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ON THE BOUSSINESQ EQUATIONS WITH NON-MONOTONE

TEMPERATURE PROFILES

CHRISTIAN ZILLINGER

Abstract. In this article we consider the asymptotic stability of the two-
dimensional Boussinesq equations with partial dissipation near a combination
of Couette flow and temperature profiles T (y). As a first main result we

show that if T ′ is of size at most ν1/3 in a suitable norm, then the linearized
Boussinesq equations with only vertical dissipation of the velocity but not of
the temperature are stable. Thus, mixing enhanced dissipation can suppress
Rayleigh-Bénard instability in this linearized case.

We further show that these results extend to the (forced) nonlinear equa-
tions with vertical dissipation in both temperature and velocity.
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1. Introduction

The Boussinesq equations are a standard approximate model of heat transfer in
(viscous) fluids and are given by a coupled system of the Navier-Stokes equations
and a dissipative transport equation for the temperature density:

∂tv + v · ∇v + ∇p = (νx∂2
x + νy∂2

y)v + θe2,

∂tθ + v · ∇θ = (µx∂2
x + µy∂2

y)θ,

∇ · v = 0.

(1)

Here v ∈ R
2 denotes the velocity, p ∈ R is the pressure, θ ∈ R is the temperature

and we consider the domain T × R ∋ (x, y). The θe2 term models buoyancy which
causes hotter fluid to rise and colder fluid to sink.

2010 Mathematics Subject Classification. 35Q79,35Q35,76D05,35B40.
Key words and phrases. Boussinesq equations, partial dissipation, hydrostatic imbalance, en-

hanced dissipation, shear flow.
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2 CHRISTIAN ZILLINGER

In Sections 2 and 3 of this article we consider the setting with only vertical
dissipation of the velocity,

νx = µx = µy = 0, νy =: ν > 0.

We refer to this setting as vertical dissipation. In Section 4 we assume vertical
dissipation in both velocity and temperature, which we refer to as full vertical
dissipation.

One readily observes that at least formally any pair of functions of the form

v = (βy, 0), θ = T (y),(2)

with β ∈ R and T smooth are automatically stationary solutions of the vertical
dissipation problem (choosing p = p(y) suitably). Here a particular focus in existing
results has been on the case when T is affine and increasing, that is hotter fluid is on
top of colder fluid, which is known as hydrostatic balance. A main aim of this article
is to study more general profiles T (y) and in particular answer how much T may
oscillate if both shear and viscosity are available to counteract thermal instability.

More generally, the problem of partial dissipation has been an area of extensive
research, where we in particular mention the recent works [EW15, Wid18, DWZZ18,
YL18] and [WXZ19]. The question of global wellposedness has been addressed in
series of works by Chae, Nam and Kim [CKN99, Cha06].

In this article, we we will focus on questions of asymptotic stability close to
specific families of solutions and how the interaction of mixing and temperature
stratification may counteract instability.

In [YL18] Yang and Lin studied the stability of the linearized inviscid problem
around the case where T (y) = αy is affine and showed that for some stability
results it is necessary that α > 0 and thus T is increasing. We recall these results
in Section 2 and emphasize that the threshold with respect to α depends on whether
one studies

• the vorticity ω, which is always unstable,
• the horizontal component of the velocity v1, which is stable if α > 0 and

unstable if α < 0, or
• the vertical component of the velocity v2, which is stable if α > −2 and

unstable if α < −2.

Thus, already in this case in a specific sense one may allow α to be negative if it is
sufficiently small.

Recently, Masmoudi, Said-Houari and Zhao [MSHZ20] showed that the associ-
ated nonlinear problem near T (y) = αy, α > 0 without thermal diffusion but with
viscous diffusion is asymptotically stable in Gevrey regularity. These results in
particular show that this partial dissipation problem behaves similarly to the Euler
equations [BM15] instead of the Navier-Stokes equations [BVW18]. If one instead
considers full dissipation, in [Zil20b] we adapted the methods of [BVW18, Lis20] to
establish nonlinear stability in Sobolev regularity.

This article extends the results of [Zil20b] to the case of negative α and par-
tial dissipation. More precisely, we show for the linearized problem with vertical
dissipation that the evolution is asymptotically stable provided

α > − 1

100
3
√

ν.(3)
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Similar results hold for T (y) non-affine. Thus, mixing enhanced dissipation can
suppress Rayleigh-Bénard instability with an enhanced dependence on ν.

For the nonlinear problem we further show that for affine T and full vertical
dissipation the same stability results hold. As shown in [MSHZ20] in the case of
vertical dissipation only in the vorticity a more careful analysis is required to control
resonances, reminiscent of echoes in the Euler equations [DM18, DZ19a].

Our main results concerning the linearized problem are summarized in the fol-
lowing theorem.

Theorem 1.1. Let T : R → R be a given temperature profile. Let N ∈ N and
suppose that T ′(y) ∈ L∞. We then consider linearized Boussinesq equations with
vertical dissipation in the velocity only around v = (y, 0), θ = T (y) in coordinates
(x + ty, y):

∂tω = ν(∂y − t∂x)2ω + ∂xθ,

∂t∂xθ = T ′(y)∂xv2,

(t, x, y) ∈ (0, ∞) × T × R

Then if the Fourier transform of T ′ satisfies the estimate

sup
ξ

∫

|F(T ′)(z − ξ)|(1 + |z|
1 + |ξ| +

1 + |ξ|
1 + |z|)

N (1 + min(ν− 2
3 , |z − ξ| 2

3 ))dz <
1

100
ν1/3,

(4)

the initial value problem is stable in HN × HN in the sense that there exists a
constant C > 0 such that for any initial data (ωin, ∂xθin) ∈ HN × HN the solution
satisfies

‖ω(t)‖HN + ν‖∂xθ‖HN ≤ Cν− 2
3 (‖ωin‖HN + ν‖∂xθin‖HN ).

In particular, if T ′(y) = αy, stability holds if α > − 1
100 ν1/3.

The condition (4) is a sufficient condition to control commutators involving T ′(y)
and is probably not optimal in its dependence on N . In the case where T (y) = αy
is affine, it reduces to the condition |α| < CN ν1/3 and thus allows for α to be
negative. See Theorem 3.2 for further discussion.

For the nonlinear problem with full vertical dissipation we obtain similar results.

Theorem 1.2. Let T : R → R be a given temperature profile and consider the
(forced) nonlinear problem around v = (y, 0), θ = T (y) with vertical dissipation
νy = µy =: ν > 0 in coordinates (x + ty, y):

∂tω + v · ∇tω = ν(∂y − t∂x)2ω + ∂xθ,

∂tθ + v · ∇tθ = ν(∂y − t∂x)2θ + T ′(y)v2ω,

(t, x, y) ∈ (0, ∞) × T × R,

and suppose that T ′ satisfies the assumptions of Theorem 1.1. Then this problem
is stable in Sobolev regularity. More precisely, for any N ∈ N, N ≥ 5 there exists
ǫN = ǫN (ν) such that if initially

‖ω‖2
HN + ν−1‖∂xθ‖2

HN < ǫ2 < ǫ2
N ,

then the solution remains bounded by 10ν−2/3ǫ2 for all times.
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We also obtain time integrability results for v, (∂y −t∂x)ω and (∂y −t∂x)θ, which
are stated in Sections 3 and 4 and omitted here for brevity.

• In the special case when T (y) = αy is affine the assumption reduces to
|α| ≤ 1

100 ν1/3.
• We stress that α here is allowed to be negative. As a related result in Lemma

2.2 we remark that the inviscid results of [YL18] extend to 0 ≥ α > −2
when considering the vertical component of the velocity v2.

• If there is no shear, then partial dissipation is not sufficient to restore
stability of the vorticity for α < 0 (see Lemma 2.1).

• A combination of shear and vertical dissipation suffices to restore stability
of the vorticity. Moreover, in that case we obtain an enhanced threshold in
terms of −ν1/3.

• These results further extend to the case of a non-affine, oscillating tempera-
ture profile T (y). In particular, we do not rely on cancellations or conserved
quantities available in the hydrostatic balance case.

• In addition to the linearized Boussinesq equations, we obtain results for the
nonlinear small data problem, however, only with full vertical dissipation
(considering T (y) non-affine as a solution of the forced problem). As re-
cently shown in [MSHZ20] this stronger assumption is probably necessary
for stability in Sobolev regularity, since otherwise resonance chains may
yield norm inflation.

The remainder of the article is structured as follows:

• In Section 2 we recall some results for the inviscid problem, first obtained
in [YL18], to introduce instability mechanisms and to discuss in which
sense (partial) dissipation is necessary for stability results. With these
motivations we formulate four main questions Q1-Q4, which we address
throughout the article.

• In Section 3.1 we begin by studying the special case when T (y) is affine,
where arguments are more transparent. In particular, we show that here
the slope of the temperature profile can be allowed to be negative (colder
fluid on top of hotter fluid) and that the size of the threshold depends on
ν with an enhanced rate.

