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A B S T R A C T   

Plant functional traits play a key role in the assessment of ecosystem processes and properties. Optical remote 
sensing is ascribed a high potential in capturing those traits and their spatiotemporal patterns. In vegetation 
remote sensing, reflectance-based retrieval methods are either statistical (relying on empirical observations) or 
physically-based (based on inversions of a radiative transfer model, RTM). Both trait retrieval approaches remain 
poorly investigated regarding phenology. However, within the phenology of a plant, its leaf constituents, canopy 
structure, and the presence of phenology-related organs (i.e., flowers or inflorescence) vary considerably – and so 
does its reflectance. We, therefore, addressed the question of how plant phenology affects the predictive per
formance of both statistical and RTM-based methods and how this effect differs between traits. For a complete 
growing season, we weekly measured traits of 45 herbaceous plant species together with hyperspectral canopy 
reflectance (ASD FieldSpec III). Plants were grown in an experimental setup. The investigated traits comprised 
Leaf Area Index (LAI) and the leaf traits chlorophyll, anthocyanins, carotenoids, equivalent water thickness, and 
leaf mass per area. We compared the predictive performances of PLSR models and three variants of PROSAIL 
inversions based on (1) all observations and based on (2) a phenological subset where flowering plants were 
excluded and only those observations most suitable for modeling were kept. Our results show that both statistical 
and RTM-based trait retrievals were largely affected by phenology. For carotenoids for example, R2 decreased 
from 0.58 at non-flowering canopies to 0.25 at 100% flowering canopies. Temporal trends were diverse. LAI and 
equivalent water thickness were best estimated earlier in the growing season; chlorophyll and carotenoids to
wards senescence. PLSR models showed generally higher bias than the PROSAIL-based retrieval approaches. 
Lookup-table inversion of PROSAIL in combination with a continuous wavelet transformation of reflectance 
showed highest accuracies. We found RTM-based retrieval not to be as accurate and transferable as previously 
indicated. Our results suggest that phenology is essential for accurate retrieval of plant functional traits and 
varies depending on the studied species and functional traits, respectively.   

1. Introduction 

Plant functional traits are key variables for determining how plants 
respond to their environment (Butler et al., 2017; Díaz et al., 2016; Ustin 
and Gamon, 2010; von Humboldt, 1808). Capturing plant functional 
traits advances our understanding of ecosystem processes and properties 
(Jetz et al., 2016; Kunstler et al., 2016; Moreno-Martínez et al., 2018). 
As many functions and processes in plant canopies are directly linked to 
light absorption and scattering, optical remote sensing has evolved as a 
valuable tool to retrieve a range of plant traits in time and space. This 

includes leaf constituents, such as pigments, dry matter or water, or 
canopy properties, such as total leaf area per canopy area (Homolová 
et al., 2013; Kattenborn and Schmidtlein, 2019; Ustin and Gamon, 2010; 
Zarco-Tejada et al., 2018). Retrieval methods for functional plant traits 
from canopy reflectance can be grouped into statistical and physically- 
based approaches (Baret and Buis, 2008; Homolová et al., 2013). 

Statistical methods establish empirical relationships between 
observed trait expressions and spectral reflectance as either parametric 
(e.g., vegetation indices, spectral shape) or non-parametric regressions 
(e.g., partial least squares regression, decision trees, support vector 
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machines). Numerous studies have reported accurate results of statisti
cal approaches in retrieving plant traits (e.g., Asner et al., 2015; Wang 
et al., 2019). Statistical methods are often used exactly because they do 
not compulsorily require in-depth knowledge of the underlying pro
cesses and allow to model any trait as long as sufficient reference data is 
available and some meaningful relation to reflectance exists. Despite 
high accuracies and ease of implementation, statistical models are 
usually site-, species-, sensor-, and time-specific and thus lack trans
ferability (but see Serbin et al., 2019). They also require – sometimes 
labor-intensive – sampling of calibration data and have been challenged 
because they replace causality by correlation, a risk inherent to empir
ical research that has been criticized at least since Kant (1783). 

Physically-based approaches for retrieving plant traits from canopy 
reflectance are based on radiative transfer models (RTM). RTMs recon
struct how plant traits (e.g., pigment or water content) affect reflectance 
and RTM-based trait retrieval requires an inversion of this approach. 
RTM-inversions thus allow retrieving those traits that are incorporated 
in the RTM itself. Two common inversion strategies are the look-up- 
table approach, where traits are estimated from the correspondence of 
resulting RTM simulations and measured canopy reflectance, or hybrid 
approaches, where a statistical algorithm is trained on RTM-based 
simulations (Verrelst et al., 2019). RTM-based approaches are ascribed 
higher transferability than pure statistical approaches since their design 
reflects physical interactions between plant traits and electromagnetic 
radiation. Moreover, RTM approaches do not require reference obser
vations for model training (Verrelst et al., 2019). 

RTM-based retrieval of plant functional traits have been demon
strated in several studies (Ali et al., 2016; Atzberger et al., 2013; Dar
vishzadeh et al., 2008; Feilhauer et al., 2017; Kattenborn et al., 2017a; 
Vohland et al., 2010; Vohland and Jarmer, 2008). For a more compre
hensive overview of commonly applied statistical and physically-based 
plant trait retrieval methods, the reader is referred to the reviews by 
Verrelst et al. (2019), Verrelst et al. (2015), Homolová et al. (2013) and, 
for grassland, by van Cleemput et al. (2018). 

Despite the potential of both statistical and RTM-based remote 
sensing approaches for vegetation monitoring, the investigation of plant 
trait retrievals over time remains scarce (van Cleemput et al., 2018). 
However, within the phenology of a plant, its leaf constituents, canopy 
structure, and the presence of related organs, i.e., flowers or inflores
cence, vary – and so does its reflectance (Feilhauer et al., 2016; 
Homolová et al., 2013; Landmann et al., 2019). It is known that the 
accuracy of statistical models for vegetation remote sensing can 
decrease when transferred to a dataset of a different phenological phase 
(Baret and Buis, 2008; Feilhauer and Schmidtlein, 2011). RTM-based 
methods should, in theory, be more time-invariant since the incorpo
rated plant trait-reflectance relationships rely on physical principles and 
the latter do not change with time. However, phenological features 
could hamper RTMs because features such as flowers or inflorescence 
are not considered in the model definition. So far, both statistical and 
RTM-based approaches remain poorly investigated with regard to 
phenological variations of the studied plant traits (Danner et al., 2017; 
Duveiller et al., 2011; Locherer et al., 2015; Miraglio et al., 2020; Wang 
et al., 2019). 

