function, i.e. the following condition 1 is
fulfilled:

Condition 1 The class of functions {6(1I + 10), 1 > 0} ∪ {6 ≡ 1} is linear
independent, i.e. for each 3 ∈ N and scalars 00, 08 , 180 ∈ R and 18 > 0,
8 = 1, . . . , 3, with (18 , 180) ≠ (1 9 , 1 90) for each 8 ≠ 9 :

00 +
3∑
8=1

086(18I + 180) = 0 ∀I ∈ R ⇒ 00 = 01 = · · · = 03 = 0. (8)

Non-identifiability obviously leads to non-interpretability. Despite this non-
interpretability of coefficients, however, neural nets can be well used for interval
prediction as will be seen in Section 3.

2.4 Neural Nets in Classification

For classification of 2 classes, you may use 5 ( ®-; ®\) itself as decision function.
As a classification rule you may use: Beyond a threshold g, predict class 1, else
class 0, where g is optimally adapted to the special classification problem.
For more than 2 classes, each class is assigned an individual output. The

corresponding values of the model function 52 ( ®-; ®\2), 2 = 0, . . . , � − 1, are
then typically transformed to represent / approximate the probability of class 2
discriminated from all other classes by the softmax transformation

B2 ( ®-; ®\2) =
1

1 + exp(− 5 ( ®-; ®\2))
. (9)

This transformation corresponds to another application of the activation function
(Fritsch et al, 2019)! As a classification rule you may use: Predict class
argmaxc B2 ( ®-; ®\2).
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3 Prediction Intervals for Neural Nets

Up to now, we ignored the stochastic structure of model (1). Now, we will con-
struct prediction intervals for the model values of neural nets. For classification,
this is equivalent to the construction of prediction intervals for class probabilities.
For the construction of prediction intervals, we need the invertibility of the
covariance matrix of the model coefficients. This way, (an approximation to)
the Hessian is re-appearing even for backpropagation. For ease of notation, we
restrict ourselves to the 2-class case with no additional transformation of the
single output.

Theorem 2 (Prediction interval for nonlinear models with additive error (cp.
Bianchi and Calzolari (1980); Hwang and Ding (1997)).) The U%−prediction
interval of a response. for values G0 := (G01 . . . G0 )) of the inputs -1, . . . , - 
for the nonlinear model . = 5 (-1, . . . , - ; V1, . . . , V!) + Y is given by:

.̂ (G0) − C=−!;(1+U)/2f̂
√

1 + �̂)0 (=�̂)−1 �̂0,

.̂ (G0) + C=−!;(1+U)/2f̂
√

1 + �̂)0 (=�̂)−1 �̂0,


)

(10)

if �̂ is invertible, the gradient vector �0 := m 5

m ®V
(G0; ®V; 0)) of 5 is consistently

estimated by �̂0 := m 5

m ®V
(G0; ®̂V; 0)) , the asymptotic covariance matrix of the

nonlinear least-squares estimator is given by f2�−1 with

� := lim
=→∞

1
=

=∑
8=1

m 5

m ®V
(G8; ®V; 0)) m 5

m ®V
(G8; ®V; 0), (11)

if the limit exists and is invertible, and � is consistently estimated by

�̂ :=
1
=

=∑
8=1

m 5

m ®V
(G8; ®̂V; 0)) m 5

m ®V
(G8; ®̂V; 0), (12)

where C=−!;(1+U)/2 is the (1 + U)/2-quantile of the C-distribution with = − !
degrees of freedom and f̂2 := 1

=−!
∑=
8=1 Ŷ

2
8
.

Nonlinear least squares estimators are asymptotically normal under weak con-
ditions with asymptotic covariance matrix f2�−1, consistently estimated by



8 Claus Weihs and Malte Jastrow

f2�̂−1. Under condition 2 for neural nets, defined below, � is invertible. The
logistic activation function meets condition 2. Thus, �̂ is asymptotically invert-
ible for the logistic activation function.

Condition 2 (Extended identifiability condition (Hwang and Ding, 1997):)
Let 6 be differentiable and 6′ the first derivative. The class of functions

{6(1I+10),1 >0}∪{6′(1I+10),1 >0}∪{G 6′(1I+10),1 >0}∪{6≡1} (13)

is linearly independent, i.e. for each 3 ∈ N and scalars 00, 08 , 48 , 58 , 180 ∈ R and
18 > 0, 8 = 1, . . . , 3, with (18 , 180) ≠ (1 9 , 1 90) for every 8 ≠ 9 :

00+
3∑
8=1
[086(18I+180) +486′(18I+180) + 58G6′(18I+180)] = 0 ∀I ∈ R (14)

⇒ 00 = 01 = · · · 03 = 41 = · · · = 43 = 51 = · · · = 53 = 0. (15)

Taking all this together, asymptotically, prediction intervals of model values
exist for the logistic activation function. And even though coefficients of neural
nets are not interpretable, neural nets appear to be theoretically unproblematic
for the uncertainty estimation of the predicted class probabilities for the logistic
activation function.

Unfortunately, typical activation functions as the logistic function can lead
to (numerically nearly) singular Hessians (Saarinen et al, 1993). At least
observations far away from a decision border can have very large prediction
intervals or even non-existing ones with numerically exact singularities. In order
to avoid this, we use the Moore-Penrose inverse instead of the exact inverse.