• In Section 3.2 we extend these linear results to the case of a general tem-
perature profile T (y) satisfying suitable smallness conditions. In particular,
T is allowed to oscillate.

• Building on the linearized results, in Section 4 we study the nonlinear small
data problem. Due to possible resonance chains, we here instead consider
full vertical dissipation and consider T (y) as a solution of the forced problem.
This extends previous nonlinear results in [Zil20b] for the affine, increasing
case to possibly oscillating profiles.

1.1. Notation. Throughout this article we consider solutions of the Boussinesq
equations with vertical dissipation near the stationary solution

v =

(

y
0

)

, θ = T (y),

(t, x, y) ∈ (0, ∞) × T × R.
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In this setting it is natural to work in coordinates moving with the flow

(x + ty, y)

and consider the equations satisfied by the perturbations in these coordinates.
If there is no possibility of confusion these perturbations are again denoted as ω

and θ and the linearized problem studied in Section 3 is given by

∂tω = ν(∂y − t∂x)2ω + ∂xθ,

∂tθ = T ′(y)v2,

v = ∇⊥
t ∆−1

t ω,

(t, x, y) ∈ (0, ∞) × T × R.

where

∇t =

(

∂x

∂y − t∂x

)

, ∆t = ∂2
x + (∂y − t∂x)2

are the gradient and Laplacian in these coordinates.
In the nonlinear problem considered in Section 4 we additionally assume vertical

dissipation also in the temperature and interpret T (y) as a solution of the forced
problem. The system satisfied by the perturbation in coordinates moving with the
shear is then given by

∂tω = ν(∂y − t∂x)2ω + ∂xθ − v · ∇tω,

∂tθ = T ′(y)v2 − v · ∇tθ,

v = ∇⊥
t ∆−1

t ω,

(t, x, y) ∈ (0, ∞) × T × R.

We denote the Fourier transform of a function u(x, y) ∈ L2(T × R) by ũ(k, ξ) ∈
L2(Z × R) or Fu. Furthermore, we study several Fourier multipliers (see (33)),
including

A(T, ξ, k) = exp(−2

∫ T

0

1

1 + ( ξ
k − t)2

dt),

B(T, k, ξ) = exp(−2

∫ T

0

1
√

1 + ( ξ
k − t)2

1I(t)dt),

with I being a prescribed time interval/Fourier region (see (19)):

I = {t ≥ 0 : | ξ

k
− t| ≤ C},

and C proportional to ν−1/3.
In Section 4 we study energy estimates on a given time interval (0, T ). Since T

is fixed throughout this section, we omit it from our notation and for instance write

‖u‖LpHN := ‖‖u(t, ·)‖HN ‖Lp((0,T )).

We write a . b if there exists a universal constant C > 0 such that |a| ≤ C|b|.
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2. Model Cases of Instability

In order to introduce ideas and mechanisms, in this section we recall results
available in the literature for

• The linearized viscous problem without shear around θ = αy, v = 0 and
• The linearized inviscid problem with shear around θ = αy, v = (y, 0)

Here, for simplicity we consider viscous dissipation in both horizontal and vertical
direction, but no thermal dissipation. As a reference for the isolated mechanisms
the interested reader is referred to the textbook by Frisch and Yaglom [Yag12,
Section 2.8.3]. We emphasize that the results of this section are not new, but serve
to motivate our questions Q1–Q4 stated at the end of this section, which we address
in this article. Furthermore, they show that under weaker assumptions instabilities
may form and that the conditions in Theorem 1.1 are in this sense optimal.

In the case without shear, explicit solutions are available and it is known that
the slope of θ yields a sharp dichotomy between stability and exponential instability.
The following basic lemma is reproduced from [Zil20b, Proposition 2.6].

Lemma 2.1. Consider the Boussinesq equations in vorticity formulation linearized
around

v = (0, 0), θ = αy,

where α ∈ R:

∂tω = ν∆ω + ∂xθ,

∂tθ + αv2 = µ∆θ.
(5)

Here v2 denotes the vertical component of the velocity field. Further suppose that
at least one of ν or µ is zero. The the evolution is stable if α > 0 in the sense that
for every N ∈ N the energy

α‖ω‖2
HN + ‖∇θ‖2

HN(6)

is decreasing. In contrast, if α < 0, there exist solutions which grow exponentially
in time.

As we show in Lemma 2.2 when adding shear the instability for α < 0 is signifi-
cantly reduced and the evolution of v2 is even asymptotically stable if α is not too
large.

Proof. In the interest of accessibility, we reproduce the main steps of the proof from
[Zil20b].

We observe that equation (5) is a constant coefficient PDE and hence we obtain
a decoupled system of ODEs for each Fourier mode with respect to x and y:

∂t

(

ω̃

θ̃

)

=

(−ν(k2 + ξ2) ik
ikα

k2+ξ2 −η(k2 + ξ2)

)(

ω̃

θ̃

)

,(7)

where we use ω̃ to denote the Fourier transform of the vorticity and k ∈ Z, ξ ∈ R

to denote the Fourier variables. In particular, we may study the problem at each
frequency.
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The case α > 0: Let (k, ξ) and α > 0 be given. Then we may reformulate the
problem as

∂t

( √
αω̃

√

k2 + ξ2θ̃

)

=





−ν(k2 + ξ2) ik
√

α√
k2+ξ2

ik
√

α√
k2+ξ2

−η(k2 + ξ2)





( √
αω̃

√

k2 + ξ2θ̃

)

.(8)

Note that the off-diagonal entries are equal and purely imaginary. Therefore, if

we denote the matrix by M it holds that M + M
T

is a real-valued, negative semi-
definite diagonal matrix. Hence it follows that

d

dt

∣

∣

∣

∣

( √
αω̃

√

k2 + ξ2θ̃

)∣

∣

∣

∣

2

=

( √
αω̃

√

k2 + ξ2θ̃

)

· (M + M
T

)

( √
αω̃

√

k2 + ξ2θ̃

)

≤ 0.

Integrating this estimate with respect to ξ and k (possibly with respect to a weight
〈(k, ξ)〉N ) it follows that

α‖ω̃‖2
L2 + ‖

√

k2 + ξ2θ̃‖2
L2

is non-increasing. The claimed result thus follows by Plancherel’s theorem.

The case α < 0: Let (k, ξ) with k 6= 0 and α < 0 be given. Then the eigenvalues
of the matrix

(−ν(k2 + ξ2) ik
ikα

k2+ξ2 −η(k2 + ξ2)

)

are given by

λ1,2 = −ν + µ

2
(k2 + ξ2) ±

√

(
ν + µ

2
(k2 + ξ2))2 − νη(k2 + ξ2)2 − α

k2

k2 + ξ2

= −ν + µ

2
(k2 + ξ2) ±

√

(

ν − µ

2
(k2 + ξ2)

)2

− α
k2

k2 + ξ2
,

where we used the binomial formula (a + b)2 − 4ab = (a − b)2 in the last step.
We recall that by assumption (at least) one of ν, η vanishes. Therefore we define

C = max(ν, η) and observe that

(η + ν)2 = (η − ν)2 =: C2

and that

λ1 = −C(k2 + ξ2) +

√

C2(k2 + ξ2) + (−α)
k2

k2 + ξ2
,

is strictly positive, since (−α) k2

k2+ξ2 is positive. This matrix thus has a positive

eigenvalue and there exist solutions of (8) which grow exponentially in time. Given
these exponentially growing solutions on single Fourier modes, we next construct
exponentially growing solutions in HN . We may pick a compact set in Fourier space,
e.g. a ball, and construct initial data (ω0, θ0) ∈ HN × HN+1 by prescribing the
Fourier transform of the initial data to match these solutions (and vanish outside
the ball). The corresponding solution then also exhibits exponential growth in
time. �
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We remark that in the inviscid case, ν = µ = 0, these eigenvalues further simplify
to

±
√

−α
k2

k2 + ξ2
,

which are either purely imaginary if α > 0 or positive and negative if α < 0.
Thus, if α > 0 (hotter fluid is above) the evolution is not exponentially unstable.
One speaks of hydrostatic equilibrium. The stability of this solution in the inviscid
setting has recently been studied in [EW15, Wid18].

In contrast if α < 0 (that is, the fluid is hotter below) then one eigenvalue is
positive and the solution is exponentially unstable. This phenomenon is known
as Rayleigh-Bénard instability. One main question in the following will then be
whether a shear flow can suppress this instability.

Having discussed the effects of dissipation without shear. We next consider the
effects of an affine shear in the inviscid problem, where again explicit solutions are
available. The following results have been previously obtained in [YL18, Zil20b,
MSHZ20] for α > 0. By minor modifications of the proof the results further extend
to negative α and higher Sobolev norms.