We hypothesize that plant phenology plays a crucial role in accu
rately predicting plant traits from canopy spectra. We compared trait 
retrieval with two common statistical and physically-based algorithms, 
i.e., Partial Least Squares Regression (PLSR) and the PROSAIL RTM. To 
analyze how plant phenology affects predictions we conducted a 
controlled study based on outdoor cultivated, potted graminoids and 
forbs. This enabled us to study multiple plant traits for an entire growing 
season with high temporal resolution (weekly). We compared the 
retrieval for those traits that are incorporated in PROSAIL and can be 
measured with reasonable effort, i.e., pigments (chlorophyll, carot
enoid, and anthocyanin content), dry matter and water content, as well 
as Leaf Area Index. To assess the influence of plant phenology on model 
results we compared predictive performances of models based on all 

observations and based on a phenological subset where flowering plants 
were removed and only a temporal window resulting most suitable for 
modeling was kept. We addressed the questions of how plant phenology 
affects the predictive performance of both statistical and RTM-based 
methods and how this effect differs between the analyzed traits (Fig. 1). 

2. Material and methods 

2.1. Data acquisition 

We obtained the trait data and plant spectra in an outdoor cultivation 
in the botanical garden of the Karlsruhe Institute of Technology 
(Karlsruhe, Germany, N49◦0′45.77 E8◦25′8.49). Plants were watered 
regularly at mean temperature of 10.5 ◦C. The data was acquired weekly 
for plants that completed the juvenile phase and that were not senescent 
in the years 2016 and 2017. We selected 45 herbaceous species common 
to Central Europe and greatly differing in plant functioning (see Ap
pendix A). Each species was cultivated homogenously in four separate 
0.4 × 0.4 m pots, each filled with 30 l standardized substrate. For further 
details on species selection, plant cultivation, trait measurements (Sec
tion 2.1.1), and canopy reflectance (Section 2.1.2) see also Kattenborn 
et al., 2019a. 

2.1.1. Plant traits 
We aimed for three pigment samples per pot and week. Given the 

vast amount of resulting individual measurements (~540 per week), 
common destructive pigment retrieval techniques using laboratory 
spectroscopy were not feasible. We thus retrieved chlorophyll a + b 
content (Cab, µg/cm2), carotenoid content (Car, µg/cm2), and antho
cyanin content (Ant, µg/cm2) by means of inversion of leaf spectra using 
PROSPECT-D (Féret et al., 2017) and wavelet decomposition (Black
burn, 2007). Leaf spectra were acquired with an ASD FieldSpec III 
spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) 
and leaf clip. This approach is sufficiently accurate (Kattenborn et al., 
2019; Li et al., 2018) and allows analyzing large quantities of data in a 

Fig. 1. Simplified representation of the study.  
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non-destructive way. For species with leaves smaller than the opening of 
the leaf clip (2 cm diameter), we seamlessly and without overlap ar
ranged multiple leaves side by side on adhesive tape before scanning. 

Leaf Area Index (LAI, m2/m2) was estimated using an Accu-PAR 
LP–80 ceptometer (METER Group, Inc., Pullman, USA) by averaging 
18 individual readings per pot. For measurements of pigment contents 
and LAI, measurements from the four pots per species were averaged to 
weekly median values per species. 

For the retrieval of dry matter content (Cm, g/cm2) and equivalent 
water thickness (Cw, g/cm2) we conducted measurements on species- 
basis instead of pot-basis to minimize destructive sampling. For these 
measurements, approximately 10 g of whole mature leaves without twig 
were plucked from all four pots. Then fresh weight was determined, and 
total leaf area was captured using a flatbed scanner (Canon LiDE 70). 
Following the protocol by Pérez-Harguindeguy et al. (2013), samples 
were then oven-dried and subsequently weighted. We then computed 
Cm and Cw using total leaf area, fresh weight, and dry weight. 

Leaf constituents were scaled up to canopy-level contents (CCab, 
CCar, CAnt, CCw, and CCm) by multiplying the respective traits with LAI. 

For parametrization of RTM-inversions, we also obtained species- 
specific average leaf angles (ALA, ◦) from leaf inclination distributions 
that we derived using leveled digital photographs and the procedure 
described by Ryu et al. (2010). As this procedure is very laborious, ALA 
was only retrieved once when the plants were fully developed. The area- 
proportional percentage of the flower and inflorescence coverage was 
visually estimated from nadir photographs. 

Samples including small seedlings, disease-infested plants, or dead 
plants were excluded from further analyses resulting in a total sample size 
of n = 609 of paired trait-reflectance observations (onwards full dataset). 
Summary statistics of all measured variables are shown in Table 1. 

2.1.2. Canopy reflectance 
We measured the hyperspectral canopy reflectance using the ASD 

FieldSpec III (fore optic, field of view of 15◦, 0.75 m above the canopy). The 
spectroradiometer records the solar electromagnetic radiation in 2101 
spectral bands from 400 to 2500 nm. We performed measurements during 
bright sky conditions between 10 am and 16 pm GMT +1. To obtain canopy 
reflectance, the vegetation signal was normalized using a white reference 
(Spectralon), which we remeasured at least every five minutes. For each 
pot, nine spectra were acquired at nadir angle in different positions and 
subsequently averaged to a mean reflectance spectrum. Removal of at
mospheric water absorption bands resulted in a total of 1568 spectral 
bands. We removed noise by applying a first-order Savitzky-Golay filter 
with a frame size of 25 nm (Savitzky and Golay, 1964). The preprocessed 
data are available online (Kattenborn et al., 2017b). 

