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CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION WITH

FINITE ELEMENTS

MICHAEL FEISCHL AND ANDREA SCAGLIONI

Abstract. We consider an elliptic partial differential equation with a random diffusion parameter
discretized by a stochastic collocation method in the parameter domain and a finite element method
in the spatial domain. We prove for the first time convergence of a stochastic collocation algorithm
which adaptively enriches the parameter space as well as refines the finite element meshes.

1. Introduction

Partial differential equations with random data are a ubiquitous tool in the modeling of real
life phenomena such as structural vibrations [18], groundwater flow [21], and composite material
behavior [1]. The efficient approximation of solutions of those equations is a challenging problem
as it requires the approximation of high-dimensional functions in a parameter domains as well as
low-dimensional but in general non-regular functions in the spatial domain. While effective ways to
generate the random data have been studied in [19, 23], we focus on the numerical approximation
of the resulting solution of the PDE.

To that end, we consider an adaptive stochastic collocation algorithm for a random diffusion
problem proposed in [22] and extend it to include spatial mesh refinement for a finite element
method. We give the first proof of convergence of the adaptive algorithm to the exact solution and
even derive some convergence rates.

Problems of this kind have been considered in many prior works. See, e.g., [2, 8] for stochastic
collocation methods, [14, 11] for quasi-Monte Carlo sampling approaches, [13, 15] for multi-level
methods, and [12] for a multi-index method. Those non-intrusive methods have the big advantage
that they do not require new solver algorithms, but reuse deterministic solvers only. Roughly
speaking, the exact solution depends on a parametric variable (the random input) and a spatial
variable. While the spatial dependence is resolved by standard finite element approximation, the
parametric dependence is discretized by collocation. For each collocation point, we need to solve a
deterministic problem and can reuse well tested finite element code for deterministic problems.

Adaptivity comes into mind for two reasons: First, the spatial adaptivity is necessary to resolve
singularities originating from geometric features (e.g., concave corners) and from irregular coeffi-
cients induced by the random input. Uniform meshes suffer from drastic reduction of convergence
rate in the presence of such singularities, see, e.g., [6] for an exhaustive overview on h-adaptive
methods. Second, the parametric adaptivity is necessary to resolve anisotropy in the random co-
efficient. The random input can often be parametrized on high-dimensional parameter domains
and, usually, not all directions of that domain are equally important. Therefore, a straightforward
tensor approximation approach would suffer dramatically from the curse of dimensionality. Here,
an adaptive approach can outperform uniform methods significantly, see [9, 10] for an overview.

For intrusive stochastic Galerkin methods, adaptive algorithms have been investigated in [5, 17]
and for non-intrusive stochastic collocation methods, an adaptive algorithm was proposed in [22].

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 –
SFB 1173
Institute of Analysis and Scientific Computing TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna.

1



The work uses a sparse grid interpolation operator to discretize the parametric domain and pro-
poses an error estimator which consists of an parametric estimator as well as a finite element
estimator. We extend the algorithm of [22] and include spatial adaptivity by use of a standard
h-adaptive algorithm inspired by [5]. Basically, we use Dörfler marking to identify a number of
collocation points which require adaptive refinement of the underlying finite element mesh and then
use well understood spatial adaptivity to improve the finite element error. The main difficulty is
the interplay of parametric refinement and finite element refinement to ensure overall convergence.

The remainder of this work is organized as follows: We present the model problem in Section 1.1
and describe the adaptive algorithm in Section 1.3. In Section 2, we prove convergence of the
adaptive algorithm for the pure parameter enrichment problem (i.e., the problem considered in [22]),
and Section 3 proves the convergence of the full adaptive algorithm including spatial adaptivity. A
final Section 4 presents a numerical experiment.

1.1. Problem statement. Consider a domain D ⊂ Rd with d ≥ 2 and a probability space
(Ω,F ,P). Let Yn : Ω → R be a random variable with range Γn := Yn(Ω) (a bounded subset

of R) and density ρn : Γn → R≥0 for all n ∈ 1, . . . , N . Suppose that the (Yn)Nn=1 are independent.

Let Γ :=
⊗N

n=1 Γn ⊂ RN and ρ :=
⊗N

n=1 ρn. The triple (Γ,B(Γ), ρ(y)dy) (B(Γ) the Borel σ-algebra
on Γ) is a probability space. Consider f ∈ L2(D) and a : Γ×D → R with the following properties:
Uniform boundedness

∃amin, amax ∈ R>0 : amin ≤ a(y, x) ≤ amax ρ-a.e. y ∈ Γ, ∀x ∈ D.
and affine dependence on y ∈ Γ:

∀n ∈ 0, . . . , N ∃ an : D → R : a(y, x) = a0(x) +

N∑
n=1

an(x)yn.

The problem reads: Find u : Γ→ V such that

(1)

∫
D
a(x,y)∇u(x,y) · ∇v(x)dx =

∫
D
f(x)v(x)dx ∀v ∈ V, ρ-a.e. y ∈ Γ.

V denotes the Sobolev space H1
0 (D) with the norm ‖v‖V := ‖∇v‖L2(D).

Due to uniform ellipticity of the problem the exact solution is unique and (see also, e.g., [2])
there exists τ ⊂ RN>0 such that u : Γ→ V can be extended to a bounded holomorphic function on
the set

(2) Σ(Γ, τ ) :=
{
z ∈ CN : dist(zn,Γn) ≤ τn ∀n = 1, . . . , N

}
.

1.2. The sparse grid stochastic collocation interpolant. We aim at building a discretization
of the solution u of (1) in the space

(3) P(Γ,W ) ∼= P(Γ)⊗W,
where P(Γ) is a finite-dimensional polynomial space on Γ and W is a finite-dimensional subspace
of V . In order to do so, we fix a set H of distinct collocation points in Γ and denote by {Ly}y∈H
the related set of Lagrange basis functions (i.e. the unique set of polynomials over Γ such that
Lz(y) = δy,z for any y, z ∈ H). P(Γ) is the polynomial space spanned by {Ly}y∈H. For any

y ∈ H, we consider Ty, a shape-regular triangulation on D depending on y, and Vy := S1
0(Ty), the

classical finite elements space of piecewise-linear functions over Ty with zero boundary conditions.
We denote by Uy ∈ Vy the finite element solution of the problem for the parameter y:

(4a)

∫
D
a(x,y)∇Uy(x) · ∇vh(x)dx =

∫
D
f(x)vh(x)dx ∀vh ∈ Vy.
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Finally, the discretization of u takes the following form:

(4b) uH(x, z) =
∑
y∈H

Uy(x)Ly(z).

The number of degrees of freedom of uH is
∑
y∈H dim (Vy). The space W from (3) will be the

coarsest common refinement of the finite element spaces {Vy}y∈H.

The set of collocation nodes and polynomial space are defined following the sparse grid con-
struction, which we now describe briefly. We start by considering a family of 1D nodes, i.e. a

set Yn :=
{
y

(n)
j

}n
j=1
⊂ R defined for any positive integer n. We require the family of Yn to be

nested, i.e. Yn ⊂ Yn+1 for any n ∈ N. The particular number of the quadrature nodes used in
the algorithm is encoded in the function m(·) : N → N. Finally, let I ⊂ NN be a downward-closed
multi-index set, i.e.,

∀i ∈ I, i− en ∈ I ∀n = 1, . . . , N such that in > 1.

with en the n-th unit vector in NN . The sparse grid interpolant of a function v ∈ C0(Γ, V ) is:

(5) SI [v](y) :=
∑
i∈I

∆m(i)(v)(y),

where the hierarchical surplus operator is defined as ∆m(i) :=
⊗N

n=1 ∆m(in), the detail operator

is defined as ∆m(in) := Um(in)
n − Um(in−1)

n and Um(in)
n : C0(Γn) → Pm(in)−1(Γn) is the Lagrange

interpolant with respect to the nodes Ym(in) ⊂ Γn. Finally, we set U0
n ≡ 0 for all n ∈ 1, . . . , N .

The polynomial space P(Γ) introduced in (3) corresponds to

PI(Γ) :=
∑
i∈I

Pm(i)−1(Γ) where Pm(i)−1(Γ) :=
N⊗
n=1

Pm(in)−1(Γn).

The sparse grid stochastic collocation interpolant can be written as a linear combination of tensor
product Lagrange interpolants (see, for instance, [25]):

(6) SI [u](y) =
∑
i∈I

ci

N⊗
n=1

Um(in)
n (u)(y), ci :=

∑
j∈{0,1}N
i+j∈I

(−1)|j|1 .