Lemma 2.2. Consider the linearized inviscid Boussinesq equations in vorticity
formulation around

v = (y, 0), θ = αy

and coordinates (x + ty, y) moving with the the shear. Furthermore, define c =
1
2 ℜ(

√
1 − 4α) ∈ [0, ∞). Then the velocity and temperature satisfy the following

estimates

‖θ‖HN . t−1/2+c(‖ω0‖HN+1 + ‖θ0‖HN+2),

‖v1 − 〈v1〉‖HN . t−1/2+c(‖ω0‖HN+1 + ‖θ0‖HN+2),

‖v2‖HN . t−3/2+c(‖ω0‖HN+2 + ‖θ0‖HN+3),

and are thus stable if c < 1
2 (α > 0) and c < 3

2 (α > −2), respectively. They are

unstable if c > 1
2 (α < 0) or c > 3

2 (α < −2).
The evolution of the vorticity in contrast is unstable for all α in the sense that

there exists non-trivial initial data such that

‖ω(t)‖HN ≥ Ct1/2+c(‖ω0‖HN + ‖∂xθ0‖HN )

as t → ∞.

We emphasize that for v2 we may allow 0 > α > −2 to be negative and that the
evolution of the vorticity ω is unstable for any α.

We remark that this combination of stability and instability is consistent with
the Orr mechanism. More precisely, by an integration by parts argument it holds
that

‖v1 −
∫

v1dx‖L2 ≤ Ct−1‖ω(t)‖H1 .

Hence, if the velocity is asymptotically stable with a sharp decay rates of for instance
t−1/2, this implies that the vorticity is algebraically unstable in H1 with a growth
rate at least t−1/2+1 = t1/2.
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Proof. As in the proof of Lemma 2.1 we consider the Fourier formulation, now in
coordinates (k, ξ + kt) moving with the shear:

∂t

(

ω̃

θ̃

)

=

(

0 ik
ikα

k2+(ξ−kt)2 0

)(

ω̃

θ̃

)

.

Due to the vanishing diagonal structure, we may decouple this problem as

∂2
t ω̃ = − αk2

k2 + (ξ − kt)2
ω̃,

∂tω̃ = ikθ̃.

After relabeling and shifting time by ξ
k , we observe that the first equation corre-

sponds to a Schrödinger equation with potential:

(∂2
t +

α

1 + t2
)u = 0.

As observed in [YL18] this problem can be solved explicitly in terms of hypergeo-
metric functions:

u(t) = c1 2F1(−1

4
− 1

4

√
1 − 4α, −1

4
+

1

4

√
1 − 4α,

1

2
, −t2)

+ c2 t 2F1(
1

4
− 1

4

√
1 − 4α,

1

4
+

1

4

√
1 − 4α,

3

2
, −t2).

(9)

As t → ∞, it holds that 2F1(a, b, c, −t2) ∼ Ct−2a (see [DLMF, 15.8(ii)]). The same
asymptotic behavior is exhibited by the approximate problem

(∂2
t +

α

t2
)f = 0,

which we use to simplify discussion in the following. Making the ansatz f = tβ, we
obtain that

f = c1tβ1 + c2tβ2 ,

β1,2 =
1

2
(1 ±

√
1 − 4α),

(10)

which matches the asymptotic behavior of the hypergeometric functions in (9).
In particular, we observe that for any α, β1 has positive real part which results
in an algebraic instability of f and hence ω̃. When considering the velocity and
temperature, we recall that

ikθ = ∂tω ∼ ∂tf

and that the Biot-Savart law combined with the shear by (y, 0) provides a gain of
t−1 for v1 − 〈v1〉 and by t−2 for v2 by the Orr mechanism. Hence, we deduce that

‖v1 − 〈v1〉‖HN + ‖θ‖HN ∼ tβ1−1,

‖v2‖HN ∼ tβ1−2
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with β1 as in (10). In particular, we observe that

ℜ(β1 − 1) = c +
1

2
< 0 if α > 0,

ℜ(β1 − 1) = c +
1

2
> 0 if α < 0,

ℜ(β1 − 2) = c +
3

2
< 0 if α > −2,

ℜ(β1 − 2) = c +
3

2
> 0 if α < −2,

where we used that
√

1 − 4α = 1 ⇔ α = 0 and
√

1 − 4α = 3 ⇔ α = −2. �

Given these (in)stability results our main questions in this article are the follow-
ing:

Q1 How much dissipation (and in which directions) needs to be added to restore
linear stability?

Q2 Can we allow α to be negative and how does the threshold depend on the
dissipation?

Q3 When considering the problem without thermal dissipation, it is natural
to consider the more general problem around v = (y, 0), θ = T (y). Under
which conditions on T are such solutions linearly stable? For instance, can
we allow T to oscillate?

Q4 Do these results extend to the nonlinear small data regime and if so how
do stability regions depend the dissipation coefficients (that is, what per-
turbations can be considered “small”)?

In this paper we focus on the case without thermal dissipation and v = (y, 0),
θ = T (y). The converse problem without viscous dissipation and v = (U(y), 0),
θ = αy or time-dependent shear and temperature profile could be of future interest.
We address questions Q1 and Q2 in Section 3.1 and Q3 in Section 3.2. The question
Q4 of nonlinear stability is addressed in Section 4.

3. Shear can Counteract Hydrostatic Imbalance

Building on the results of Lemma 2.2 for a combination of Couette flow and an
unstable affine temperature profile, in this section we consider the problem with
partial dissipation.

More precisely, we consider the nonlinear Boussinesq equations with vertical
dissipation of the velocit and without thermal diffusion:

∂tv + v · ∇v + ∇p = ν∂2
yv +

(

0
θ

)

,

∂tθ + v · ∇θ = 0.

As remarked in the introduction, in Section 4 we additionally impose vertical ther-
mal diffusion, but do not require it for the linear stability results of this section.
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We observe that for any β ∈ R and any function T (y), the collection

v =

(

βy
0

)

,

θ = T (y),

p =

∫ y

T (s)ds,

is a stationary solution of these equations. As remarked in Section 2 it is natural
to ask about the stability of such solutions.

In Section 2 we studied some related special cases when T (y) is affine:

• In Lemma 2.1 we studied the problem with trivial shear, that is β = 0. In
this setting the flow turned out to be linearly stable if T is increasing and
linearly exponentially unstable if T is decreasing, even if the slope is very
small.

• In Lemma 2.2 we instead considered the case with shear but with trivial
dissipation and saw that while the exponential instability is reduced to an
algebraic one, the evolution of the vorticity is unstable.

The aim of this article is to understand how these results change when adding partial
dissipation and whether they extend to more general profiles T . In this section we
study the linearized problem first for the case of T affine (answering questions Q1,
Q2) and then for general T in Section 3.2 (answering Q3). The nonlinear problem
with full vertical dissipation is discussed in Section 4, which answers Q4. The
author would like to thank Charlie Doering for raising the question of the stability
of pairs v = (U(y), 0), θ = T (y) in a discussion.

3.1. Affine Temperature. In order to introduce ideas and mechanisms, we first
study the case

T (y) = αy,

where we allow α ∈ R to be negative with a threshold depending on ν. More
precisely, it turns out that for this special linearized problem we may allow α
to be arbitrarily large, but for the nonlinear setting of Section 4 and the non-
affine problem we require a bound by ν1/3. Shear enhanced dissipation suppresses
Rayleigh-Bénard instability in this case, thus answering questions Q1 and Q2 of
Section 2.

We remark that results for α positive have been previously established in [Zil20b].
As the main novelties of this article, we show that even if α is negative (but small)
stability holds and that we may further allow T to be non-affine (see Section 3.2).

Theorem 3.1. Consider the linearized Boussinesq equations around v = (y, 0), θ =
αy in coordinates

(t, x − ty, y)

moving with the shear flow:

∂tω = ν(∂y − t∂x)ω + ∂xθ,

∂tθ = αv2,

on the domain T ×R. Then there exists α∗ = − 1
100

3
√

ν < 0 such that the linearized
evolution is stable at the level of the vorticity for any α with |α| < α∗. More
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precisely, for any N ∈ N there exists a constant 0 < C = C(ν, α) such that for all
times t > 0 it holds that

‖ω(t)‖HN + ‖∂xθ(t)‖HN ≤ C‖ω0‖HN + C‖∂xθ0‖HN ,

where ω0, θ0 denote the initial data.

We stress that here we can allow α to be negative and that for 0 < ν < 1, the
threshold ν1/3 is improved compared to the dissipative scale.

In particular, for this special setting we may even consider α ∈ R arbitrary, but
in view of later results focus on the case of small negative α.

Proof of Theorem 3.1. Similarly to the proof of Lemma 2.1 we may equivalently
express the linearized Boussinesq equations around the affine temperature profile
in Fourier variables as:

∂t

(

ω̃

kθ̃

)

=

(

−ν(k2 + (ξ − kt)2) i
α i

1+( ξ
k −t)2

0

)

(

ω̃

kθ̃

)

,(11)

where we consider coordinates (k, η + kt) moving with Couette flow. Since the
evolution of the x-averages of ω and θ decouples, in the following we without loss
of generality only consider k 6= 0.

We stress that the coefficients here are time-dependent and hence this ODE sys-
tem cannot anymore be explicitly solved in terms of a matrix exponential. However,
a main advantage of the affine setting is that various estimates completely decou-
ple, restrictions become trivial and operators commute, which makes this problem
much simpler than the general profile case of Section 3.2 or the nonlinear problem
of Section 4.

