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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Motivation 

The functional requirements for new products in many 
industries are becoming increasingly demanding. For example, 
combustion engines are required to consume less fuel and emit 
fewer emissions without compromising performance. Precisely 
manufactured fuel injectors enable it to meet these 
requirements, resulting in more precise injection quantities and 
thereby optimized combustions. 

Due to the rising functional requirements parts must be 
manufactured closer to their target specifications. This results 
in tighter tolerances for the components close to the current 
technological limits [1,2]. Technologically immanent process 
deviations make it impossible to meet these high quality 
requirements eventually leading to scrap parts. 

If holistic functional fulfillment of a product is examined, 
interdependencies between components with production 
deviations can nevertheless enable the functionality of the 
product in some cases. By utilizing product knowledge, these 
deviating components can possibly still be used and the yield of 

good parts increased if the deviations of components are 
compensated by other subsystems. 

While selective assembly is successful with product 
characteristic interdependencies, it is not always possible for 
complex products with multiple complex interdependencies 
between influencing factors of different production stations [1]. 
In the manufacture of high-precision products, a high degree of 
non-linearity between these characteristics often occurs due to 
different influencing factors from parallel manufacturing 
machines, assembly and testing stations. These different 
influencing factors can only be represented with difficulty, if at 
all, by common statistical methods. Currently the functionality 
deviations of such products for which selective assembly is not 
feasible often only become apparent during the final functional 
test after assembly and thus lead to scrap parts and rising 
production cost. 

To verify the product function of such complex products 
extensive quality testing is required. In-line verification of 
quality features in real-time is one approach to detect errors 
early in production and prevent unnecessary value creation of 
defective components [3–5]. A virtual function verification 
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based on the production data and artificial intelligence 
approaches seems to be an effective measure to detect non-
conforming component combinations earlier in the process then 
at the final inspection [6,7]. 

The article is structured as follows: After a description of the 
state of the art in chapter 2, the development of the virtual 
function verification is methodically explained in chapter 3 and 
demonstrated in chapter 4 with an exemplary application. 
Chapter 5 concludes with a summary and outlook. 

2. State of the Art 

In-line quality control provides direct feedback on 
deviations in production systems and thus contributes to 
efficient and reliable production (see Fig. 1). In the production 
line integrated in-line measurement technology is used to 
determine the current production quality and then react 
accordingly. [8] 

 
Figure 1: In-line quality control [8] 

Artificial intelligence is the discipline of creating intelligent 
problem-solving machines. Machine learning which refers to 
artificial learning from experience is a subset thereof. 

Thus, machine learning methods provide the possibility to 
model relationships from data for the purposes of classification 
and regression [9]. Classification assigns pre-specified classes 
to an object based on one or more input properties [10]. 
Therefor the algorithm utilizes input and output data to learn 
about the functional relationship in form of supervised learning. 
Potential classification methods for supervised learning are e.g. 
artificial neural networks or support vector machines [11]. 
Artificial neural networks are inspired by biological neural 
networks and are capable of modelling complex relationships 
between inputs and outputs (see Fig. 2) [12]. 

 
Figure 2: Perceptron and ANN with one hidden layer, cp. [13] 

Thus they can be suitable to model the functional relation 
between deviations especially if a large data base (e.g. from the 
production ramp-up or previous product generations) is 
available for training of the model [14]. Artificial neural 

networks have been successfully applied to model different 
complex interrelations [15–18]. 

Artificial neural networks use multiple nodes, so called 
perceptrons, to calculate an output 𝑦𝑦 from 𝑛𝑛 inputs 𝑥𝑥𝑖𝑖 and the 
activation function 𝑓𝑓 . The weights 𝑤𝑤𝑖𝑖  and biases θ𝑘𝑘  of the 
perceptrons are determined by learning from existing training 
data sets (see Eq. 1). [12] 

𝑦𝑦 = 𝑓𝑓 (∑ (𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖) + 𝜃𝜃𝑘𝑘
𝑛𝑛

𝑖𝑖=1
) (1) 

After training and testing the ANN model can be applied and 
predict the output for unknown input data. 

Data in which certain classes are underrepresented can 
influence a classification in favor of the frequently represented 
class [19]. In the case of such an imbalance, the classification 
tends to adapt excessively to the majority class. The problem of 
unbalanced data is widespread in areas such as risk 
management, fraud detection and medical diagnosis [20–22]. 

