Ordinal Classifiers Can Fail on Repetitive Class
Structures

Ludwig Lausser”, Lisa M. Schifer”, Hans A. Kestler

Abstract Ordinal classifiers are constrained classification algorithms that as-
sume a predefined (total) order of the class labels to be reflected in the feature
space of a dataset. This information is used to guide the training of ordinal
classifiers and might lead to an improved classification performance. Incorrect
assumptions on the order of a dataset can result in diminished detection rates.
Ordinal classifiers can, therefore, be used to screen for ordinal class structures
within a feature representation. While it was shown that algorithms could in
principle reject incorrect class orderings, it is unclear if all remaining candidate
orders reflect real ordinal structures in feature space.

In this work we characterize the decision regions induced by ordinal classifiers.
We show that they can fulfill different criteria that might be considered as ordinal
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reflections. These criteria are mainly determined by the connectedness and the
neighborhood of the decision regions. We evaluate them for ordinal classifier
cascades constructed from binary classifiers. We show that depending on
the type of base classifier they bear the risk of not rejecting non ordinal,
like partial repetitive, structures.

1 Introduction

Classification, as a supervised learning task, is the canonical example for
a machine learning technique that bridges the gap between subsymbolic in-
formation and semantically meaningful classes (categories, concepts, etc.).
By extracting class predicting patterns, these algorithms generate a measur-
able representation of verbal concepts. These patterns can reveal unknown
class properties or causes of events. Nevertheless, their existence cannot be
guaranteed. Unsuitable feature representations might lack any information
(Lausser et al., 2013; Schirra et al., 2016).

The requirements on a feature representation become even more complex
when it is assumed that they reflect semantic relations among the embedded
classes (Lausser et al., 2014; Taudien et al., 2016; Lausser et al., 2018). While
these relationships are well known for the verbal concept of a class, it is unclear
what these relations look like in feature space. They might not be reflected at all.
Identifying a feature representation that reflects predefined semantic relations
must, therefore, be regarded as a rare event. Nevertheless, it provides much
more profound insights into the properties and relationships of the classes. We
focus on ordinal semantic relationships between classes, e. g.

stagei < stages < stages, (1)

which occur in diverse fields, like medicine (Weinberg, 2013). The ordinal
relationship < is only known for the verbal concepts stage;, stageo, stages
(e.g. in medicine defined according to some morphological characteristics);
its reflection on the molecular level (feature representation) is not guaranteed.
An example might be tumorigenesis, where the definition of stage is often
based on histological observations, like the grade of tissue disruption (Hruban
et al., 2001). Finding possible orders in the gene expression profile can hereby
help to confirm or falsify previous hypotheses.
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Classifiers that rely on a predefined class order are constrained classification
algorithms that are restricted by their choice of placing decision boundaries.
These restrictions can guide the training process of ordinal classifiers (Cardoso
and Pinto da Costa, 2007). They can also be misleading when an assumed
class order deviates from the real class order or embedding in the feature space
(Lattke et al., 2015).

Many ordinal classifiers are multi-class architectures of binary base classifiers.
Frank and Hall (2001) analyze ordinal classifier cascades, which are adapted
decision lists (Rivest, 1987). Hithn and Hiillermeier (2009) utilize ordered binary
trees. Platt et al. (1999) construct a directed acyclic graph of base classifiers.
Other authors present ordinal extensions of binary classifiers, such as linear
classifiers (Cardoso and Pinto da Costa, 2007; Crammer and Singer, 2001).

In previous work, we showed that the susceptibility of ordinal classifier
cascades could be used to reject wrong assumptions on the ordering of
classes (Lattke et al., 2015). Explorative screens can utilize this property
and return a set of candidate class orderings that are reflected by the feature
space (Lausser et al., 2019).

In this work, we investigate the decision regions induced by ordinal classifiers.
By analysing the neighborhood of the decision regions (Figure 1), we show that
different partitions of a feature space exist that might be considered as ordinal.
They can be classified according to the existence of disconnected decision
regions, which can be required for handling unconsidered subcategories, and
their neighborhoods. In this case there might be a local ordinal structure for each
subcategory but no global one for the joint classes. Subcategories can occur at
specific stages of an ordinal process leading to disconnected decision regions
for the subsequent classes. An example might be a differentiation of cell types
that is not considered in the labeling (e.g. labeling based on point in time) but
it is expected to be seen in the feature representation. Inducing the possibility
of disconnected decision regions within the ordinal classifier cascade allows a
wider range of partitions to be accepted as ordinal.

However, this relaxation bears the risk of a specific type of false posi-
tive detection. We show that an ordinal classifier cascade might not detect
(partial) repetitive structures within the feature space. We indicate this phe-
nomenon in the screening experiments on artificial datasets with ordinal and
repetitive class structures.
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Figure 1: Construction of components graph g.. In this work, we analyze the partition #. of an
feature space X induced by the training of a classifier ¢. By extracting the neighborhoods of the
partitions we result in a component graph g.. This graph can be analyzed to detect paths that are
labeled according to an assumed class order.