We note that the problem (11) decouples with respect to k and ξ, which we thus
in the following treat as arbitrary but fixed. We then claim that for any C > 1,
ν > 0 and any α ∈ R it holds that

|ω̃(t)|2 + k2|θ̃(t)|2 ≤ (1 +
1

|α| )(1 + C2) exp(
|α|

νC2
)(|ω̃(0)|2 + k2|θ̃(0)|2)(12)

and thus the solution at time t is controlled in terms of the initial data. We observe
some special cases for the exponential:

• If we choose C = 1 we obtain a bound by

exp(
|α|
ν

).(13)

This bound holds for all α, but suggests a threshold |α| < ν.
• If we choose C = ν−1/4 we obtain a bound by

exp(|α|),(14)

where only the algebraic prefactors depends on ν.
• If we choose C = ν−1/3 we obtain a bound by

exp(|α|ν−1/3),(15)

where the exponent becomes uniformly bounded if we assume that |α| <
ν1/3.
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The results of the theorem follow from the third case, where estimates in HN are
obtained by integrating the frequency-wise bound (12).

In order to introduce ideas and motivate the definition of C we first discuss the
case α > 0.

Step 1 (symmetrize): Let α > 0 be given. That is, suppose we are in the setting
of hydrostatic balance. Then one commonly exploited feature in the setting without
shear is cancellation of the purely imaginary off-diagonal entries (compare [Zil20b,
DWZZ18]).

Indeed, consider the rescaled problem

∂t

( √
αω̃

√

k2 + (ξ − kt)2θ̃

)

=







−ν(k2 + (ξ − kt)2) i
√

α
√

1+( ξ
k −t)2

i
√

α
√

1+( ξ
k −t)2

t− ξ
k

1+( ξ
k −t)2







( √
αω̃

√

k2 + (ξ − kt)2θ̃

)

(16)

We observe that the off-diagonal entries are then exactly equal and imaginary and

thus cancel under the matrix-valued map M 7→ M + M
T

.
Therefore, if we denote the square of the Euclidean norm of the vector as

E(t) := α|ω̃|2 + (k2 + (ξ − kt)2)|θ̃|2

it holds that

∂tE(t) = −ν(k2 + (ξ − kt)2)α|ω̃|2 +
t − ξ

k

1 + ( ξ
k − t)2

(k2 + (ξ − kt)2)|θ̃|2

≤ min(0, t − ξ
k )

1 + ( ξ
k − t)2

E(t)

Integrating in time and using that

∫ t

0

min(0, t − ξ
k )

1 + ( ξ
k − t)2

≤ ln(1 + t2)

it follows that

E(t) ≤ (1 + t2)E(0).(17)

Thus, irrespective of the size of α > 0 and of ν ≥ 0 we have shown that the evolution
in HN is at most algebraically unstable.

Step 2(Using dissipation): Compared to our desired result, the estimate by (17)
is not yet sufficient, since it is not uniform in time.

In the following we hence modify the definition of E to also make use of the
dissipation. More precisely, we introduce a cut-off

C > 1(18)

to be specified later and define the resonant time interval

I := {t ≥ 0 : | ξ

k
− t| ≤ C}.(19)
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Then it holds that

∂t

( √
αω̃

√

k2 + min((ξ − kt)2, C2)θ̃

)

=







−ν(k2 + (ξ − kt)2) ik
√

α√
k2+min((ξ−kt)2,C2)

ik
√

α√
k2+min((ξ−kt)2,C2)

√
k2+min((ξ−kt)2,C2)
√

1+( ξ
k −t)2

t− ξ
k

1+( ξ
k −t)2

1I(t)







( √
αω̃

√

k2 + min((ξ − kt)2, C2)θ̃

)

,

(20)

where 1I(t) ∈ {0, 1} denotes the indicator function of I. We then define the modified
energy as

E(t) := α‖ω‖2
HN + ‖∂xθ‖2 + ‖ min(ξ − kt, C)θ̃‖2

L2
N

(21)

Step 2a (resonant region): If t ∈ I and α > 0 the problem and the definition of

E(t) are identical to the one considered in Step 1 and it follows that

∂tE(t) ≤ min(0, t − ξ
k )

1 + ( ξ
k − t)2

E(t).(22)

However, by definition of the interval I it holds that

∫

I

min(0, t − ξ
k )

1 + ( ξ
k − t)2

dt ≤ ln(1 + C2)

and thus the growth of E during the resonant time is bounded by (1 + C2).

Step 2b (non-resonant region): Next suppose that t 6∈ I and thus | ξ
k − t| is large.

In particular, (ξ − kt)2 ≤ k2 + (ξ − kt)2 ≤ 2(ξ − kt)2 and thus vertical dissipation
is comparable to full dissipation.

Then the off-diagonal entries in (20) can be estimated as
∣

∣

∣

∣

∣

∣

i
√

α
√

1 + min(( ξ
k − t)2, C2)

∣

∣

∣

∣

∣

∣

=

√
α

C2
,

∣

∣

∣

∣

∣

∣

i
√

α
√

1 + min(( ξ
k − t)2, C2)

√

k2 + min((ξ − kt)2, C2)
√

1 + ( ξ
k − t)2

∣

∣

∣

∣

∣

∣

≤
√

α

C2
.

Thus, using Young’s inequality with
√

ν
√

k2 + (ξ − kt)2

√
ν
√

k2 + (ξ − kt)2
,

we deduce that

∂tE(t) ≤ −ν

2
(k2 + (ξ − kt)2)α|ω̃|2 +

α

νC4

1

k2 + (ξ − kt)2
|
√

k2 + min((ξ − kt)2, C2)θ̃|2

≤ α

νC4

1

k2 + (ξ − kt)2
E(t).

(23)

We note that the factor on the right-hand-side is integrable in time.
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Step 2c (Conclusion for α > 0) Combining the resonant estimate (22) and the

non-resonant estimate (23), we deduce that

∂tE(t) ≤ (1I(t)
min(0, t − ξ

k )

1 + ( ξ
k − t)2

+ (1 − 1I(t))
α

νC4

1

k2 + (ξ − kt)2
)E(t)

⇒ E(t) ≤ (1 + C2) exp(
α

νC4
)E(0),

(24)

with E(t) defined in (21). The claimed estimate (12) for α > 0 then follows by
comparing E(t) with the squares of the HN norms. It remains to discuss the case
of negative α.

Step 3 (negative α) Let now α < 0 be given and consider the problem rescaled

by
√

|α| instead. Then the evolution equation (20) reads

∂t

(
√

|α|ω̃
√

k2 + min((ξ − kt)2, C2)θ̃

)

(25)

=









−ν(k2 + (ξ − kt)2)
i
√

|α|
√

1+min(( ξ
k −t)2,C2)

− i
√

|α|
√

1+min(( ξ
k −t)2,C2)

√

1+min(( ξ
k −t)2,C2)

√

1+( ξ
k −t)2

t− ξ
k

1+( ξ
k −t)2

1I(t)









( √

|α|ω̃
√

k2 + min((ξ − kt)2, C2)θ̃

)

.

(26)

We thus define the energy as

E(t) = |α||ω̃|2 + (k2 + min((ξ − kt)2, C2))|θ̃|2,

which agrees with the previous definition if α > 0.
Step 3a (non-resonant region): Suppose that t 6∈ I. We observe that in Step 2b

we did not make use of the sign of α but only used Young’s inequality. Furthermore,
in that region |ξ − kt| ≥ |k| and thus in this region vertical dissipation dominates
full dissipation.

Hence, by the same argument we may deduce that also for our extended definition
of E(t) it holds that

∂tE(t) ≤ α

νC4

1

k2 + (ξ − kt)2
E(t).(27)

Step 3b (resonant region): Suppose that t ∈ I. Then we observe that off-diagonal

terms in (25) are of the same size but have the opposite sign an hence do not cancel
anymore. However, we may use Young’s inequality to still bound

∂tE(t) ≤ −ν(k2 + (ξ − kt)2)|α||ω̃|2 +
|α|

√

12 + ( ξ
k − t)2

E(t) +
t − ξ

k

1 + ( ξ
k − t)2

E(t)

≤ 1 + |α|
√

12 + ( ξ
k − t)2

E(t),

which yields a bound on the total growth by

(1 + C2)1+|α|.
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Combining the estimates in the resonant and non-resonant region, we deduce
that

E(t) ≤ (1 + C2)1+|α| exp(π
|α|

νC4
)E(0).(28)

In particular, choosing C = ν−1/3 and supposing that |α| < min(ν1/3, 1), this
estimate reduces to

E(t) ≤ (1 + ν−2/3)2eπE(0),

which implies the result.
We remark that in the proof for negative α we have not relied on cancellation

but only on smallness of
√

|α| in combination with Young’s inequality. Hence, we
may consider a modification of the energy E(t) as

|α̂||ω̃|2 + (k2 + min((ξ − kt)2, C2))|θ̃|2

with α̂ = max(|α|, ν1/3) and repeat the same proof, since |α|√
α̂

< ν1/6 and
√

α̂ < ν1/6

satisfy the desired inequalities. �

We remark that in the proof of this affine case we can allow α to be arbitrarily
large and are also free to choose C arbitrarily. As we discuss in the following, if
T ′ is non-constant or if we study the nonlinear problem, smallness of α is required
in the proof. In view of resonances in the related linear inviscid damping problem
[DZ19b] some form of smallness condition is probably necessary.