2.2. Statistical trait retrieval 

In the statistical approach, we used the widely applied PLSR algo
rithm, which is known to give good results on locally calibrated datasets 

(Asner et al., 2015; Homolová et al., 2013). PLSR reduces the dimen
sionality of the spectral information by decomposing them into latent 
variables that are linearly related to both predictors and target data. An 
optimum number of latent variables is then used in a linear regression 
(Wold et al., 2001). We performed 10-times 5-fold cross-validation for 
model evaluation. The final trait estimates were derived by averaging 
predictions of the respective validation datasets (hold-out folds) from 
each repetition. The number of latent variables was identified via min
imal root mean squared error (RMSE) after cross-validation and was 
fixed in the temporal analysis. Analyses were conducted in R statistical 
environment (R Core Team, 2018), using packages ‘pls’ (Mevik et al., 
2018) and ‘caret’ (Kuhn, 2018). We also tested Random Forest models 
that resulted in very similar predictions (Appendix E) and we therefore 
only present the results of the more parsimonious PLSR algorithm in the 
main manuscript. 

2.3. RTM-based trait retrieval 

For the RTM-based trait retrieval, we chose the latest version of the 
PROSAIL model (Jacquemoud et al., 2009), which combines the leaf 
model PROSPECT-D (Féret et al., 2017; Jacquemoud and Baret, 1990) 
and the canopy model 4SAIL (Verhoef, 1984; Verhoef et al., 2007). In 
PROSPECT a leaf is considered a transparent plate with a compact 
layering of rough parallel surfaces resulting in isotropic scattering. 
PROSPECT simulates leaf reflectance and transmittance as a function of 
the mesophyll structure parameter (N) and the biochemical constituents 
chlorophyll a + b (Cab), carotenoid (Car), anthocyanin (Ant), brown 
pigment (Cbrown), equivalent water thickness (Cw), and dry matter 
content (Cm). N is defined as the number of compact layers (‘plates’) and 
specifies the number of air to cell interfaces (Jacquemoud et al., 2009). 
Cbrown is a relative coefficient for brown pigments (e.g., tannins, 
polyphenols, other denatured proteins) accumulating during leaf 
senescence (Féret et al., 2008). Leaf reflectance and transmittance 
modeled by PROSPECT are inputs to SAIL, which inter alia models 
top–of–canopy reflectance. SAIL characterizes the canopy as one- 
dimensional turbid medium, assuming homogeneous distribution of 
identical, small, and flat leaves with random azimuth angles (Verhoef, 
1984). Apart from leaf optical properties, SAIL requires information on 
LAI, leaf angle distribution function (Campbell, 1990), solar zenith angle 
(tts), observer zenith angle (tts), relative azimuth angle (psi), soil back
ground reflectance, soil brightness (psoil), diffuse radiation (skyl), and 
hot-spot size parameter hot (Kuusk, 1991). 

Given the ill-posedness of RTM-inversions, i.e., the problem that a 
given reflectance could result from different combinations of trait ex
pressions, various authors have recommended the use of prior knowl
edge while parameterizing RTMs (Baret and Buis, 2008; Darvishzadeh 
et al., 2008; Vohland and Jarmer, 2008). We selected PROSAIL input 
parameters (Table 2) in accordance with in situ measured traits. More
over, information about the relationships between leaf constituents can 
be reasonable constraints to parameter combinations (Ali et al., 2016; 
Vohland et al., 2010). In our data, we observed linear correlations be
tween Ant and Cab (Pearson’s correlation r = 0.57) and Car and Cab (r =
0.89) with ratios for Car/Cab from 0.19 to 0.74 and Ant/Cab from 0.02 
to 0.2. To preserve realized relationships, we coupled the corresponding 
parameters within the 10%- and 90%-quantile of the observed ratios 
(Car/Cab: 0.24–0.36, Ant/Cab: 0.028–0.051). The same procedure was 
applied for Cw and Cm (r = 0.42), showing ratios (Cw/Cm) from 1.05 to 
17.0 (10%–90%–quantile: 2.04–5.74). For the soil reflectance parame
trization within SAIL, we acquired pure soil reference spectra for both 
wet and dry soil. We fixed psoil at 0.5 to reduce the ill-posed problem of 
model inversions and considering that reflectance spectra of closed 
canopies are not greatly affected by soil properties. 

We tested three inversion procedures: (1) lookup-table (LUT)-based 
inversion with RMSE as cost function (invLUT), (2) LUT-based inversion 
in combination with continuous wavelet transformation and RMSE as 
cost function (invLUTwavelet), and (3) hybrid inversion technique using 

Table 1 
Summary statistics of the traits retrieved from the cultivated plants.  

Measured variable Min. Mean Max. StDev CV 
[%] 

Chlorophyll a + b [µg/ 
cm2]  

8.14  31.74  65.58  9.98  31.4 

Carotenoids [µg/cm2]  4.58  9.09  13.02  1.57  17.3 
Anthocyanins [µg/cm2]  0.56  1.23  2.81  0.36  28.9 
Equivalent water 

thickness [g/cm2]  
0.004  0.015  0.058  0.007  44.4 

Dry matter [g/cm2]  0.0006  0.0045  0.0118  0.0017  38.7 
Leaf Area Index [m2/m2]  0.26  3.94  7.14  1.53  38.9 
Average leaf angle [◦]  5.08  42.91  78.68  15.86  36.9 
Flower coverage [%]  0.00  5.33  70.00  9.18  1.72 

StDev = Standard Deviation, CV = Coefficient of variation. 
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Random Forest (invHyb). Hybrid inversions are based on RTM- 
simulated spectra that are used to calibrate statistical models. For 
each method, inversion was applied on pot-level reflectance and the 
resulting trait estimates subsequently pooled to median species-specific 
values. 

2.3.1. Lookup table approaches 
For invLUT, a variety of possible parameter combinations is stored in a 

lookup table and the corresponding spectra are modeled with PROSAIL. 
The actual inversion is the process of identifying the modeled reflectance 
spectrum – and thus the underlying traits – that is closest to the measured 
reflectance. This is done by querying the modeled spectra and applying a 
cost function. For our study, the lookup table comprised 100,000 parameter 
combinations drawn randomly from uniform distributions. We added 
randomly generated noise to the simulated spectra to increase the robust
ness (Locherer et al., 2015). The random noise was generated from normal 
distribution with zero-mean and standard deviation of 0.0001. 