The remaining article is organized as follows. Section 2 provides the underlying
concepts and notation of the article. It especially gives a formal definition of
ordinal classification (Section 2.1), our criteria for ordinal feature embeddings
and finally the analyzed ordinal classifier cascades (Section 2.1.1). The experi-
mental setup is given in Section 3. The corresponding results are provided in
Section 4 and discussed in Section 5.

2 Methods

We will use the following notation throughout this article. An object will be
represented as an n-dimensional feature vector x = (x, ..., xU")T from a
real-valued topological space (X, w) with X € R” and w being the Euclidean
topology. Each object is assumed to be categorizable into exactly one class y; of
a predefined set of classes Y = { y,-}ll.:yll. The task of classification is to predict
the correct class label of an object according to the available measurements.
We distinguish between binary classification tasks (|| = 2) and multi-class
classification tasks (Y| > 2). A classifier is a function ¢ : X — Y. Itis typically

trained in a data-driven procedure /
[:CxXT —cyeC. 2)

Here, the symbol C denotes the concept or function class a classifier is chosen
from. The symbol 7~ = {(X iy ])}le denotes a set of labeled training examples



Ordinal Classifiers 5

to which the classifier c4~ was adapted. The subscript 4~ will be dropped, if the
training set is clear from the context.

The generalization performance of a classifier c is evaluated on an independent
[V
set of labeled validation samples V = {(x}, y})} " In our study we focus on
j=

the class-wise sensitivities

1
Sel’lS(C, y) = Ta, Z }I[c(x):y]7 (3)
[Vl (x,y)€Vy

where Vy, = {(x", y)|(x,y") € V,y" = y}.

Connected and Disconnected Decision Regions

We assume a classifier to assign a class label y € Y to each x € X. In this case,
a classifier ¢ constructs a partition P, = {Dy}y Y of decision regions Dy, with
DyNDy =0if y # y" and X = U,cy Dy. Class label y is predicted by a
classifier ¢ if x lies in the corresponding decision region D,

c(x)=y & xeD,. “4)

As an implication a classifier ¢ is unable to predict class y, if D, = 0. D, can
be further partitioned in terms of connected topological spaces and components
(e.g. Massey (1967); Buskes and van Rooij (1997)). In the following, we use the
notion of path connectedness.

Definition 1 (Path Connectedness) A topological space D is path connected if,
for any two points x,x” € D there is a continuous map

f:[0,1] —— D ®))

such that f(0) = x and f(1) = x’. It allows the definition of (maximal) path
connected components of a topological space.

Definition 2 (Path Connected Component) A subset k C D of a topological
space D is a path connected component of D, if k is path connected and there
is no other path connected subset k” with k C k’ C D.
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A component k is a maximal subset of D that fulfils path connectedness. As
a direct consequence we get k # 0 if D # (. We can now provide the set
of connected components K, = {ki}ll.z(ly | for each decision region Dy. As a
consequence of Definition 2 the components of K, are pairwise disjoint, their

number || is minimal. K, therefore again fulfils the properties of a partition

Dy=| )k and knk'=0forall k # k' with k,k’ € K. (6)
ke¥K,

A decision region D, will be called connected if |K,| = 1 and disconnected
otherwise (|Ky| > 1). We will additionally use the notation K. = Uycy K
to denote the set of all components of a classifier c. It will later on be used to
define the graph of neighboring components (Definition 4). We will additionally
use the notion of boundaries in order to define neighored components.

Definition 3 (Boundary) Let D be a topological space and k& C D. The
boundary 6 (k) of k is given be the set of points adherent to k and D \ k.

Two components k € K, and k" € K, share a common (decision) boundary if
o(k)yno(k’) #0.

2.1 Ordinal Classification

Ordinal classification is a multi-class classification task (|| > 2). That is, we
assume all semantic concepts to be pairwise distinct

Vy,y ey :y#y. (7)

In ordinal classification we additionally assume a (total) semantic order of the
class labels to be represented in the feature space

Y < <Y(Y)s (8)

where y(;y € Y denotes the i-th class of the order. The symbol < indicates that
the ordering is only known (or assumed) for the underlying semantic concepts.
Its reflection in the feature space is unknown and can not be guaranteed.
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The assumed class order guides the design or the training of an ordinal classifier.
For example, it can be utilized for defining the structure of an hierarchical clas-
sifier system (Ben-David, 1995). It can also be used for weighting the training
samples of cost sensitive base classifiers (Lin and Li, 2012). Alternatively, spe-
cialised performance measures might be applied (Waegeman et al., 2008).

The decision regions of an ordinal classifier should finally reflect the proposed
sequence of classes. Wrong assumptions on the class order should lead to a
decreased classification performance. In a previous article (Lattke et al., 2015),
we proposed to utilize this susceptibility of an ordinal classifier for a performance-
based criterion on the ordinality of a dataset. Its minimal class-wise sensitivity
evaluates a trained ordinal classifier ¢

min sens(c,y). ©)]
yey
By conducting classification experiments for all |[Y|! possible class orderings,
the influence of one specific class order can be judged concerning all other
orderings (Lausser et al., 2019).