3.2. Non-affine Temperature. Having discussed the setting of affine hydrostatic
(im)balance, we next consider T (y) non-affine and address the question Q3 of Sec-
tion 2 under which conditions on T in terms of ν such solutions are stable. Here
the problem does not decouple in frequency anymore and we thus employ a by now
classical Cauchy-Kowalewskaya or ghost energy approach (compare [MV11, BM15,
Zil16]).

The linearized system around θ = T (y) in Lagrangian coordinates is given by:

∂tω = ν(∂y − t∂x)2ω + ∂xθ,

∂t∂xθ = −T ′(y)∂2
x∆−1

t ω,
(29)

where we applied a derivative in x to the second equation. Since the evolution of
the x-averages decouples, we assume without loss of generality that

∫

ωdx = 0 =

∫

θdx(30)

throughout this section.
Our main results are summarized in the following theorem.

Theorem 3.2. Let T (y) be a given temperature profile, N ∈ N and consider the
linearized Boussinesq equations (29) with vertical dissipation ν > 0. Further suppose
that the Fourier transform of T ′ satisfies

∫

(1 + |ξ|)N+5|F(T ′)(ξ)| ≤ 4−Nν1/3,(31)

then for any initial data ω0, θ0 ∈ HN × HN+1 it holds that

‖ω(t)‖2
HN + ‖∂xθ(t)‖2

HN

≤ C(1 + ν−2/3)2(‖ω0‖2
HN + ‖θ0‖2

HN+1).
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We remark that (31) here is a sufficient condition to control several commutators.
We expect that in particular for large N it is far from sufficient and that it for
instance would suffice to assume smallness for small N and only a finite norm for
large N (compare [Zil19]). Furthermore, if T happens to be strictly increasing,
stability is expected also for large norms of T ′. The main focus of this theorem
thus lies on cases where T may be oscillating. In the case T (y) = αy, the (tempered)
Fourier transform is given by a Dirac measure and the condition (31) reduces to
|α| < ν1/3, as in Section 3.1.

Proof. In Section 3.1 we had seen that in the special case when T ′(y) = αy is affine,
the functions θ, ω satisfy the frequency-wise bound

∂t(|α||ω̃|2 + (k2 + min((ξ − kt)2, ν−2/3)|θ̃|2)

≤ (
1

√

1 + ( ξ
k − t)2

1I +
1

1 + ( ξ
k − t)2

)(|α||ω̃|2 + (k2 + min((ξ − kt)2, ν−2/3)|θ̃|2).

(32)

Similarly to the (linear) inviscid damping problem in the Euler equations, while
this frequency-wise bounds fail in the general setting, an integrated version can be
shown to hold more generally. More precisely, we define two Fourier weights

A(T, ξ, k) = exp(−2

∫ T

0

1

1 + ( ξ
k − t)2

dt),(33)

B(T, k, ξ) = exp(−2

∫ T

0

1
√

1 + ( ξ
k − t)2

1Idt),(34)

where we included a factor 2 to have additional flexibility to absorb errors.
Then in this affine case the estimate (32) implies that if we define the energy

E(t) = α‖ABω‖2
HN + ‖ABF−1(k2 + min((ξ − kt)2, ν−2/3)Fθ‖2

HN ,(35)

where ω, θ is a solution for T (y) = αy, then E(t) is non-increasing and moreover
satisfies the decay estimate

∂tE(t) ≤ −
∫∫

(
1

√

1 + ( ξ
k − t)2

1I +
1

1 + ( ξ
k − t)2

)(|α||ABω̃|2 + (k2 + min((ξ − kt)2, ν−2/3)|ABθ̃|2).

In particular, E(t) is non-increasing and the inequality E(t) ≤ E(0) implies the
result of the theorem for the special case when T is affine.

Let now T (y) be given and for simplicity of notation define

σ = F−1
√

k2 + min((ξ − kt)2, ν−2/3)F .(36)

and introduce the constant α in terms of operator norms:

α := ‖|∇t|−1BT ′B−1|∇t|‖HN 7→HN + ‖(∂2
x∆−1

t )−3/2BT ′(y)B−1B(∂2
x∆−1

t )3/2‖HN →HN .

(37)

As the last step of this proof we will show that by (31) it follows that α ≤ ν1/3.
Similarly as in Theorem 3.1, we remark that in all the following estimates we may
replace α by α̂ = max(α, ν1/3) if α < ν1/3.
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We now claim that if E(t) is defined by the same formula as in (35) but with
ω, θ being solutions of the linearized problem with temperature profile T , then E(t)
is non-increasing. This then implies the desired estimate by controlling B and α
(or α̂) in terms of ν.

We hence have to estimate

∂tE(t)/2 = −να‖∇tABω‖2
HN + α〈ABω, AB∂xθ〉

+〈ABσθ, ABT ′(y)B−1B∂2
x∆−1

t ω〉
+α〈(ȦB + AḂ)ω, ABω〉
+〈(ȦB + AḂ)σθ, ABσθ〉

+〈ABσ̇θ, ABσθ〉〉.
Here the dissipation terms and derivatives of AB yield non-negative contributions
and are thus beneficial and Ḃ was defined in such a way to control

〈ABσ̇θ, ABσθ〉.
More precisely, we note that inside the resonant interval I,

∂tσ
2 = −2k(ξ − kt) =

−2( ξ
k − t)

1 + ( ξ
k−t )2

σ2

can be controlled by ḂB.
It thus remains to estimate

Eω := α〈ABω, AB∂xθ〉(38)

and

Eθ := 〈ABσθ, ABT ′(y)B−1B∂2
x∆−1

t ω〉(39)

Estimating Eω : Since the evolution equation for ω does not involve T ′(y) we may
argue as in the affine case and control Eθ frequency-wise. More precisely, for any
given frequency (k, ξ) we need to control

∣

∣α(AB)2(t, k, ξ)ω̃(t, k, ξ)ikθ̃(t, k, ξ)
∣

∣

Resonant region: If t, k, ξ are such that | ξ
k − t| ≤ ν−1/3 we may bound by this by

√
α

√

1 + ( ξ
k − t)

(AB)2(t, k, ξ)



α|ω̃|2 +

∣

∣

∣

∣

∣

√

1 + (
ξ

k
− t)2θ̃

∣

∣

∣

∣

∣

2


 ,

which can be absorbed into

〈AḂω, ABω〉 + 〈AḂσθ, ABσθ〉
by construction of B.

Non-resonant region: If instead t, k, ξ are such that | ξ
k − t| ≥ ν−1/3, then Ḃ

vanishes and we instead make use of the vertical dissipation. That is, we estimate
∣

∣α(AB)2(t, k, ξ)ω̃(t, k, ξ)ikθ̃(t, k, ξ)
∣

∣

= α(AB)2|ω̃|
√

ν
√

k2 + (ξ − kt)2

√
ν
√

k2 + (ξ − kt)2

1
√

1 + ( ξ
k − t)2

√

k2 + ν−2/3|θ̃|
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by the dissipation term

−α(AB)2(
√

ν
√

(ξ − kt)2|ω̃|)2

and

(AB)2 1

1 + ( ξ
k − t)2

|
√

k2 + ν−2/3|θ̃|2.

Here we used that in the non-resonant region (ξ − kt)2 controls the full dissipation.
The latter term can then be absorbed into

〈ȦBσθ, ABσθ〉
provided

√
α

√
ν
√

k2 + (ξ − kt)2
(40)

is less than 1. Since we are in the non-resonant region (40) can be bounded from
above by

√
αν−1/2+1/3 = (αν−1/3)1/2,

which is small since α < ν1/3 by assumption.
Estimating Eθ: In order to estimate the contribution (39)

Eθ = 〈ABσθ, ABT ′(y)B−1B∂2
x∆−1

t ω〉
we follow a similar argument as in the affine case. However, as T ′ is non-constant we
further have to control an interaction term between the resonant and non-resonant
regions.

More precisely, for any given time t we define the Fourier set

Ω(t) = {(k, ξ) : k 6= 0, | ξ

k
− t| ≤ ν−1/3}.

That is, instead of time interval I associated to given frequencies, we consider
frequencies for a given time t. We then split

ω = 1Ωω + (1 − 1Ω)ω =: ωin + ωout,

θ = 1Ωθ + (1 − 1Ω)θ =: θin + θout.

We then split the contributions as

〈ABσθ, ABT ′(y)B−1B∂2
x∆−1

t ωout〉
〈ABσθin, ABT ′(y)B−1B∂2

x∆−1
t ωin〉

〈ABσθout, ABT ′(y)B−1B∂2
x∆−1

t ωin〉.
We remark that in the affine case the third term identically vanished due to the
disjoint Fourier support of ωin and θout, but that this orthogonality is lost in the
general case.