Cluster based under-sampling of the data is a possibility to 
avoid the bias of the classifier by reducing the incidents of the 
majority class in the training data in a representative way 
through clusters [23]. 

For classification models the confusion matrix summarizes 
the classification performance. The true class of an object is 
plotted against the class assigned by the classifier (see Fig. 3). 
In the case of classifications with two classes, one class is often 
referred to as positive and the other as negative. Depending on 
the classification, one also speaks of true positive (TP), false 
positive (FP), false negative (FN) and true negative (TN). [24] 

To determine how accurate the classification recognizes the 
individual classes, precision and recall can be used for 
evaluation (see Eq. 2 and 3) [25]. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 (2) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹 (3) 

Often there is a dependency between precision and recall 
allowing to optimize one parameter at the expense of the other. 
Therefore the 𝐹𝐹𝛽𝛽-Score is a weighted key figure [26], where a 
positive real number 𝛽𝛽  determines how much the recall is 
weighted against the precision (see Eq. 4). 

𝐹𝐹𝛽𝛽 =  
(1 + 𝛽𝛽2) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝛽𝛽2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅   (4) 

As a conclusion of the state of the art, currently there is no 
research approach enabling a virtual in-line function 
verification in serial production before final testing of products 
with complex interdependencies where selective assembly is 
not feasible. However, machine learning approaches such as 
ANN, provide the potential to model these complex 
interrelations based on in-line production data. 

3. Research Approach 

In the following, a research approach for a virtual function 
verification is presented. Using an artificial neuronal network, 
a virtual function verification is developed from the production 
data. The model classifies the injectors into conforming and 
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non-conforming products regarding their function fulfillment. 
The general data mining approach is roughly based on the 
Knowledge Discovery in Databases (KDD) process [27]. 

The approach requires in-line data of the relevant features 
and properties for the classification of products as well as a data 
base of suitable production and programmable logic control 
data to train the model. It furthermore requires an understanding 
of the production process and product itself with its function-
determining features that must be incorporated into the model. 

Based on the understanding of the product and the 
production process a performance indicator for model quality is 
required. While the 𝐹𝐹𝛽𝛽-Score is a weighted average, the cost of 
false classifications in quality assurance also known as 𝛼𝛼

𝛽𝛽  
Products correctly identified as non-conform by the 

classifier are true positives (see Fig. 3). 

 
Figure 3: Confusion matrix with cost consideration 

Each true positive (TP) therefore saves costs. False positives 
(FP) in contrast are conform products declared as non-conform 
by the classifier and thus generate additional costs through 
unneeded reworking or scrap. False negatives (FN) on the other 
hand are non-conform parts misclassified as conform. These do 
not represent a deterioration in the status quo but are potential 
savings that have not been identified. In order to take this into 
account in the evaluation of model quality and model selection, 
these are evaluated in terms of opportunity costs as penalties in 
the amount of the lost potential savings. True negatives (TN) 
are products whose function has been correctly classified as 
conform. 

The evaluation of costs and savings can be used to assess the 
economic performance of an in-line classification model (see 
Eq. 5). 

𝐶𝐶 =  𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇 − 𝐵𝐵 ∗ 𝐹𝐹𝑇𝑇 − 𝐷𝐷 ∗ 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹 (5) 

Whereas 𝐴𝐴  is the saving from a correctly detected non-
conform part, 𝐵𝐵 the additional cost generated by a conform part 
incorrectly being rejected and 𝐷𝐷  the unused cost saving 
potential of not detected scrap parts. 

𝐹𝐹  is the annual production quantity and 𝑇𝑇𝑇𝑇 , 𝐹𝐹𝑇𝑇  and 𝐹𝐹𝐹𝐹 
being the number of parts classified accordingly. 𝐶𝐶  is a 
theoretical cost saving value to economically evaluate the 
performance of the classification model in usage, which can 
turn negative if there is a large number of FN, even though the 
model effectively generates savings. In order to assess the 

actual impact of the classification model 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  can be calculated 
without opportunity cost consideration (see Eq. 6). 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇 − 𝐵𝐵 ∗ 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹 (6) 

While this value indicates the effective costs and savings of 
the classifier, it does not take into account the non-identified 
scrap parts. 

3.1. Data Preprocessing 

In the first step, the features relevant for functionality are 
determined by product experts and the required production data 
extracted from the quality control database. 

Before the production data can be used to train the 
classification model, it must be preprocessed, i.e. missing and 
erroneous data must be handled accordingly. Therefore, 
incorrect values in the in-line production data are removed 
while general noise is not, as it will also occur, e.g. 
measurement uncertainty, when the model is applied. 