Here, we focus on the required structural properties of an ordinal classi-
fier. The semantic order relationship (in the label space) fulfils the following
characteristics which are required in the feature space:

VyelY :=(y<y), [irreflexivity] (10)
Vy,y eY:(y<y)=-0'<y)), [asymmetry] (11)
Vy, v,y el : (y<y)AQ <y')= (y <y"). [transitivity] (12)

These properties should again be verifiable by an ordinal classifier. Its decision
regions should, therefore, fulfill the following minimal requirements:

1. All decision regions of an ordinal classifier should be non empty Vy :
Dy #0.

2. The decision regions of two consecutive classes Dy, and Dy, should
share a common decision boundary.

In order to provide concrete criteria for the second requirement we define the
component graph g. of a classifier c¢. For g. we define the concept of ordinal
paths, which allows us to formulate criteria based on the class labels and the
neighborhood of all components K.
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Definition 4 (Component Graph) The component graph g. of a classifier ¢
is defined as an undirected simple graph G(K., &E.) with the set of vertices
given by the components K. and the set of edges &, C {(k;, k;) : (ki k;) €
K. X K.,i < j} defined by the neighborhood

(k,k)e& e o(k)nsk)\ U S(k")y#0. (13)
k" eK N\{k,k"}

Definition 4 calls two components &, k” € K, neighboring, if they exclusively
share a common decision boundary. That is, there is no other component
k" € K. \ {k, k’} that is adherent to the common decision boundary. In this
case, the decision boundary is a (local) dichotomy between k and k’. Due
to our definition of connected components, two neighboring components are
guaranteed to be assigned to different classes.

In general, the graph g. will comprise several paths, which can be analyzed
individually. Hereby, each component can occur only once in each path and the
order of class labels induced by the order of components can be inspected. This
analysis connects the information of the feature space (components) with the
label information. If each label is represented at least once, the definition of a
class complete path is fulfilled (Definition 5). This criteria is a prerequisite for
an ordinal path as the order in the label space is defined for all class labels.

Definition 5 (Class Complete Path) A path (k1,..., k) in g. is class complete
(for Y)ifVy e Y,3i : k; C D,.

One real life example of a non class complete path might be the skipping of a
stage within a developmental process.

If there are disconnected decision regions, several nodes describe the same
label and hence one class might be represented several times within a path. In this
case, also patterns of class labels might be observed. If this pattern represents
the expected order it refers to a repetitive class structure. As consequence a
repetitive class structure consists of a path that is made up of several ordinal
paths (Definition 6). If only parts of the ordinal path are repeated we call it
partial repetitive class structure. In real life repetitive class structures might be
seen if trends in a set of categorical data are analyzed.
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Definition 6 (Ordinal Path) A path (k1, ...,k y) in g is ordinal (for y ) <
=< yqy) ifVitk; Dy,;,-

All ordinal paths in g, are class complete. A path that is considered to be ordinal
should additionally have the same order of labels as the assumed class order. As
a consequence it should be of length |Y|. They fulfill irreflexivity, asymmetry
and transitivity. They can be used to define a hierarchy of at least four different
partition types that could be identified as ordinal class structures. From less
restrictive to more restrictive these criteria are described in the following. An
illustration is given in Figure 2.

Criterion I: For eachi € {1,...,|Y[} and for each component k; € K, ,
there exists an ordinal path (k1,...,k;,...,k|y|) € g, with
Vj#ikje (Kym.

Criterion III:  Criterion I is fulfilled and one class is represented by a con-
nected decision region.

Criterion III:  Criterion I is fulfilled and all classes are represented by con-
nected decision regions.

Criterion IV:  All class complete paths are ordinal paths (according to y (1) <
< Ygyporyqyp <...< y(l)).

One aspect that differentiates these criteria is the restriction to connected decision
regions (Figure 2). Whereas criterion I does not require any decision region to
be connected and focuses on the general assumption that each component is
an element of at least one ordinal path (Panel 2a), criterion II asks additionally
for one connected decision region (Panel 2b). The more connected decision
regions, the more restrictive the criterion becomes, leading to criterion III
(Panel 2c), which assumes precisely as many decision regions as different
class labels exist. The most restrictive criterion in our list is criterion IV
(Panel 2d). To fulfill criterion IV, only consecutive classes are allowed to share
a common decision boundary.
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No ordinal path

D

(a) Criterion I requires that each component to be part of an ordinal sequence. It can be seen that in
the left representation this criterion is not fulfilled a as the blue component (marked with a red
border) does not have a green component (there is no edge from this node to a green node) as
neighbor. In the right representation for each component one ordinal path can be found.

Connected region

o /

Criterion II:

(b) Criterion II requires additionally that at least one connected decision region exists. This is
illustrated by the orange class, which has only one decision region if the criterion is fulfilled (right),
but two regions in the counterexample (left).