4 Model Selection

In this paper, model selection means the choice of the size of the hidden layer.
We distinguish three different model selection rules:

1. Maximum Rule based on point predictions: For each input vector, pre-
dict the class with the highest estimated probability: argmaxc B2 ( ®-, ®\2)
(cp. Section 2.4).
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To determine the number of neurons in the hidden layer, maximize
the predictive power of the net. As predictive power choose (1 − error
rate), i.e. minimize the error rate. Use re-substitution or resampling to
determine the error rate.

2. Prediction Interval Rule 1 based on prediction intervals: For each input
vector, compute probabilities and their prediction intervals for each class.
For each input vector, predict the class whose upper prediction interval
limit is greater or equal 1 (= 100%). If there is no such class or more
than one class with this property, predict ’class uncertain’ (distinguish
the different cases, see Section 5!).
To determine the number of neurons in the hidden layer, use the same
procedure as for the maximum rule. Additionally, as a 2nd criterion,
minimize the mean length of class prediction intervals for observed
inputs.

3. Prediction Interval Rule 2 based on prediction intervals: The only
difference to Prediction Interval Rule 1 is that for each input vector that
class is predicted whose lower prediction interval limit is greater than
the posteriors (predicted probabilities) of the other classes. If there is no
such class with this property, predict ’class uncertain’.

5 Example

As a demonstration example, we use = = 52 observations of ? = 2 inputs,
motivated by height G and weight H of a person. We distinguish three classes:
H <70, 70≤ H≤80, H >80. Note that the presumed class borders are horizontal,
G is not involved in class building (cp. Figure 3). We applied the R routine
(R Core Team, 2018) ’neuralnet’ (Fritsch et al, 2019) utilizing standard
backpropagation.
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Figure 3: Example data with class partition.

We applied the Maximum Rule and the Prediction Interval Rules to decide
between 1, 2, 3 neurons in the hidden layer. To approach the globally best neural
net models via nonlinear ordinary least squares, models are fit with 10 different
starting values. The model with the lowest training error according to Interval
Rule 1 is chosen. The same procedure is used to compute leave-one-out error
rates. In some rare cases, for some leave-one-out folds all 10 starting values do
not lead to convergence and therefore produce no model. In those cases, another
10 starting values are taken into account to find a model.

We predicted the unknown class on the grid 160 ≤ G ≤ 200, 55 ≤ H ≤ 95.
The predicted class is indicated as background color. Note that for Interval
Rule 1 we distinguish three (!) different in-between ’uncertain’ cases (“classes 2
and 1” possible, “classes 1 and 0” possible, “none of the classes” identified).
’Uncertain cases’ count as error.

First note that the found class borders never come near to horizontal. For
1 hidden neuron, the Maximum Rule assignment is always best, whereas for
the Interval Rules assignment is often uncertain though borders are similar,
but more ragged (Figure 4). For 2 hidden neurons, borders of the Maximum
Rule and the Interval Rules are again similar, but the lower border has changed
direction, and assignment of the Interval Rules is much less often uncertain
(Figure 5). For 3 hidden neurons, Interval Rule 2 identifies problematic areas
best, but Interval Rule 1 additionally identifies regions, where two classes are
possible (Figure 6).
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Training error is always 0 for the Maximum Rule, for the Interval Rules it is
acceptable from 2 hidden neurons on (Table 1). Leave-one-out error rates are
only somewhat greater than training errors. The mean prediction interval length
is very small for 2 and 3 neurons. Therefore, the Maximum Rule might even get
along with 1 hidden neuron, whereas the Interval Rules might choose 2 hidden
neurons. Concerning the question which Prediction Interval Rule to be used, we
can say that only Interval Rule 1 is able to identify regions where two classes are
possible, whereas Interval Rule 2 gives lower error rates and identifies uncertain
regions best.
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Figure 4: 1 hidden neuron: Maximum Rule (left) vs. Prediction Interval Rules 1 (middle) and 2
(right).
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Figure 5: 2 hidden neurons: Results of Maximum Rule and Prediction Interval Rules 1 and 2.
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Figure 6: 3 hidden neurons: Results of Maximum Rule and Prediction Interval Rules 1 and 2.

Table 1:Model Selection: Error Rates (in Percent) and Mean Prediction Interval Lengths.

Hidden Training error Leave-one-out error Mean prediction
Neurons Max. Interval 1 Interval 2 Max. Interval 1 Interval 2 Interval length

1 0 44.2 38.5 5.8 46.2 44.2 0.662
2 0 5.8 0 0 9.6 3.8 0.002
3 0 5.8 0 5.8 9.6 5.8 0.006

6 Discussion

In order to construct a reliable prediction rule, we propose to utilize the stochastic
model’s properties to create prediction intervals for assessing prediction quality.
We propose to allow for ’class uncertain’ as a possible prediction outcome. Only
this way, the uncertainty of class predictions can be indicated. For prediction
quality, one should rely on a variety of quality measures, e.g. on training error
vs. leave-one-out error. The discussion which prediction rule should be used
might have to be continued.
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