To train the artificial neural network in form of supervised 
learning the training data needs to be labeled. The target values, 
therefore, must be converted from scalar values to nominal 
classes. For the classification it is possible to choose two or 
three target classes (see Fig. 4). In the case of two target classes, 
only a distinction is made between conform and non-conform 
parts. With three classes, a differentiation is made whether the 
tolerance limit has been exceeded or fallen short of. 

For aggregated characteristics consisting of the results of 
several operation states the entire product is also classified 
accordingly. In the few cases in which the various operation 
states of the product has contrary results, i.e. one measured 
value below and another one above the allowed tolerance limit, 
the product is not classified as a whole and the corresponding 
entry in the data remains empty. 

 
Figure 4: Target class labelling 

Due to measuring times that exceed the production cycle 
time statistical process control is applied when possible. 
Therefore, some features are not available for every component. 
This leads to a large percentage of the use case data tuples being 
incomplete. The affected features are examined whether the 
missing values can be interpolated to increase the data basis. To 
interpolate these features, the production time of the component 
is used as reference variable for linear interpolation.  

Subsequently, the data is standardized so that the artificial 
neural network can process the data more efficiently and faster 
[28]. Nominal features such as station numbers and the target 
feature, however, are excluded from the standardization. To 
prevent large nominal numbers from distorting the 
classification results, these values are transformed to smaller 
numbers. 
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The article is structured as follows: After a description of the 
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Therefor the algorithm utilizes input and output data to learn 
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artificial neural networks or support vector machines [11]. 
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Figure 2: Perceptron and ANN with one hidden layer, cp. [13] 

Thus they can be suitable to model the functional relation 
between deviations especially if a large data base (e.g. from the 
production ramp-up or previous product generations) is 
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perceptrons, to calculate an output 𝑦𝑦 from 𝑛𝑛 inputs 𝑥𝑥𝑖𝑖 and the 
activation function 𝑓𝑓 . The weights 𝑤𝑤𝑖𝑖  and biases θ𝑘𝑘  of the 
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After training and testing the ANN model can be applied and 
predict the output for unknown input data. 

Data in which certain classes are underrepresented can 
influence a classification in favor of the frequently represented 
class [19]. In the case of such an imbalance, the classification 
tends to adapt excessively to the majority class. The problem of 
unbalanced data is widespread in areas such as risk 
management, fraud detection and medical diagnosis [20–22]. 

Cluster based under-sampling of the data is a possibility to 
avoid the bias of the classifier by reducing the incidents of the 
majority class in the training data in a representative way 
through clusters [23]. 

For classification models the confusion matrix summarizes 
the classification performance. The true class of an object is 
plotted against the class assigned by the classifier (see Fig. 3). 
In the case of classifications with two classes, one class is often 
referred to as positive and the other as negative. Depending on 
the classification, one also speaks of true positive (TP), false 
positive (FP), false negative (FN) and true negative (TN). [24] 

To determine how accurate the classification recognizes the 
individual classes, precision and recall can be used for 
evaluation (see Eq. 2 and 3) [25]. 
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Therefore the 𝐹𝐹𝛽𝛽-Score is a weighted key figure [26], where a 
positive real number 𝛽𝛽  determines how much the recall is 
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𝐹𝐹𝛽𝛽 =  
(1 + 𝛽𝛽2) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝛽𝛽2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅   (4) 

As a conclusion of the state of the art, currently there is no 
research approach enabling a virtual in-line function 
verification in serial production before final testing of products 
with complex interdependencies where selective assembly is 
not feasible. However, machine learning approaches such as 
ANN, provide the potential to model these complex 
interrelations based on in-line production data. 

3. Research Approach 

In the following, a research approach for a virtual function 
verification is presented. Using an artificial neuronal network, 
a virtual function verification is developed from the production 
data. The model classifies the injectors into conforming and 
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non-conforming products regarding their function fulfillment. 
The general data mining approach is roughly based on the 
Knowledge Discovery in Databases (KDD) process [27]. 

The approach requires in-line data of the relevant features 
and properties for the classification of products as well as a data 
base of suitable production and programmable logic control 
data to train the model. It furthermore requires an understanding 
of the production process and product itself with its function-
determining features that must be incorporated into the model. 

Based on the understanding of the product and the 
production process a performance indicator for model quality is 
required. While the 𝐹𝐹𝛽𝛽-Score is a weighted average, the cost of 
false classifications in quality assurance also known as 𝛼𝛼

𝛽𝛽  
Products correctly identified as non-conform by the 

classifier are true positives (see Fig. 3). 