Step 2a (ωout): We argue as in the affine case. Since ωout is supported in Ω it
holds that

‖∇tB∂2
x∆−1

t ωout‖HN ≤ ν2/3‖(∂y − t∂x)Bω‖HN .

For θ we do not need a further control of the support and may bound

‖|∇t|−1ABσθ‖HN
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by the time decay of A, provided

‖|∇t|−1BT ′(y)B−1|∇t|‖HN →HN ≤
√

αν1/6.

By our choice of α the left-hand-side is bounded by α and this estimate is therefore
satisfied provided α < ν1/3, as assumed.

Step 2b (θin, ωin): Similarly as in the proof of Theorem 3.1 we use the time decay
of B to control this contribution. More precisely, we may bound this contribution
in terms of

α〈ABωin,

√

∂2
x∆−1

t ABωin〉

+〈ABσθin,

√

∂2
x∆−1

t ABσθin〉,
provided

‖
√

∂2
x∆−1

t BT ′(y)B−1
√

∂2
x∆−1

t

−1

‖HN →HN ≤
√

α.

We remark that
√

∂2
x∆−1

t = |∂x||∇t|−1 and that BT ′(y)B−1 does not depend on x.

Hence this estimate is equivalent to the one of step 2a.
Step 2c (θout, ωin) As T ′ is non-constant the contribution

〈ABσθout, ABT ′(y)B−1B∂2
x∆−1

t ωin〉
generally does not vanish. However, since θout is supported away from the resonant
region, we may insert an identity operator (∂2

x∆−1
t )3/2−3/2 and bound

‖AB(∂2
x∆−1

t )3/2σθout‖HN ≤ ν2/3
√

−〈ȦBσθout, ABσθout〉
and estimate

‖(∂2
x∆−1

t )−3/2ABT ′(y)B−1B∂2
x∆−1

t ωin‖HN

by

‖(∂y − t∂x)ABω‖HN .

This contribution can thus be absorbed by the same argument as in Step 2a, pro-
vided

‖(∂2
x∆−1

t )−3/2BT ′(y)B−1B(∂2
x∆−1

t )3/2‖HN →HN ≤ ν1/6
√

α,

which by our definition of α reduces to α < ν1/3.
Step 4 (controlling α): It remains to be shown that the estimate (31) controls α.

Here we make use of Schur’s test, which controls the L2 operator norm of a map

u(x) 7→
∫

K(x, y)u(y)dy

by the square root of

sup
x

∫

|K(x, y)|dy sup
y

∫

|K(x, y)|dy.

More precisely, we may express the map u 7→ |∇t|BT ′B−1|∇t|−1u as integration
against a kernel on the Fourier side:

ũ(k, ξ) 7→
∫

√

k2 + (ξ − kt)2B(t, k, ξ)T̃ ′(ξ − ζ)B−1(t, k, ζ)
√

k2 + (ζ − kt)2ũ(k, ζ)dζ.
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Since we are further interested in a map on HN we add an additional weight

1 + |ξ|N
1 + |ζ|N .

Then Schur’s test asks us to control

sup
ξ

∫

√

k2 + (ξ − kt)2B(t, k, ξ)T̃ ′(ξ − ζ)B−1(t, k, ζ)
√

k2 + (ζ − kt)2
1 + |ξ|N
1 + |ζ|N dζ ≤ C1

and

sup
ζ

∫

√

k2 + (ξ − kt)2B(t, k, ξ)|T̃ ′(ξ − ζ)|B−1(t, k, ζ)
√

k2 + (ζ − kt)2
1 + |ξ|N
1 + |ζ|N dξ ≤ C2,

which then bounds the L2 operator norm by
√

C1C2.
We claim that this kernel can be bounded by |T̃ ′(ξ −ζ)|(1+ |ξ −ζ|)N+5, at which

point (31) implies that C1 = C2 = ν1/3, which concludes the proof.
Indeed, by construction of B, we can control

B(t, k, ξ)B−1(t, k, ζ) ≤
√

1 + |ξ − ζ|2.

Similarly, if |ξ| ≤ 3|ζ|, we may simply control

1 + |ξ|N
1 + |ζ|N ≤ 1 + 3N .

If instead |ξ| ≥ 3|ζ|, then

|ξ| ≤ |ξ − ζ| +
1

3
|ξ| ⇔ |ξ| ≤ 3

2
|ξ − ζ|.

and thus

1 + |ξ|N
1 + |ζ|N ≤ (

3

2
)N (1 + |ξ − ζ|N ).

Finally, we need to control

k2 + (ξ − kt)2

k2 + (ζ − kt)2
=

1 + ( ξ
k − t)2

1 + ( ζ
k − t)2

.

Here we may simply estimate

(
ξ

k
− t)2 ≤ 2(

ζ

k
− t)2 + 2(ξ − ζ)2.

The first term cancels with the numerator, while for the second we simply bound
by |ξ − ζ|.

Thus, in total it suffices to bound

sup
ζ

∫

|T̃ ′(ξ − ζ)|(1 + |ξ − ζ|)N+5dξ < C1 = C2,

which is the assumption of our theorem.
�

We remark that in the case when T ′ is increasing stronger results are possible,
for instance allowing α to be much larger, by using additional cancellations as in
Section 3.1. The main advantage of this theorem hence lies in the fact that we can
allow T ′ to be decreasing or oscillating.
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4. The Nonlinear Equations with Vertical Dissipation

Given the results for the linearized problem, it is natural to ask whether they
extend to the nonlinear perturbed problem:

∂tω + y∂xω + v · ∇ω = ν∂2
yω + ∂xθ,

∂tθ + y∂xθ + T ′(y)v2 + v · ∇θ = 0,

(t, x, y) ∈ (0, ∞) × T × R,

and, if so, how this depends on ν. As shown recently by Masmoudi, Said-Houari and
Zhao [MSHZ20], this problem may exhibit an instability reminiscent of echo chains
in the Vlasov-Poisson equations [Bed20, Zil20a] and Euler equations [DM18, DZ19a].
For this reason, we do not expect results in Sobolev regularity to extend (without
strong modification). Therefore, in this section we instead consider the more viscous
problem

∂tω + y∂xω + v · ∇ω = ν∂2
yω + ∂xθ,

∂tθ + y∂xθ + T ′(y)v2 + v · ∇θ = ν∂2
yθ,

(t, x, y) ∈ (0, ∞) × T × R,

(41)

where we impose full vertical dissipation and view T (y) as a solution of the forced
problem. Similarly to results for the case of hydrostatic balance with shear studied
in [Zil20b] our aim here is to extend the linear (asymptotic) stability results to the
nonlinear equations with small data and thus answer question Q4 of Section 2.

Theorem 4.1. Let N ≥ 5 and suppose that the temperature profile T (y) satisfies
the linear stability assumptions of Theorem 3.2. Let further 0 < ǫ < ν2 and suppose
that the initial data satisfies

‖ω0‖HN + ν−1/2‖∂xθ0‖HN ≤ ǫ.

The the unique global solution with this initial data satisfies

‖ω‖L∞HN + ν‖(∂y − t∂x)ω‖L2HN + ‖v6=‖L2HN ≤ 10ν−1/3ǫ,

‖∂xθ‖L∞HN ≤ 10ǫ,

where LpHN := Lp((0, ∞); HN ) and v6= = v −
∫

vdx denotes the non-shear compo-
nent of the velocity.

Remark 1. • The nonlinear problem with vertical dissipation but without
shear has been previously studied in [ACW10] and [LT16].

• The threshold ǫ < ν2 here is imposed to control losses of powers ν1/3 in
enhanced dissipation estimates encoded in our Fourier multiplier B.

• The nonlinear problem without thermal dissipation has been recently studied
in [MSHZ20]. In particular, they require Gevrey regularity to control reso-
nances, which suggests that stability in Sobolev regularity may either fail or
require non-trivial modification [DZ19a, DM18].

• In a previous work [Zil20b] we studied the special case where T (y) is affine
(with positive slope) and with full dissipation. The present result allows for
possibly oscillating profiles and only requires vertical dissipation.

• We remark that we here estimate σθ instead of ∇tθ or ∂xθ. This is in view
to the results of Section 3.1, for which we do not expect control of ∇tθ.
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• In view of the partial dissipation results of Section 3 we here omit questions
of enhanced dissipation.

• There has been extensive work on various partial dissipation regimes as
well as on the inviscid problem. We discuss some of this literature in the
introductory Section 1.

Proof. We follow a classical bootstrap argument approach [MV11, BVW18, Lis20]
in the spirit of Cauchy-Kowalewskaya. As in [Zil20b] we here make use of multipli-
ers constructed in [BVW18] and [Lis20] for the Navier-Stokes and MHD problems,
respectively, and adapt them to the problem at hand. In contrast to these works
we do not aim to derive (enhanced) dissipation estimates. However, we show that
vertical dissipation is sufficient to employ these bootstrap methods (see also the
discussion of echo chains [MSHZ20] in Section 1). We remark that in Section 3.2
we have derived estimates for the associated linearized problem, which we use as a
basis for our estimates in the following. A main challenge in the control of various
contributions here will be that we can only control vertical dissipation and hence
will have to separately consider regimes where horizontal dissipation would be large.