Disconnected @
. >
I'L‘gl(\n

XS

Criterion III: \/

(c) Criterion III requires all decision regions to be connected. In this example the red class shows a
disconnected region in the counterexample (left), but each class has only one decision region in the

positive example (right).
%o
Additional @
edges

Criterion IV: 4"

& ®

(d) Criterion IV requires that all paths are ordinal. In the left representation one can find a sequence
y2 < ¥y3 < yq4 <Y1, which is not the assumed class order and hence this requirement is not fulfilled.
If each decision region shares a boundary only with its assumed neighboring region criterion IV is
fulfilled (right).

Figure 2: Examples of different ordinal class topologies, their corresponding component graph and
their fulfilment of criteria I - IV. Class labels are represented by coloured circles and are ordered by
y1 <y2 <y3 <)ya.
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All criteria can occur in realistic scenarios. A representation according to
criterion I might be the result of unconsidered subcategories (e.g. females
and males) within the class definition. These subcategories might lead to
disconnected decision regions that are localized differently in feature space.
Nevertheless, the same ordinal process can be assumed in each subcategory. In
the context of severe diseases (e.g. tumorigenesis) the characteristics of a disease
might dominate the characteristics of the subcategories in the final stages and
hence samples of these stage lay in the same decision region. This scenario
would fulfill criterion II. A domination of this type might occur at several
stages. If it is assumed for all stages one ends up at criterion III. Criterion IV
corresponds to a reflection without any intersecting boundaries. As an example,
this can be referred to a gradual shift of the features, as it might occur in subsets
of features during tumorigenesis, or in dose-response measurements.

2.1.1 Ordinal Classifier Cascades

As an example for an ordinal classifier, we concentrate on ordinal classifier
cascades (Frank and Hall, 2001). An ordinal classifier cascade can be seen
as asking a sequence of experts, where each expert has its unique field of
knowledge. An expert can decide that an object belongs to its field of knowledge
(class) or pass the object to the next expert. The order of experts can influence
the answer. A general scheme is shown in Figure 3.

Formally, a (full) ordinal classifier cascade c(x) is a multi-class classifier
scheme that combines an ensemble of base classifiers 8 = {bC(l) .o beqy-n }
according to the predefined class order
c(x) = {y(i) if bey(x) =y AVJj<i: be (x) # Y() (14)

Ygy) else.

The i-th base classifier bc ;) is trained to distinguish between classes y ;) and
Y(i+1)

bepy : X — {ym.yam} - (15)
The cascade ¢ generates an unambiguous partition of the overlapping decision
regions of the base classifiers bc ;). Starting with the first classifier bc ), the
base classifiers are evaluated sequentially. The procedure stops when the i-th



12 Ludwig Lausser, Lisa M. Schifer and Hans A. Kestler

classifier predicts class y(;). Otherwise, classifier bc(;,1) is evaluated. If the
ordinal cascade predicts c¢(x) = y(;), a preamble of i — 1 base classifiers is
evaluated negatively (V j <i: bc(j(x) # y(j))- In summary, predicting class
Y(i) requires a lower number of base classifiers than predicting y(;.1). The
prediction of class y ;) is also faster, if we assume a constant prediction time of
the base classifiers (Viola and Jones, 2004).

As the prediction of the class label y ;) and the i-th preamble size correspond
one by one, the ordinal classifier cascade directly reflects the predefined semantic
ordinal relationship on the fusion level. Nevertheless, the cascade depends on
the input of its base classifiers.

c(x)
Y2 Yi+1) Yayn
beqy(x)  pr begy(x) oo > be(y)-1)(x) Yy
Y() Y Y(yi-1)

L) Y@ Y(yI-1)

Figure 3: Scheme of an ordinal classifier cascade. The ordinal classifier cascade c(x) consists of
a sequence of binary base classifiers bc(;) (x). In this example an incremental order of class labels
i) withi = (1,..., |Y]) is assumed. This means that the i-th base classifier bc ;) (x) is trained to
distinguish between class labels y(;) and y;.1). If a base classifier predicts its first class y(; for a
given sample x the cascade stops and the sample is labelled as y(;, otherwise the sample is evaluated
by the next base classifier in the sequence. If no base classifier predicts its first class the sample is
labelled as Yy -

2.1.2 On the Choice of Base Classifiers

The ordinal classifier cascade is a late aggregation fusion architecture. That
means it has only access to the predictions of its base classifiers; it does not
receive any further information about the feature space. The ensembles of
ordinal multi-class architectures consist of binary (non-ordinal) base classifiers;
they will typically not report violations of ordinal assumptions. Moreover, the
choice and design of a base classifier can itself harm the ordinal assumptions.
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An example would be base classifiers that allow disconnected decision regions.
The previously defined criteria impose different assumptions on the connectivity
of the decision regions. Criterion I is still fulfilled even if there are no connected
decision regions and also criterion II allows for disconnected decision regions.
In contrast to that, criterion III and I'V require connected decision regions. Using
base classifiers that have connected decision regions ordinal patterns according
to criterion I and II that do not fulfill III cannot be found. To detect those
one needs the flexibility of base classifiers that can divide the input space X
into decision regions that are disconnected. Those classifiers, however, do not
guarantee that criterion I is fulfilled.