For invLUTwavelet, we used RMSE in combination with continuous 
wavelet transformation. Wavelets are simple mathematical functions 
that can be used to decompose reflectance spectra into frequency com
ponents at different scales. Several studies showed that wavelet analysis 
improved RTM-based parameter retrieval (Ali et al., 2016; Banskota 
et al., 2013; Blackburn and Ferwerda, 2008) as they can decouple 
spectral features of different traits. For instance, variation in pigments 
results in relatively narrow spectral features, whereas scattering pro
cesses as resulting from variation in LAI are rather displayed in broad 
spectral features. For each modeled reflectance spectrum, we calculated 
wavelets with a second derivative Gaussian function (‘Mexican hat’) at 
eight scales in a range from 1 to 350 nm using the R-package ‘wmtsa’ 
(Constantine and Percival, 2017). We excluded wavelets at the first two 
scales as they primarily represent high-frequency noise. Inversion using 
invLUTwavelet is done by identifying the modeled reflectance whose 
wavelets are closest to wavelets of the measured reflectance. 

For invLUT and invLUTwavelet, we selected the 100 parameter com
binations resulting in the smallest RMSE. Final trait estimates were 
derived using weighted mean according to the RMSE values (see Voh
land et al., 2010). 

2.3.2. Hybrid approach 
Following the implementation in previous studies (Doktor et al., 

2014; Feilhauer et al., 2018, 2017) we applied the hybrid approach 
(invHyb) using Random Forest regression models (Breiman, 2001) that 
were trained on a large lookup table (n = 55,000). The ability to handle 
high data dimensionality and multicollinearity makes Random Forest 
highly suitable for hyperspectral data (Belgiu and Drăguţ, 2016). 
Separate Random Forest models per trait were trained with RTM- 
simulated spectra of 5,000 randomly selected parameter combina
tions. Larger sample sizes substantially increased computational time 
without model improvements (not shown). The remaining 50,000 
parameter combinations served as validation data to assess the predic
tive performance (for calibration accuracies see Appendix B). 

We determined accuracies of the four trait retrieval approaches using 
RMSE, range normalized RMSE (nRMSE), and the coefficient of deter
mination R2 between trait estimates and reference measurements. 

2.4. Impact of phenology on trait retrievals 

We analyzed the impact of phenology on PLSR- and PROSAIL-based 
retrieval methods in terms of two aspects: (1) we assessed how flowering 
affects trait retrieval accuracy, by comparing the model results on 
different subsets of the full dataset with increasing percentages of 
flowering canopies (Section 2.4.1); (2) we investigated to what extent 
the temporal variability affects trait retrieval accuracy, by comparing 
trait retrievals within the growing season using a moving window 
approach (Section 2.4.2). 

2.4.1. Impact of flowering 
For each trait, a PLSR model was calibrated with 100 randomly 

selected observations of non-flowering (0% flower coverage) plants. In 
the context of this study, flowering also comprised the presence of in
florescences, even though the plant might not yet be or not anymore be 
in blossom. The model was subsequently applied to 101 independent 
subsets including different proportions of observations that include 
flowers (0, 1, 2…100%). Each of these 101 subsets was created by 
proportionally sampling a total of 100 flowering and non-flowering 
observations from the original dataset (e.g., subset corresponding to 
73% included 73 observations with and 27 observations without 
flowers). From the predictions of the subsets, we obtained model accu
racies in terms of R2

0–100% and RMSE0–100% (from 0% to 100% flowering 
plants respectively). The whole procedure was repeated 100 times, 
resulting in 10,100 values per accuracy metric (101 different flowering 
percentages times 100 repetitions). With the resulting accuracies, we 
calculated linear regressions between observed R2

0-100% (RMSE0–100%) 
against the percentage of flowering plants. We performed a similar 
analysis to test for the impact of flowering on the RTM-based trait 
retrieval that resulted in very similar findings (Appendix C). 

2.4.2. Impact of temporal trait variability 
To assess how the trait retrieval accuracy varies during the growing 

season we used a moving window along the day of growing season 
(DOGS). DOGS is defined as the day on which measurements were ac
quired, starting with day of germination. The window was applied in 21 
steps, corresponding to the number of weeks in the considered growing 
season. We only considered observations without flowers (the specific 
effect of flowers is assessed in Section 2.4.1). We used DOGS instead of 
the day of the year for better comparability between years because dates 
of germination varied. For the statistical trait retrieval, we calculated 
PLSR models for each trait within the respective timeframe. In contrast 
to the PLSR models trained with cross-validation on the full dataset 
(Section 2.2), we here used leave-one-out cross-validation to compen
sate for the smaller number of observations in each temporal window. 
For the RTM-based methods, we calculated linear regressions between 
the selected measurements and the corresponding estimates in the 
temporal window. We set the window size to 56 days to ensure a large 

Table 2 
Parameter settings for PROSAIL for the generation of the lookup table.  

Model Parameter Abb. Unit Value/Range 

PROSPECT- 
D 

Leaf structure 
coefficient 

N – 1–2 

Chlorophyll a + b 
content 

Cab µg/ 
cm2 

8–65 

Carotenoid content Car µg/ 
cm2 

1.9–23.4a 

Anthocyanin content Ant µg/ 
cm2 

0.22–3.25a 

Brown pigment 
content 

Cbrown – 0–0.3 

Equivalent water 
thickness 

Cw g/cm2 0.005–0.03 

Dry matter content Cm g/cm2 0.0008–0.014b  

4SAIL Leaf area index LAI m2/ 
m2 

0.2–7.5 

Average leaf angle ALA ◦ 5–80 
Hot spot size hot – 0.1c 

Soil brightness psoil – 0.5 
Solar zenith angle tts ◦ Fixed at 

measurement 
Observer zenith angle tto ◦ 0c 

Relative azimuth 
angle 

psi ◦ 0c 

Diffuse radiation skyl – Fixed at 
measurement  

a Possible range after coupling with Cab. 
b Possible range after coupling with Cw. 
c Fixed due to nadir acquisition. 
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enough sample size in each temporal window (53 < n < 176). Based on 
the temporal patterns, we qualitatively chose the timeframe with 
highest model accuracies – in terms of R2 and RMSE – and kept those 
observations in the phenological subset. 

