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RECURRENT NEURAL NETWORKS
AS OPTIMAL MESH REFINEMENT STRATEGIES∗

MICHAEL FEISCHL† AND JAN BOHN‡

Abstract. We show that an optimal finite element mesh refinement algorithm for a prototypical
elliptic PDE can be learned by a recurrent neural network with a fixed number of trainable param-
eters independent of the desired accuracy and the input size, i.e., number of elements of the mesh.
Moreover, for a general class of PDEs with solutions which are well-approximated by deep neural
networks, we show that an optimal mesh refinement strategy can be learned by recurrent neural
networks. This includes problems for which no optimal adaptive strategy is known yet.

1. Introduction. Adaptive methods for finite element mesh refinement had
tremendous impact on the scientific community both on the theoretical side as well
as on the applied, engineering side.

Following the seminal works [7, 40, 13] on the adaptive finite element method, a
multitude of papers extended the ideas to numerous model problems and applications,
see e.g., [32, 14] for conforming methods, [36, 4, 5, 11, 33] for nonconforming meth-
ods, [15, 12, 31] for mixed formulations, and [23, 24, 2, 20, 21] for boundary element
methods (the list is not exhausted, see also [10] and the references therein). Quite
recently, [19, 22] also cracked non-symmetric and indefinite problems. All those works
have in common that they use a standard adaptive refinement algorithm of the form

Solve −→ Estimate −→ Mark −→ Refine

where an error estimator is computed from the current solution and then used to
refine certain elements of the mesh. The actual refinement of the individual elements
of the mesh is usually done with an algorithm called newest-vertex bisection (see,
e.g., [41]). A general drawback of adaptive mesh refinement methods is often their
very specific area of application and their implementational overhead involved in the
error estimation and choosing elements which to refine.

This encourages the development of black-box tools which can be adapted to a
wide range of problems. In view of the huge practical success of recurrent neural
networks (RNNs) in various applications and their flexibility in terms of the length of
the input sequence (after all we do not want to retrain the network meshes of different
sizes), they might provide exactly the required black-box tool. The most prominent
examples of RNNs are Long-Term-Short-Term memory approaches proposed in [30]
and since then hugely successful in practical applications, e.g., for time-series inter-
pretation [38], speech recognition [26], speech synthesis [1], and even surgical robot
control [34]. Very roughly, a recurrent neural network has the following structure
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where the X1, X2, . . . , Xn denote a (vector valued) input sequence and Y1, Y2, . . . , Yn
a (vector valued) output sequence. The block DNN denotes a standard deep neural
network which maps the input state to the output state, but may also use hidden
intermediate states from the previous iteration of the network. The major advantage
of this structure compared to a fully connected DNN over all n input states is that
the weights of the DNNs are shared for all iterations. This means that an arbitrary
long input sequence can be treated with a DNN depending only on a bounded number
of trainable parameters. We will use this fact in order to construct a network whose
parameter count does not depend on the number of elements of the current adaptive
mesh.

The idea and question motivating this work is the following: Can we replace the

steps Estimate −→ Mark by a recurrent neural network ADAPTIVE in order
to achieve similar (or better) results than state of the art adaptive mesh refinement
algorithms?

We answer this question in two ways: The first main result in Section 2.7 shows
that an RNN ADAPTIVE can be trained to achieve at least the performance of
adaptive algorithms which are known to be optimal for second order elliptic PDEs.
The second main result in Section 2.8 shows for a broad class of problems that as
long as the exact solution of a PDE can theoretically be efficiently approximated by
a RNN, the RNN ADAPTIVE can be trained to produce optimally refined meshes.
Roughly speaking, the present work shows that black-box mesh refinement by use of
RNNs is at least as good as current optimal mesh refinement technology and can even
achieve optimal results in areas which are not yet covered by the theory of adaptive
mesh refinement.

The remainder of the work is structured as follows: Section 2 introduces the model
problem, provides definitions of RNNs and optimal adaptive algorithms, and states
the main results. Section 3 discusses the applicability of the main results as well as
the implementation of the training process. Section 4 provides all the sub assemblies
for the RNN which emulates the adaptive algorithm. Sections 4.4 and 4.5 contain the
proofs of the main results. A final Section 5 underlines the theoretical findings by
some numerical experiments.

2. Model Problem & Main Results. On the open Lipschitz domain D ⊂ Rd,
d = 2, 3, we consider a prototypical PDE of the form

Lu = f in D,

u = 0 on ∂D,
(2.1)
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where L : X → X ? is an isomorphism for some Hilbert space X . With discrete spaces
X (T ) ⊂ X based on some triangulation T of D, this allows us to write down the
discrete form of the equation: Find UT ∈ X (T ) such that

〈LUT , V 〉 = f(V ) for all V ∈ X (T ).(2.2)

We assume that also L|X (T ) is an isomorphism to obtain a unique discrete solution.

2.1. Optimal mesh refinement. We consider an initial regular and shape reg-
ular triangulation T0 of D into compact simplices T ∈ T0. Such that T partitions
D into compact simplices such that the intersection of two elements T 6= T ′ ∈ T is
either: a common face, a common node, or empty. In the recent literature [10, 40, 13],
mesh refinement algorithms are steered by an error estimator ρ(T ) = ρ(T , UT , f) =√∑

T∈T ρ
2
T which satisfies ρ(T , UT , f) ≈ ‖u − UT ‖X and have the following basic

structure:

Input: Initial mesh T0, parameter 0 < θ < 1, tolerance ε > 0.
For ` = 0, 1, 2, . . . do:

1. Compute U` := UT` from (2.2).
2. Compute error estimate ρT for all T ∈ T`. If

∑
T∈T` ρ

2
T ≤ ε2, stop.

3. Find a set M` ⊆ T` of minimal cardinality such that∑
T∈M`

ρ2
T ≥ θ

∑
T∈T`

ρ2
T .(2.3)

4. Use newest-vertex-bisection to refine at least the elements inM` and to obtain
a new mesh T`+1.

Output: Sequence of adaptively refined meshes T` and corresponding approxima-
tions U` ∈ X (T`) such that ρ(Tε) ≤ ε for final step Tε := TL and L ∈ N.

We consider the following notion of optimality of the mesh refinement algorithm:
Let T denote the set of all possible meshes which can be generated by iterated appli-
cation of newest-vertex-bisection to the initial mesh T0. Then, the maximal possible
convergence rate s > 0 is defined by the maximal s > 0 such that

sup
N∈N

inf
T ∈T

#T−#T0≤N

ρ(T , UT , f)Ns <∞.(2.4a)

We call Algorithm 2.1 optimal if it satisfies

sup
0<ε≤1

#Tερ(Tε)1/s <∞(2.4b)

for the same rate s.

The main goal of this work is to prove that a particular type of neural network
can be trained to perform the steps (2) and (3) of Algorithm 2.1 in an optimal way
without any further knowledge about L. We show that this is possible for second
order elliptic operators L in Section 2.7 and for a much broader class of problems in
Section 2.8.
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2.2. Definition of Deep Neural Networks. We consider standard ReLU net-
works B which can be defined as follows: For a given input x ∈ Rs0 and weight
matrices Wj ∈ Rsj+1×sj , j = 0, . . . , d, we define the output y ∈ Rsd+1 as

y := B(x) := Wdφ(Wd−1φ(Wd−2(· · ·φ(W0x) · · · ))),

where the activation function is defined as φ(y) := max(y, 0) and is applied entry wise
to vector valued inputs. A DNN is said to have depth d and width maxj=0,...,d+1 sj .

The number of weights is given by
∑d
j=0 sj+1sj . We do not specify biases explicitly

as we can always assume an additional constant input state x0. Clearly, compositions
of +, −, min, max, and | · | can be constructed as DNNs. Moreover, given two DNNs
B1, B2, their composition is also a DNN. This is implicitly used in the following. We
define the complexity of the DNN by the number of weights.

2.3. Definition of Basic Recurrent Neural Networks. A RNN B is a deep
neural network B with output size s′ ∈ N and input size s+s′, s ∈ N. For reasons that
become clear below, we denote this as a basic RNN. The DNN B is applied to each
entry of a (vector-valued) sequence x = (x1, x2, . . . , xn) ∈ Rs×n and returns another
(vector-valued) sequence y = (y1, y2, . . . , yn) ∈ Rs′×n, s, s′ ∈ N. Additionally, the
previous output state yi−1 is fed into B as an input state, i.e.,

yi := B(xi, yi−1) := Wdφ(Wd−1φ(Wd−2(· · ·φ(W0

(
xi
yi−1

)
) · · · ))), i = 1, . . . , n.

The weight matrices Wj and hence the complexity of B is independent of n ∈ N.
The number of weights of a basic RNN is just the number of entries in the weight
matrices of the underlying DNN, width and depth are defined analogously. Hence,
the complexity of a RNN is defined as the complexity of the underlying DNN. We
also use the expression size synonymous to complexity. For i = 1, we always assume
that y0 = 0 ∈ Rs′ . For example, a simple summation over the sequence x ∈ R1×n can
be realized by

yi = B(xi, yi−1) := xi + yi−1 =
(
1 −1

)
φ
(( 1 1
−1 −1

)(
xi
yi−1

))
.

The last entry of y ∈ R1×n contains the sum yn =
∑n
i=1 xi.

2.4. Fixed number of independent weights. As done in the previous sub-
section, by applying the same DNN B to different parts of an input vector x ∈ Rn0 ,
we may construct DNNs with arbitrary width but a fixed number of independent
weights, i.e., the weights of B. By stacking the networks on top of each other, i.e.,
B ◦B ◦ . . . ◦B(x) in case of sd+1 = s0, we may create DNNs with arbitrary depth but
still a fixed number of independent weights.
The distinction between number of independent weights and number of total weights
is made since in the constructions below, the size of some networks grows logarithmi-
cally in the accuracy, however, they are just iterations of the same basic building block
and hence the number of independent weights stays constant. This might benefit the
training process, as the search space remains of constant size. On the other hand, the
topology of the search space changes as the number of total weights grows. Therefore,
further research is required on whether bounded number of independent weights can
be used to speed up the training.
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2.5. Definition of Deep Recurrent Neural Networks. We adopt a more
general definition of RNNs in this work. We allow ourselves to deal with finite con-
catenations of those basic building blocks from the previous section, i.e., in our notion
a RNN is a finite stack of m basic RNNs Bi in the sense

Bm ◦Bm−1 ◦ . . . ◦B2 ◦B1(x),

i.e., the output sequence of B1 is fed into B2 and so on. Additionally, we allow that
the input x is initialized by the last entry of the output sequence of the previous
network. So, in its most general form, the combination y′ = B2 ◦B1(x) of two basic
RNNs B1, B2 can be written as x ∈ Rs1×n 7→ y = B1(x) ∈ Rs′1×n and

x′ =

(
y1 y2 · · · yn
yn 0 · · · 0

)
∈ R2s′1×n 7→ y′ := B2(x′) ∈ Rs

′
2×n.