 
Figure 3: Confusion matrix with cost consideration 

Each true positive (TP) therefore saves costs. False positives 
(FP) in contrast are conform products declared as non-conform 
by the classifier and thus generate additional costs through 
unneeded reworking or scrap. False negatives (FN) on the other 
hand are non-conform parts misclassified as conform. These do 
not represent a deterioration in the status quo but are potential 
savings that have not been identified. In order to take this into 
account in the evaluation of model quality and model selection, 
these are evaluated in terms of opportunity costs as penalties in 
the amount of the lost potential savings. True negatives (TN) 
are products whose function has been correctly classified as 
conform. 

The evaluation of costs and savings can be used to assess the 
economic performance of an in-line classification model (see 
Eq. 5). 

𝐶𝐶 =  𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇 − 𝐵𝐵 ∗ 𝐹𝐹𝑇𝑇 − 𝐷𝐷 ∗ 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹 (5) 

Whereas 𝐴𝐴  is the saving from a correctly detected non-
conform part, 𝐵𝐵 the additional cost generated by a conform part 
incorrectly being rejected and 𝐷𝐷  the unused cost saving 
potential of not detected scrap parts. 

𝐹𝐹  is the annual production quantity and 𝑇𝑇𝑇𝑇 , 𝐹𝐹𝑇𝑇  and 𝐹𝐹𝐹𝐹 
being the number of parts classified accordingly. 𝐶𝐶  is a 
theoretical cost saving value to economically evaluate the 
performance of the classification model in usage, which can 
turn negative if there is a large number of FN, even though the 
model effectively generates savings. In order to assess the 

actual impact of the classification model 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  can be calculated 
without opportunity cost consideration (see Eq. 6). 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇 − 𝐵𝐵 ∗ 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹 (6) 

While this value indicates the effective costs and savings of 
the classifier, it does not take into account the non-identified 
scrap parts. 

3.1. Data Preprocessing 

In the first step, the features relevant for functionality are 
determined by product experts and the required production data 
extracted from the quality control database. 

Before the production data can be used to train the 
classification model, it must be preprocessed, i.e. missing and 
erroneous data must be handled accordingly. Therefore, 
incorrect values in the in-line production data are removed 
while general noise is not, as it will also occur, e.g. 
measurement uncertainty, when the model is applied. 

To train the artificial neural network in form of supervised 
learning the training data needs to be labeled. The target values, 
therefore, must be converted from scalar values to nominal 
classes. For the classification it is possible to choose two or 
three target classes (see Fig. 4). In the case of two target classes, 
only a distinction is made between conform and non-conform 
parts. With three classes, a differentiation is made whether the 
tolerance limit has been exceeded or fallen short of. 

For aggregated characteristics consisting of the results of 
several operation states the entire product is also classified 
accordingly. In the few cases in which the various operation 
states of the product has contrary results, i.e. one measured 
value below and another one above the allowed tolerance limit, 
the product is not classified as a whole and the corresponding 
entry in the data remains empty. 

 
Figure 4: Target class labelling 

Due to measuring times that exceed the production cycle 
time statistical process control is applied when possible. 
Therefore, some features are not available for every component. 
This leads to a large percentage of the use case data tuples being 
incomplete. The affected features are examined whether the 
missing values can be interpolated to increase the data basis. To 
interpolate these features, the production time of the component 
is used as reference variable for linear interpolation.  

Subsequently, the data is standardized so that the artificial 
neural network can process the data more efficiently and faster 
[28]. Nominal features such as station numbers and the target 
feature, however, are excluded from the standardization. To 
prevent large nominal numbers from distorting the 
classification results, these values are transformed to smaller 
numbers. 
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3.2. Under-Sampling 

In production data the share between conform and non-
conform parts in most cases is unbalanced. This class imbalance 
is an intrinsic problem, since the goal is always to achieve the 
highest possible yield of conform parts. In order to minimize 
the bias of the classification model due to the class imbalance, 
cluster based under-sampling proves to be suitable [29]. 

To ensure that the under-sampling does not distort the test 
results, a test data set must be separated from the data before 
the under-sampling of the training data (see Fig. 5). For the test 
data set random data tuples are selected to prevent systematic 
influences. The test data set thus still approximates the real class 
distribution independently of the under-sampling. 