The set of collocation points H in (6) and also in (4) is referred to as sparse grid and we will also
denote it by HI in order to make the dependence on I explicit. The nestedness of the family of 1D
nodes Yn makes SI [·] interpolatory in the collocation nodes (see [4, proposition 6])

SI [u](y) = u(y) ∀y ∈ HI .

Due to this fact, (4) can be rewritten as

(7) uI(x, z) = SI [u](x, z) =
∑
y∈HI

Uy(x)Ly(z) x ∈ D,z ∈ Γ.

The nestedness is satisfied, e.g., by choosing Clenshaw-Curtis (CC) nodes to construct the sparse
grid, i.e.

y
(m)
j := − cos

π(j − 1)

m− 1
∀j = 1, . . . ,m,
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with the doubling rule

(8) m(i) :=


0 i = 0,

1 i = 1,

2i−1 + 1 i > 1.

We will stick with this particular choice for the remainder of this work, remark however that other
choices are possible (see, e.g., [22]).

The requirement on the multi-index set I to be downward-closed is needed to ensure that the
sum (5) is actually telescopic.

Since u is analytic in y, we may consider the expansion (see again [22])

(9) u(y) =
∑
i∈NN

∆m(i)u(y) ρ-a. a. y ∈ Γ

converging absolutely in V . As it will be central in the following discussion, we recall the definition
of the margin of a multi-index set I:

MI :=
{
i ∈ NN : i− en ∈ I for some n ∈ 1, . . . , N such that in > 1

}
.

1.3. The adaptive stochastic collocation finite element algorithm. The adaptive algorithm
employs the error estimator proposed in [22, Proposition 4.3]. We recall that u denotes the analytic
solution of the problem (1) while the discrete solution is SI [U ] =

∑
y∈HI UyLy. By U : Γ → W ,

we denote a function that takes the value Uy on the collocation point y ∈ HI (sometimes we will
also use the notation U(y) = Uy).

The estimator is composed of a parametric estimator

ζSC,I :=
∑
i∈MI

ζi,I , ζi,I :=
∥∥∥∆m(i) (a∇SI [U ])

∥∥∥
L∞(Γ,V )

(the gradient ∇ here acts exclusively on the space variable x ∈ D) as well as a finite element
estimator

ηFE,I :=
∑
y∈HI

ηy‖Ly‖L∞ρ (Γ,V ), ηy :=

∑
T∈Ty

η2
y,T

 1
2

,

η2
y,T := h2

T ‖f +∇ · (a(yk)∇Uy)‖2L2(T ) +
∑
e⊂∂T

he

∥∥∥∥1

2
[a(y)∇Uy · ne]ne

∥∥∥∥2

L2(e)

.

The combination of both yields a reliable upper bound, i.e.,

‖u− SI [U ]‖L∞ρ (Γ,V ) ≤
1

c2
min

(ηFE,I + ζSC,I) ,

where cmin > 0 appears in the equivalence relation between H1
0 (D) and energy norm

cmin‖v(y)‖H1
0 (D) ≤

∥∥∥a 1
2∇v(y)

∥∥∥
L2(D)

≤ cmax‖v(y)‖H1
0 (D) a.e.y ∈ Γ.

We consider the following adaptive algorithm.
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Algorithm 1 uε ← SCFE(ε, θy, θx, α, Tinit)

1: I−1 := ∅
2: I0 := {1}
3: compute finite element solution U0,y on Tinit for all y ∈ HI0
4: for ` = 0, 1, 2, ... do
5: U` ← Refine FE spaces (I`, U`, α, θy, θx)
6: compute parametric estimators (ζi,I`)i∈MI`

, ζSC,I`
7: compute finite element estimator ζFE,I`
8: if ζSC,I` + ηFE,I` < ε then
9: return uε ← SI` [U`]

10: end if
11: (U`+1, I`+1)← Refine parameter space(I`, U`, (ζi,I`)i∈MI`

, Tinit)
12: end for

The algorithm consists of alternating between enriching the polynomial space PI (Line 11) and
refining the finite element spaces corresponding to each collocation point independently from each
other (Line 5). The intuitive idea behind this choice is the following: In order for the parameter
enrichment routine to make a meaningful choice, the finite element solution in the collocation points
has to be ”close enough” to the exact solution. The algorithm terminates when the a-posteriori
estimator falls below a given tolerance ε > 0 (Line 8).

The sub-routine Refine FE spaces reads:

Algorithm 2 U ←Refine FE spaces (I, U, α, θy, θx)

1: compute finite element estimator (ηy)y∈HI , ηFE,I
2: compute parametric estimator ζSC,I
3: Tol := α 1(∑

i∈MI

∏N
n=1 in

)2 ζSC,I
4: while ηFE,I > Tol do
5: find minimal D ⊂ H such that

∑
y∈D η

2
y‖Ly‖L∞(Γ) ≥ θyη

2
FE,I

6: for y ∈ D do
7: find minimal Ky ⊂ Ty such that

∑
K∈K η

2
y,K ≥ θxη2

y

8: refine Ty with Ky as marked elements
9: compute Uy over Ty

10: end for
11: compute finite element estimator (ηy)y∈HI , ηFE,I
12: compute parametric estimator ζSC,I
13: Tol← α 1(∑

i∈MI

∏N
n=1 in

)2 ζSC,I
14: end while

The aim of this sub-routine is to refine the finite element solutions in the collocation points until
the finite element estimator falls below the tolerance defined in Line 3. In Line 5 collocation nodes
are selected for refinement using Dörfler marking with the parameter θy ∈ (0, 1). Then, for each
marked collocation point y, we apply one cycle of “mark, refine, compute, estimate” of the classical
finite element h-refinement algorithm (Lines 7 to 11). We use newest-vertex-bisection with mesh
closure for mesh refinement. Observe that, since the tolerance depends on the parametric estimator
ζSC,I , which in turn depends on the discrete solution, the tolerance needs to be re-computed at
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every finite-element refinement. In Section 3 we will prove that the sub-routine terminates (i.e. that
the finite element estimator eventually falls below the tolerance) and that the choice of tolerance
made in Line 3 is a sufficient condition for convergence.

Finally, the sub-routine Refine parameter space reads as follows:

Algorithm 3 (U ′, I ′)←Refine parameter space (I, U , (ζi,I)i∈MI
, Tinit)

1: i := arg maxi∈MI
Pi,I

2: I ′ := I ∪Ai,I
3: U ′ ← update U by computing finite element solution Uy on Tinit for all y ∈ HI′ \ HI

The aim here is to enrich the polynomial space PI as done in [22, Algorithm 1]. At each iteration,
the algorithm enlarges the multi-index set I by adding multi-indices from the margin of I depending
on the values of the pointwise error estimators (ζi,I) i ∈ I. More precisely, in Line 1 we select a
profit maximizer, i.e. a multi index in the margin that maximizes a given profit function Pi,I (see
below for some examples):

(10) i = arg max
i∈MI

Pi,I

(in case more than one multi-index maximizes the profit, we pick the one that comes first in the
lexicographic ordering).
Then, in Line 2 I is enlarged by adding Ai,I , the smallest subset of MI containing i such that
I ∪ Ai,I is downward-closed. Finally, in Line 3 we compute the finite element solution over the
default mesh Tinit corresponding to each new collocation point, while preserving the old ones.

We analyze two possible choices of profit:

• Workless profit:

(11) Pi,I :=
∑
j∈Ai,I

ζj,I ;

• Profit with work:

(12) Pi,I :=

∑
j∈Ai,I

ζj,I∑
j∈Ai,I

Wj
,

where the work is defined as Wj :=
∏N
n=1 (m(jn)−m(jn−1)).

2. Convergence of the parametric enrichment algorithm

We examine the convergence properties of a simplified version of Algorithm 1, also discussed in
[22]. In the present case, we suppose to be able to sample the function u : Γ → V for any fixed
parameter y ∈ Γ. Thus, a discrete solution is given by the sparse-grid interpolant SI [u] ∈ PI(Γ, V ),
for a downward-close multi-index set I ⊂ NN . Moreover, the a-posteriori estimator simplifies to
ζSC,I :=

∑
i∈MI

ζi,I (no additional term accounting for the finite element discretization) where the
pointwise estimator is

ζi,I :=
∥∥∥∆m(i) (a∇SI [u])

∥∥∥
L∞(Γ,L2(D))

.