We may write vector valued sequences x ∈ Rs×n as vectors of sequences (x1, . . . ,xs).
This choice of neural network class might seem arbitrary, however, it gives us much
more freedom when constructing the networks and does not sacrifice the simplicity
of the function class. This means that the complexity (defined as the sum over the
complexities of the underlying basic RNNs) of a stacked RNN is still independent
of the sequence length n. Similar constructions of deep RNNs (stacked RNNs) are
considered in [25, 17, 37].

2.6. Elementary operations with deep RNNs. We illustrate some construc-
tions which will be used implicitly in the proofs below:
• Identity-DNN: The identity function id(x) = max(x, 0) −max(−x, 0) can be emu-
lated by a DNN of depth d ≥ 1 with the following weight matrices (1 stands for the

identity matrix of the correct size): W0 :=

(
1
−1

)
, Wi :=

(
1 0
0 1

)
for i = 1, . . . , d− 1,

and Wd :=
(
1 −1

)
. Similarly, we can define Identity-RNNs.

• Matrix multiplication: The multiplication with a matrix y = Mx for M ∈ Rs′×s

can be constructed as W0 :=

(
1
−1

)
, W1 :=

(
M −M

)
, and W2 :=

(
1 −1

)
.

• Applying DNN/RNNs simultaneously: If we want to compute the output of two
DNNs z1 = A(x1), z2 = B(x2) at once, we can define the DNN (z1, z2) = C(x1, x2) :=
(A(x1), B(x2)) by

WC,i :=

(
WA,i 0

0 WB,i

)
,

where 0 denotes the zero matrix of appropriate size. In case the DNNs A and B
have different depths, we use identity DNNs to extend A and B to equal depth (note
that the resulting depth satisfies dc ≤ max(dA, dB) + 2 since an identity DNN has
at least two layers). Similarly we can apply RNNs simultaneously as long as the
input lengths coincide. If we apply m ∈ N networks B1, . . . , Bm simultaneously, the
resulting network C satisfies dC ≤ maxi=1,...,m dBi + 3 and the width of C is bounded
by the sum of the widths of the Bi.
• Any given deep RNN y = B(x) can be extended such that it copies an additional

input variable to the output, i.e., there exists B̂ with comparable complexity to B
such that (y,x2) = B̂(x1,x2). In case B is a basic RNN, this can be achieved by,

e.g., defining B̂(x1,i, yi−1, x2,i) := (B(x1,i, yi−1), id(x2,i)). If B is a deep RNN, the
same construction can be applied to all the basic RNNs that compose B.
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• A basic RNN B which turns a given sequence x = (x, 0, . . . , 0) ∈ Rn into the
constant sequence y = (x, x, . . . , x) ∈ Rn can be defined by yi = B(xi, yi−1) =
xi + yi−1. Similarly one can add storage sequence for specific values inside an RNN.
• Composition of RNNs and DNNs:

• (basic RNN)◦(DNN): The composition of a basic RNN with a DNN is again a
RNN, by directly composing the underlying DNN of the RNN and the DNN.

• (DNN)◦(basic-RNN): A DNN y = B2(x) and a basic RNN yi = B1(xi, yi−1)
can be composed by (zi, yi) = (B2 ◦B1(xi, yi−1), B1(xi, yi−1)) (note that the
second entry in the output sequence is necessary for the correct evaluation of
B1).

• RNNs as DNNs: A RNN B can be interpreted as a DNN B′. This means that we fix
the input size n of B and consider the resulting neural network B′ which has n-times
the width and depth of B with a total number of weights of n3 times the number of
weights of B, as can be seen from:

X1

DNN

Y1

X2

DNN

Y2

X3

DNN

Y3 · · ·

· · ·

· · · DNN

Xn

Yn

However, the number of independent weights is determined only by the number of
weights in B and hence independent of n.
• RNNs with input x = (x, 0, . . . , 0) ∈ Rn and output y = (y1, . . . , yn) ∈ Rn that are
interpreted as DNNs can be written as DNNs with one dimensional input x ∈ R and
output yn ∈ R, by multiplication with the matrices (1, 0, . . . , 0) and (0, . . . , 0, 1)T .

2.7. Main Result 1. On the open Lipschitz domain D ⊂ Rd, d = 2, 3, we
consider a prototypical operator L of the form

Lu = −div(A∇u) + b · ∇u+ cu(2.5)

where L has coefficients A, b, c ∈ L∞(D) such that the associated bilinear form

a(u, v) := 〈Lu , v〉 for all u, v ∈ H1
0 (D)

satisfies a(u, v) ≤ C‖u‖H1(D)‖v‖H1(D) as well as a(u, u) ≥ C−1‖u‖2H1(D) for some

constant C > 0. The Lax-Milgram lemma guarantees a unique solution u ∈ H1(D)
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of (2.1) and (2.2). On a triangulation T , we define the Ansatz and test spaces

Pp(T ) :=
{
v ∈ L2(D) : v|T is a polynomial of degree ≤ p, T ∈ T

}
X (T ) := Sp(T ) := Pp(T ) ∩H1

0 (T )

for a polynomial degree p ∈ N0. We set r(p, d) := dim(Pp), the dimension of the
space of polynomials of degree p in d dimensions. The residual based error estimator
for the given problem reads

ρ2
T := ρT (T , UT , f)2 := diam(T )2‖f − LUT ‖2L2(T ) + diam(T )‖[n ·A∇UT ]‖2L2(∂T∩D)

(2.6a)

on each element T ∈ T with normal vector n on the boundary ∂T and [·] denoting
the jump over element faces, and the overall estimator is the sum of the element wise
contributions, i.e.,

ρ(T ) := ρ(T , UT , f) :=

√∑
T∈T

ρT (T , UT , f)2.(2.6b)

To avoid having to deal with data oscillations, we restrict ourselves to the simple case
of A|T , b|T , c|T , f |T ∈ Pp(T ) for all T ∈ T0. Obviously, the error estimator ρT depends
on the values of UT on the whole patch ωT :=

{
T ′ ∈ T : T ′ shares a face with T

}
.

The main goal of the first part of this work is to show that RNNs of almost constant
size are capable of performing optimal mesh refinement for the PDE given in (2.1).
To that end, we construct a RNN which performs steps (2)–(3) of Algorithm 2.1.

Assumption 2.1. We assume all numbers x, y ∈ R occurring in computations
of the following algorithms satisfy the following: If x 6= y, there holds |x − y| ≥
2−nmin max{|x|, |y|} for some universal exponent nmin ∈ N. This assumption allows
us to emulate step functions with neural networks which are continuous by construc-
tion. The assumption is satisfied in floating point number systems such as double-
arithmetic, where nmin corresponds to the accuracy in terms of the number of digits,
for double-arithmetic, it is nmin = 52.

Theorem 2.2. For given ε > 0, there exists a deep RNN ADAPTIVE which takes
a vector-valued input sequence x ∈ R(2(d+1)d+(d+3)r(p,d))×#T such that xi contains
the nodes of the elements T ′ ∈ ωTi for Ti ∈ T and the corresponding polynomial
expansions of UT ′ and f |Ti . The output y := ADAPTIVE(x) ∈ R#T satisfies∑

Ti∈T
yi>0

ρ̃2
Ti ≥ θ

∑
T∈T

ρ̃2
T(2.7)

for estimators ρ̃T which satisfy

|ρ2
T − ρ̃2

T | ≤ Cada
ε

#T
for all T ∈ T .

with a uniform constant Cada > 0. Moreover, the number of positive entries in y
is minimal in order to satisfy (2.7). The RNN has a fixed number of independent
weights. The RNN can be constructed with a total number of weights of O((nmin +
log(#T ) + | log(ε)| + | log(‖x‖∞)|)4) (see Figure 4.3 for the precise structure). The
magnitude of the weights is O(1). Additionally, for a given overall tolerance ε2

tol > 0,
it holds y ≤ 0, as soon as the tolerance ρ̃(T , U, f)2 :=

∑
Ti∈T ρ̃

2
Ti
≤ ε2

tol is reached.
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Input: Initial mesh T0, tolerance εtol > 0.
For ` = 0, 1, 2, . . . do:

1. Compute U` from (2.2).
2. Apply y = ADAPTIVE(x) as defined in Theorem 2.2.
3. Use newest-vertex-bisection with mesh closure to refine the elements Ti ∈ T`

with yi > 0 to obtain a new mesh T`+1 or stop if y ≤ 0.
Output: Sequence of adaptively refined meshes T` and corresponding approxima-
tions U` ∈ Sp(T`) such that ρ̃(Tεtol) ≤ εtol for final step Tεtol := TL.

We refer to Section 4.4 for the proof of the Theorem. This result suggests the following
algorithm:

From the previous theorem, we derive the following consequence.

Corollary 2.3. Given ε > 0 in Theorem 4.14, Algorithm 2.7 is optimal in the
sense

sup√
4Cadaε/θ≤εtol≤1

#Tεtolεtol
1/s ≤ C <∞

with the maximal rate s > 0 from (2.4) and C > 0 independent of ε and εtol.

Proof. We may assume Cadaε ≤ θε2
tol/4. Moreover, for ρ̃` < εtol, we may redefine

ρ̃` := ρ`. There holds for ρ̃` ≥ εtol that

|ρ2
` − ρ̃2

` | ≤ Cadaε ≤ θε2
tol/4 ≤

{
θρ̃2
`/4,

2θρ̃2
`/4− θCadaε ≤ θρ2

`/2.

This implies ρ̃2
` ≥ (1 − θ/2)ρ2

` as well as ρ2
` ≥ (1 − θ/4)ρ̃2

` . Assume that ρ̃` satisfies∑
T∈M ρ̃2

T ≥ θρ̃2
` . Then, the above shows immediately∑

T∈M
ρ2
T ≥

∑
T∈M

ρ̃2
T − θρ̃2

`/4 ≥ 3θ/4ρ̃2
` ≥ 3θ/8ρ2

` .

On the other hand, if ρ` satisfies
∑
T∈M ρ2

T ≥ θρ2
` , there holds∑

T∈M
ρ̃2
T ≥

∑
T∈M

ρ2
T − θ/2ρ2

` ≥ θ/2ρ2
` ≥ 3θ/8ρ̃2

` .

This equivalence of marking for the two error estimators ρ and ρ̃ together with the
global equivalence ρ̃` ' ρ` allows us to apply [10, Theorem 8.4] directly to prove
optimality of ρ̃. This concludes the proof.

2.8. Main Result 2. While the results of Section 2.7 are restricted to second
order elliptic PDEs, the following statements deal with a much broader class of prob-
lems by making some assumptions on the exact solution.