In our bootstrap construction we consider LpHN norms on a time interval (0, T ),
T > 0, which incorporate a time-dependent Fourier multiplier M with

ν1/3 ≤ M ≤ 1,

to be specified later (see equation (44)). We then consider the maximal time T > 0
such that the following bootstrap estimates are satisfied:

‖Mω 6=‖2
L∞

t HN + ν‖(∂y − t∂x)Mω 6=‖2
L2HN + ν‖1|ξ−kt|≤|k|Mω 6=‖2

L2HN

+ ‖∇t∆
−1
t Mω 6=‖2

L2HN ≤ 16ǫ2,

‖σMθ 6=‖2
L∞HN + ν‖(∂y − t∂x)σMθ 6=‖2

L2HN + ν‖1|ξ−kt|≤|k|σMθ 6=‖2
L2HN

+ ‖∇t∆
−1
t σMθ 6=‖2

L2HN ≤ 16νǫ2,

‖ω=‖2
L∞

t HN + ν‖∂yω=‖2
L2HN ≤ 16ǫ2,

‖σθ=‖2
L∞HN + ν‖σ∂yω=‖2

L2HN ≤ 16νǫ2,

(42)

where ω=, θ= denote the x-averages and ω 6=, θ 6= their orthogonal complement and
σ is the Fourier multiplier

σ = F−1(k2 + (min(ξ − kt)2, ν−2/3))F .

By local well-posedness and the assumed existence of a solution, there exists some
positive time T > 0 such that (42) holds with L2(R+; ·) and L∞(R+; ·) replaced by
L2((0, T ); ·) and L∞((0, T ); ·). If the maximal time T with this property is infinity,
this yields the results of the theorem in view of the bounds on M .

In the following we thus assume for the sake of contradiction that T < ∞ is
maximal. We will then show that at the time T none of the estimates in (42) attain
equality. Therefore, by continuity the estimates are still satisfied for a slightly larger
time, which contradicts the maximality and thus implies the result.

In order to introduce ideas let us first consider the x-averages. We remark that
in the linearized results of Section 3 their evolution decoupled and reduced to heat
evolution. Thus, in the following we have to control the effects of the nonlinearity,
where the lack of full dissipation requires us to introduce some additional splittings.
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Estimating ω=: We observe that ∂xθ, v6= · ∇tω= and v= · ∇tω 6= all posses a
vanishing x-average and thus obtain the following evolution equation for ω=:

∂tω= + 0 + (v6= · ∇tω 6=)= = ν∂2
yω= + 0.

Testing this equation with ω= and integrating in time, we deduce that

‖ω=(T )‖2
HN + 2ν

∫ T

0

‖∂yω=‖2
HN = ‖ω=(0)‖2

HN +

∫ T

0

〈ω=, v6= · ∇tω 6=〉.(43)

We recall that by assumption the initial data is of size much smaller than
√

8ǫ.
Thus, if we can show that the integral on the right-hand-side is bounded by ǫ, this
implies that equality in (42) is indeed not attained here.

As we assume only vertical dissipation, we first discuss the part involving y
derivatives of ω 6=:

∫ T

0

〈ω=, v2
6=(∂y − t∂x)ω 6=〉

≤ ‖ω=‖L∞HN ‖v2
6=‖L2HN ‖(∂y − t∂x)ω 6=‖L2HN

≤ 4ǫ4ν−1/3ǫν−1/24ν−1/3ǫ = 4ν−7/6ǫ16ǫ2,

where v2
6= denotes the vertical component of the velocity field, and the loss of factors

ν−1/3 is due to the multiplier M . Since by assumption 4ν−7/6ǫ is much smaller than
1, this term is too small to help achieve equality.

For the term involving x-derivatives, we introduce a Fourier multiplier χ which
corresponds to the projection onto the set

{(k, ξ) : |ξ − kt| ≥ |k|}.

Then by construction it holds that

‖χ∂xω 6=‖L2HN ≤ ‖χ(∂y − t∂x)ω 6=‖L2HN ≤ ‖(∂y − t∂x)ω 6=‖L2HN ,

which thus allows for an estimate of the same form as for the part involving y
derivatives.

Finally, we estimate
∫ T

0

〈ω=, v1
6=∂x(1 − χ)ω 6=〉

= −
∫ T

0

〈ω=, (∂xv1
6=)(1 − χ)ω 6=〉

≤ ‖ω=‖L∞HN ‖v1
6=‖L2HN ‖(1 − χ)ω 6=‖L2HN

≤ 4ǫν−7/64ǫ4ǫ,

where we lose several powers of ν due the enhanced multiplier B discussed in Section
3.2. As this contribution is also much smaller than 16ǫ2, we conclude that

‖ω=(T )‖2
HN + ν

∫ T

0

‖∂yω=‖2
HN < 8ǫ2

and thus equality in (42) is not attained.
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Estimating θ=: Before discussing σθ=, we consider θ=, where we can argue anal-
ogously to the case of ω=. We may test the equation

∂tθ= + (v6= · ∇tθ 6=)= = ν∂2
yθ=

with θ= and integrate in time to again derive an integral estimate. We then estimate
the contribution

∫ T

0

〈θ=, v6= · ∇tθ 6=〉

by

‖θ=‖L∞HN ‖v2
6=‖L2HN ‖(∂y − t∂x)θ 6=‖L2HN

+‖θ=‖L∞HN ‖v1
6=‖L2HN ‖(∂y − t∂x)χθ 6=‖L2HN

+‖θ=‖L∞HN ‖∂xv1
6=‖L2HN ‖(1 − χ)θ 6=‖L2HN .

By the bootstrap assumptions this sum can be controlled in terms of ν−7/6ǫ3, which
is much smaller than ǫ2.

Estimating σθ=: We may extend the definition of σ to purely y-dependent func-

tions as the Fourier multiplier σ = F−1 min(|ξ|, ν−1/3)F . We note that the operator
norm of σ is bounded by ν−1/3 and thus σθ= could be controlled in terms of θ=.
However, in this way we would pass from a bound by ǫ2 to one by ν−2/3ǫ2, which
is insufficient for our bootstrap approach. Instead we aim to show that by a similar
argument as above ‖σθ=‖L∞HN can be controlled by ǫ2, where the loss of pow-
ers of ν only factors into the smallness conditions on ǫ used to control nonlinear
interaction terms.

We may control

‖σθ=(T )‖2
HN + ν‖∂yσθ=‖2

L2HN

= ‖σθ=(0)‖2
HN +

∫ T

0

〈σθ=, σv6= · ∇tθ 6=〉

≤ ‖σθ=(0)‖2
HN + ‖σθ=‖L∞HN ν−1/3(‖v2

6=‖L2HN ‖(∂y − t∂x)θ 6=‖L2HN

+ ‖v1
6=‖L2HN ‖(∂y − t∂x)χθ 6=‖L2HN + ‖∂xv1

6=‖L2HN ‖(1 − χ)θ 6=‖L2HN ).

Thus, by assumption on ǫ and the initial data, equality in (42) is also not achieved
for σθ=.

Estimating ω 6= and θ 6=: Having discussed the control of the x-averages, we now

turn to control ω 6=, σθ 6=. Here we will first focus on contributions due to T (y) and
the x-averages and finally discuss the control of the nonlinearity involving v6=.

We recall that ω 6= and θ 6= satisfy the system

∂tω 6= = ν(∂y − t∂x)2ω 6= + ∂xθ 6= − v1
=∂xω 6= − v2

6=∂yω= − (v6= · ∇tω 6=)6=,

∂tθ 6= = ν(∂y − t∂x)2ω 6= + T ′(y)v2
6= − v1

=∂xθ 6= − v2
6=∂yθ= − (v6= · ∇tθ 6=)6=,

where we consider ω= and θ= as given functions.
In the linearized problem of Section 3.2 we could without loss of generality as-

sume that ω= = θ= = 0 and constructed a non-increasing energy functional. In the
following we build on these estimates and integrate them in time to show that the
control (42) is stable under small nonlinear perturbations.
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We recall the multipliers A, B defined in (33) in Section 3.2:

A(t, k, ξ) = exp(c arctan(
ξ

k
− t)),

B(t, k, ξ) = exp



−
∫ t

0

1
√

1 + ( ξ
k − τ)21| ξ

k −τ |≤ν−1/3dτ



 ,

and for simplicity of notation write

M := AB.(44)

Let us first study the time-derivative of

‖Mω 6=‖2
HN .