In this setting, the reliability of the error estimator reads: ‖u− SI [u]‖L∞(Γ,V ) . ζSC,I . Workless-

profit and profit with work are defined analogously to (11) and (12) respectively. The simplified
version of the algorithm reads:
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Algorithm 4 uε ← SC(ε)

1: I := {1}
2: uε := SI [u]
3: compute ζSC
4: while ζSC ≥ ε do
5: i := arg maxi∈MI

Pi,I
6: I ← I ∪Ai,I
7: uε ← SI [u]
8: compute new a-posteriori estimator ζSC
9: end while

2.1. Preliminary results.

2.1.1. Stability and convergence of the hierarchical surplus ∆m(i). In this section we recall basic
results on the hierarchical surplus operator ∆m(i) (see for instance [24]). The analysis is carried
out in the L∞(Γ, V ) norm as it is the most ”stringent” among the Lpρ(Γ, V ) norms for p ∈ [1,∞].

We will first state 1D results (corresponding to the case N = 1). For i ∈ N, the Lebesgue

constant λm(i) of the interpolant Um(i) satisfies the relation

(13)
∥∥∥Um(i)v

∥∥∥
L∞(Γ,V )

≤ λm(i)‖v‖L∞(Γ,V ) ∀v ∈ C0(Γ, V ).

Moreover, since CC nodes and the doubling rule (8) are used, it can be estimated as (see [16])

(14) λm(i) ≤ 2i.

Therefore, the relation (13) can be rewritten explicitly with respect to i as

(15)
∥∥∥Um(i)v

∥∥∥
L∞(Γ,V )

. i‖v‖L∞(Γ,V ) ∀v ∈ C0(Γ, V ).

The estimate (15) can be used to derive a stability estimate for the detail operator∥∥∥(Um(i) − Um(i−1)
)
v
∥∥∥
L∞(Γ,V )

. i‖v‖L∞(Γ,V ).

Moving to the general case N ∈ N, we can now exploit the tensor product structure of Γ ⊂ RN to
obtain a stability estimate for the hierarchical surplus operator

(16)
∥∥∥∆m(i)v

∥∥∥
L∞(Γ,V )

.

(
N∏
n=1

in

)
‖v‖L∞(Γ,V ).

Since this estimate will be employed several times in the rest of the paper, we denote this bound
on the norm of ∆m(i) by

(17) Λi :=

N∏
n=1

in.

We derive another estimate of
∥∥∆m(i)u

∥∥
L∞(Γ,V )

that relies on the fact that u : Γ→ V is analytic

with respect to y. The tensor product structure of Γ allows us again to start from a 1D results
and then generalize it to N dimensions. So let us start by considering N = 1. We state a result
that relates the best approximation error in Pm(Γ, V ) to the size of the domain of the holomorphic
extension of u (2).
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Lemma 2.1 ([2]). If v ∈ C0(Γ, V ) and it exists τ > 0 such that v admits an analytic extension to
Σ(Γ, τ) (defined in (2)), then for m ∈ N

(18) Em(v) := min
w∈Pm(Γ,V )

‖v − w‖L∞(Γ,V ) ≤
2

eσ − 1
e−σm max

z∈Σ(Γ,τ)
‖v(z)‖V

where σ := log
(

2τ
|Γ| +

√
1 + 4τ2

|Γ|2

)
> 0 �

Since Um(i) is exact on Pm(i)−1(Γ;V ), its error can be expressed as (see [4])∥∥∥u− Um(i)u
∥∥∥
L∞(Γ,V )

≤
(
1 + λm(i)

)
Em(i)−1(u).

Remembering (14) and the previous lemma, the error estimate for Um(i) can be simplified as∥∥∥u− Um(i)u
∥∥∥
L∞(Γ,V )

. ie−σm(i) max
z∈Σ(Γ,τ)

‖u(z)‖V .

This estimate can be applied to the detail operator after a triangle inequality to obtain

(19)
∥∥∥∆m(i)u

∥∥∥
L∞(Γ,V )

. ie−σm(i−1) max
z∈Σ(Γ,τ)

‖u(z)‖V .

This 1D result can be applied to the multidimensional case (by considering one component at a
time) to obtain an error estimate for the hierarchical surplus. The following quantity will appear
in the result:

σ := min
n∈1,...,N

σn, σn := log

(
2τn
|Γn|

+

√
1 +

4τ2
n

|Γn|2

)
.

Lemma 2.2. For i ∈ NN , the hierarchical surplus operator satisfies

(20)
∥∥∥∆m(i)(u)

∥∥∥
L∞(Γ,V )

. Λie
−σ|m(i−1)|1 .

2.1.2. A simplified formula for ζi,I . In the present section we highlight elementary facts on the

zeros of ∆m(j)u and the kernel of ∆m(j). These facts are combined to show that the operator
∆m(i)

(
a∇∆m(j)

)
is identically zero unless the multi-index i, j ∈ NN are “close to each other”

(Theorem 2.8).

Lemma 2.3. Let j ∈ NN and y ∈ Γ such that

∃n ∈ 1, . . . , N : yn ∈ Ym(jn−1).

Then,

∆m(j)u(y) = 0 ∀u ∈ C0(Γ, V ).

Proof. Since CC nodes are nested, both Um(jn)
n and Um(jn−1)

n interpolate u in yn. Then, the defini-
tion of ∆m(j) gives the statement. �

Lemma 2.4. Let i ∈ NN . If u ∈ C0(Γ, V ) satisfies

u(y) = 0 ∀y ∈ Ym(i),

then ∆m(i)u = 0 on Γ.

Proof. Observe that a hierarchical surplus can be written as a linear combination of Lagrange
interpolants:

∆m(i) =
∑

α∈{0,1}N
(−1)|α| Um(i−α).
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Since CC nodes are nested, Ym(i−α) ⊂ Ym(i) for any α ∈ {0, 1}N . Thus, from the assumption on
u all terms in the expansion are identically zero. �

Proposition 2.5. Given i, j ∈ NN , if

∃n ∈ 1, . . . , N : in < jn,

then

∆m(i)
(
a∇∆m(j)u

)
≡ 0 ∀u ∈ C0(Γ, V ).

Proof. From the assumption and the nestedness of CC nodes, we derive Ym(in) ⊂ Ym(jn−1). Thus,
due to Lemma 2.3, any y ∈ Ym(i) is a zero of ∆m(j)u, i.e.

∆m(j)u(y) = 0 ∀y ∈ Ym(i).

Hence, also a∇∆m(j)u(y) = 0 for y ∈ Ym(i) (recall that the gradient acts on the space variable x

only). This shows that a∇∆m(j)u satisfies the assumption of Lemma 2.4, which in turn leads to
the statement of the proposition. �

Another sufficient condition on i and j to imply ∆m(i)
(
a∇∆m(j)u

)
≡ 0 can be obtained pro-

ceeding analogously to [22, Proposition 4.3]. It the rest of the present work, we will denote by
Ri ⊂ NN the axis-aligned rectangle with opposite vertices 1 and i:

Ri :=
{
j ∈ NN : jn ≤ in ∀n ∈ 1, . . . ,N

}
.(21)

Lemma 2.6. Let i ∈ NN . If u ∈ PRi\{i} then ∆m(i)u = 0 on Γ.

Proof. The hierarchical surplus can be written as a difference of sparse-grid interpolants

∆m(i) = SRi
− SRi\{i} .

But we know that SI is exact on PI , so SRi
[u] = SRi\{i} [u] and the statement is proved. �

Proposition 2.7. Given i, j ∈ NN , if

∀n ∈ 1, . . . , N : j + en < i,

then

∆m(i)
(
a∇∆m(j)u

)
≡ 0 ∀u ∈ C0(Γ, V ).

Proof. Observe that

a∇∆m(j)u ∈
N∑
n=1

Pm(j)−1+en = Pj∪M{j} .

But the assumption means that Pj∪M{j} ⊂ PRi\{i} and due to the previous lemma we obtain the
statement. �

Putting together the previous two propositions, we derive a sufficient condition for ∆m(i)
(
a∇∆m(j)u

)
≡ 0.

Theorem 2.8. Given, i, j ∈ NN , if one of the following two conditions

∃n ∈ 1, . . . , N : in < jn

or

∀n ∈ 1, . . . , N : j + en < i,

is satisfied, then

∆m(i)
(
a∇∆m(j)u

)
≡ 0 ∀u ∈ C0(Γ, V ).
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Remark 2.9. The previous theorem can be used to simplify the computation of ζi. Consider a
multi-index set I ⊂ NN and i ∈MI . Define

Ji,I := {j ∈ I : ∃n ∈ 1, . . . , N : j = i− en} .
Then, thanks to the previous theorem:

∆m(i) (a∇SI [u]) = ∆m(i)

a∇∑
j∈I

∆m(j)u

 = ∆m(i)

a∇ ∑
j∈Ji,I

∆m(j)u

 ,

so

(22) ζi,I =

∥∥∥∥∥∥∆m(i)

a∇ ∑
j∈Ji,I

∆m(j)u

∥∥∥∥∥∥
L∞(Γ,V )

See Figure 1 for a graphical representation.