Let S :=
⋃d−1
k=0 Sk ⊂ D denote a singularity set such that Sk is a finite union of

compact k-dimensional facets (points for k = 0, edges for k = 1, etc). Define the
weight

w(x) := min
k=0,...,d−1

dist(x, Sk)max{0,d−k−δreg}
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for some δreg > 0. This induces the weighted space L∞w (D) with the norm

‖v‖L∞w (D) := ‖wv‖L∞(D).

Let u : D → R denote the exact solution of some problem Lu = f for some operator
L : H1

0 (D)→ H−1(D). The following result does not depend on the numerical method
used to compute U` and hence we just assume that ∇X (T ) ⊇ P0(T ) for all T ∈ T
and that we compute some function UT ∈ X (T ) by means of some numerical method,
i.e., FEM, DG-FEM, . . . . Consider the following slight modification of Algorithm 2.7:

Input: Initial mesh T0, tolerance εtol > 0.
For ` = 0, 1, 2, . . . do:

1. Compute discrete approximation U`.
2. Apply y = ADAPTIVE(x) as defined in Theorem 2.5.
3. Use newest-vertex-bisection to refine the elements Ti ∈ T` \ T`−1 (or Ti ∈ T0

for ` = 0) with yi > 0 to obtain a new mesh T`+1 or stop if y ≤ 0.
Output: Sequence of adaptively refined meshes T` and corresponding approxima-
tions U` ∈ S1(T`) with Tεtol := TL for final step L ∈ N.

For the following result, we require a slightly different definition of the maximal
rate: Let s > 0 be maximal such that

sup
N∈N

inf
T ∈T

#T−#T0≤N

max
T∈T

inf
v∈P0(T )

‖∇u− v‖L2(T )N
s+1/2 <∞.(2.8)

We call Algorithm 2.8 optimal if it satisfies

sup
0<ε≤1

#Tε
(

max
T∈Tε

inf
v∈P0(Tε)

‖∇u− v‖L2(T )

)1/(s+1/2)

<∞.(2.9)

Remark 2.4. In general, the maximal rate in (2.8) is lower than in (2.4). How-
ever, in many practical situations, the two notions will coincide, as they are equivalent
as long as there exists a quasi-best approximating triangulation T with #T −#T0 ≤ N
and

max
T∈T

inf
v∈P0(T )

‖∇u− v‖L2(T ) . min
T∈T

inf
v∈P0(T )

‖∇u− v‖L2(T ) +N−s−1/2.

This, however, is the case in many approximation results particularly those which
include weighted spaces or Besov spaces (see, e.g., [8]).

We denote by T (ε) ∈ T the admissible mesh with minimal cardinality such that
maxT∈T infv∈P0(T ) ‖∇u− v‖L2(T ) ≤ ε.

Theorem 2.5. Let u ∈ H1(D) and m ∈ N. Suppose there exists a deep RNN vε
which satisfies ‖∇u− vε‖L2(D) ≤ ε/(Cm) as well as v2

ε ∈ L∞w (D). Then, there exists
a deep RNN ADAPTIVE such that Algorithm 2.8 produces outputs Tε which satisfy

#Tε
(

max
T∈Tε

inf
v∈P0(Tε)

‖∇u− v‖L2(T )

)1/(s+1/2)

≤ Cm1/(s+1/2)

with probability larger than 1 − L#T (4ε)2−Cm, where C > 0 depends on D, T0 and
‖vε‖L∞w (D) with L denoting the maximal level of elements in T (4ε), i.e., the maximal
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number of bisections necessary to generate each element from T0. The complexity
of ADAPTIVE is bounded by O(m2(#vε + | log(ε)| + | log(‖vε‖L∞(D))|)), where #vε
denotes the complexity of vε and the number of independent weights is constant.

Remark 2.6. The dependence of the complexity of ADAPTIVE on log ‖vε‖L∞(D)

is usually not a problem. Any deep RNN vε approximating ∇u up to accuracy ε > 0
can be capped at magnitude C > 0 by composition, i.e., ṽε := max(min(vε, C),−C).
The approximation error satisfies

‖ṽε −∇u‖L2(D) ≤ ε+ ‖∇u‖L2(DC),

with DC :=
{
x ∈ D : |∇u| > C

}
. If ∇u ∈ Lp(D) for some p > 2, we already

have |DC | ≤ ‖∇u‖pLp(D)C
−p and hence ‖∇u‖L2(DC) ≤ ‖∇u‖Lp(DC)|DC |(p−2)/(2p) .

C1−p/2. This shows that log(‖vε‖L∞(D)) . | log(ε)| is possible.

Remark 2.7. We note that the result in Theorem 2.5 is not completely satisfac-
tory as the complexity of the deep RNN ADAPTIVE depends on the complexity of the
exact solution (or rather the neural network approximating it) and not, as one would
expect from a classical error estimator, on the complexity of the problem and the data.
However, the numerical experiments in Section 5 show that this seems not to be an
issue in practical applications and might be an artifact of the proof.

We postpone the proof of the above theorem to Section 4.5.

3. Discussion of the main results.

3.1. Theoretical results. Theorem 2.2, Corollary 2.3, and Theorem 2.5 show
that an RNN can in fact achieve optimal mesh refinement in the sense of (2.4)
and (2.8). The RNN only needs to follow the fairly general structure of a deep
RNN. The width and depth of the RNNs depends poly-logarithmically on the num-
ber of elements #T as well as on the desired accuracy. The number of independent
weights (trainable parameters) is, however, uniformly bounded and independent of
the accuracy as well as of the number of elements in the mesh.

While Corollary 2.3 shows that the deep RNN approach is at least as good as
current mesh refinement strategies for second order elliptic problems (2.1) which are
known to be optimal, Theorem 2.5 proves that an optimal mesh refinement strategy
can be learned by a deep RNN whenever the exact solution can be approximated
efficiently by a deep RNN. The latter result is independent of the problem type and
thus applies to problem classes for which we currently do not know optimal refinement
strategies.

Such problems include non-linear PDEs (for example (2.5) with coefficients de-
pending on u). For time dependent PDEs, the current setting based on the H1-norm
is too restrictive. However, the proofs can be transferred to any L2-based norm par-
ticularly the anisotropic Bochner norms used in parabolic applications. Moreover, the
method of proof for Theorem 2.5 does not depend on the numerical method used to
compute the approximations U`. Thus the result also covers non-FEM methods such
as discontinuous Galerkin methods, isogeometric analysis methods, boundary element
methods and more.

The only requirement is that the exact solution lies in the weighted space L∞w (D)
and can be approximated efficiently by a deep RNN (or just a DNN). To that end, we
refer to the large number of approximation results for PDEs via neural networks [27,
28, 35, 3, 29] and the references therein.
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If the data-to-solution map f 7→ u can be approximated by a deep RNN, then
Theorem 2.5 even provides the existence of a deep RNN ADAPTIVE which is optimal
in the sense (2.8) and can be used for any right-hand side data without retraining.

But even if ADAPTIVE has to be retrained for each new instance of data, the
numerical experiments in Section 5.3 show advantageous performance compared to
uniform mesh refinement.

3.2. Practical implementation. As stated in [30], RNNs can be hard to train
by gradient descent approaches since the recursive nature either dampens any gradient
information or leads to blow-up. The RNNs appearing in this work are very sparsely
recursive (almost all recursive connections are disabled). The existing recursive con-
nections on the input sequence x (and also all intermediate sequences) are always
multiplications by 1 or -1 as well as additions. Hence those connections do not lead
to blowup or dampening. The constructions include some RNNs with multiplication
by 2 or 4 in the recursive connections, but those RNNs are always transformed into
DNNs and their size depends only logarithmically on the given accuracy. Including
this observation into the training might improve the performance.

The training of the deep RNNs can be implemented practically in different ways.
For symmetric problems, one may optimize the weights to maximize the energy of the
discrete Galerkin approximation (which is equivalent to minimizing the error). This
is done in the numerical experiments of Section 5.3. For more general problems, a
substitute energy error is given by

E` :=

√√√√ ∞∑
k=`

‖Uk+1 − Uk‖2

It is shown in [10, 19, 18] that under quite general assumptions, there holds E` '
‖u− U`‖ up to higher order terms. Thus, to maximize the convergence rate E` → 0,
it suffices to maximize ‖U` − U`−1‖ in each adaptive step. Hence, this computable
term may serve as a goal quantity for the optimization algorithm.

4. Construction of the Neural Networks. This section is dedicated to the
construction of the basic building blocks of the RNN.

4.1. Basic logic & algebra. For the implementation of the RNNs below, we
require a rudimentary emulation of the IF-clause.

Remark 4.1. We note that Assumption 2.1 is used particularly in the construc-
tions in this particular section to guarantee that the RNN IF constructed below pro-
duces the correct output. The RNN IF is the sole part of the following constructions,
where a round-off error is intentionally scaled to order O(1). Thus we provide a
thorough round-off error analysis in the following Lemma 4.2. In the remaining con-
structions, IF is just used as a building block and we check that input and output of
IF behave as expected. Thus we follow the usual convention in numerical analysis and
do not treat the round-off error explicitly in the calculations outside of IF.

Lemma 4.2. For � ∈ {≤,≥, <,>} there exists a fixed size basic RNN IF such that
any input x = ((a, b, c), 0, . . . , 0) ∈ R3×n with a, b, c ∈ R satisfying |b − c| ≥ 2−ñ|a|
results in an output y := IF(x) := IF(a; b � c) ∈ Rn with

yn =

{
a b � c,

0 else,
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for n ≥ ñ. If we interpret IF as a DNN, the number of weights behaves like O(ñ3), but
the number of independent weights is O(1). With regard to Assumption 2.1, ñ := nmin

is a valid choice as long as max(|c|, |b|) ≥ |a|.

Proof. We first define a basic RNN ÎF for which, with input x ∈ R2×n, x =
((a, b), 0 . . . , 0) with a ≥ 0, the output y = ÎF(x) satisfies

yn =

{
a b ≥ a2−n,

0 b ≤ 0.

The RNN can be defined by

yi = (yi,1, yi,2) := ÎF(xi, yi−1) :=
(
xi,1 + yi−1,1,min(2 max(yi−1,2 + xi,2, 0), yi,1)

)
.

(Note that the first component of yi has the sole purpose of storing the value of a for
later use.) Since xi = 0 for all i ≥ 2 and y0 = 0, we have yi = (a,min(2i max(b, 0), a)).