 
Figure 5: Cluster based under-sampling process [29] 

For the under-sampling the majority class is grouped into 𝑘𝑘 
clusters with 𝑘𝑘-means++ clustering. Each of those 𝑘𝑘 clusters 
are reduced to one data point. There are two possible methods 
for the reduction, either the cluster center is used as a 
representative artificial data point or the next real data point is 
determined by the Euclidean distance [29]. 

So 𝑘𝑘 determines the reduced number of data tuples of the 
majority class. This minimizes the class imbalance, leading to 
the share of the majority class 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛  in the under-sampled data 
(see Eq. 7). 

𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑘𝑘
𝑘𝑘 + 𝑚𝑚  (7) 

With 𝑚𝑚 being the quantity of data tuples of the minority class 
in the training data. 

3.3. Artificial Neural Network 

A two-layer feed-forward network, with sigmoid hidden and 
softmax output neurons, is then trained with supervised 
learning of the preprocessed data using the MATLAB® Neural 
Net Pattern Recognition toolbox. For testing the performance 
of the artificial neural network hold-out validation is 
performed. In order to minimize random influences, the mean 
value of the confusion matrix entries is determined from five 
training and corresponding test iterations. 

In order to optimize the artificial neural network parameters 
a sensitivity analysis is performed in the form of a statistical 
design of experiments. Thereby, the influence of several 
parameters such as the number of hidden neurons, number of 
epochs, learning rate and number of target classes are examined 
with a Box-Behnken design. The target function of the analysis 
is to maximize 𝐶𝐶 (see Eq. 8). 

max
𝑇𝑇𝑇𝑇,𝐹𝐹𝑇𝑇,𝐹𝐹𝐹𝐹 ∈ ℕ

𝐶𝐶 (𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, 𝐹𝐹𝐹𝐹) (8) 

For the training function that updates the weights 𝑤𝑤𝑘𝑘𝑘𝑘  and 
biases values θ𝑘𝑘  of the perceptrons Bayesian regularization 
backpropagation, Levenberg-Marquardt backpropagation and 
Scaled conjugate gradient backpropagation are considered. 

For evaluation of the analysis the averaged confusion 
matrices are used and for each classification model and the 
corresponding 𝐶𝐶 and 𝐶𝐶𝑛𝑛𝑒𝑒𝑒𝑒  calculated. This way the influence of 
the individual parameters is approximated. 

While 𝐶𝐶𝑛𝑛𝑒𝑒𝑒𝑒  indicates the actual impact on production, the 
theoretical value 𝐶𝐶 is used to determine the best classification 
model so that the number of unrecognized scrap parts is also 
taken into account. 

4. Case Study 

Together with an industrial partner, the research approach is 
applied to an exemplarily use case regarding the production of 
a piezo controlled common-rail injector for combustion engines 
in passenger cars and light weight utility vehicles. The product 
consists of several high-precision subsystems from various 
disciplines such as mechanics, mechatronics and fluid 
mechanics (see Fig. 6). 

 
Figure 6: Product principle of a high-pressure injector, cp. [30] 

All subsystems of the product, such as piezo actuator, servo 
valve, throttle plate and nozzle set, affect the functionality of 
the injector significantly. Precise injection quantities with 
tolerance less than a milliliter are defined as the functional 
quality requirements for several operating states simulating 
different driving situations. The product not only has to meet 
high precision in volume portioning but also high-dynamic 
control with up to five injections per cycle at high pressure to 
meet performance and efficiency requirements [30]. 

As small deviations in a component already influence the 
flow rate, high quality requirements are assigned to the relevant 
characteristics to assure the product functionality. In addition, 
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non-linear, process-related variations occur, which can be 
assumed due to the manufacture of the products at different 
production stations. However, the technological limits of the 
manufacturing processes are reached resulting in a 
comparatively high percentage of scrap, and thereby increased 
production costs. 

In the final assembly step the injectors are screwed together. 
Up to this stage the injectors can easily be dismantled and the 
components reused. If a faulty product is detected after this 
assembly step the dismantling is more costly and due to plastic 
deformation not all components can be recovered. Following 
the screwing the functionality of the injectors is tested by 
measuring the fuel flow at the different operating states. If the 
flow rate at one of the operating states does not meet the 
functional tolerances, the injector is scrap and gets dismantled 
so that individual components can be recovered. 

Therefore, a virtual in-line function verification is 
introduced before the final assembly step (see Fig. 7). The 
virtual function verification utilizes the in-line production data 
to classify a product with regard its functionality. 