3. Results 

3.1. Impact of flowering 

An increasing percentage of flowering plants decreased the predic
tive performance of PLSR models for five traits, except for Cw, which 
showed no trend (all significant at p < 0.001, Fig. 2). The assessment of 
Car was most affected by flowering (Fig. 2, R2 = 0.61 between retrieval 
accuracy and the fraction of flowering canopies), with a decrease in 
model fit from an initial R2

0% = 0.58 (mean R2 of the 100 repetitions at 
0% flowering) to R2

100% = 0.25 (mean R2 of the 100 repetitions at 100% 
flowering). A slightly weaker effect was found for models of Cab (R2 =

0.5) with a decrease in model fit from R2
0% = 0.57 to R2

100% = 0.31. Ant 
and Cm showed similar results with R2 = 0.3 and a decrease in model fit 
from R2

0% = 0.4 to R2
100% = 0.2. The negative impact of flowering on 

the predictive performance was smallest for LAI (R2 = 0.06, R2
0% = 0.33, 

R2
100% = 0.26). The influence of flowering on model accuracy for 

canopy-level contents as well as the influence on model RMSE is given in 
Appendix C. The findings from the RTM-based analyses showed the 
same overall trends and can also be found in Appendix C. 

3.2. Ideal temporal window 

For all three RTM-based approaches, Cab and Car were best retrieved 
towards senescence, whereas LAI and Cw tended towards the first half of 
the growing season (Fig. 3a). For Ant and Cm, timing showed only a 
small influence on trait retrieval. On canopy-level, retrieval accuracies 
largely followed the temporal patterns of LAI. For PLSR models, seasonal 

differences were smaller. Except for Cm and LAI, we found no strong 
temporal patterns. The accuracy of LAI retrieval decreased towards 
senescence, whereas for Cm accuracy increased. 

3.3. Full dataset 

Measured traits and traits predicted through PLSR modeling showed 
R2-values between 0.22 and 0.49 with slope values between 0.24 and 0.5 
and nRMSE below 0.17 (Fig. 4a− 5a). Strongest correlations between 
modeled and measured traits were observed for Cab (R2 = 0.49) and Car 
(R2 = 0.47) at leaf-level and CCab (R2 = 0.42) at canopy-level. Cm (R2 =

0.22) showed the weakest correlations. 
InvLUT (Fig. 4b− 5b) yielded considerably lower model fits and 

higher nRMSE for most traits. Best results were obtained for pigments 
with the highest correlation for Cab (R2 = 0.41). LAI was the most 
difficult trait to estimate using invLUT indicated by nRMSE = 0.3 and a 
low correlation between modeled and measured trait values (R2 = 0.03). 
For canopy-level contents, CCw was best modeled (R2 = 0.28). 

InvLUTwavelet (Fig. 4c–5c) introduced minor improvements and 
resulted in slightly smaller nRMSE and higher R2 than invLUT. 

The large variations in the modeled trait ranges of both lookup table- 
based approaches were also apparent in the results of invHyb 
(Fig. 4d− 5d). Especially for leaf pigments, a clear systematic underes
timation of trait values could be observed here, given that most obser
vations lie below the 1:1-line. Best results were obtained for Cab with R2 

= 0.3 and nRMSE = 0.31. 

3.4. Phenological subset 

Model accuracies on the phenological subset (observations with 
flowers removed and based on the temporal window selection) clearly 
differed from results of the full dataset (Figs. 4 and 5, grey dots vs. blue 
triangles). Except for Cw and CCm, all PLSR models showed an increase 
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Fig. 2. Coefficient of determination of the PLSR models for the leaf-level variables and LAI in dependency of the fraction of flowering plants. The results for the 
canopy-level leaf constituents are given in Appendix C. 
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in model fit with highest accuracy for CCab (up to R2 = 0.7). Slope 
values only slightly improved with lowest values m = 0.2 for CCm and 
highest m = 0.68 for Car. All PLSR models were biased to the effect that 
lower values were overestimated and higher values were under
estimated. This resulted in poorly represented trait ranges especially for 
Cm, Cw, and CAnt. 

Compared to the full dataset, both invLUT and invLUTwavelet showed 
better model accuracies when applied to the phenological subset, with 
better results for invLUTwavelet. For Cab, Car, LAI, and canopy-level 
contents, slope values closer to m = 1 indicate that lookup table- 
inversions worked equally well throughout the entire trait ranges. LAI 
showed largest improvements in model accuracies on the phenological 
subset (invLUT: R2 = 0.47, invLUTwavelet: R2 = 0.52). 

The results of invHyb applied on the phenological subset resulted 
again in underestimation of leaf pigment contents, and only improve
ments in terms of R2 could be observed but not for the slope values. Less 
underestimation was observed for leaf pigments up-scaled to canopy- 
level (e.g., CCab; cf. Figs. 4d vs. 5d), which, however, was mainly due 
to better LAI predictions. 

4. Discussion 

4.1. Flower coverage limits retrieval of functional traits 

The distinct spectral signal of flowers has been discussed as a good 
indicator for the remote discrimination of species (Andrew and Ustin, 
2008; Ge et al., 2006; He et al., 2011; Kattenborn et al., 2019) or 
pollination types (Feilhauer et al., 2016). Contrasting, our results show 
that flowering has a negative impact on the predictive performance of 
statistical and RTM-based methods for estimating leaf and canopy traits 
(except for Cw). The negative effect of flowering on retrieval accuracies 

can be explained as the presence of inflorescence has consequences 
throughout the optical spectrum (Landmann et al., 2019) hampering the 
assessment of any trait from canopy reflectance data. The largest in
fluence was found for leaf pigments Cab and Car, probably because their 
characteristic absorption features largely overlap with the spectral fea
tures of flowers that are naturally prominent in the visible domain (Chen 
et al., 2009; Kevan et al., 1996). The retrieval of traits with broad ab
sorption and scattering features, like LAI, Cm, and Cw is less affected. 