This concludes the construction of ÎF.
Now let a, b, c ∈ R and first assume a ≥ 0. We can see, that IF(a; b > c) := ÎF(a, b−c)
produces the expected output, as long as ñ ≥ n and |b− c| ≥ 2−ña: If b ≤ c, then this

is clear, and if b > c, it already holds b− c ≥ 2−ña and the first case of ÎF occurs.
We can define IF(a; b ≤ c) by IF(a; b ≤ c) := a − IF(a; b > c), and IF(a; b ≥ c),

IF(a; b < c) can be defined by changing the roles of b and c resulting in the condition
|b− c| ≥ 2−ña.
For a ∈ R, we set a+ := max(a, 0) and a− := max(−a, 0) and IF(a; b � c) :=
IF(a+; b � c) − IF(a−; b � c) produces the expected output as long as |b − c| ≥
2−ñ max(a+, a−) = 2−ñ|a|.

Remark 4.3. Obviously, the RNN ÎF could be constructed as a one layer network
min(a, 2n max(b, 0)) at the expense of allowing large weights.

To emulate the error estimator from Section 1, we require a number of basic
algebraic operations. We start with squaring. The idea that DNNs can emulate the
function x 7→ x2 up to arbitrary precision first appeared in [42]. They showed that
a DNN of size proportional to | log(ε)| achieves this up to some tolerance ε. We
improve on this idea by using an RNN of fixed size to perform the same operation.
The application of the network is equally expensive as the DNN from [42], however,
the number of weights which need to be trained is fixed and independent of ε.

Theorem 4.4. For every n ∈ N, there exists a deep RNN SQUARE with a fixed
number of weights such that the output y = SQUARE(x) for an input vector x =
(x0, 0, . . . , 0) ∈ [−1, 1]n satisfies

yn = |x0| −
n∑
j=1

g(j)(|x0|)
4j

and |yn − x2
0| ≤ 4−2n.

for some universal constant C > 0. If we interpret the basic buildings blocks of the
RNN as DNNs, the concatenation of them is still a DNN, so SQUARE interpreted as
a DNN has a total number of weights of O(n3), but the number of independent weights
stays fixed.

Proof. We reuse the saw-tooth function from [42]

G(x) :=

{
2x x ∈ [0, 1/2],

2− 2x x ∈ (1/2, 1],
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which can also be written as g(x) = 2 max(x, 0)− 4 max(x− 1/2, 0) + 2 max(x− 1, 0).
We define g := G ◦ G. From the input sequence x ∈ Rn, a first basic RNN layer
generates the sequence

x′ = (g(|x0|), g(2)(|x0|), . . . , g(n)(|x0|)).

A second basic RNN B performs the following summation

yi := B(xi, yi−1) = xi + 4yi−1.

This results in

y = (g(x0), . . . ,

n∑
j=1

4n−jg(j)(x0)).

Finally, the basic RNN B′ computes

zi := B′(zi−1) = zi−1/4.

Initialized with the last entry yn, this operation computes the vector

z = (yn, yn/4, . . . , yn4−n).

By definition, yn4−n =
∑n
j=1 4−jg(j)(|x0|)). Thus, we constructed the desired ap-

proximation to |x0| − |x0|2.
The error estimate follows from the fact that the approximation to x2 is actu-

ally the linear spline interpolation fn of f(x) = x2 at 4n equidistant points in [0, 1]
(see [42]). This shows

|fn(x0)− f(x0)| ≤ 4−2n

2
‖f ′′‖L∞

and thus concludes the proof.

The new idea of the following result is that the magnitude of the input is not
limited by the number of parameters, but rather by the input length only. This
shows that a fixed number of trainable parameters give a network which can multiply
arbitrarily large numbers.

Corollary 4.5. For every n ∈ N, there exists a deep RNN SQUARE with a
fixed number of weights such that the output y = SQUARE(x) for an input vector
x = (x0, 0, . . . , 0) ∈ [−2n, 2n]n satisfies

yn = |x0| −
n∑
j=1

g(j)(|x0|)
4j

and |yn − x2
0|≤ 4−n.

SQUARE interpreted as a DNN has a total number of weights behaving like O(n3),
but the number of independent weights stays bounded.

Proof. A first basic RNN performs the scaling

yi = B1(xi) := yi−1/2.

Note that if |x0| ≤ 2n there holds yn ≤ 1.
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We initialize the input of SQUARE with the last entry yn to compute z ∈ R
with |z − y2

n| ≤ 4−2n. Finally, we reverse the scaling by initializing a RNN B2 with
(z, 0, . . . , 0) and compute

yi = B2(xi) := 4yi−1

Hence, the final output satisfies

|yn − x2
0| = 4n|z − (x02−n)2| ≤ 4n4−2n ≤ 4−n.

This concludes the proof.

With the squaring operation at hand, we immediately obtain a method for mul-
tiplying two numbers by using the formula 2xy = (x+ y)2 − x2 − y2.

Proposition 4.6. There exists a deep RNN MULTIPLY such that for all x, y ∈
[−2n−1, 2n−1] the output z = MULTIPLY(x,y) (x,y ∈ Rn denote the sequences
x = (x, 0, . . . , 0), y = (y, 0, . . .)) satisfies

|zn − xy| ≤ C4−n,

where C > 0 is independent of n and x, y. MULTIPLY interpreted as a DNN has a
total number of weights behaving like O(n3), but the number of independent weights
stays bounded.

Proof. As mentioned above, we construct MULTIPY from SQUARE with inputs
in [−2n, 2n]. The construction is

MULTIPLY(x,y) = (SQUARE(x + y)− SQUARE(x)− SQUARE(y))/2.

The error estimate follows immediately from Corollary 4.5.

4.2. Error estimation. For brevity of presentation, we restrict ourselves to the
case A = 1 and b = c = 0 of (2.1). The general case can easily be implemented along
the lines of this section. In the present case, the residual error estimator given in (2.6)
is usually computed via quadrature. This assumes that f is a piecewise polynomial
of low enough order such that the quadrature is exact. For convenience, we use an
equivalent definition of ρT , i.e.,

ρT (T , UT , f)2 ' diam∞(T )2+d|T |−1‖f + ∆UT ‖2L2(T )

+ diam∞(T )d|∂T |−1‖[∇UT ]‖2L2(∂T∩D),
(4.1)

with diam∞(T ) := maxx,y∈T |x − y|∞. Obviously, diam∞(T ) ' diam(T ) depending

only on the space dimension. Moreover, since ∇UT = n∂nUT +
∑d−1
i=1 ti∂tiUT for

normal vector n and tangential vectors t1, . . . , td−1 and [∂tiUT ] = 0 on any interface
for UT ∈ Sp(T ), there holds

|[∂nUT ]|2 = |n[∂nUT ]|2 = |n[∂nUT ] +

d−1∑
i=1

ti[∂tiUT ]|2 = |[∇UT ]|2 on ∂T.

Note that it would certainly be possible to emulate the exact error estimator ρ(·),
however, as shown in [10], a uniform multiplicative factor does not make any difference
in the convergence behavior and hence we opted for the version which results in slightly
simpler constructions.
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Lemma 4.7. There is a fixed size DNN DIAM which, given the nodes of an ele-
ment T = conv(z0, . . . , zd) computes the ∞-diameter diam∞(T ) := maxx,y∈T |x−y|∞
of T .

Proof. We exemplify this for d = 2 and T = conv(z1, z2, z3), i.e.,

diam∞(T ) = max(max(|z1 − z2|∞, |z1 − z3|∞), |z2 − z3|∞),

where |(x, y) − (x′, y′)|∞ = max(|x − x′|, |y − y′|) and the absolute value function is
realized via

|x| = max(x, 0) + max(−x, 0).

Obviously, this strategy generalizes to higher dimensions.

Lemma 4.8. Let U, f ∈ Pp(T ) for a given element T ∈ T . There is a deep
RNN VOL which, given the nodes of the element T = conv(z0, . . . , zd) as well as the
polynomial coefficients of U |T and f |T as a vector valued sequence x = (x, 0, . . . , 0) ∈
R(d(d+1)+2r(p,d))×n, satisfies∣∣diam∞(T )d|T |−1‖f + ∆U‖2L2(T ) − yn

∣∣ ≤ C2−n

for y = VOL(x) as long as the coefficients of the polynomial expansion of (f + ∆U)
and the nodes are contained in [−2αn, 2αn], where 0 < α < 1 depends only on p and
d. VOL interpreted as DNN has a number of weights of O(n3), but the number of
independent weights is fixed.

Proof. We have d + 1 points determining the shape of T , so (d + 1)d scalar
numbers, and two input functions in Pp(T ) with dimension r(p, d) =

∑p
i=0

(
d+i−1
i

)
,

which makes in total x ∈ Rd(d+1)+2r(p,d).
Given the polynomial coefficients of U , we can compute the coefficients of ∆U

by multiplication with a matrix only depending on d and p, which we construct as a
DNN. Then, we stack r(d, p)2 RNNs MULTIPLY from Proposition 4.6 to compute the
coefficients of (f + ∆U)2 up to accuracy . 4−n. To compute the integral of the L2-

norm, we note that for the basis functions of the polynomial space, φk(x) = Πd
j=1x

αkj
j

with exponents αkj , we have

diam∞(T )d|T |−1

∫
T

φk(x) dx = diam∞(T )d
∫
T̂

φk(FT (x)) dx,

for the reference element T̂ and FT (x) = (z1 − z0, . . . , zd − z0)x + z0. The integral
over φk(FT (x)) can be expressed as a sum over integrals over basis functions on the
reference element, and from the latter we assume to have them stored in our net as
weights, which are scalar numbers only depending on d and p. The corresponding
coefficients are polynomials of the nodes zi − z0 and z0, which can be computed by
a number of multiplications only depending on p and d with accuracy . 4−n. All
in all, a number only depending on d and p of instances of MULTIPY compute the
integral with accuracy . 4−n. By Proposition 4.6, all multiplications are computed
with the stated tolerance, as long as the coefficients of f +∆U and the nodes inserted
to an polynomial depending on d and p is contained in [−2n−1, 2n−1]. Remark that the
above constants still may depend on the magnitude of the input vector. We exemplary
consider the computation of a product Πk

i=1xi, (in this situation k depending only on
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p and d). It holds (with � denoting the approximate multiplication via MULTIPLY)∣∣Πk
i=1xi − x1 � (· · · � xk)

∣∣
≤ x1

∣∣Πk
i=2xi − x2 � (· · · � xk)

∣∣+ |x1(x2 � (· · · � xk))− x1 � (· · · � xk)|
≤ |x1|

∣∣Πk
i=2xi − x1(x2 � (· · · � xk))

∣∣+ C4−n

≤ · · · ≤ CkΠk
i=1(1 + |xi|)4−n ≤ C(k)2−n.

Here we assumed xi . 2n/k and the operations � are computed with the stated
accuracy . 4−n, as the inserted values can be shown to be bounded by 2−n−1 by
induction. This concludes the proof.