1 2 3

1

2

3

4

i

Ji,I

Figure 1. Graphical representation of the simplified computation of ζi,I from (22). Filled
dots represent I, the red hollow one is i ∈ MI . The blue dashed line encircles the multi-
index in Ji,I , i.e. the only relevant ones in I for the computation of ζi,I .

2.1.3. Estimate on the pointwise error estimator ζi,I .

Proposition 2.10. Given u : Γ → V analytic, a multi-index set I ⊂ NN and i ∈ MI , the
point-wise error estimator can be bounded as

ζi,I . NΛ2
ie
−σ|m(i−1)|1 ,

where Λi is defined in (17).

Proof. Observe that SI [u] is analytic but not uniformly with respect to I, so one cannot apply
directly the convergence result for the hierarchical surplus. Recalling Remark 2.9, we can simplify
the expression of ζi,I as

ζi,I =
∥∥∥∆m(i) (a∇SI [u])

∥∥∥
L∞(Γ,L2(D))

=

∥∥∥∥∥∥∥∥∆m(i)

a∇ ∑
n∈1,...,N
i−en∈I

∆m(i−en)u


∥∥∥∥∥∥∥∥
L∞(Γ,L2(D))

.
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Applying the stability of ∆m(i), boundedness of a, and the triangle inequality, we obtain

ζi,I . Λi
∑

n∈1,...,N
i−en∈I

∥∥∥∆m(i−en)∇u
∥∥∥
L∞(Γ,L2(D))

.

Observe finally that, since u is analytic, we can use the convergence result of the hierarchical surplus
to obtain

ζi,I ≤ Λi
∑

n∈1,...,N
i−en∈I

Λi−ene
−σ|m(i−en−1)|1 . NΛ2

ie
−σ|m(i−1)|1 .

�

Remark 2.11. A direct consequence of the previous proposition is the uniform boundedness of the
sequence of a-posteriori estimators (ζSC,I`)`. Indeed, we have the following bound independently of
of the iteration number `

ζSC,I` =
∑
i∈MI`

ζi,I . N
∑
i∈MI`

Λie
−σ|m(i−1)|1 ≤ N

∑
i∈NN

Λie
−σ|m(i−1)|1 <∞.

2.1.4. Bounds on the cardinality of I` and Ai`,I`.

Lemma 2.12. The profit maximizer i` ∈ NN at iteration ` of Algorithm 3 satisfies

Λi` =
N∏
n=1

〈i`, en〉 ≤
(

1 +
`

N

)N
Proof. First observe that due to the arithmetic-geometric inequality,

N∏
n=1

jn ≤

(∑N
n=1 jn
N

)N
=

(
|j|1
N

)N
∀j ∈ RN .

Then, it can be easily proved by induction that |i`|1 = N + `. �

In the following lemma, we estimate the cardinality of Ai`,I` and MI` with the number of
iterations `.

Lemma 2.13. There holds

#Ai`,I` ≤
(

1 +
`

N

)N
as well as

#MI` ≤ N

(
1 + (`− 1)

(
1 +

`− 1

N

)N)
.

Proof. To prove the bound on #Ai`,I` , first observe that Ai = Ri \ I, where Ri is the axis-aligned

rectangle in NN as defined in (21). Thus, #Ai`,I` ≤ #Ri`,I` = Λi` and due to the previous lemma
we obtained the desired bound.

As for the second estimate, first observe that #MI` ≤ N#I`. Then, an estimate on #I` comes

from the partition I` = {1} ∪
⋃`−1
m=1Aim and the estimate on #Ai` . �
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2.1.5. Remarks on the algorithm driven by workless profit. In this section, we point out some
elementary facts on the behavior of the algorithm when the workless profit defined in (11) is used.
Inspired by [8], we give the following definition:

Definition 2.14. Given a downward closed multi-index set I ⊂ NN , i ∈MI is maximal in MI if
and only if

∀j ∈MI \ {i} , ∃n ∈ 1, . . . , N : in > jn.

The set of maximal points in MI is denoted by µI .

Example 2.15. If i ∈ NN and I = Ri is an axis-aligned rectangle as defined in (21), then

µI = {i+ en, n ∈ 1, . . . , N} .

Lemma 2.16. For the workless profit (11), the selected point i` is maximal in MI`

i` ∈ µI` .(23)

Therefore, I` is an axis-aligned rectangle in NN , i.e.

I` = Ri`−1
.(24)

Proof. We prove (23) by contradiction. If i` is not maximal, there exists j ∈ MI` \ {i`} such that
for all n ∈ 1, . . . , N 〈i`, en〉 ≤ jn, which implies i` ∈ Rj . Thus, i` ∈ Aj,I` = Rj \ I` and by
definition of the workless profit, we have the contradiction Pi`,I` < Pj,I` .

The second fact (24) can be proved by induction. For ` = 1, I1 = R1 = {1}. Take as inductive
hypothesis that, fixed ` ∈ N, I` = Ri`−1

. Because of (23), the inductive hypothesis and example
2.15, we know that:

i` ∈ µI` = µRi`−1
= {i`−1 + en, n ∈ 1, . . . , N} .

Thus I`+1 = I` ∪Ai`,I` = Ri` .
�

To summarize, the use of the workless profit (11) implies that, for all ` > 0,

• it exists a unique number n(`) ∈ 1, . . . , N such that

(25) i`+1 = i` + en(`).

• as a consequence, the norm of i` is given by:

(26) |i`+1|1 = |i`|1 + 1 = N + `.

• I` is a rectangle:

(27) I`+1 = Ri` .
Therefore, the sparse grid stochastic collocation interpolant is actually a full tensor product
Lagrange interpolant:

SI`+1
=

N⊗
n=1

Um(〈i`,en〉)
n .

• the multi-indices added at iteration ` are

(28) Ai`,I` = I`+1 \ I` =
{
j ∈ Ri` : jn(`) = 〈i`, en(`)〉

}
.

In other words, the evolution of the approximation space is determined by the sequence of integers
(n(`))`. This allows us to simplify the notation as follows

An,I` := Ai`−1+en,I`

Pn,I` :=
∑

j∈An,I`

ζj,I`

12



1 2 3

1

2

3

4

i`−1 i`

A1,I`

Figure 2. Example of approximation parameters at a generic step ` of the algorithm when
the workless profit (11) is used. Filled dots represent I`, hollow onesMI` . The multi-index
selected by the algorithm at current step, i`, is in red (so in this case n(`) = 1). The blue
rectangle encircles multi-indices in An(`),I` .

Let us moreover denote the maximal n-th dimension of I` as

(29) rn,` := max
j∈I`

jn.

See Figure 2 for a graphical representation.
The estimate for the pointwise error estimator from Proposition 2.10 can be improved as follows.

First observe that, due to (25) and (27),

Ji,I` := {j ∈ I` : ∃n ∈ 1, . . . , Nj = i− en} =
{
i− en(`)

}
.

Thus, #Ji,I` = 1 and we can reduce the first factor:

(30) ζi,I` . Λ2
ie
−σ|m(i−1)|.

2.2. Convergence of the parametric estimator. In the following two lemmata, we prove that
Algorithm 4 driven by workless profit and profit with work respectively forces the maximum profit
over the margin to zero.

Proposition 2.17. If the workless profit (11) is used, then

lim
`→∞

Pn(`),I` = 0.

Proof. Fixed n ∈ 1, . . . , N , we estimate each pointwise error estimator appearing in Pn,I` by (30)
and the fact that for any i in An,I` , in = rn,` + 1.

Pn,I` =
∑

j∈An,I`

ζj,I` .
∑

i∈An,I`

Λ2
ie
−σ|m(i−1)|1

=
∑

i∈An,I`

N∏
k=1

(
i2ke
−σ|m(ik−1)|

)

≤ (rn,` + 1)2 e−
σ
2
m(rn,`)

∑
i∈An,I`

i2ne−σ2m(in+1)
N∏

k=1,k 6=n

(
i2ke
−σm(ik−1)

)
≤ (rn,` + 1)2 e−

σ
2
m(rn,`)

∑
i∈An,I`

Λ2
ie
−σ

2
|m(i−1)|1 .

13



The last factor is uniformly bounded with respect to ` (but this bound depends on the number of
dimensions N) ∑

i∈An,I`

Λ2
ie
−σ

2
|m(i−1)|1 ≤

∑
i∈NN

Λ2
ie
−σ

2
|m(i−1)|1 <∞.