Then it hold that

‖Mω 6=(T )‖2
HN −

∫ T

0

〈Mω 6=, Ṁω 6=〉 + ν

∫ T

0

‖M(∂y − t∂x)ω 6=‖2
HN

= ‖Mω 6=(0)‖2
HN +

∫ T

0

〈Mω 6=, M(v1
=∂xω 6=)〉

+

∫ T

0

〈Mω 6=, M(v2
6=∂yω=)〉

+

∫ T

0

〈Mω 6=, M∂xθ 6=〉

+

∫ T

0

〈Mω 6=, M(v6= · ∇tω 6=)〉

=: ‖Mω 6=(0)‖2
HN + Tv1

=
+ Tω=

+ Tω 6=,θ 6=
+ Tv6=

.

(45)

By assumption ‖Mω 6=(0)‖2
HN is much smaller than ǫ2, so if we can show that the

various terms T on the right-hands-side can be controlled by the left-hand-side and
higher powers of ǫ, we can show that the left-hand-side remains smaller than 4ǫ for
all times.

Estimating Tv1
=

: In order to estimate Tv1
=

we make use of cancellation in an

integration parts, following a similar argument as in [Zil20b] with additional ad-
justments to account for partial dissipation. More precisely, given the multiplier
M , we note that by Parseval’s identity

〈Mω 6=, M(v1
=∂xω 6=)〉

= 〈Mω 6=, M(v1
=∂xω 6=) − v1

=∂xMω 6=〉

=
∑

∫ ∫

M(t, k, ξ)ω 6=(k, ξ)ω 6=(k, ξ + ζ)(M(t, k, ξ) − M(t, k, ξ + ζ))v=(ζ).

This cancellation is required to control v=(ζ) = 1
iζ ω=(ζ) in terms of ω=. In partic-

ular, if |ζ| ≥ 1 this control is trivial, while for |ζ| ≤ 1 we observe that M(t, k, z) is
Lipschitz with respect to z uniformly in t and k ∈ Z \ {0}:

|M(t, k, ξ) − M(t, k, ξ + ζ)| ≤ C|ζ|.
Hence, we can control Tv1

=
by

‖Mω 6=‖L2HN ‖ω 6=‖L2HN ‖ω=‖L∞HN .
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The last factor is controlled by the preceding argument. For the first two factors,
we make the observation that

ν1/3 ≤ ν(k2 + (ξ − kt)2) +
1

√

1 + ( ξ
k − t)2

1| ξ
k −t|≤ν−1/3

and hence ‖Mω 6=‖2
HN (and ν2/3‖ω 6=‖2

HN ) can be estimated in terms of the dissipa-

tion and the decay due to Ṁ , at a loss of a factor ν1/3.

Estimating Tω=
: We next discuss

Tω=
= 〈Mω 6=, M(v2

6=∂yω=)〉.
Here we may easily estimate by

ν−2/3‖Mω 6=‖L∞HN ‖Mv2
6=‖L2HN ‖∂yω=‖L2HN ,

where the factor of ν−2/3 corresponds to a rough bound of the operator norm of
M . All factors are controlled in terms of the bootstrap assumption and thus Tω=

is
much smaller than ǫ2 provided ǫ3 is much smaller than ǫ2 in terms of powers of ν.

Estimating Tω 6=,θ 6=
: As one of the main results of Section 3.2 we have shown that

M = AB is constructed in just such a way that

|〈ABω 6=, AB∂xθ 6=〉| ≤ −〈Mω 6=, Ṁω 6=〉 − α−1〈Mσθ 6=, Ṁσθ 6=〉

with α = max(‖T ′‖, ν1/3) (see Theorem 3.2 for the precise definition). Hence, we
can absorb this contribution into the left-hand-side of (45), provided we can control
Ṁσθ 6=, which will be the left-hand-side of a later equation (47).

Estimating Tv6=,θ 6=
: It remains to discuss the main nonlinearity, where a key chal-

lenge is given by the lack of horizontal dissipation.
If we had full dissipation at our disposal, this estimate would reduce to controlling

by

‖ω 6=‖L∞HN ‖v6=‖L2HN ‖∇tω 6=‖L2HN .

However, as we only require vertical dissipation the last factor is not easily con-
trolled anymore. We thus have to invest additional effort to control this contribu-
tion.

As v6= is divergence-free, we observe that

〈Mω 6=, M(v6= · ∇tω 6=)〉 = 〈Mω 6=, M(v6= · ∇tω 6=) − v6= · ∇tMω 6=〉

=
∑

∫∫∫

M(k, ξ)ω̃ 6=(k, ξ)(M(k, ξ) − M(k − l, ξ − ζ))ṽ6=(l, ζ)

·
(

k − l
ξ + ζ − (k − l)t

)

ω̃ 6=(k − l, ξ − ζ).

We observe that if

|k − l| ≤ ν−1|ξ + ζ − (k − l)t|
the last gradient can simply be controlled by the vertical dissipation, which yields
an estimate in terms of

‖ω 6=‖L∞HN ‖v6=‖L2HN ‖(∂y − t∂x)ω 6=‖L2HN
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and can hence be controlled. Similarly, if

|k − l| ≤ ν−1|l|
we can control in terms of

‖ω 6=‖L∞HN ‖∂xv6=‖L2HN ‖ω 6=‖L2HN .

It thus only remains to discuss the region where

|t − ξ + ζ

k − l
| ≤ ν,

|l| ≤ ν|k|.
(46)

Here, we make use of cancellations in M . More precisely, we note that M(k, ξ) does

not depend on k and ξ individually, but only on ξ
k and that uniformly in time

|M(k, ξ) − M(k − l, ξ − ζ)| ≤ C| ξ

k
− ξ − ζ

k − l
|

= C|ξ − kt

k
− ξ − ζ − (k − l)t

k − l
|

≤ C
1

1 + ν

1

|k − l| (|ξ − kt| + |ξ − ζ − (k − l)t|),

where we used (46). We thus can control Tv6=,θ 6=
in that region by

‖ω 6=‖L∞HN ‖v6=‖L2HN ‖(∂y − t∂x)ω 6=‖L2HN ,

which concludes the argument.
Controlling σθ 6= We next turn to controlling σθ 6=, where we study the time de-

rivative of

‖Mσθ 6=‖2
HN .

Integrating in time, we have to control

‖Mσθ 6=(T )‖2
HN −

∫ T

0

〈Mσθ 6=, Ṁσθ 6=〉 + ν

∫ T

0

‖M(∂y − t∂x)σθ 6=‖2
HN

= ‖Mσθ 6=(0)‖2
HN +

∫ T

0

〈Mσθ 6=, MσT ′(y)v2
6=〉 +

∫ T

0

〈Mσθ 6=, Mσv1
=∂xθ 6=〉

+

∫ T

0

〈Mσθ 6=, Mσv2
6=∂yθ=〉

+

∫ T

0

〈Mσθ 6=, Mσv6= · ∇tθ 6=〉

=: ‖Mσθ 6=(0)‖2
HN + TT + Tv1

=
+ Tθ=

+ Tv6=,σθ 6=
.

(47)

Here the aim again is to to show that that all T contributions add up to something
smaller than ǫ2 and hence equality is not attained.

Estimating TT As one of the main results of Section 3.2 we have shown that
TT can be controlled in terms of the decay of the multipliers M and the vertical
dissipation of ω only. Thus this contribution can estimated in terms of the left-
hand-side of (47) and (45).

Estimating Tv1
=

: Here we may argue analogously as for ω 6=, expect that M has

been replaced by σM . We thus obtain an estimate by

‖Mσθ 6=‖L2HN ‖θ 6=‖L2HN ‖ω=‖L∞HN .
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Estimating Tθ=
: Here we may argue again analogously as for ω 6= and control by

‖Mσθ 6=‖L∞HN ‖v2
6=‖L2HN ‖∂yθ=‖L2HN .

Estimating Tv6=,σθ 6=
: We recall that in this theorem we assume vertical dissipation

also for the temperature (in contrast to Section 3.2 and the problem considered in
[MSHZ20]). Therefore, in this estimate we argue largely analogously to to the
estimate of Tv6=,ω 6=

. However, since σM also depends on k, we need some additional
control in the region where the horizontal dissipation is not easily controlled.

More precisely, by the preceding arguments for Tv6=,ω 6=
it suffices to consider

∑

∫∫

(σθ 6=)(k, ξ)
1

σ(k − l, ξ − ζ)
(σM(k, ξ) − σM(k − l, ξ − ζ))ṽ6=(l, ζ)

·
(

k − l
ξ − ζ + (k − l)t

)

(σθ 6=)(k − l, ξ − ζ)

in the regions where ξ − ζ is very close to resonant and l is much smaller than k.
However, in that case we may split into differences in M and in σ and observe

that
√

k2 + (ξ − kt)2 −
√

(k − l)2 + (ξ + ζ − (k − l)t)2

√

(k − l)2 + (ξ + ζ − (k − l)t)2

≈
√

k2 −
√

(k − l)2

√

(k − l)2
≈ l

|k − l| ,

where we could neglect ξ − kt and ξ + ζ − (k − l)t since these terms could otherwise
be controlled in terms of the vertical dissipation. Hence, over all we can control by

‖σθ 6=‖L∞HN ‖∂xv6=‖L2HN ‖σθ 6=‖L2HN ,

which concludes the proof.
�
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