3 Experiments

In our experiments, we evaluate ordinal classifier cascades based on binary classi-
fiers with connected and disconnected decision regions. Cascades are trained and
tested for all possible |V |! orderings of the class label. If not stated otherwise the
base classifiers bc ; are trained in a pairwise manner (Lattke et al., 2015). That
is each base classifier is trained on the samples of classes y(;) and y(;4+1).

For each experiment, the class-wise sensitivities are reported. The evaluation
is designed as a 10 x 10 cross-validation experiment (Japkowicz and Shah, 2011)
and is performed with the TunePareto R-package (Miissel et al., 2012).

k-nearest Neighbors (k-NN)

As an example for a classifier with disconnected decision boundaries we analyze
the well known k-Nearest Neighbor classifier (k-NN) (Fix and Hodges, 1951).
The k-NN is a member of the family of prototype-based classifiers that utilize a

set of labeled prototypes O = {(x‘,-, y_i)}g for the prediction of the class label
of a validation sample v

bce(v) = argmax |[{(x,y) € NNi(v,0)}], (16)
yey

where NN is the k nearest neighborhood of v in O

NN = {(x,y) € Oltko, (d(v,x) < k)} (17)
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and rk p, is the rank function on the pairwise distance d of v and the elements
of O
Dy = {d(v,x)|(x,y) € O}. (18)

In the standard version of k-NN, O = 7 and the Euclidian distance is used.
In general each k neighborhood results in an individual decision region. The
connection of the decision regions can not be guaranteed. We utilize k = 3
neighbors in the following.

Linear Support Vector Machines (SVM)

As abase classifier with connected decision regions, we utilize the linear support
vector machine (SVM) (Vapnik, 1998). It can be seen as a linear classifier of

type

if wix>t¢t
bc(x)z{yl oW , (19)
yo else

which is trained to maximize the margin between two classes y; and ys. In this
context w € R” can be seen as the multi-dimensional angle of a hyperplane
and ¢t € R as its distance to the origin. The training of the linear SVM is a
constrained minimisation of the following objective:

|71
min - lwlz+C JZ:; & (20)
S.t. Vllzll : yj(waj) —-t>1-¢; (21)
20 @)

T = {(xj,yj)}}g with label space Y = {-1,+1}. A positive slack variable
& describes the wrong classification of sample x; and gives its distance to
the margin. Parameter C determines the ratio between strict separation and
misclassified samples.

In its two-class version, the linear SVM splits the input space into two decision
regions. Since these decision regions are connected, we assume it to be suitable
for scenarios that fulfill criterion III.
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Parallel Decision Boundary Support Vector Machines (par-SVM)

In a second experiment, we further constrained the ordinal cascade of linear
SVMs to operate on a common orientation vector (w), which results in parallel
decision boundaries for all base classifiers. The decision boundaries will only

differ in their thresholds t = (¢ (i))l!:yll_li
it
min  wlf+C )7 > e )
wot.= i=1 j=1
ot Vgl|-1v|]j7:'|l 5wk =1 > 10D (24)
VIZIITL @) 5 g, (25)

In this context =2 = (f(i’j))ie{l ,,,,, Y |-1},j€{l |7} and

- _1 lf y i € y 1)s e e y i
yi,j — J . { (1) ( )} . (26)
+1 otherwise

This classifier is not trained in a pairwise manner but on all class labels. We
assume that it is able to distinguish criterion III and criterion IV, as it prevents
decision borders from intersecting each other.

3.1 Datasets

‘We evaluate the ordinal classifier cascades on ten artificial datasets d1, ..., d1g
(Figure 4 and Figure 5). Their characteristics, especially the fulfilled ordinality
criteria, are listed in Table 1. The first six datasets d1, ..., dg are one dimensional
datasets with X € R, n = 1. The remaining datasets d7, ..., d1p comprise two
dimensional patterns (X € R2, n = 2). The used patterns can also be embedded
in higher dimensions. This up-scaling will not influence the corresponding
component graph. All datasets comprise four classes Y = {y1,..., y4} and are
constructed according to the same principle.
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For each class y € Y a set of centroids Zy = {zy, l}llzly , Zy,; € N is chosen.

For each centroid z,, € Z,, a set of 50 samples is drawn according to a Gaussian
distribution
x ~ N(zy,0T"). 27

Here, I"" denotes a n-dimensional unit matrix and o~ € R. In our experiments,
o = 0.3 was chosen. The datasets therefore comprise m,, = 50|Z,| samples for
class y. All datasets are designed to represent the ordinal class structure

Y1 <Yy2 <y3<y4. (28)
dy: neighbored, ) : : dy: repetition (partial)
da: cont(‘r gurrmlnd ds: wave (total

HO® @@m @@@j@@@@@ @0@»

d3: 19p(—‘¢1t10n (tot Ll) dg: wave (partial)

gletot @@m @@@é@@@ @@m .