We are left with:

Pn,I` . (rn,` + 1)2 e−
σ
2
m(rn,`).

The proof is completed by observing that lim`→∞ rn(`),l =∞. �

For the profit with work, we can even show convergence to of the profit without using the
analyticity assumption on u. This is not relevant for the problem at hand, as the analyticity follows
immediately, but may be relevant for more complicated and less regular random coefficients.

Proposition 2.18. There holds lim`→∞ Pi`,I` = 0.

Proof. As in the proof of Proposition 2.10, but without using any analyticity of u, we obtain
with (16) that

ζi,I . Λ2
iN‖∇u‖L∞(Γ,L2(D)).

We observe that the doubling rule (8) implies

(31) 2|i|1−2N ≤Wi ≤ 2|i|1−N .

Thus, the profit can be estimated as:

Pi`,I` .

∑
j∈Ai`,I`

ζi,I`∑
j∈Ai`,I`

Wj
.

#Ai`,I`Λ
2
i`
N

Wi`

≤ N(1 + `/N)NΛ2
i`

22N−|i`|1 .

Since 2|i`|1 grows much faster than Λ2
i`

=
∏N
n=1 i

2
`,n, we conclude the proof. �

The following result shows that, if a multi-index i ∈ NN stays in the margin indefinitely, then
it’s pointwise estimator vanishes. This result is valid for both workless profit and profit with work.

Proposition 2.19. Let î ∈ NN and suppose the index remains in the margin indefinitely, i.e.,

∃`0 ∈ N : ∀` ≥ `0, î ∈MI` .

Then, the pointwise error estimator corresponding to î vanishes

lim
`→∞

ζ
î,I`

= 0.

Proof. Let î ∈ NN such that î ∈MI` for all ` > `0. Thus, î 6= i` for any ` > `0, which means that

P
î,I`
≤ Pi`,I` ∀` > `0.

In case the profit with work (12) is used, since lim`→∞ Pi`,I` = 0 as proved in Proposition 2.18,

we have that lim`→∞ Pî,I` = 0 (otherwise î would be selected at some point). Moreover, since∑
j∈A

î,I`

Wj (i.e. the denominator in the profit P
î,I`

) is eventually constant with respect to `, we

have that lim`→∞
∑
j∈A

î,I`

ζ
î,I`

= 0, and in particular we obtain the statement. The same holds if

the profit without work (11) is employed, as in Proposition 2.17 we have proved that also in this
case lim`→∞ Pi`,I` = 0. �
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Remark 2.20. Recall the simplified formula (22) for ζ
î,I`

with J
î,I`

:=
{
î− en : n ∈ 1, . . . , N

}
.

Observe that
(
J
î,I`

)
`

is eventually constant, i.e. it exists `2 > `0 such that for all ` > `2 Jî,I`
=

J
î,I`2

. Thus,
(
ζ
î,I`

)
`

is also eventually constant. Therefore,
(
ζ
î,I`

)
`

does not only vanish in the

limit, but is actually eventually zero:

∀` > `2, ζî,I`
= 0.

We can finally prove the convergence of the parameter-enrichment algorithm with a technique
inspired by [5, Proposition 10].

Theorem 2.21 (Convergence of the parameter-enrichment algorithm). The adaptive stochastic
collocation Algorithm 4 driven by either workless profit or profit with work, leads to a vanishing
sequence of a-posteriori error estimators, thus also leading to a convergent sequence of discrete
solutions:

lim
`→∞

ζSC,Il = 0 = lim
`→∞

‖u− SI` [u]‖L∞(Γ,V )

Proof. The a-posteriori error estimator at step ` ∈ N can be written as

ζSC,I` =
∑
i∈NN

ζi,I`1MI`
(i),

where 1MI`
is the indicator function of the marginMI` . In order to prove that the sequence vanishes

by dominated convergence, it is sufficient to prove that (i) for any i ∈ NN , lim`→∞ ζi,I`1MI`
= 0

and (ii) that the sequence (ζSC,I`)` is bounded. The uniform boundedness (ii) was proved in
Remark 2.11. As for (i), observe that at least one of the following cases applies:

• i is eventually added to I`, thus 1MI`
(i) is eventually zero;

• i is never added to the margin (for all ` ∈ N, i ∈ NN \MI`), thus ζi,I` is constantly zero;
• it exists ¯̀ ∈ N such that for any ` ≥ ¯̀, i ∈ MI` . In this case, due to Proposition 2.19,

lim`→∞ ζi,I` = 0.

This concludes the proof. �

2.3. Convergence of the parametric error. We have the following monotonicity property of
the approximation error of SI [·] with respect to I:

Lemma 2.22. Let u ∈ C0(Γ, V ) and I, J ⊂ NN downward-closed multi-index sets such that J ⊂ I.
Then

‖u− SI [u]‖L∞(Γ,V ) ≤
(

1 + ‖SI‖L(L∞(Γ,V ))

)
‖u− SJ [u]‖L∞(Γ,V ).

Proof. With the identity operator 1 on C0(Γ, V ), observe that

u− SI [u] = (1− SI)u = (1− SI) (1− SJ)u

since J ⊂ I implies SI [SJ [u]] = SJ [u]. The triangle inequality concludes the proof. �

In the present section we provide error estimates for SI` with respect to the number of iterations
`. We consider both the possible definitions of profit (11) and (12).

Since we will use Lemma 2.22, we begin by using the facts derived in Section 2.1.5 to estimate
‖SI‖L(L∞(Γ,V )).

Remark 2.23. The quantity ‖SI`‖L(L∞(Γ,V )) from Lemma 2.22 satisfies
15



• Workless profit: I` = Ri`−1
, i.e. SI` is actually a tensor-product Lagrange interpolant (see

Section 2.1.5). Therefore, we can estimate

(32) ‖SI`‖L(L∞(Γ,V )) =

∥∥∥∥∥
N⊗
n=1

Um(〈i`−1,en〉)
n

∥∥∥∥∥
L(L∞(Γ,V ))

≤
N∏
n=1

〈i`−1, en〉 ≤
(

1 +
`− 1

N

)N
.

where in the first inequality we used the stability bound for the Lagrange interpolant (15)
and in the second Lemma 2.12:
• Profit with work: Partitioning I` with the sequence (Aim,Im)`−1

m=1 and using Lemma 2.12 and
2.13

‖SI`‖L(L∞(Γ,V )) ≤
∑
i∈I`

∥∥∥∆m(i)
∥∥∥
L(L∞(Γ,V ))

≤
`−1∑
m=1

#Aim,ImΛim

≤ (`− 1)

(
1 +

`− 1

N

)2N
(33)

We finally prove the parametric error estimates, first with workless profit, then with profit with
work.

Theorem 2.24. Consider Algorithm 4 with workless profit defined in (11). Denote by I` the
downward-closed multi-index sets chosen by the algorithm at step ` > 0 and by SI` [u] the cor-
responding sparse grid stochastic collocation approximation of the analytic function u : Γ → V .
Then,

(34) ‖u− SI` [u]‖L∞(Γ,V ) .

(
1 +

(
1 +

`− 1

N

)N)
N`2e−

σ
2
m(1+ `

N
) ∀` > 0

Proof. Fix ` > 0. Recall the definition of rn,` from (29) and consider the direction n̄ ∈ {1, . . . , N}
which maximizes rn,`. With n(`) from (25), define

`′ := max
{
`′ ∈ 1, . . . , ` : n(`′) = n̄

}
and observe that with each iteration, at least one side of the axis aligned rectangle I` is increased
by one, i.e.,

(35) rn(`′),`′ = rn̄,l ≥ 1 +
`

N
.

Applying estimate (32) form the previous remark, we can bound

‖u− SI` [u]‖L∞(Γ,V ) ≤

(
1 +

(
1 +

`− 1

N

)N)∥∥u− SI`′ [u]
∥∥
L∞(Γ,V )

.

Now, apply the reliability of the error estimator proved in [22, Proposition 4.3] to obtain∥∥u− SI`′ [u]
∥∥
L∞(Γ,V )

.
∑

i∈MI`′

ζi,I`′ .