Lemma 4.9. Let U, f ∈ Pp(T ) for a given element T ∈ T . There is a deep RNN
JUMP which, given the nodes of the elements T ′ = conv(z0, . . . , zd) as well as the
polynomial coefficients of U |T ′ for all elements T ′ ∈ ωT as a vector valued sequence
x = (x, 0, . . . , 0) ∈ R(2(d+1)d+(d+2)r(p,d))×n, satisfies∣∣diam∞(T )d−1|∂T |−1‖[∇U ]‖2L2(∂T ) − yn

∣∣ ≤ C2−n

for y = JUMP(x) as long as the coefficients of the polynomial expansion of [∇U ]
and as long as the coefficients of the polynomial expansion of [∇U ] are contained in
[−2αn, 2αn], where 0 < α < 1 depends only on p and d. JUMP interpreted as DNN
has a number of weights behaving like O(n3), but the number of independent weights
is fixed.

Proof. As input, we have d + 1 nodes determining the shape of T, and another
d+1 elements in the patch which are determined by another d+1 points. So (2d+2)d
scalar variables for the nodes and (d + 2)r(p, d) for the polynomial coefficients of U ,
which results in x ∈ R2(d+1)d+(d+2)r(p,d). The proof works analogously to that of
Lemma 4.8, with the difference that we have to include the data on the patch of T to
compute [∇U ].

Theorem 4.10. There exists a basic RNN ESTIMATOR which takes a vector-
valued input sequence x ∈ R(2(d+1)d+(d+3)r(p,d))×#T such that xi contains: The nodes
of the elements T ′ ∈ ωTi for Ti ∈ T and the corresponding polynomial expansions of
UT ′ and f |Ti . The output y := ESTIMATOR(x) satisfies

|yi − ρTi(T , U, f)2| ≤ C2−n

in case n & max(log(x)) for a uniform hidden constant. The RNN ESTIMATOR
has a fixed number of independent weights but width and depth proportional to n, so
a total number of weights behaving like O(n3).

Proof. Lemmas 4.7–4.9 show that there are RNNs computing all ingredients for
ρT (T , u, f)2. A fixed number of applications of the RNN MULTIPLY combine the
elements and output an approximation to ρT (T , u, f)2 up to an accuracy. 2−n as long
as the magnitude of the input is bounded by 2αn (where n ∈ N is the size of the input
sequence and α only depends on d and p). Interpreting the resulting RNN EST which
computes the approximation to ρT (T , u, f)2 as a DNN, we observe that EST is a DNN
with depth and width O(n) composed of n copies of the same net. Hence, we only
have a fixed (accuracy independent) number of independent weights in EST although
the width and depth of EST depends on n. Moreover, EST forms the building block
for an RNN which takes a vector-valued sequence x ∈ R(2(d+1)d+(d+3)r(p,d))×#T as
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described in the statement. From this, EST computes the output sequence yi which
satisfies

|yi − ρTi(T , U, f)2| . 2−n.

A final application y = max(y, 0) guarantees the non-negativity of the estimators and
this concludes the proof.

4.3. Dörfler marking. The marking algorithm is based on the following obser-
vation: Assume x1, . . . , xn ≥ 0. Consider the binary search algorithm

Input: x1, . . . , xn ≥ 0, 0 < θ ≤ 1
Set y1 := max1≤i≤n xi/2. For ` = 1, . . . , k do:

1. If
∑
xi≥y` xi ≥ θ

∑n
i=1 xi, set y`+1 = y` + y1/2

`.

2. If
∑
xi≥y` xi < θ

∑n
i=1 xi, set y`+1 = y` − y1/2

`.

Lemma 4.11. For x1, . . . , xn ≥ 0 let y ≥ 0 be maximal such that
∑
xi≥y xi ≥

θ
∑n
i=1 xi. Then, there holds |y − y`| ≤ 2−` max1≤i≤n xi.

Proof. The binary search nature of the algorithm immediately guarantees |y −
y`| ≤ 2−` max1≤i≤n xi.

Theorem 4.12. There exists a deep RNN BINARY consisting of k basic RNNs
of the same type (up to an fixed size input layer), which takes as input the sequence
x = (x1, . . . , xn) ∈ R1×n and the output y := BINARY(x) ∈ R satisfies

|y − yk| ≤ 2−k max
1≤i≤n

xi,

where y ≥ 0 is maximal such that
∑
xi≥y xi ≥ θ

∑n
i=1 xi. The number of weights of

the basic RNNs is bounded by O(n3
min), the number of independent weights is fixed

and as the deep RNN consists of k copies of the same basic RNN, the total number
of weights is bounded by O(kn3

min), while the number of independent weights stays
bounded independently.

Proof. We may construct a basic RNN SUMY with inputs (x1, . . . , xn) and y via

zi = SUMY(xi, y, zi−1) := (zi−1 + IF(xi;xi ≥ y))

Lemma 4.2 shows that IF computes the exact cut-off function, as we assume xi to
satisfy Assumption 2.1. This shows

zn =
∑
xi≥y

xi

and the number of weights of SUMY behaves like O(n3
min). A basic RNN gives the

initial values y1 := max1≤i≤n xi/2, z1 := y1/2 and we construct the basic RNN that
performs one iteration of Algorithm 4.3. One iteration of Algorithm 4.3 corresponds
to z`+1 = z`/2 and

y`+1 = y` + IF(z`; SUMY(x, y`,n) ≥ θSUMY(x, 0))

− IF(z`; SUMY(x, y`,n) < θSUMY(x, 0)).
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x

Choose first pivot

y = max(x)/2
z = max(x)/4

Update sums

x̃1 = SUMY(x, yn)

x̃2 = SUMY(x, 0)

Update pivot

y = y + IF(zn; x̃1 ≥ θx̃2)− IF(zn, x̃
1 < θx̃2)

z = z/2

repeat k-times

Fig. 4.1. The structure of the RNN BINARY from Theorem 4.14. Variables which are not
used in a particular block are copied to the output sequence. The RNN y = max(x) is defined by
yi = max(yi−1, xi) and computes yi = max1≤j≤i xj .

It is z` = y1/2
` and y`,n (which is the last entry of y`) contains the current pivot.

With Assumption 2.1, the cut-off functions in SUMY(x, y`,n), θSUMY(x, 0) are com-
puted exactly since SUMY(x, y`) ≥ max1≤i≤n xi ≥ z`. Note that one mapping
(yl, zl) 7→ (yl+1, zl+1) corresponds to an application of a DNN of size O(n3

min) to
SUMY(x, y`) and SUMY(x, 0). This can be constructed as follows (see also Fig-
ure 4.1). A basic RNN of comparable size to SUMY takes the input (x, y`,n) and
computes the output x̃ with x̃i := (SUMY(x, y`,n),SUMY(x, 0)) for all 1 ≤ i ≤ n.
Then a basic RNN containing the DNN IF is applied to x̃ to compute the output
y`+1 and z`+1. This concludes the proof.

Lemma 4.13. There exists a basic RNN ROUND which takes as input a non-
negative sequence x = (x1, . . . , xn) ∈ R1×n and values x > x ≥ 0 and returns a
sequence y = (y1, . . . , yn) := ROUND(x) ∈ R1×n which satisfies

yi =

{
x, xi ∈ [x, x]

xi, else.

The number of weights behaves like O(n3
min), while the number of independent weights

stays bounded.

Proof. The RNN can be constructed as the component-wise maximum of the
sequences x and x, where

xi :=

{
x, xi ∈ [x, x]

0, else,
= x− IF(x;xi > x)− IF(x;xi + x < x+ x).

The IF are interpreted as DNN’s of size O(n3
min), and compute the expected output,

as we assume xi, x, x to satisfy Assumption 2.1 and it holds max(|xi + x|, |x + x| ≥
|x+ x|) ≥ x.

Theorem 4.14. There exists a deep RNN MARK with accepts a non-negative
sequence x = (x1, . . . , xn) ∈ R1×n, and returns y = (y1, . . . , yn) := MARK(x) with
yi ∈ R which satisfies

n∑
i=1
yi>0

x̃i ≥ θ
n∑
i=1

x̃i

such that the number of terms in the left-hand side sum is minimal and x̃ satisfies
|xi − x̃i| ≤ ε/n.. The deep RNN consists of a fixed layer of basic RNNs, followed by
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k ' log2(max1≤i≤n xi)+| log2(ε/n)|+1 copies of the same basic RNN and ends with an
output layer of a fixed number of basic RNNs. The overall number of weights therefore
behaves like O(kn3

min), while the number of independent weights stays bounded.

Proof. See also Figure 4.2 for the following construction: As a first layer, we have
the deep RNN BINARY with k ' log2(max1≤i≤n xi) + | log2(ε/n)| + 1 repetitions.
This produces the pivot yk from Algorithm 4.3 with |yk − y| ≤ 2zk ≤ εtol/(2n) and
with y ≥ 0 maximal such that

∑
xi≥y xi ≥ θ

∑n
i=1 xi. Now, for zk from BINARY, it

holds y ∈ [yk − 2zk, yk + 2zk] and an application of ROUND gives the sequence x̃ for
x := yk − 2zk, x := yk + 2zk with the stated error bound, as 2zk ≤ ε/(2n). We now
set y := x and it holds that y is maximal such that

∑
x̃i≥y x̃i ≥ θ

∑n
i=1 x̃i. This is

because it holds ∑
x̃i>y

x̃i =
∑
x̃i>y

xi ≤
∑
xi>y

xi < θ
∑

xi ≤ θ
∑

x̃i

and ∑
x̃i≥y

x̃i =
∑
x̃i≥y

xi +
∑
x̃i=y

(x̃i − xi) ≥
∑
xi≥y

xi + θ
∑
x̃i=y

(x̃i − xi)

≥ θ
∑

xi + θ
∑
x̃i=y

(x̃i − xi) = θ
∑

x̃i,

where we used that xi ≥ y implies x̃i ≥ y. Hence we found the exact cutoff y for the
sequence x̃ and proceed with this new sequence. We generate a preliminary output
sequence ỹi := max(x̃i − y, 0). The final output y is positive whenever ỹi > 0 and
additionally on a few entries with x̃i = y. To find those entries, compute the sequence

x̂i = y − IF(y; y > x̃i)− IF(y; y < x̃i)

such that (x̂1, . . . , x̂n) is zero unless x̂i = x̃i = y. The computations of IF are exact as
before, and the complexity of this basic RNN is of O(n3

min) with n repetitions. Next,
we compute

zi := IF(y;

i−1∑
j=1

x̂j +
∑
x̃i>y

x̃i < θ

n∑
i=1

x̃i)

There holds zi = y for all 1 ≤ i ≤ i0 and zi = 0 else for minimal i0 such that
∑i0
j=1 x̂j+∑

x̃i>y
x̃i ≥ θ

∑n
i=1 x̃i. Note that

∑i−1
j=1 x̂j can be computed beforehand by a basic

RNN of size O(n3
min) as a straightforward modification of SUMY in Theorem 4.12.