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 ﬁ 12 13

Figure 4: Schematic graphs of one-dimensional datasets d1, ..., dg. Each dataset consists of four
classes yi, ..., y4. A single circle denotes a cluster of 50 samples of the corresponding class. The

coordinate system defines the location of the class centroids.

The exact position of the centroids can either be extracted from Figure 4 and
Figure 5 or taken from the Supplementary Table A.1. Datasets dy, . . ., dg are
one-dimensional datasets (Figure 4). Dataset d; comprises one centroid per
class. The order of the classes corresponds to the size of the centroids x-values.
In dataset ds the (single) centroid z,, = 4 of class y, is surrounded by pairs of
centroids of the classes y; — ys.

The centroids of datasets ds, ..., dg are organized in repetitive structures.
In dataset ds, the whole sequence of centroids of dataset d; is duplicated and
shifted to a distinct position. In dataset d4 only the subsequence of classes ys,
y3 is duplicated and placed twice between classes y; and y,4. Dataset d5 can be
seen as a repetitive version of dataset ds leading to a wave-like pattern in the
class neighborhoods. The same principle is used for dataset dg. In contrast to
ds, only the classes y; — y3 are used for the second wave.
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Figure 5: Schematic graphs of two-dimensional datasets dv - d10. Each dataset consists of four
classes yi, ..., y4. A single circle denotes a cluster of 50 samples of the corresponding class. The
coordinate system defines the location of the class centroids.

Table 1: Main characteristics of the analyzed datasets. The criteria fulfilled, the numbers of samples
m, samples per class m, and the features n (dimensionality) are reported. All datasets comprise
samples of | Y| = 4 classes.

Name Criterion m my n
d;: neighboring L IL 100, IV 200 50, 50, 50, 50 1
ds: center-surround LII 350 100, 100, 100, 50 1
ds: repetition (total) 1 400 100, 100, 100, 100 1
dy: repetition (partial) - - - 300 50, 100, 100, 50 1
ds: wave (total) | 650 150, 200, 200, 100 1
dg: wave (partial) --- 550 150, 200, 150, 50 1
dr: layered I 550 400, 400, 400, 400 2
dg: grid | 2400 600, 800, 800, 200 2
dyg: parallel L II, 111, IV 600 150, 100, 100, 250 2
d1p: mixed L IL 10 1050 100, 150, 450, 350 2
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Examples of two-dimensional datasets are shown in Figure 5. Dataset d7 is
a layered version of dataset ds. In each layer, the class order of the proto-
types is reversed. Dataset dg shows a two-dimensional grid of wave struc-
tures. Dataset dg shows a parallel striped pattern whereas in dataset djg
the parallelism is disturbed.

Per construction the datasets are assumed to meet several of the previously
defined criteria. The datasets and their criteria are listed in Table 1. Datasets
that do not fulfill criterion I are considered as non ordinal. Repetitive and hence
local ordinal structures, exists if for multiple classes two centroids that are not
neighboring by construction exist and if these duplicates are of the same order.

4 Results

The results of the 10 x 10 CV experiments are given in Table 2 (3-NN), Table 3
(SVM) and Table 4 (par-SVM). For each dataset, all cascades that achieve a
minimal class-wise sensitivity higher than t = 60.0 % in the 10x 10 CV are listed.
An overview on the complete confusion tables is given in Appendix A.2. Over
all experiments, only the assumed class order and its reverse passed this limit.
The ordinal cascades based on 3-NN classifiers achieved minimal class-wise
sensitivities of at least 66.9 % on all datasets. The cascades based on linear SVMs
detected class orders only for the 1D dataset d; (neighboring) and the 2D datasets
dyg (parallel) and do (mixed). For all other datasets, all candidate cascades are
rejected. Additionally, the SVM with parallel decision boundaries was tested. It
suggests the assumed class order and its reverse for d; (neighboring) and dg
(parallel) whereas it fails to detect any ordinal pattern in the other datasets.
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Table 2: Results for ordinal classifier cascades based on independent 3-NN classifiers. For each
dataset, the cascades with a minimal class-wise sensitivity of at least # = 60.0 % are reported.

sens(y)
ID Name Class Order Y Y@ Y@3) Y4

di neighboring y1 < y2 < y3 < y4 98.0 % 94.2 % 91.8 % 96.2 %
V4 <y3 <y2 <y1 98.0 % 94.2 % 91.8 % 96.2 %

others miny sens(y) <t
do center- V1 <y2 <y3 <y4 91.5 % 86.5 % 84.7 % 89.8 %
surround  y4 < y3 <y <y1 91.5 % 86.5 % 84.7 % 89.8 %

others miny, sens(y) <t
ds repetition  y; < y2 <y3 < y4 95.7 % 90.8 % 94.1 % 73.2%
(total) Y4 <y3 <y2 <y1 66.9 % 90.8 % 94.1 % 95.3 %