Recalling the definition of An,I`′ and Pn,I`′ for n ∈ 1, . . . , N given in Section 2.1.5, we have

∑
i∈MI`′

ζi,I`′ =

N∑
n=1

∑
i∈An,I`′

ζi,I`′ =

N∑
n=1

Pn,I`′ ≤ NPn(`′),I`′
.
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The profit Pn(`′),I`′
can now be bounded as a function of rn(`′),`′ as we did in Proposition 2.17

Pn(`′),I`′
=

∑
j∈An(`′),I`′

ζj,I`′ ≤
∑

j∈An(`′),I`′

(
N∏
n=1

jk

)2

e−
σ
2
|m(j−1)| . r2

n(`′),`′e
−σ

2
m(rn(`′),`′ ),

where in the first inequality we have applied the estimate (30) on ζj,I`′ and in the second we have

exploited the fact that, for j ∈ An(`′),I`′
, jn(`′) = rn(`′),`′ + 1. Recalling that 1 + `

N ≤ rn(`′),`′ ≤ `,
we obtain

Pn(`′),I`′
. `2e−

σ
2
m(1+ `

N
).

�

Let us now prove the analogous result for the algorithm driven by profit with work.

Theorem 2.25. Consider Algorithm 4 with profit with work defined in (12). Denote by I` the
downward-closed multi-index sets chosen by the algorithm at step ` > 0 and by SI` [u] the cor-
responding sparse grid stochastic collocation approximation of the analytic function u : Γ → V .
Then,

(36) ‖u− SI` [u]‖L∞(Γ,V ) . `
5

(
`

N

)4N

2`(1− 1
N )e

−σ
2
m

(
`

1
N

)
∀` > 0.

Proof. For brevity, we write ζi, Ai and Pi instead of ζi,I , Ai,I and Pi,I respectively. Fix ` > 0 and
consider r̄ := maxi∈I` |i|`∞ and n̄ ∈ 1, . . . , N such that, for some i ∈ I`, in̄ = r̄. Observe that that
#I` & ` and hence

r̄ ≥ `
1
N .

Consider now

(37) `′ := max
{
`′ ∈ 1, . . . , ` : 〈i`′ , en̄〉 = r̄ and i`′ − en̄ ∈ I`′

}
.

Applying estimate (33) from Remark 2.23, we can bound

(38) ‖u− SI` [u]‖L∞(Γ,V ) ≤

(
1 + (`− 1)

(
1 +

`− 1

N

)2N
)∥∥u− SI`′ [u]

∥∥
L∞(Γ,V )

.

In [22, Proposition 4.3], the reliability of the error estimator is proved∥∥u− SI`′ [u]
∥∥
L∞(Γ,V )

.
∑

i∈MI`′

ζi.

Recalling the definition of µI`′ , the set of maximal element in MI`′ (Definition 2.14), the margin
can be represented (but in general not partitioned) as

MI`′ =
⋃

j∈µI`′

Aj .

Thus, we can estimate∑
i∈MI`′

ζi ≤
∑
j∈µI`′

∑
i∈Aj

ζi =
∑
j∈µI`′

∑
i∈Aj

ζi∑
i∈Aj

Wi

∑
i∈Aj

Wi =
∑
j∈µI`′

Pj
∑
i∈Aj

Wi

≤Pi`′
∑
j∈µI`′

∑
i∈Aj

Wi =

 ∑
i∈Ai`′

ζi

 1∑
i∈Ai`′

Wi

 ∑
j∈µI`′

∑
i∈Aj

Wi

 ,
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where in the second inequality we have used the fact that Pi`′ ≥ Pj for any j ∈MI`′ . Let us now
estimate each of the three factors separately.

•
∑
i∈Ai`′

ζi: As in the proof of Theorem 2.24 (using the estimate from Proposition 2.10

instead of the one in (30)) we obtain with `
1
N ≤ r̄ ≤ ` that

(39)
∑
i∈Ai`′

ζi . N`
2e
−σ

2
m

(
`

1
N

)
.

•
∑
i∈Ai`′

Wi: There holds

(40)
∑
i∈Ai`′

Wi ≥Wi`′ ≥ m(〈i`′ , en̄〉)−m(〈i`′ , en̄〉 − 1) ≥ 2r̄−2 ≥ 2
`
N
−2

•
∑
j∈µI`′

∑
i∈Aj

Wi: We observe∑
j∈µI`′

∑
i∈Aj

Wi =
∑

i∈MI`′

#
{
j ∈ µI`′ : i ∈ Aj

}
Wi.

Thus, being #
{
j ∈ µI`′ : i ∈ Aj

}
≤ #MI`′ , we can estimate

(41)
∑
j∈µI`′

∑
i∈Aj

Wi ≤ #MI`′

∑
i∈MI`′

Wi ≤
(
#MI`′

)2
max
i∈MI`′

Wi.

An estimate for #MI`′ is given in Lemma 2.13. For the second factor, use the bound on
Wi from (31) and the fact that for any i ∈MI` , |i|1 ≤ N + ` to obtain:

(42)
∑
j∈µI`′

∑
i∈Aj

Wi ≤

(
N +N(`− 1)

(
1 +

`− 1

N

)N)2

2`.

Finally, the statement of the theorem is obtained combining (39), (40) and (42). �

3. Convergence of the fully discrete algorithm

In order to prove the convergence of Algorithm 1, it is sufficient to prove that (i) in Algorithm 2
(the finite element refinement sub-routine) the finite element error eventually falls below the toler-
ance prescribed in Line 3 and iteratively updated in Line 13 (proved in Section 3.1) and that (ii)
the parametric estimator ζSC,I` in Algorithm 1 vanishes (proved in Section 3.2). Indeed, if this is
the case, ηFE,I` will vanish with ζSC,I` because of the definition of the finite element refinement
tolerance and the reliability of the estimator will ensure the convergence of the discrete solution to
the analytic one.

In the present section, we will write ζSC,I(·), ζi,I(·) to denote the dependence on the function
explicitly. The same will be done for the finite element estimator ηFE,I(·). For instance, the
parametric estimator as it was defined in Section 1.3 can be written as ζSC,I(U), if we denote by
U the current discrete finite element solution. In the previous section, in which we assumed to be
able to sample the analytic solution, we were dealing with ζSC,I(u).

The following lemma will be used in the next sections.

Lemma 3.1. Given a downward-closed multi-index set I ⊂ NN , there holds

|ζSC,I(u)− ζSC,I(U)| .

 ∑
i∈MI

Λi

2

ηFE,I(U).
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Proof. The stability bound (16) for the hierarchical surplus operator implies

|ζSC,I(u)− ζSC,I(U)| ≤
∑
i∈MI

|ζi,I(u)− ζi,I(U)|

≤
∑
i∈MI

∥∥∥∆m(i) (a∇SI [u− U ])
∥∥∥
L∞(Γ,L2(D))

.

 ∑
i∈MI

Λi

 ‖∇SI [u− uh]‖L∞(Γ,L2(D)).

Now we only need to bound the last factor with the finite element estimator:

‖∇SI [u− uh]‖L∞(Γ,L2(D)) ≤
∑
y∈HI

‖(u(y)− Uy)Ly‖L∞(Γ,V )

≤
∑
y∈HI

‖∇ (u(y)− Uy)‖L2(D)‖Ly‖L∞(Γ).

The reliability of the residual-based error estimator in each collocation node y together with the
fact that ‖Ly‖L∞(Γ) is bounded by the Lebesgue constant maxi∈I Λi, conclude the proof. �

3.1. Convergence under h-refinement. The stochastic collocation finite element algorithm (Al-
gorithm 1) delegates to Algorithm 2 the task of refining the finite element solutions corresponding
to the collocation points until the finite element a-posteriori estimator falls below a given tolerance.
Recall that Algorithm 2 is given a multi-index set I, or equivalently a sparse grid HI consisting
of Nc collocation points that will not change during its execution. In the present section, we will
index finite element solution and finite element estimators corresponding to collocation points with
integers k ∈ 1, . . . , Nc. Moreover, the index ` ∈ N will denote the current iteration of the adaptive
loop starting at Line 4 of Algorithm 2 (so U`,k and η`,k will denote respectively the finite element
solution and finite element estimator on the k-th collocation point at iteration `).
We recall that Dörfler marking with parameter θy ∈ (0, 1) is used to choose on which collocation
points to refine: the set of marked points K ⊂ {1, . . . , NC} is a minimal set such that

(43) θy

Nc∑
k=1

η2
`,k‖Lk‖L∞(Γ) ≤

∑
k∈K

η2
`,k‖Lk‖L∞(Γ).

From the theory of the classical h-adaptive finite element algorithm, we have the following
contraction property (see [7]): If at iteration ` h-refinement is carried out at the k-th collocation
point, then

(44) ‖u(yk)− U`+1,k‖2V + κkη
2
`+1,k ≤ qk

(
‖u(yk)− U`,k‖2V + κkη

2
`,k

)
,

where qk ∈ (0, 1), κk > 0 are constants independent of ` but depending on the shape-regularity of
the mesh and on the mesh-refinement Dörfler parameter θx ∈ (0, 1). Since we use newest-vertex-
bisection for mesh refinement, the shape regularity (and thus qk, κk) depends only on Tinit.