As usual, we use Assumption 2.1 to guarantee that the cut-off functions are computed
exactly, as we assume the sums to satisfy Assumption 2.1. Finally, we generate the
desired output with

yi = max(ỹi,min(zi, x̂i)).

This concludes the proof.

4.4. Proof of Theorem 2.2. The previous sections already give the necessary
ingredients to build the RNN ADAPTIVE from Theorem 2.2. We use the RNN



20 JAN BOHN AND MICHAEL FEISCHL

x

Compute pivot yk

(y, z) = BINARY(x)
y = y + 2z
y = y − 2z

x̃ = ROUND(x, y, y)

Store entries equal to cut-off in x̂

ỹ = max(x̃− y, 0)
x̂ = y − IF(y; y > x̃)− IF(y; y < x̃)

Compute
∑
x̃i>y

x̃i and
∑i−1
j=0 x̂j

S̃ = S̃UMY(x̃, y)
S = SUMY(x̂, 0)− x̂

Find minimal i0

z = IF(y; S̃n + S < θSn)
y = max(ỹ,min(z, x̂))

Fig. 4.2. The structure of the RNN MARK from Theorem 4.14. Variables which are not
used in a particular block are copied to the output sequence. Non-bold variables are implemented as

constant sequences. The RNN S̃UMY is a straightforward modification of SUMY from Theorem 4.12
by replacing ≥ with >.

ESTIMATOR with accuracy n ' | log(ε/N)| from Theorem 4.10 to compute the error
estimator ρ̃T (T , UT , f) such that

|ρ̃T (T , UT , f)2 − ρT (T , UT , f)2| . ε/#T(4.2)

for all T ∈ T as long as N ≥ #T and | log(ε/N)| & log(|x|∞). This results in a
number of weights of O(| log(ε/N)|3).
Theorem 4.14 provides the deep RNN MARK with n = #T , which performs the
Dörfler marking and adds an additional error of ε/#T to the error estimators. This
results in a number of weights of

O
((

log2( max
1≤i≤#T

ρ̃Ti) + | log2(ε/#T )|
)
n3

min

)
.

All the basic building blocks used in the construction consist of a fixed number of in-
dependent weights but may have a total number of weights depending on log(N), n3

min

and log(ε). One of the basic blocks is stacked (log2(max1≤i≤#T ρ̃Ti) + | log2(ε/#T )|)-
times. We ensure the stopping criterion of the algorithm by comparing the sum of the
error estimators with the tolerance εtol. The full structure of ADAPTIVE is given in
Figure 4.3.

x ŷ = ESTIMATOR(x)
y = MARK(ŷ)
S =

∑
ŷ

y = min(y, S − ε2
tol)

Fig. 4.3. Structure of the RNN ADAPTIVE. For a given tolerance ε2tol > 0, the term S−ε2tol is
non-positive whenever the prescribed tolerance has been reached by the approximate error estimator
stored in S and hence terminates the algorithm by setting y ≤ 0.

4.5. Proof of Theorem 2.5. The proof of Theorem 2.5 requires some prepa-
ration. The first result states that for functions in certain weighted L∞ spaces, the
Monte Carlo method overestimates the integral with a positive probability.

Lemma 4.15. For a given Lipschitz domain Ω (not necessarily D) and a singu-
larity set S, let X : Ω → R be non-negative with X ∈ L∞w . We assume |Ω| = 1, and
consider Ω as a probability space and X as a random variable. There holds

P(X ≥ qE(X)) ≥ C−1
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for all 0 < q < 1 and a constant C > 0 which depends on q, Ω, the number of connected
components in Sk, k = 0, . . . , d− 1, δreg, and an upper bound for ‖X‖L∞w (Ω).

Proof. Let p > 1 such that p/(p − 1) < mink=0,...,d−1
d−k

d−k−δreg . Define Ω≥ :={
ω ∈ Ω : X(ω) ≥ qE(X)

}
and observe

E(X) =

∫
Ω\Ω≥

X dω +

∫
Ω≥

X dω ≤ qE(X) + ‖w−11Ω≥‖Lp/(p−1)(Ω)‖wX‖Lp(Ω),

where w is defined in Section 2.8. It remains to estimate ‖w−11Ω≥‖Lp/(p−1)(Ω). We

aim to prove ‖w−1‖Lr(Ω) < ∞ for r > 1 such that r(d − k − δreg) < d − k with
k = 0, . . . , d− 1. To that end, we bound the integrand |w|−r from above by functions
of the form x 7→ dist(E, x)−α, with 0 < α < d−k and E denoting a facet of dimension
k. All functions of this type are in L1(Ω) and we obtain

‖w−11Ω≥‖Lp/(p−1)(Ω) ≤ ‖w−1‖Lr(Ω)‖1Ω≥‖
(p−1)/p

Lr′ (Ω)
. |Ω≥|p/(r

′(p−1)),

where r′ = r/(r − p/(p− 1)). A Hölder inequality shows

‖wX‖pLp(Ω) ≤ E(X)‖wpXp−1‖L∞(Ω) . E(X)‖X‖p−1
L∞w (Ω)

and hence concludes the proof.

Let T∞ :=
⋃
T ∈T T denote the set of all possible elements which may appear as

refinements of some elements in T0. With an error estimator η(T, V ), which for now
is just a function depending on T ∈ T∞ and V ∈ L2(D), we base the construction of
our deep RNN ADAPTIVE on the following greedy algorithm:

Input: Function V ∈ H1(D), tolerance ε > 0, initial mesh T0

For ` = 0, 1, 2, . . . do:
(i) Compute η(T, V ) for all T ∈ T`, if η(T, V ) ≤ ε for all T ∈ T`, stop.

(ii) Find T0 ∈ T` with maximal η(T0, V ).
(iii) Bisect T0 with newest-vertex-bisection to generate T`+1 and goto (i) (no mesh

closure at this point).
Output: In case algorithm terminates at ` ∈ N, it produces a mesh Tε := T` with
η(T, V ) ≤ ε for all T ∈ Tε.

The following lemma states that Algorithm 4.5 produces the minimal mesh to
satisfy the given tolerance ε in the maximum norm. Since Algorithm 4.5 does not
perform mesh-closure, we define Tnc ⊃ T as the set of meshes which can be generated
from T0 by iterated newest-vertex-bisection without mesh-closure.

Lemma 4.16. Let T ∈ Tnc denote a mesh with maxT∈T η(T, V ) ≤ ε, then T is a
refinement of Tε generated by Algorithm 4.5. In this case, Algorithm 4.5 terminates.

Proof. First, assume that Algorithm 4.5 terminates and produces some mesh Tε.
Assume that T is not a refinement of Tε. By the binary tree structure of newest-vertex-
bisection, this implies the existence of a descendant T ∈ Tε\T of some element T ′ ∈ T .
In this case, however, η(T ′, V ) must have been picked for refinement in Step (ii) of
Algorithm 4.5 in some intermediate step k ∈ N (otherwise it would not have been
refined). This, however, implies η(T ′, V ) > ε and hence contradicts the definition of
T .
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Second, if Algorithm 4.5 does not terminate, we obtain a sequence of meshes
T` which is refined arbitrarily often. This implies that we may define Tε := T` for
sufficiently large ` ∈ N such that T is not a refinement of Tε. Then, the arguments of
the first part of the proof apply analogously.

In the following, we emulate Algorithm 4.5 with a deep RNN. The major ob-
stacle is that we usually can not compute the required error estimator η(T, V ) ex-
actly only using deep RNNs (η(T, V ) will contain some L2-norm and hence must
be approximated). To circumvent this, we assume the existence of a random vari-
able ρ(T, V ) ≥ 0 (to be constructed later by means of Monte Carlo sampling) with
E(ρ(T, V )) ≤ q−1η(T, V ) and P(ρ(T, V ) ≥ qη(T, V )) ≥ γ > 0 for some q > 0 and
γ > 0. The following algorithm is similar to Algorithm 4.5 with high probability as
shown in Lemma 4.17 below.

Input: Function V ∈ H1(D), tolerance ε > 0, initial mesh T0

For ` = 0, 1, 2, . . . do:
(i) For all T ∈ T` do:

(a) Sample ρ(T, V ) K-times.
(b) If all samples satisfy ρ(T, V ) ≤ ε add T to Tstop.
(c) Otherwise, add T to M`.

(ii) Remove all elements T fromM` for which there exists T ′ ∈ Tstop with T ⊆ T ′.
(iii) Generate T`+1 by refining the marked elementsM` with newest vertex bisec-

tion and mesh closure.
Output: The algorithm terminates if T` = ∅ and outputs Tε.

Lemma 4.17. Let Tε denote the output of Algorithm 4.5 and T ′δ denote the output
of Algorithm 4.5 with δ > 0. Then, there holds

P
(
∀T ∈ Tε : η(T, V ) ≤ ε/q

)
≥ 1− (L+ 1)#T ′ε/q2

−m,

where L ∈ N is the number of iterations of Algorithm 4.5 needed to produce T ′ε/q
and m = K/| log(1 − γ)|. Furthermore, there holds P(#Tε ≤ C max{m,#T ′δ }) ≥
1− 2−Cmax{m,#T ′δ }, where C depends only on the shape regularity of T0 and δ ' ε/K
with hidden constants depending additionally on q.

Proof. In the following, meshes with a dash, e.g., T ′, always denote meshes gen-
erated by Algorithm 4.5. To compare Algorithm 4.5 with Algorithm 4.5, we want to
bound the probability of

(E1): η(T, V ) > ε/q but T is added to Tstop.

If (E1) does not occur during the runtime of the algorithm, then the output Tε satisfies

η(T, V ) ≤ ε/q for all T ∈ Tε.

The sampling procedure in Step (i) of Algorithm 4.5 ensures that (E1) happens in step
` with probability less than #T`(1−γ)K . Thus, to ensure that (E1) does not occur with
high probability over the runtime of the algorithm, we choose K = | log(1−γ)|m. For
L ∈ N iterations of Algorithm 4.5, this guarantees that (E1) occurs with probability
less than

L∑
`=0

#T`2−m ≤ (L+ 1)#TL2−m.
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If we set L to the number of iterations of Algorithm 4.5 to produce T ′ε/q, then we

conclude P
(
∀T ∈ Tε : η(T, V ) ≤ ε/q

)
≥ 1− (L+ 1)#TL2−m since without (E1), Tε is

a refinement of T ′ε/q.
To estimate the number of additional refinements compared to Algorithm 4.5, we

want to bound the probability of

(E2): η(T, V ) ≤ qε/C but T is not added to Tstop.

Note that (E2) occurs if ρ(T, V ) > ε for at least one of K independent samples despite
η(T, V ) ≤ qε/C. Markov’s inequality shows for all C > 0

P(ρ(T, V ) ≥ Cq−1η(T, V )) ≤ 1/C.