 
Figure 7: Virtual in-line function verification 

Based on the classification result the injectors can be sorted out 
before screwing and thus costs are reduced (see Fig. 8). 
Dismantling of unscrewed products is only 27 % of the 
dismantling cost of non-conforming tested products in the final 
functional test, after screwing.  

 
Figure 8: Cost structure before and after screwing 

For the virtual function verification an artificial neural network 
is trained and tested with production data from 197,981 
injectors with 17 input features each. To evaluate the ANN and 
the effects of certain parameters the corresponding effective 
savings 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  and the savings with penalties for unrecognized 
scrap parts 𝐶𝐶 are calculated. 

4.1. Results 

The results of the ANN were evaluated with a five times 
hold-out validation and additionally compared with other 
methods of machine learning, such as Decision Trees, Support 
Vector Machines (SVM), k-Nearest-Neighbor (kNN) and 
ensemble methods, i.e. subspace kNN (see Table 1). All these 
classification models are combining all operating states which 
simulate different driving situations in one aggregated feature. 

The effect of cluster based under-sampling unfortunately led 
to mixed results with smaller data sets depending on the 
examined operating state in pre-analyses. Since the calculations 
are highly computation-intensive they were not examined on 
the entire data set. Nevertheless, in further applications, the 
method could significantly improve the ANN performance. 

Table 1: Classification results for various models 
Model Precision Recall 𝑭𝑭𝟏𝟏 C Ceff 
no model applied    -500,643 0 
ANN (𝐦𝐦𝐦𝐦𝐦𝐦𝑪𝑪) 0.197 0.271 0.228 -115,700 68,212 
Fine Tree 0.786 0.131 0.234 -349,934 54,705 
Fine kNN 0.496 0.416 0.480 -73,107 129,046 
Quadratic SVM 0.938 0.075 0.138 -396,508 34,000 
Subspace kNN 0.692 0.553 0.615 8,022 215,875 

With the design of experiments the configuration of the 
artificial neural network was optimized. The effect of the 
parameters such as the number of neurons per hidden layer, 
epochs, learning rate, ratio of test data, number of target classes 
and the backpropagation training function on the neural 
network are examined in the design of experiments (see Fig. 9). 

 
Figure 9: Pareto chart of the standardized effect of the parameters 

The optimized ANN was obtained classifying the injector 
into the three classes achieved slightly better results than two 
target classes. This could be due to general differences in parts 
with results above and below the tolerance. Regarding the 
training function the Bayesian regularization backpropagation 
showed the best results, exceeding the other functions. The 
optimal parameters are 250 epochs, a learn rate of 0.136, with 
a test data ratio of 25% and a hidden layer size of 10. 

With these parameters the ANN reaches a precision of 0.197 
and a Recall of 0.271, leading to an 𝐹𝐹1-Score of 0.228. Even 
though the theoretical cost savings 𝐶𝐶 value is negative due to 
the penalties for non-identified defective parts, the artificial 
neural network effectively generates cost savings 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  of 
68,212 €/year.  

The number of epochs also has great influence on the results 
but increases training times considerably. Further training of 
the ANN with more epochs could therefore additionally 
improve the results. However, due to nonlinearities, this 
approach does not necessarily find the global optimum and 
cannot be used without restriction. 

The other machine learning models are obtained with a 10-
fold cross-validation with two target classes instead of three. 
Even without further optimization the subspace k-Nearest-
Neighbor ensemble outperforms the other approaches including 
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3.2. Under-Sampling 

In production data the share between conform and non-
conform parts in most cases is unbalanced. This class imbalance 
is an intrinsic problem, since the goal is always to achieve the 
highest possible yield of conform parts. In order to minimize 
the bias of the classification model due to the class imbalance, 
cluster based under-sampling proves to be suitable [29]. 

To ensure that the under-sampling does not distort the test 
results, a test data set must be separated from the data before 
the under-sampling of the training data (see Fig. 5). For the test 
data set random data tuples are selected to prevent systematic 
influences. The test data set thus still approximates the real class 
distribution independently of the under-sampling. 

 
Figure 5: Cluster based under-sampling process [29] 

For the under-sampling the majority class is grouped into 𝑘𝑘 
clusters with 𝑘𝑘-means++ clustering. Each of those 𝑘𝑘 clusters 
are reduced to one data point. There are two possible methods 
for the reduction, either the cluster center is used as a 
representative artificial data point or the next real data point is 
determined by the Euclidean distance [29]. 