others miny, sens(y) <t
dy repetition  y; < y2 <y3 < y4 100.0 % 93.0 % 94.4 % 100.0 %
(partial)  y4 <y3 <y2 <y1 100.0 % 93.0 % 94.4 % 100.0 %

others miny sens(y) <t
ds wave Y1 <Yy2 <y3 <Y1 92.1% 88.1% 85.5% 89.6 %
(total) V4 <y3 <y2 <y1 92.1% 88.1% 85.5% 89.6 %

others miny sens(y) <t
dg wave V1 <y2 <ys <y4 96.5 % 88.5 % 87.3 % 88.2 %
(partial) Y4 <Yy3 <y2 <y1 96.5 % 88.5 % 87.3 % 88.2 %

others miny sens(y) <t
dr7 layered V1 <y2 <y3 <y4 92.5 % 88.7 % 88.6 % 89.4 %
V4 <y3 <y2 <y1 88.4 % 88.7 % 88.6 % 92.5 %

others miny sens(y) <t
dg grid V1 <y2 <y3 <y4 91.5 % 89.5 % 89.2 % 81.3%
Y4 <y3 <y2 <y1 91.5 % 89.5 % 89.2 % 81.3%

others miny, sens(y) <t
dy parallel V1 <Yy2 <y3 <ysa 93.7 % 83.7 % 82.6 % 96.5 %
V4 <y3 <y2 <y1 93.7 % 83.7 % 82.6 % 96.4 %

others miny, sens(y) <t
dio mixed V1 <y2 <y3 <ys4 92.9 % 85.9 % 82.1% 93.3 %
V4 <y3 <y2 <y1 71.6 % 85.9 % 92.8 % 93.3 %

others miny sens(y) <t
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Table 3: Results for ordinal classifier cascades based on independent SVM classifiers. For each dataset,
the cascades with a minimal class-wise sensitivity of at least = 60.0 % are reported.

sens(y)
ID Name Class Order ya) Y2 ¥3) Y
dy neigh- V1 <y2 <y3 <y4 99.2 % 96.0 % 88.2 % 98.4 %
boring
Y4 <Yy3 <yz <y1 99.2 % 96.0 % 88.2 % 98.4 %
others miny, sens(y) <t
Oth
do — dg er all cascades miny sens(y) <t
datasets

dy parallel Y1 <Yy2 <y3 <y 93.0 % 84.6 % 84.1 % 96.0 %
V4 <y3 <y2 <y1 93.0 % 84.6 % 84.1 % 96.0 %

others miny sens(y) <t
dio mixed V1 <Yy2 <y3 <ys4 93.8 % 76.1 % 81.4 % 89.1 %
y4 <y3 <y2 <y1 93.8 % 76.1 % 89.3 % 89.1 %

others miny, sens(y) <t

Table 4: Results for ordinal classifier cascades based on parallel SVM classifier. For each dataset, the
cascades with a minimal class-wise sensitivity of at least ¢ = 60.0 % are reported.

sens(y)
ID Name Class Order Y Y@ Y@3) Y4
dy neighbor-  y1 < y3 <y3 <y4 99.0 % 96.0 % 84.4 % 100 %
ing
V4 <y3 <y2 <y1 99.0 % 96.0 % 84.4 % 100 %
others miny, sens(y) <t
Oth
ds —dg e all cascades miny sens(y) <t
datasets

dy  parallel  y; <y2 <y3 <ya 93.1% 84.3% 83.4% 96.4 %
Vi <y3 <ys <y 93.1% 84.3% 83.4% 96.4 %
others miny sens(y) <t

dio mixed all cascades miny sens(y) <t
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5 Discussion and Conclusion

In this work, we addressed the question of different types of ordinal reflection
in feature space. While ordinal representations that fulfill at least criterion III
reflect a (semantic) class order on a global level, repetitive representations reflect
this order in multiple local structures. At the border of two local structures, the
semantic ordinal relationship might not be fulfilled. Nevertheless, each local
structure might reflect on its own the semantic ordinal relationship, and hence
one might still conclude that an ordinal representation (of a less strict criterion)
is also present in the feature space. If the ordinal reflection is neither given
on the local nor on the global level, we do not consider the representation as
ordinal. As a consequence partial repetitive structures are not viewed as an
ordinal representation here.

Our experiments show that ordinal classifier cascades that operate on base
classifiers with disconnected decision regions can neither distinguish between
ordinal representation on a global and local level, nor between total and partial
repetitions. Interestingly, these cascades do not loose their ability to detect a
predefined semantic class order. The same class orderings were detected and
rejected for ordinal and repetitive structures.

Whereas the ability not to differentiate between the local and global level
allows for detecting data representations according to criterion I and II, not
differentiating between partial and total repetitions leads to the detection of
ordinality in feature representations that do not fulfill criterion I and are hence
not considered as ordinal by us.

Besides the differentiation between disconnected and connected decision
regions one could think of other criteria that allow a more fine-granular
hierarchy of ordinal class structures. The criterion of connected decision regions
(criterion III) can be even further restricted by the additional requirement of non
intersecting decision boundaries (criterion IV). By constraining the cascade of
linear SVMs (criterion III) to parallel decision boundaries (criterion IV), we
show that not all datasets that allow a correct detection of a global ordinality
(criterion III) also allow a detection according to criterion IV.