4.2. Retrieval accuracies vary during the growing season 

Results from the moving window approach analyzing temporal 
changes in trait retrieval are unlikely to be transferable across species, 
years, and geographic locations but shed light on the variability in time. 
The results show that trait retrieval does not perform equally well within 
the growing season. Temporal differences were larger for PROSAIL- 
based methods than for PLSR. We assume that the application of PRO
SAIL is most successful when canopy conditions are closest to the model 
assumptions. This explains why several traits are better estimated to
wards the center or end of the growing season (except for LAI as dis
cussed below), where the plant canopies were fully developed and 
corresponded most to a turbid medium (a primary assumption of PRO
SAIL). Statistical methods can better compensate for seasonal variation 
given that respective observations are included in the training stage. 

Leaf-level pigment contents were better retrieved towards the end of 
the growing season, which could result from accumulating LAI and thus 
overall higher total pigment content, which in turn results in increased 
light absorption and thus in a more distinct spectral response. Besides, 
increased range of pigment contents towards the end of the growing 
season might have caused a better model fit. LAI featured an opposing 
trend and was better retrieved at the beginning. This can be explained as 
dense canopies suffer from saturation effects for LAI retrieval and could 
result in larger errors for higher LAI values that were especially present 
towards the end of the growing season. 

Given the above-mentioned explanations, temporal trends of the 
canopy-level traits, e.g., CCab (Cab * LAI) largely followed the dynamics 
observed in LAI and accuracies dropped to a minimum at the end of the 
growing season. Cab and Car, were best retrieved towards the end of the 
growing season, whereas the corresponding canopy-level variables, 
CCab and CCar, had their temporal optimum for trait retrieval at the 
beginning of the growing season. This underlines the key role of LAI for 
the estimation of canopy-level contents as has been reported in previous 
studies (e.g., Sehgal et al., 2016; Vohland and Jarmer, 2008). 

4.3. Model performance per trait 

Our dataset includes a wide range of optically relevant plant traits 
and covers a large part of a plants’ lifecycles. Other studies have mostly 
investigated limited timeframes and numbers of traits, which hampers 
comparison with our results. To facilitate a comparison we focused on 
results from the phenological subset. 

Cab was best retrieved with invLUTwavelet. The model accuracy (R2 =

0.59, nRMSE = 0.15) is well in line with expected retrieval accuracies 
(nRMSE of 0.214) for physically-based approaches as reported in the 
review by van Cleemput et al. (2018). Darvishzadeh et al. (2008) have 
also used a LUT-approach and found an overall comparable error rate 
(RMSE = 6.8 µg/cm2) but a low proportion of explained variation (R2 =

0.27). In our study, PLSR gave the best linear fit for Car and Ant but the 
established relationships are rather biased. With a similar model fit but 
with slope values closest to 1, invLUTwavelet resulted in better overall 
retrieval performance. Model accuracies for Car and Ant differed largely 
between PLSR and RTM-based methods, with higher model accuracies 
for PLSR. Given the strong correlation between Car, Cab, and Ant, 
respectively, values of Ant and Car might have been an indirect 
expression of the better visible Cab. This is supported by the fact that 
RTM-based methods were not able to disentangle the subtle spectral 

Fig. 3. Temporal variations of the coefficient of determination along the day of 
growing season exemplary for a) invLUTwavelet and b) PLSR. The temporal 
variation of the remaining models is available in Appendix D. 
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Fig. 4. Predicted versus measured chlorophyll (Cab), carotenoid (Car), anthocyanin (Ant), leaf dry matter (Cm), and leaf water content (Cw) from (a) PLSR models, 
(b) invLUT-, (c) invLUTwavelet-, and (d) invHyb-inversion. Results on the full dataset are shown in grey and results on the phenological subset are superimposed as 
blue triangles. DOGS stands for the center day of the temporal window. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 5. Predicted versus measured canopy-level contents of Leaf Area Index (LAI), chlorophyll (CCab), carotenoid (CCar), anthocyanin (CAnt), dry matter (CCm), and 
water content (CCw) from (a) PLSR models, b) invLUT-, (c) invLUTwavelet-, and (d) invHyb-inversion. Results on the full dataset are shown in grey and results on the 
phenological subset are superimposed as blue triangles. DOGS stands for the center day of the temporal window. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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response of Ant and Car. This is not to say that Ant and Car are generally 
not retrievable from RTM-inversions. For example, Zarco-Tejada et al. 
(2018) have used Ant retrievals from PROSAIL-inversions of airborne 
hyperspectral data to detect the plant disease Xylella fastidiosa in olive 
trees. Yet, they targeted monocultures and therefore the absorption 
features of Ant might have been better visible than in datasets that 
include several species with a greater variation of traits expressions. 
Additionally, monocultures feature a comparable small range of trait 
expressions, which in turn enables to further restrict the trait ranges (e. 
g., in a lookup table) and thus the ill-posed problem. 

For LAI, PLSR was slightly better in terms of R2 and RMSE but slope 
values were again best for invLUTwavelet. A variety of studies have re
ported higher accuracies for RTM-based LAI retrieval than in our study, 
e.g., Atzberger et al. (2013) with R2 = 0.91 and RMSE = 0.53 for 
grassland and Jay et al. (2017) with R2 = 0.81 and RMSE = 0.39 for a 
range of crops. However, difference in accuracies between these and our 
studies can be easily explained by the wide plant functional gradient 
represented in our dataset (cf. Kattenborn et al., 2019a), magnifying the 
already inherent ill-posed problem of the RTM-based trait retrievals. 
Only a few studies have reported lower accuracies (e.g., Botha et al., 
2007: R2 = 0.13, RMSE = 0.97). 