An analogous contraction property can be proved about the total finite element estimator
(ηFE,I(U`))` generated by Algorithm 2 over the fixed sparse grid HI . The proof of the follow-
ing result is very much inspired by [5].

Proposition 3.2. Denote by e`,k := ‖u(yk)− U`,k‖V for all k ∈ 1, . . . , Nc and let ` > 0. Algorithm
2 satisfies the following error reduction estimate at any iteration `:

(45)

Nc∑
k=1

(
e2
`+1,k + κkη

2
`+1,k

)
‖Lk‖L∞(Γ) ≤ q

(
Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ)

)
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where q ∈ (0, 1) and {κk}Nck=1 are as in (44). In particular, we have:

lim
`→∞

‖SI [u]− SI [U`]‖L∞(Γ,V ) = 0 = lim
`→∞

ηFE,I(U`).

Proof. We denote the marked collocation points at iteration ` by K ⊂ 1, . . . , Nc and obtain

Nc∑
k=1

(
e2
`+1,k + κkη

2
`+1,k

)
‖Lk‖L∞(Γ)

=
∑
k∈K

(
e2
`+1,k + κkη

2
`+1,k

)
‖Lk‖L∞(Γ) +

∑
k/∈K

(
e2
`+1,k + κkη

2
`+1,k

)
‖Lk‖L∞(Γ)

≤
∑
k∈K

qk
(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ) +

∑
k/∈K

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ)

=
∑
k∈K

(qk − 1)
(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ) +

Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ)

≤ max
k=1,...,Nc

(qk − 1)
∑
k∈K

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ) +

Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ)

≤ max
k=1,...,Nc

(qk − 1) min
k=1,...,Nc

κk
∑
k∈K

η2
`,k‖Lk‖L∞(Γ) +

Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ),

where in the second inequality we used the contraction property (44) and in the last one the fact
that maxk∈1,...,Nc(qk − 1) < 0. Observe that

θy

Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ) ≤θy

Nc∑
k=1

(1 + κk) η
2
`,k‖Lk‖L∞(Γ)

≤θy max
k∈1,...,Nc

(1 + κk)

Nc∑
k=1

η2
`,k‖Lk‖L∞(Γ)

≤ max
k∈1,...,Nc

(1 + κk)
∑
k∈K

η2
`,k‖Lk‖L∞(Γ),

where in the first inequality we used the reliability e`,k ≤ η`,k and in the last one the Dörfler marking
property (43). We can finally conclude the previous estimate:

Nc∑
k=1

(
e2
`+1,k + κkη

2
`+1,k

)
‖Lk‖L∞(Γ)

≤
(

max
k

(qk − 1)
mink κk

maxk∈1,...,Nc (1 + κk)
θy + 1

) Nc∑
k=1

(
e2
`,k + κkη

2
`,k

)
‖Lk‖L∞(Γ).

Finally, we observe that q := maxk(qk − 1) mink κk
maxk (1+κk)θy + 1 ∈ (0, 1) and conclude the proof. �

Remark 3.3. In view of the previous proposition, we can finally claim that Algorithm 2 terminates.
In particular, the algorithm will eventually satisfy the condition ηFE,I(U`) < Tol, where Tol :=

α 1
(
∑

i∈MI
Λi)2

ζSC,I(U`). Indeed, due to Lemma 3.1 we have that, as (ηFE,I`(U`))` vanishes, ζSC,I(U`)

converges to ζSC,I(u) > 0, therefore lim`→∞Tol = α 1
(
∑

i∈MI
Λi)2

ζSC,I(u) > 0.

20



3.2. Proof of convergence of the fully discrete algorithm. The tolerance for finite element
refinement was defined in Algorithm 2 as:

(46) Tol = Tol(I, ζi,I(U), α) := α
1

(
∑
i∈MI

Λi)2
ζSC,I(U).

where α ∈ (0, 1), Λi was defined in (17) and ζSC,I(U) is the parametric a-posteriori error estimator.

This choice is motivated by the following estimate: For fixed downward closed I ⊂ NN , Lemma 3.1
shows

ζSC,I(U) ≤ ζSC,I(u) +

 ∑
i∈MI

Λi

2

ηFE,I(U) ≤ ζSC,I(u) + αζSC,I(U),

and hence

(47) ζSC,I(U) ≤ 1

1− α
ζSC,I(u).

In the context of the adaptive algorithm, this implies that (ζSC,I`(U`))` is uniformly bounded since
(ζSC,I`(u))` is. This last fact was proved in Remark 2.11 using the estimate on the pointwise error
estimator from Proposition 2.10.

Lemma 3.4. Algorithm 1 with either workless profit or profit with work and (46) as tolerance
satisfies lim`→∞ Pi`,I` = 0.

Proof. We consider the two definitions of profit separately:

Profit with work: Pi,I :=

∑
j∈Ai,I

ζj,I(U)∑
j∈Ai,I

Wj
.

The uniform boundedness of the parametric a-posteriori error estimator, together with the fact
that works over Ai`,I` diverge, gives

Pi`,I` ≤
ζSC,I`(U`)∑
j∈Ai`,I`

Wj
.

1∑
j∈Ai`,I`

Wj
→ 0.

Workless profit: Pi,I :=
∑
j∈Ai,I

ζj,I(U). We recall that, for the profit-maximizer i` ∈ MI` ,

Pi`,I` ≥
1
N ζSC,I`(U). Thus, Lemma 3.1 shows

Pi`,I` ≤
∑

j∈Ai`,I`

ζj,I`(u) + α
(
∑
j∈Ai`,I`

Λj)
2

(
∑
j∈MI`

Λj)2
ζSC,I`(U`)

≤
∑

j∈Ai`,I`

ζj,I`(u) + α
(
∑
j∈Ai`,I`

Λj)
2

(
∑
j∈MI`

Λj)2
NPi`,I`

≤
∑

j∈Ai`,I`

ζj,I`(u) + αNPi`,I` ,

so

Pi`,I ≤
1

1− αN
∑

j∈Ai`,I`

ζj,I`(u)→ 0 as l→∞.

Observe that this introduces the constraint on α with respect to the number of dimensions: α <
N−1. This constraint can be improved by replacing the crude estimate∑

j∈Ai`,I`
Λj∑

j∈MI`
Λj
≤ 1,
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with the better bound

α ≤

maxn∈1,...,N

(∑
j∈Ai`−1+en,I`

Λj

)2

(
∑
j∈MI`

Λj)2
N


−1

.

This concludes the proof. �

We can finally prove that the error estimator vanishes with a technique similar to that used in
Theorem 2.21 for the parametric algorithm.

Theorem 3.5. The sequence of parametric a-posteriori error estimators (ζSC,I`(U`))` generated by
Algorithm 1 with finite elements refinement tolerance defined in (46) vanishes:

lim
`→∞

ζSC,I`(U`) = 0.

Thus, also the finite element error estimator vanishes

lim
`→∞

ηFE,I`(U`) = 0,

and because of the reliability of the a-posteriori error estimator we obtain a convergent sequence of
approximations:

lim
`→∞

‖u− SI` [U`]‖L∞(Γ,V ) = 0

Proof. The a-posteriori error estimator can be expressed as

ζSC,I`(U`) =
∑
i∈NN

ζi,I`(U`)1MI`
(i).

Since the sequence (ζSC,I`(U`))` is uniformly bounded, it is sufficient to prove that
(
ζi,I`(U`)1MI`

)
`

vanishes for any fixed i ∈ NN . We can distinguish three cases:

• if i is eventually added to I`, then 1MI`
(i) is eventually zero;

• if i is never added to the margin MI` , then ζi,I`(U`) is constantly zero;
• finally, if it exists ¯̀∈ N such that for all ` > ¯̀, i ∈MI` , then lim`→∞ ζi,I`(U`) = 0. Indeed,

because of Lemma 3.4, lim`→∞ Pi,I` = 0 (for both workless profit and profit with work),
thus (ζi,I`(U`))` vanishes as in Proposition 2.19.

This concludes the proof. �

4. Numerical results

4.1. Implementation. The Matlab implementation of Algorithm 1 used to produce the numerical
results presented in this section is based on the Sparse Grids Matlab Kit [3] and on the implemen-
tation of the h-adaptive P1 finite element algorithm from [20]. The parts of the algorithm that
deal with parameter enrichment (e.g. Algorithm 3) were implemented following the guidelines from
[22].