Therefore, the probability that (E2) occurs for an element T ∈ T` is bounded by
1− (1− 1/C)K . Since T ′qε/C is the coarsest mesh to satisfy η(T, V ) ≤ qε/C for all its

elements, (E2) can only occur on elements of T ′qε/C or refinements of them.

Assume that (E2) occurs on r ∈ N elements before Algorithm 4.5 terminates.
Then, together with the mesh-closure estimate from [41], the final mesh contains less
than Ccl(#T ′qε/C + r) elements, where Ccl > 0 depends only on the shape regularity
T0.

We will now consider refinement forests F , which are rooted in T ′qε/C . These

are #T ′qε/C binary trees with root nodes corresponding to the elements of T ′qε/C . We

denote the total number of leaves of F by N(r). The leaves of a forest F correspond
to a refinement T of T ′qε/C . Not every binary forest corresponds to a conforming mesh
without hanging nodes, but every newest-vertex-bisection mesh can be represented by
at least one ordered binary forest (ordered in the sense that every parent node of every
tree has exactly zero children or exactly one left and one right child). The number
of different binary trees with n leaves is given by the Catalan number Cn−1, where
Cn :=

(
2n
n

)
/(n+ 1), see, e.g., [39, Example 5.3.12]. Thus, the total number M(r, s) of

different forests F with s roots and N(r) ≥ s leaves is given by

M(r, s) :=
∑

i1+...+is=N(r)−s

Ci1Ci2 · · ·Cis .

A combinatorial identity (see, e.g. [9]) shows

M(r, s) =

{
s(N(r)−s+1)(N(r)−s+2)···(N(r)−s/2−1)

2(N(r)−s/2+2)(N(r)−s/2+3)···N(r) CN(r)−s/2 s is even
s(N(r)−s+1)(N(r)−s+2)···(N(r)−(s+1)/2)
2(N(r)−(s−3)/2)(N(r)−(s−3)/2+1)···N(r)CN(r)−(s+1)/2 s is odd

≤ s

2
CN(r)−ds/2e ≤

s

2N(r)− s+ 1

(
2(N(r)− ds/2e)
N(r)− ds/2e

)
≤ s(2e)N(r)−ds/2e

2N(r)− s+ 1
≤ (2e)N(r),

where we used
(
n
k

)
≤ (en/k)k in the last estimate.

The probability P(F) that one particular forest F occurs can be calculated as
follows: Due to Step (ib) of Algorithm 4.5, there is exactly one opportunity for (E2)
to happen at each node of each tree R of F (if the element does not get refined by
(E2), it never will be refined again by (E2)).

Thus, P(F) is bounded by the probability that r instances of (E2) occur at some
nodes of F . Since a binary tree with at most N(r) leaves has at most 2N(r) − 1
nodes, a binary forest with s roots and N(r) leaves has 2N(r)−s nodes. This implies
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P(F) ≤
(

2N(r)−s
r

)
(1 − (1 − 1/C)K)r. Thus, the probability P(r), that Algorithm 4.5

produces an arbitrary forest with N(r) leaves, is bounded by

P(r) ≤M(r, s)

(
2N(r)− s

r

)
(1− (1− 1/C)K)r

≤
(

2N(r)− s
r

)
(2e)N(r)(1− (1− 1/C)K)r.

Choosing r ≥ #T ′qε/C , and C = κK, we obtain (1 − (1 − 1/C)K) ≤ 1/κ as well

as
(

2N(r)−s
r

)
≤ (4Ccle)

r. Since N(r) ≤ 2Cclr, this shows P(r) ≤ (8Ccle
2)2Cclrκ−r.

Finally, the choice κ = (16Ccle
2)2Ccl bounds the probability by

P(r) ≤ 2−2Cclr.

Thus, the probability of Tε having more than max{Ccl(#T ′qε/C + m), 2Ccl#T ′qε/C}
elements is thus bounded by

∞∑
r=max{m,#Tqε/C}

2−N(r) . 2−max{Ccl(#T ′qε/C+m),2Ccl#T ′qε/C}.

This concludes the proof.

Lemma 4.18. For V ∈ L2(D) and T ∈ T , define

ρ(T, V ) :=
( |T |
N

N∑
i=1

(
V (φT (xi))−

1

N

N∑
j=1

V (φT (yj))
)2)1/2

,

where x1, . . . , xN and y1, . . . , yN are uniformly i.i.d. points on the reference element
Tref and φT : Tref → T is the affine transformation. Then, there holds

Eρ(T, V )2 = (1 + 1/N)η(T, V )2 := (1 + 1/N)‖V −Π0
TV ‖2L2(T ).

Assume that V 2 ∈ L∞w (D). Then, there exists C, γ > 0 such that each T ∈ T∞
satisfies

P(ρ(T, V )2 ≥ (1 + 1/N)η(T, V )2 ≥ γ.

The constants γ and C depend only on N , ‖V 2‖L∞w (D), and the constant C from
Lemma 4.15.

Proof. Expansion of ρ(T, V ) as well as the independence of the Monte Carlo points
show

NEρ(T, V )2

=

N∑
i=1

E
(
|T |V (φT (xi))

2 − 2|T |
N

V (φT (xi))

N∑
j=1

V (φT (yj))

+
|T |
N2

N∑
j,k=1

V (φT (xj))V (φT (xk))
)

=

N∑
i=1

(∫
T

V 2 dx− 2|T |−1(

∫
T

V dx)2 + |T |−1(1− 1

N
)(

∫
T

V dx)2 +
1

N

∫
T

V 2 dx
)

= N
(

(1 + 1/N)

∫
T

V 2 dx− |T |(1 + 1/N)(Π0
TV )2

)
= N(1 + 1/N)‖V −Π0

TV ‖2L2(T ).
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To show the second statement, we employ Lemma 4.15. To that end, note that
X := ρ(T, V )2 is a non-negative random variable on Ω :=

⋃N
i=1 Tref,i ⊂ Rd, where

Tref,i are pairwise disjoint copies of the reference element scaled to |Tref,i| = 1/N .
We define wΩ analogously to w on Ω with respect to the transformed singularity set
SΩ :=

⋃N
i=1 φ

−1
T,i(S∩T ), where φT,i : Tref,i → T are the affine element mappings. Note

that there holds diam(T )dwΩ(x) . w ◦ φT,i(x) by definition of the weight w. By
assumption, we have V 2 ∈ L∞w (D) and hence

‖wΩX‖L∞(Ω) . |T |‖wΩV
2 ◦ φT ‖L∞(Ω) . ‖V 2‖L∞w (D),

where we used |T | ' diam(T )d. Hence, Lemma 4.15 applies and proves P(X ≥
qE(X)) & 1. This concludes the proof.

Finally, we complete Algorithm 4.5 by replacing the theoretical error estimator
ρ(T, V ) by the concrete DNN approximation ρT .

Input: Function V ∈ H1(D), tolerance ε > 0, initial mesh T0

For ` = 0, 1, 2, . . . do:
(i) For all T ∈ T` do:

(a) Sample ρT K-times.
(b) If all samples satisfy ρT ≤ ε add T to Tstop.
(c) Otherwise, add T to M`.

(ii) Remove all elements T fromM` for which there exists T ′ ∈ Tstop with T ⊆ T ′.
(iii) Generate T`+1 by refining the marked elementsM` with newest vertex bisec-

tion and mesh closure.
Output: The algorithm terminates if M` = ∅ and outputs Tε := T`.

Theorem 4.19. Let u ∈ H1(D). Given ε > 0, let vε denote an approximation to
∇u which satisfies ‖∇u− vε‖L2(D) ≤ ε as well as v2

ε ∈ L∞w (D). We assume that the
refinement indicator ρT satisfies |ρT − ρ(T, vε)| ≤ ε/4 with ρ(T, ·) from Lemma 4.18.
We denote by Tε the output of Algorithm 4.5 as well as by T ′δ the output of Algo-
rithm 4.5 (with V := vε). Then, there holds

P
(
∀T ∈ Tε : ‖∇u−Π0

Tε∇u‖L2(T ) ≤ (1 + 2/q)ε
)
≥ 1− (L+ 1)#T ′2ε/q2

−m,

where L ∈ N is the number of iterations of Algorithm 4.5 needed to produce T ′2ε/q
and m = K/| log(1 − γ)|. Furthermore, there holds P(#Tε ≤ C max{m,#T ′δ }) ≥
1 − 2−Cmax{m,#T ′δ }, where C depends only on the shape regularity of T0, N in the
definition of ρ(T, ·), and ‖v2

ε‖L∞w (D). There holds δ ' ε/K with hidden constants
depending additionally on q.

Proof. We define

ρ̃T :=

{
ρ(T, vε) ρ(T, vε) < ε/2,

ρT else.

Note that ρ̃T ≤ ε if and only if ρT ≤ ε. Hence, Algorithm 4.5 produces exactly the
same output when we replace ρT with ρ̃T . We prove

ρ̃T /2 ≤ ρ(T, vε) ≤ 2ρ̃T .(4.3)
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To see this, we only need to consider the case ρ(T, vε) ≥ ε/2. There holds ρ̃T = ρT ≤
ρ(T, vε) + ε/4 ≤ 2ρ(T, vε) as well as ρ(T, vε) ≤ ρT + ε/4 ≤ ρT + ρ(T, vε)/2. This
concludes (4.3).

Lemma 4.18 confirms that E(ρ̃T ) ≤ 2q−1η(T, vε) as well as P(ρ̃T ≥ q/2η(T, vε)) ≥
γ are satisfied for all elements T ∈ T∞. Thus, Lemma 4.17 applies and concludes

P
(
∀T ∈ Tε : η(T, vε) ≤ 2/qε

)
≥ 1− (L+ 1)#T ′2ε/q2

−m,

as well as P(#Tε ≤ C#T ′δ ) ≥ 1−2−C#T ′δ . Note that T ′δ is generated by Algorithm 4.5
with V = vε. By assumption ‖∇u − vε‖L2(D) ≤ ε, we have ‖∇u − Π0

Tε∇u‖L2(T ) ≤
η(T, vε) + ε and hence conclude the proof.

Proof of Theorem 2.5. Again we denote the meshes generated by Algorithm 4.5
by T ′δ . We aim to apply Theorem 4.19 with N = 1. Under the assumption that the
input vε satisfies ‖∇u − vε‖L2(D) ≤ ε, we use summation and taking the absolute
value to construct a DNN ρT which computes

ρT := |T |1/2 �
∣∣vε(x)− vε(y)

∣∣.
The DNN ρT takes as input two samples of uniform i.i.d. points xT , yT ∈ T as
well as the square root of the element area |T |1/2 (this could also be computed via
DNNs but we aim to keep the construction simple). The approximate multiplication
� is realized via MULTIPLY and achieves accuracy O(ε′) with a DNN of the size
O(| log(ε′)| + | log(‖vε′‖L∞(D))|) (see Proposition 4.6). Choosing ε′ ' ε sufficiently
small, we ensure |ρT − ρ(T, vε)| ≤ ε/4.