So 𝑘𝑘 determines the reduced number of data tuples of the 
majority class. This minimizes the class imbalance, leading to 
the share of the majority class 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛  in the under-sampled data 
(see Eq. 7). 

𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑘𝑘
𝑘𝑘 + 𝑚𝑚  (7) 

With 𝑚𝑚 being the quantity of data tuples of the minority class 
in the training data. 

3.3. Artificial Neural Network 

A two-layer feed-forward network, with sigmoid hidden and 
softmax output neurons, is then trained with supervised 
learning of the preprocessed data using the MATLAB® Neural 
Net Pattern Recognition toolbox. For testing the performance 
of the artificial neural network hold-out validation is 
performed. In order to minimize random influences, the mean 
value of the confusion matrix entries is determined from five 
training and corresponding test iterations. 

In order to optimize the artificial neural network parameters 
a sensitivity analysis is performed in the form of a statistical 
design of experiments. Thereby, the influence of several 
parameters such as the number of hidden neurons, number of 
epochs, learning rate and number of target classes are examined 
with a Box-Behnken design. The target function of the analysis 
is to maximize 𝐶𝐶 (see Eq. 8). 

max
𝑇𝑇𝑇𝑇,𝐹𝐹𝑇𝑇,𝐹𝐹𝐹𝐹 ∈ ℕ

𝐶𝐶 (𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, 𝐹𝐹𝐹𝐹) (8) 

For the training function that updates the weights 𝑤𝑤𝑘𝑘𝑘𝑘  and 
biases values θ𝑘𝑘  of the perceptrons Bayesian regularization 
backpropagation, Levenberg-Marquardt backpropagation and 
Scaled conjugate gradient backpropagation are considered. 

For evaluation of the analysis the averaged confusion 
matrices are used and for each classification model and the 
corresponding 𝐶𝐶 and 𝐶𝐶𝑛𝑛𝑒𝑒𝑒𝑒  calculated. This way the influence of 
the individual parameters is approximated. 

While 𝐶𝐶𝑛𝑛𝑒𝑒𝑒𝑒  indicates the actual impact on production, the 
theoretical value 𝐶𝐶 is used to determine the best classification 
model so that the number of unrecognized scrap parts is also 
taken into account. 

4. Case Study 

Together with an industrial partner, the research approach is 
applied to an exemplarily use case regarding the production of 
a piezo controlled common-rail injector for combustion engines 
in passenger cars and light weight utility vehicles. The product 
consists of several high-precision subsystems from various 
disciplines such as mechanics, mechatronics and fluid 
mechanics (see Fig. 6). 

 
Figure 6: Product principle of a high-pressure injector, cp. [30] 

All subsystems of the product, such as piezo actuator, servo 
valve, throttle plate and nozzle set, affect the functionality of 
the injector significantly. Precise injection quantities with 
tolerance less than a milliliter are defined as the functional 
quality requirements for several operating states simulating 
different driving situations. The product not only has to meet 
high precision in volume portioning but also high-dynamic 
control with up to five injections per cycle at high pressure to 
meet performance and efficiency requirements [30]. 

As small deviations in a component already influence the 
flow rate, high quality requirements are assigned to the relevant 
characteristics to assure the product functionality. In addition, 

 Author Name/ Procedia CIRP 00 (2019) 000–000  5 

non-linear, process-related variations occur, which can be 
assumed due to the manufacture of the products at different 
production stations. However, the technological limits of the 
manufacturing processes are reached resulting in a 
comparatively high percentage of scrap, and thereby increased 
production costs. 

In the final assembly step the injectors are screwed together. 
Up to this stage the injectors can easily be dismantled and the 
components reused. If a faulty product is detected after this 
assembly step the dismantling is more costly and due to plastic 
deformation not all components can be recovered. Following 
the screwing the functionality of the injectors is tested by 
measuring the fuel flow at the different operating states. If the 
flow rate at one of the operating states does not meet the 
functional tolerances, the injector is scrap and gets dismantled 
so that individual components can be recovered. 

Therefore, a virtual in-line function verification is 
introduced before the final assembly step (see Fig. 7). The 
virtual function verification utilizes the in-line production data 
to classify a product with regard its functionality. 

 
Figure 7: Virtual in-line function verification 

Based on the classification result the injectors can be sorted out 
before screwing and thus costs are reduced (see Fig. 8). 
Dismantling of unscrewed products is only 27 % of the 
dismantling cost of non-conforming tested products in the final 
functional test, after screwing.  