As a consequence one can conclude that the choice of base classi-
fier defines the set of possible ordinal patterns that can be detected. The
higher the flexibility of a base classifier, the more patterns are possi-
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ble, with the risk that ordinality is detected in data representations that
might not be considered as ordinal anymore.
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Table A.1 provides the class centroids used for the construction of the artificial

datasets.
Table A.1: Class centroids of artificial datasets (1/2).
1D Name Classes Centroids
dq neighboring Yis---5 Y4 Zy, =1
do center-surround Visee-5Y3 Ty, 1 =2y, — (4—1)
Zy, 2 =2y, — (4 1)
Y4 zy, =4
ds repetition s P 1 Zy,1=1
(total) Vis---5Y4 Zy;,2 = i+6
dy repetition y1 zy, =1
(partial) y2,¥3 Zy;, 1 = i+1
Zy;,3 = i+4
Y4 Zy, =
ds wave Yis---5Y4 Zy;,1 =1
(total) Zy,2 =1+6
Yi,---5Y3 Zy,3=14-1
Y2, Y3 Zy,,4=8—1
dg wave Vise--s Y4 Zy, 1 =1+4
(partial) Visee-5Y3 Zy, 2 =1
Yis--->Y3 Zy,,3 =121
Y2 Zyy.4 = 4
dr layered Visee-s V4 zy;.1 = (i, nr

Zy,2 = Zy,1 + (6, O)T
Zy;,3 = Zy;,1t (o, 6)T
Zy;, 4 =Zy;, 1+ (6, 6)T
Zy,.,5 = (5 bl i, 4)T

Zy;,6 = Zy;,5 + (6, O)T
Zy,,7 = Zy,5+ (0,6)"
Zy;,8 = Zy;,5+ (6, 6)T
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Table A.1: Class centroids of artificial datasets (2/2).

1D Name Classes Centroids
ds  grid YiseeesVa zy,1 = (i, )7
Zy,2 =Zy;,1t (5, O)T

Zy,3 =2y, 1 + (0,6)T

Zy4 = Zy,1 + (5,6)7
Yis---5Y3 zZy,5 = (4,07

Zy, 6 = Zy, 5 + (6,0)T

Zy;, 7 =Zy; 5+t (, 6)T

Zy,8 =Zy, 5t (6, 6)T

Zy,0= (4,14 -0)T
.10 = Zy;,9 + (65 O)T

Zy; 11 = (14 - i, 4)T

Zy; 12 = Zy;, 11 + (0, 6)T
y2,¥3 zy,13 = (8 —1,4)T
14 =2y, 12 + (0,6)T
zy,.15 = (4,8 -0)T
Zy,16 = Zy,.15 + (6,0)"

dy  parallel VisonesVa zy,1 = (i, DT
Zy;,2 = Zy;, 1t (1, 1)T

y1 zy,3 = (i,2)"

Y4 Zy, .4 = (5, 1)T

zy,5 = (6, )7, (6,2)"

dip  mixed y1, Y2 zy,1 = (i, DT
Zy;,2 = Zy;, 1t (0, 1)T
Y2 zy,3= (3, )T
y3 zy,.4 = ([1:3],3)T

Zy;,5 = Zy;, 4+ (2» _I)T
6 =2y4+(3,-2)T
Y4 zy,6 = (4,3)7,(5,3)T

Zy;,7 = Zy;,6 + (2» O)T
8 =2y6+ (2, -DT
Zy,.0 = (7, nr
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A.2 Confusion Tables for Ordinal Classifier Cascades

The following appendix provides the confusion tables for the experiments
on the artificial datasets d1, ..., d1o. For each dataset, the results of ordinal
classifier cascades trained for |Y|! = 24 possible class orders are shown. Those
class orders that allowed minimal class-wise sensitivities higher than 60 % are
highlighted by a yellow halo. In each figure the results are organized according
to the utilized base classifiers.

» Figure A.1: Confusion tables of dataset d1: neighboring.

* Figure A.2: Confusion tables of dataset do: center-surround.

» Figure A.3: Confusion tables of dataset d3: repetition (total).

* Figure A.4: Confusion tables of dataset d4: repetition (partial).
» Figure A.5: Confusion tables of dataset d5: wave (total).

* Figure A.6: Confusion tables of dataset dg: wave (partial).

» Figure A.7: Confusion tables of dataset d7: layered.

» Figure A.8: Confusion tables of dataset dg: grid.

» Figure A.9: Confusion tables of dataset dg: parallel.

* Figure A.10: Confusion tables of dataset d1g: mixed.
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2<1<3<0
0<3<2<1
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3<2<0<1
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2<3<0<1
1<2<0<3
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1<3<0<2
2<0<3<1
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Figure A.1: Confusion tables of dataset d;: neighboring.
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Figure A.10: Confusion tables of dataset d1o: mixed.
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