To denote the independent samples required from ρT we define ρT,k as the k-th
sample computed with input xT,k, yT,k ∈ T . We construct the RNN ADAPTIVE via

yTi = ADAPTIVE(xTi) := max{ max
k=1,...,K

ρTi,k, ε} − ε,

where xTi := (xT,k, yT,k, |T |1/2, ε)k=1,...,K and K ' m.
This already proves the complexity bound in Theorem 2.5. Furthermore, Algo-

rithm 2.8 with ADAPTIVE is equivalent to Algorithm 4.5 with ρT . Hence Theo-
rem 4.19 applies with q = 1/2 and proves

P
(
∀T ∈ Tε : ‖∇u−Π0

Tε∇u‖L2(T ) ≤ 5ε
)
≥ 1− (L+ 1)#T ′4ε2−m,

as well as P(#Tε ≤ C max{m,#T ′δ }) ≥ 1 − 2−Cmax{m,#T ′δ } with T ′δ denoting the
output of Algorithm 4.5 with V = vε and δ ' ε/m. Let T denote a mesh which
satisfies (2.8) for minimal N ∈ N with N−s−1/2 ≤ δ/2, i.e.

η(T,∇u) ≤ N−s−1/2 ≤ δ/2 for all T ∈ T .

Then, we have η(T, vε) ≤ δ/2 + ε/(Cm) ≤ δ and Lemma 4.16 implies that T is a
refinement of T ′δ , i.e., #T ′δ ≤ #T ≤ N . This shows that with probability larger than

(1− (L+ 1)#T ′4ε2−m)(1− 2−Cmax{m,#T ′δ }), there holds

#Tε max
T∈Tε

‖∇u−Π0
Tε∇u‖

1/(s+1/2)
L2(T ) . max{m,N}(5ε)1/(s+1/2).

Since N − 1 . (ε/m)−1/(s+1/2), we conclude for m ≤ #Tε

#Tε max
T∈Tε

‖∇u−Π0
Tε∇u‖

1/(s+1/2)
L2(T ) . m1/(s+1/2)
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Fig. 5.1. (left) Comparison of the performance of the RNN ADAPTIVE versus uniform mesh
refinement. The dashed lines indicate the expected rates for uniform/adaptive refinement O(N−1/3)

and O(N−1/2). (right) Adaptive mesh generated by the RNN M̃ARK found by stochastic gradient
descent.

with probability larger than

(1− (L+ 1)#T ′4ε2−m)(1− 2−Cmax{m,#T ′δ }) ≥ 1− ((L+ 1)#T ′4ε + 1)2−Cm.

Note that T (4ε) as defined in Section 2.8 is conforming and thus a refinement of T ′4ε
(according to Lemma 4.16). Since L is the number of iterations of Algorithm 4.5,
we know that the maximal level of elements in T ′4ε is equal to L. This concludes the
proof.

5. Numerical Experiments.

5.1. Hardcoded deep RNN. As a first experiment, we implement the RNN
ADAPTIVE from Theorem 2.2 exactly as shown in the proofs of Section 4. We run
Algorithm 2.7 on an L-shaped domain shown in Figure 5.2. We choose a constant
right-hand side f = 1 and start from a coarse triangulation with six elements. Fig-
ure 5.1 shows that the adaptive method reaches the expected convergence rate of
O(N−1/2), while the uniform approach only achieves a suboptimal rate due to the
singularity at the re-entrant corner of the domain. Figure 5.2 compares the adaptive
meshes generated by ADAPTIVE to a standard adaptive mesh generated by Algo-
rithm 2.1. This experiment’s main purpose is to show that round-off errors do not
spoil the theoretically shown performance.

The more interesting experiment would be to find the the weights of ADATIVE by
means of computational optimization (machine learning) as described in Section 3. We
do not cover this topic in its entirety, because the training of RNNs is a challenging
topics on itself. However, we achieve some intermediate goals in the following two
sections.

5.2. Learning the maximum strategy. First, we try to find an RNN M̃ARK
which, given the exact residual based error estimator from (2.6), marks elements and
achieves the optimal order of convergence. To that end, we use the smallest possible
blue print for an RNN such that it can represent the maximum strategy (which is
much simpler than Dörfler marking). The maximum strategy defines the set of marked
elements as

M :=
{
T ∈ T : ρT > (1− θ) max

T ′∈T
ρT ′
}
.
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Fig. 5.2. Comparison of the adaptive meshes generated after 9 steps of adaptive refinement with
the RNN ADAPTIVE (left) and the standard residual error estimator (2.6) with Dörfler marking
(right).

Although it is not known whether the maximum strategy leads to optimal convergence
in the sense of (2.4), it is usually observed in practice and [16] even shows optimality
for a slight variation of this strategy. The maximum strategy can be realized by the
combination of two basic RNNs. First, B1 is defined for an input x ∈ R#T , xi = ρTi
and output y ∈ R2×#T by

yi = B1(xi, yi−1) = (xi,max(xi, yi−1,2)) =

(
1 −1 0
1 −1 1

)
φ

 1 0
−1 0
−1 1

( xi
yi−1,2

) .

Initialization with y0,2 = 0 results in yi,1 = xi as well as yi,2 = max1≤j≤i xi for all
1 ≤ i ≤ #T . Then, we initialize a second basic RNN B2 with x ∈ R2×#T , xi,1 = yi,1
and xi,2 = y#T ,2 for i = 1, . . . ,#T (note that if we insist on the initialization as
described in Section 2.5, we need a third RNN to copy the value of y#T ,2 to the entire
vector). We filter the marked elements by

yi = B(xi) = max(xi,1 − (1− θ)xi,2, 0)

and observe that M =
{
Ti ∈ T : yi > 0

}
. Now, we know the structure necessary to

represent the maximum strategy.

To find M̃ARK by machine learning, we set up a simple optimization algorithm
to compute the necessary weights. We initialize an RNN with the structure as given
above with random weights, run Algorithm 2.1 with Step (3) replaced by our RNN as
long as #T` ≤ 2 · 104, and apply simultaneous perturbation stochastic approximation
(SPSA) to maximize the energy norm of the finest computed solution (note that due
to Galerkin orthogonality, maximizing the energy norm is equivalent to minimizing
the error).

The SPSA approach is basically a stochastic gradient descent algorithm which
replaces the gradient by a finite difference in a random direction (see, e.g. [6] for
details). As discussed in the previous section, this is necessary since marking is not a
continuous procedure. As discussed in Section 3, we limited the values of the recursive
weights to the set {−1, 0, 1} to avoid blow-up or dampening. The weights found by
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Fig. 5.3. (left) Performance of the RNN M̃ARK as a marking strategy in Algorithm 2.1. The
dashed line marks the optimal rate of convergence O(N−1/2). (right) Result (in terms of the residual
error estimator plotted over the number of elements) of the training on the job Algorithm 5.3 com-
pared with uniform refinement and (optimal) adaptive refinement via the residual error estimator.
We observe that the deep RNN ADAPTIVE (which is trained on the fly) clearly beats the uniform
refinement and almost achieves optimal rate of convergence. Even with the very crude learning
method described in Remark 5.1, the deep RNN approach leads to an advantage over uniform re-
finement without using any information about the problem such as error estimators. This improved
rate implies particularly that as long as the training cost is proportional to the cost of the solve step,
this approach will eventually also be more cost effective than plain uniform refinement.

the algorithm for B1 and B2 are(
−0.2471 0.1095 −0.2358
−0.1868 0.3123 −0.9564

)
,

 0.4394 0
−0.6591 0
−0.6466 −1

 ,
(
−0.1585 0.2804.

)
While we cannot offer a meaningful explanation of the marking strategy found, we
observe in Figure 5.1 (right) and Figure 5.3 (left) that it behaves in an empirically
optimal fashion and also the generated meshes look reasonable.

5.3. Training on the job. Finally, we try to learn the full deep RNN ADAP-
TIVE for the Poisson problem

−∆u = f in D,

u = 0 on ∂D.

We choose a Z-shaped domain D to increase the rate difference between optimal
and uniform refinement, i.e., D := [−1, 1]2 \ conv{(0, 0), (−1, 0), (−1,−1/5)}. There
are many different plausible methods of how to train the network. We chose to
set up a deep RNN which consists of two RNNs B and B′ with the layer structure
(s0, . . . , s3) = (16, 10, 10, 10) and (s′0, s

′
1, s
′
2) = (11, 10, 1). The two RNNs are only

mildly recursive in the sense that yi = B(xi, yi−1,1) (and analogously for B′) only has
access to the first component of the previous vector valued output. The input data
of B is the sequence x1, . . . , x#T , where each xi contains ∇UT |T ∈ R2 for T = Ti
as well as for each neighbor element T which shares an edge with Ti. Moreover, xi
contains the coordinates of the nodes of T as well as the midpoint evaluation of the
right-hand side f . This results in xi ∈ R15. Since the RNN B also processes the first
component of the previous output, the first layer has to consist of 16 nodes. For the
same reason, the first layer of B′ has one more node than the final layer of B. We
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call this section training on the job because the training of the neural network is part
of the adaptive algorithm: The result of this algorithm is shown in Figure 5.3.

Input: Initial mesh T0, number of training steps ntrain ∈ N.
For ` = 0, 1, 2, . . . do:

1. Compute discrete approximation U`.
2. For k = 1, . . . , ntrain

(a) Apply y = ADAPTIVE(x).
(b) Use newest-vertex-bisection to refine #T`/5 elements Ti ∈ T` with largest

yi to obtain T̃`+1.
(c) Optimize weights of ADAPTIVE(x) with the goal to maximize

‖∇Ũ`+1‖L2(D).
3. Apply y = ADAPTIVE(x).
4. Use newest-vertex-bisection to refine #T`/5 elements Ti ∈ T` with largest yi

to obtain T`+1.

Remark 5.1. We note that Algorithm 5.3 is different to Algorithm 2.7 or 2.8 due
to the fact that we always refine 20% of the elements and, in case of Algorithm 2.8
we we do not exclude elements which are not refined in a specific step. This is largely
to simplify the training process of the network and to minimize the implementational
overhead. The optimization step (2c) consists of trying ntrain = 50 random per-
turbations of the network and choosing the best one. To avoid to optimize towards
networks which always refine all elements (this would give the largest increase in en-

ergy ‖∇Ũ`+1‖L2(D)), we restrict ourselves to refining exactly 20 % of the elements.
We are confident that a more sophisticated training method would improve the results.
This, however, is beyond the scope of this work.
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