In order to compute the L∞(Γ) norm approximately, we consider a finite set Θ ⊂ Γ and ap-
proximate, for any g ∈ C0(Γ), ‖g‖L∞(Γ)

∼= maxy∈Θ |g(y)|. The computation of the L2(D) norm is

carried out with Monte Carlo integration: Given f ∈ L2(D), we fix a set Π ⊂ D with #Π = P and

approximate ‖f‖2L2(D)
∼= 1

P

∑
x∈Π f(x)2.

In order to decrease the memory requirements of the program, the finite element refinement
tolerance from Algorithm 2 is modified as follows:

Tol := αζSC,I ,(48)
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Figure 3. Geometry of the inclusion problem. The four squares in the corners denote the
regions appearing in the definition of the diffusion coefficient (49). The central region F is
related to the forcing term f .

i.e. we neglect the term depending on the margin of I. Further investigations will have to be carried
out in order to understand whether or not this choice of tolerance is sufficient to prove convergence.

In order to improve the execution time of the program, we modify Algorithm 2 slightly: Instead
of re-computing the tolerance Tol at each iteration of the loop, we update it only at the end and,
if needed, keep refining the finite element solutions. We alternate these two steps until the finite
element estimator falls below the tolerance.

4.2. 4D inclusion problem. We consider an inclusion problem with N = 4 parameters similar
to that in [22], on a parameter domain Γ = [−1, 1]4 and space domain D = [0, 1]2. Within D, we

identify five disjoint subdomains F and {Cn}4n=1 depicted in Figure 3. The diffusion coefficient
reads

a(x,y) = a0(x) +
4∑

n=1

γnχnyn with a0 ≡ 1.1,(49)

where (γn)4
n=1 = (0.9, 0.6, 0.3, 0.1) are constants used to introduce anisotropy in the problem and

χn is the characteristic function of Cn, for all n ∈ 1, ..., 4. The forcing term reads f(x) := 100χF ,
where χF is the characteristic function of F . We take Yn ∼ U(−0.99, 0.99) for all n ∈ 1, ..., 4.

The following parameters are chosen for Algorithm 1: Tolerance ε = 2 · 10−2, Dörfler parameter
for the collocation points θy = 0.5, Dörfler parameter for mesh elements θx = 0.25, finite element
refinement tolerance parameter α = 0.9 and, as default mesh Tinit, a quasi-uniform mesh with 2048
triangles and 1089 vertices. The algorithm is driven by the profit with work defined in (12).

The evolution of the estimators, plotted in a log-log scale with respect to the number of degrees
of freedom, can be seen in Figure 4. In the first plot, all the computed values of the estimator
are plotted. It can be seen how the algorithm alternates between steps of parameter enrichment
and mesh refinement. The spikes in the value of the finite element estimator correspond to the
parametric enrichment steps, when new collocation points are added to the sparse grid. The finite
element solutions corresponding to new collocation points are computed over the default (coarse)
mesh Tinit, which lead to large contributions to the finite element estimator. Observe that when
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finite element refinement is carried out, the finite element estimator eventually decreases with

order N−
1
2 (where N is the number of degrees of freedom) as a result of the Dörfler marking of the

collocation nodes and the order of convergence of the h-adaptive finite element method. Notice how,
in the intervals of iterations when finite element refinement is performed, the parametric estimator
is updated. While the first update often leads to a considerable change, the following ones have
smaller magnitude.

In the second plot, the values of the parametric, finite element and total estimators are plotted
only once per iteration of the loop on Algorithm 1. It can be seen that, because of the choice of
tolerance (48), the finite element estimator is dominated by the parametric one. Based on the error
decay derived in Section 2.3, we expect the finite-element error to dominate the total error up to

logarithmic terms. We observe convergence with N−
1
2 log4(N), which confirms the theory.
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Figure 4. Convergence of the estimators with respect to the number of degrees of freedom
for the 4D inclusion problem. Above: detailed evolution of the parametric and of the finite
element estimators. Below: value of the estimators plotted once per iteration of Algorithm 1.
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[3] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation methods for
PDEs with random coefficients: a numerical comparison. In J.S. Hesthaven and E.M. Ronquist, editors, Spectral
and High Order Methods for Partial Differential Equations, volume 76 of Lecture Notes in Computational Science

25



and Engineering, pages 43–62. Springer, 2011. Selected papers from the ICOSAHOM ’09 conference, June 22-26,
Trondheim, Norway.

[4] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional polynomial interpolation on sparse grids.
Advances in Computational Mathematics, 12(4):273–288, 2000.

[5] Alex Bespalov, Dirk Praetorius, Leonardo Rocchi, and Michele Ruggeri. Convergence of adaptive stochastic
galerkin fem. SIAM Journal on Numerical Analysis, 57(5):2359–2382, 2019.

[6] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput. Math. Appl., 67(6):1195–
1253, 2014.

[7] J Manuel Cascon, Christian Kreuzer, Ricardo H Nochetto, and Kunibert G Siebert. Quasi-optimal convergence
rate for an adaptive finite element method. SIAM Journal on Numerical Analysis, 46(5):2524–2550, 2008.

[8] Abdellah Chkifa, Albert Cohen, and Christoph Schwab. High-dimensional adaptive sparse polynomial interpo-
lation and applications to parametric pdes. Foundations of Computational Mathematics, 14(4):601–633, 2014.

[9] Albert Cohen and Ronald DeVore. Approximation of high-dimensional parametric PDEs. Acta Numer., 24:1–159,
2015.

[10] Albert Cohen, Ronald DeVore, and Christoph Schwab. Convergence rates of best N -term Galerkin approxima-
tions for a class of elliptic sPDEs. Found. Comput. Math., 10(6):615–646, 2010.

[11] J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens, and C. Schwab. Higher order QMC Petrov-Galerkin discretization
for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal., 52(6):2676–2702,
2014.

[12] Josef Dick, Michael Feischl, and Christoph Schwab. Improved efficiency of a multi-index FEM for computational
uncertainty quantification. SIAM J. Numer. Anal., 57(4):1744–1769, 2019.

[13] Josef Dick, Robert N. Gantner, Quoc T. Le Gia, and Christoph Schwab. Multilevel higher-order quasi-Monte
Carlo Bayesian estimation. Math. Models Methods Appl. Sci., 27(5):953–995, 2017.

[14] Josef Dick, Frances Y. Kuo, Quoc T. Le Gia, Dirk Nuyens, and Christoph Schwab. Higher order QMC Petrov-
Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal.,
52(6):2676–2702, 2014.

[15] Josef Dick, Frances Y. Kuo, Quoc T. Le Gia, and Christoph Schwab. Multilevel higher order QMC Petrov-
Galerkin discretization for affine parametric operator equations. SIAM J. Numer. Anal., 54(4):2541–2568, 2016.

[16] VK Dzjadyk and VV Ivanov. On asymptotics and estimates for the uniform norms of the lagrange interpolation
polynomials corresponding to the chebyshev nodal points. Analysis Mathematica, 9(2):85–97, 1983.

[17] Martin Eigel, Claude Jeffrey Gittelson, Christoph Schwab, and Elmar Zander. A convergent adaptive stochas-
tic Galerkin finite element method with quasi-optimal spatial meshes. ESAIM Math. Model. Numer. Anal.,
49(5):1367–1398, 2015.

[18] I. Elishakoff, editor. Whys and hows in uncertainty modelling, volume 388 of CISM Courses and Lectures.
Springer-Verlag, Vienna, 1999. Probability, fuzziness and anti-optimization.

[19] Michael Feischl, Frances Y. Kuo, and Ian H. Sloan. Fast random field generation with H-matrices. Numer. Math.,
140(3):639–676, 2018.

[20] Stefan Funken, Dirk Praetorius, and Philipp Wissgott. Efficient implementation of adaptive p1-fem in matlab.
Computational Methods in Applied Mathematics, 11(4):460–490, 2011.

[21] I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl, and I.H. Sloan. Quasi-Monte Carlo methods for elliptic PDEs
with random coefficients and applications. Journal of Computational Physics, 230(10):3668 – 3694, 2011.

[22] Diane Guignard and Fabio Nobile. A posteriori error estimation for the stochastic collocation finite element
method. SIAM Journal on Numerical Analysis, 56(5):3121–3143, 2018.

[23] Lukas Herrmann, Kristin Kirchner, and Christoph Schwab. Multilevel approximation of Gaussian random fields:
fast simulation. Math. Models Methods Appl. Sci., 30(1):181–223, 2020.
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