 
Figure 8: Cost structure before and after screwing 

For the virtual function verification an artificial neural network 
is trained and tested with production data from 197,981 
injectors with 17 input features each. To evaluate the ANN and 
the effects of certain parameters the corresponding effective 
savings 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  and the savings with penalties for unrecognized 
scrap parts 𝐶𝐶 are calculated. 

4.1. Results 

The results of the ANN were evaluated with a five times 
hold-out validation and additionally compared with other 
methods of machine learning, such as Decision Trees, Support 
Vector Machines (SVM), k-Nearest-Neighbor (kNN) and 
ensemble methods, i.e. subspace kNN (see Table 1). All these 
classification models are combining all operating states which 
simulate different driving situations in one aggregated feature. 

The effect of cluster based under-sampling unfortunately led 
to mixed results with smaller data sets depending on the 
examined operating state in pre-analyses. Since the calculations 
are highly computation-intensive they were not examined on 
the entire data set. Nevertheless, in further applications, the 
method could significantly improve the ANN performance. 

Table 1: Classification results for various models 
Model Precision Recall 𝑭𝑭𝟏𝟏 C Ceff 
no model applied    -500,643 0 
ANN (𝐦𝐦𝐦𝐦𝐦𝐦𝑪𝑪) 0.197 0.271 0.228 -115,700 68,212 
Fine Tree 0.786 0.131 0.234 -349,934 54,705 
Fine kNN 0.496 0.416 0.480 -73,107 129,046 
Quadratic SVM 0.938 0.075 0.138 -396,508 34,000 
Subspace kNN 0.692 0.553 0.615 8,022 215,875 

With the design of experiments the configuration of the 
artificial neural network was optimized. The effect of the 
parameters such as the number of neurons per hidden layer, 
epochs, learning rate, ratio of test data, number of target classes 
and the backpropagation training function on the neural 
network are examined in the design of experiments (see Fig. 9). 

 
Figure 9: Pareto chart of the standardized effect of the parameters 

The optimized ANN was obtained classifying the injector 
into the three classes achieved slightly better results than two 
target classes. This could be due to general differences in parts 
with results above and below the tolerance. Regarding the 
training function the Bayesian regularization backpropagation 
showed the best results, exceeding the other functions. The 
optimal parameters are 250 epochs, a learn rate of 0.136, with 
a test data ratio of 25% and a hidden layer size of 10. 

With these parameters the ANN reaches a precision of 0.197 
and a Recall of 0.271, leading to an 𝐹𝐹1-Score of 0.228. Even 
though the theoretical cost savings 𝐶𝐶 value is negative due to 
the penalties for non-identified defective parts, the artificial 
neural network effectively generates cost savings 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  of 
68,212 €/year.  

The number of epochs also has great influence on the results 
but increases training times considerably. Further training of 
the ANN with more epochs could therefore additionally 
improve the results. However, due to nonlinearities, this 
approach does not necessarily find the global optimum and 
cannot be used without restriction. 

The other machine learning models are obtained with a 10-
fold cross-validation with two target classes instead of three. 
Even without further optimization the subspace k-Nearest-
Neighbor ensemble outperforms the other approaches including 
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the ANN, resulting in an effective cost savings value of 
215,875 €/year. Overall k-Nearest-Neighbor seems to be a 
suitable approach with good classification results for the given 
production data. 

5. Summary and Outlook 

In this article, an approach for a virtual in-line inspection for 
function verification during the production process is presented. 
This contributes to a cost-efficient serial production of complex 
products with high quality requirements close to the technical 
production limits through proactive and cost-effective 
dismantling of non-conforming products. Therefore, in-line 
production data is utilized to classify the product with an 
artificial neural network regarding its function fulfillment 
before the final assembly step. The performance of the artificial 
neural network was optimized by parameter variation in the 
training phase using statistical design of experiments. For 
evaluation of the classification model cost saving assessments 
are introduced. The approach is demonstrated to the production 
of a common-rail injector leading to reduced scrap parts and 
cost savings. 

In the future, it will become increasingly necessary to 
provide users with a guide to the application of artificial 
intelligence models. Potential further research must therefore 
be carried out on further methods to optimize model accuracy 
by varying parameters during the learning phase of the models. 
Furthermore, research can be carried out on continuously 
learning approaches of Artificial Intelligence. This ensures that 
the models continuously learn and take into account time effects 
and changes in influencing factors in the functional evaluation 
of products.  
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