A commonality of all four retrieval methods is that estimation of leaf 
constituents was more accurate when scaled up to the canopy-level 
using LAI. This is in line with the findings from previous studies (Dar
vishzadeh et al., 2008; Jay et al., 2017; Roelofsen et al., 2013; Sehgal 
et al., 2016; Vohland and Jarmer, 2008) and is especially applicable to 
Cm and Cw, showing very weak relationships on leaf-level but highest 
accuracies on canopy-level. This is because not only functional traits 
itself but also their interactions contribute to the spectral variation 
(Jacquemoud et al., 2009). For canopy-level contents, LAI acts as a 
multiplier of the absorption by the respective constituent and their joint 
effect is much easier modeled than the decoupled effects by themselves. 
The best retrieval method for canopy-level contents was invLUTwavelet. 
As for LAI retrieval, Vohland et al. (2010) have reported higher model 
accuracies for CCm (R2 = 0.72, RMSE = 0.002 µg/cm2) and CCw (R2 =

0.83, RMSE = 0.0078 µg/cm2), which again may be explained by the 
complexity of the present data. Darvishzadeh et al. (2008) and Jay et al. 
(2017) have reported similar accuracies for the retrieval of CCab (R2 ≥

0.7, RMSE ≤ 22 µg/cm2). 

4.4. Comparison of trait retrieval methods 

As elaborated in the methods section, the reference measurements 
for Cab, Car, and Ant were also derived using spectroscopic measure
ments and the leaf-level RTM PROSPECT. Therefore, a direct compari
son of model accuracies between the inversions of the canopy-RTM 
PROSAIL and PLSR could be biased. However, the spectra for the 
reference data retrieval were taken independently at leaf-level using a 
plant probe (leaf clip). Also, the resulting differences between models 
found for the respective traits were in line with the trends for LAI, Cm, 
and Cw that were measured directly. 

In comparison to trait retrieval from the full dataset, predictive 
performances of all retrieval methods clearly improved with the 
phenological subset. This shows that both statistical models and RTMs 
were affected by phenology. As can be seen in the large variations of the 
scatterplots (Figs. 4 and 5, grey dots), it is obvious that for some ob
servations RTM-based methods were very inaccurate. This might result 
from the ill-posedness, which is inherent with RTM-based methods and 
originates from the problem that multiple parameter combinations may 
generate very similar spectral reflectance (Combal et al., 2003). Alter
natively, such inaccuracies can be caused by the fact that the respective 
canopies did not meet the model assumptions of PROSAIL (e.g., leaf 
clumping, heterogeneous distribution of leaves with different constitu
ents). Although PLSR models yielded the highest model accuracies in 
terms of R2, they often resulted in biased predictions of trait expressions. 
A possible reason might be an overall bad predictive performance due to 

a lack of a corresponding signal in the reflectance data. Furthermore, we 
suspected insufficient capacity of PLSR to deal with non-linearity in the 
relationship between traits and reflectance. Although PLSR is a widely 
used method and known to be quite flexible in this regard, it is still a 
linear model that sometimes fails to project the nonlinearities using – 
even numerous – latent vectors (Kiala et al., 2016). However, a 
comparative analysis using non-parametric Random Forest algorithm 
(Appendix E) revealed almost identical patterns, suggesting the bias in 
predictions not being caused by the statistical algorithm itself. 

The performance of PROSAIL-based trait retrieval methods on the 
phenological subset was generally in the order invHyb < invLUT <
invLUTwavelet. The hybrid model systematically underestimated the trait 
expressions and had the largest deviances. We thus consider invHyb as 
the least suited approach. invLUT was more accurate in terms of R2 and 
RMSE and showed a lower bias. The fact that invLUT performed better 
than invHyb is in line with Vohland et al.(2010), who have tested 
different inversion techniques for trait retrieval of summer barley using 
PROSAIL and HyMap data and found lookup table-inversion to outper
form hybrid-inversion with artificial neural networks. invLUTwavelet 
provided the best results since it was able to disentangle spectral fea
tures, e.g., broad features that originate from scattering (e.g., by LAI) 
and narrower absorption features of leaf constituents (pigments, water, 
and dry matter). This is in line with previous studies that have demon
strated the value of continuous wavelet transformation for the inversion 
of PROSPECT (Blackburn and Ferwerda, 2008; Li et al., 2018). Likewise, 
Banskota et al. (2013) showed the potential of discrete wavelet trans
formations for LAI retrieval from airborne hyperspectral data through 
inversion of the Discrete Anisotropy Radiative Transfer model. 

4.5. Limitations and outlook 

With the experimental setup of cultivated plants, including repeti
tions per species and repeated measurements, we aimed to acquire 
robust and ample in situ data and to avoid external effects as much as 
possible. For logistical reasons, measurements were performed covering 
two growing seasons in 2016 and 2017 and were joined on one 365 days- 
axis with their respective day of growing season. Since only large-scale 
temporal trends were analyzed we assume minor phenological differ
ences to be negligible. 

The effect of flowers was assessed in a binary mode, where trait re
trievals for flowering and non-flowering plants were compared to trait 
retrievals of exclusively non-flowering plants. We did not assess quali
tative differences in flowers (e.g., petal size, color) or the quantitative 
differences in flower cover in the plant canopy. These aspects would 
require different or extended data acquisitions that could be realized in 
future experiments. 

Based on the large number of studied species and the wide functional 
gradients covered, we found that RTM-based trait retrieval is not as 
accurate and transferable as suggested by previous studies. We assume 
that this relates to effects of different and often complex canopy struc
tures of the studied species. In contrast to the assumptions in SAIL, such 
as homogeneous distribution of foliage, leaves of the studied plants were 
often heterogeneously distributed in the canopy and some plants addi
tionally tended to leaf clumping. Pronounced leaf clumping was 
observed for tussock-forming grasses (e.g., Festuca ovina, Deschampsia 
cespitosa) as their leaves are all attached to the center of the plant. 
Another assumption in PROSAIL is Lambertian reflectance, which does 
not hold for species with a pronounced cuticle and corresponding wax- 
layers resulting in anisotropic scattering (e.g., Cirsium acaule, Brachy
podium sylvaticum). 

A fundamental limitation of reflectance-based trait retrieval origi
nates in the reflectance measurement itself. Canopy reflectance is typi
cally a 2D measurement, which can obviously not precisely depict (often 
anisotropic) 3D radiative transfer processes and structures within a plant 
canopy. Additionally, the influence of confounding variables, such as 
soil properties and diffuse radiation, might blur the causal relationship 
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between spectral reflectance and the traits of interest. Baret and Buis 
(2008) have referred to this as the forward (or direct) problem. Hence, 
not only different RTM-simulations can result in similar canopy reflec
tance but also real-world canopies can result in similar reflectance by 
different combinations of leaf properties, canopy structure, and illumi
nation properties. This issue not only affects RTM-inversions but also 
statistical approaches. It can be assumed that retrieval of plant traits 
using canopy reflectance can be improved by increasing the dimen
sionality using multi-angular reflectance observations (see, e.g., Roosjen 
et al., 2018; Zhu et al., 2019). Accordingly, multi-angular earth obser
vation data – such as acquired from platforms with across-track pointing 
capabilities (e.g., EnMAP) – will pave new avenues for the assessment of 
plant functional diversity. 

Despite these limitations, the fact remains that RTMs allow for a 
closer approximation of the physical processes of plant-light interactions 
based on numerous variables. RTM-inversions are hence suited to 
improve our knowledge about the role of plant functional traits for 
remote sensing. Moreover, no calibration data are needed with RTMs, 
which eases applicability. With the upcoming hyperspectral satellite 
missions, e.g., EnMAP (Stuffler et al., 2007), PRISMA (Labate et al., 
2009), or HyspIRI (Roberts et al., 2012), we thus expect the inversion of 
RTMs to play a key role in assessing plant traits at multiple scales. 
Because it is in many cases without alternative (due to a lack of suitable 
calibration data) spaceborne trait retrievals using RTM-inversions are 
suggested to be a valuable tool for mapping functional diversity and 
Essential Biodiversity Variables as proposed by the Group on Earth 
Observations Biodiversity Observation Network (Pereira et al., 2013; 
Skidmore et al., 2015). 

5. Conclusion 

We investigated how plant phenology affects the retrieval of plant 
functional traits from canopy reflectance using both statistical (PLSR) 
and physically-based modeling (multiple inversion techniques of PRO
SAIL RTM). Our results reveal that:  

• Both approaches were largely affected by phenology in terms of 
temporal trait variability and by flowers in particular.  

• The directionality of this effect, however, depends on the selected 
timeframe. The best timing for functional trait mapping regarding 
phenology hence depends on the studied species and functional 
traits. Further research on how flower coverage affects the retrieval 
of plant functional traits is required to improve the estimation of 
functional traits from canopy reflectance.  

• Not only physically-based approaches, which can only decipher 
seasonal effects on implemented traits, struggled with phenology but 
also statistical approaches, which in theory can account for seasonal 
variation through appropriate reference data selection.  

• Models were better for leaf constituents that were scaled up to the 
canopy-level using LAI, while leaf-level constituents were more 
difficult to retrieve. This emphasizes the importance of trait in
teractions and structural information to spectral variation. 
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Homolová, L., Malenovský, Z., Clevers, J.G.P.W., García-Santos, G., Schaepman, M.E., 
2013. Review of optical-based remote sensing for plant trait mapping. Ecol. 
Complexity 15, 1–16. 

Jacquemoud, S., Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. 
Remote Sens. Environ. 34 (2), 75–91. 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., 
François, C., Ustin, S.L., 2009. PROSPECT+SAIL models: A review of use for 
vegetation characterization. Remote Sens. Environ. 113, S56–S66. 

Jay, S., Maupas, F., Bendoula, R., Gorretta, N., 2017. Retrieving LAI, chlorophyll and 
nitrogen contents in sugar beet crops from multi-angular optical remote sensing: 
Comparison of vegetation indices and PROSAIL inversion for field phenotyping. 
Field Crops Res. 210, 33–46. 

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., 
Guralnick, R., Kattge, J., Latimer, A.M., Moorcroft, P., Schaepman, M.E., 
Schildhauer, M.P., Schneider, F.D., Schrodt, F., Stahl, U., Ustin, S.L., 2016. 
Monitoring plant functional diversity from space. Nat. Plants 2 (3). https://doi.org/ 
10.1038/nplants.2016.24. 

Kant, I., 1783. Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft 
wird auftreten können. Riga. 

Kattenborn, T., Fassnacht, F.E., Pierce, S., Lopatin, J., Grime, J.P., Schmidtlein, S., 
Paruelo, J., 2017a. Linking plant strategies and plant traits derived by radiative 
transfer modelling. J. Veg. Sci. 28 (4), 717–727. 

Kattenborn, T., Schiefer, F., Schmidtlein, S., 2017b. Canopy reflectance plant functional 
gradient IFGG/KIT. EcoSIS. https://doi.org/10.21232/krt4-6x67. 

Kattenborn, T., Fassnacht, F.E., Schmidtlein, S., Nagendra, H., He, K., 2019a. 
Differentiating plant functional types using reflectance: Which traits make the 
difference? Remote Sens. Ecol. Conserv. 5 (1), 5–19. 

Kattenborn, T., Lopatin, J., Förster, M., Braun, A.C., Fassnacht, F.E., 2019b. UAV data as 
alternative to field sampling to map woody invasive species based on combined 
Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 227, 61–73. 

Kattenborn, T., Schmidtlein, S., 2019. Radiative transfer modelling reveals why canopy 
reflectance follows function. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598- 
019-43011-1. 

Kevan, P., Giurfa, M., Chittka, L., 1996. Why are there so many and so few white flowers? 
Trends Plant Sci. 1 (8), 252. https://doi.org/10.1016/1360-1385(96)20008-1. 

Kiala, Z., Odindi, J., Mutanga, O., Peerbhay, K., 2016. Comparison of partial least squares 
and support vector regressions for predicting leaf area index on a tropical grassland 
using hyperspectral data. J. Appl. Remote Sens 10 (3), 036015. https://doi.org/ 
10.1117/1.JRS.10.036015. 

Kuhn, M., 2018. caret: Classification and Regression Training. R Packag. version 6.0-81 
https//CRAN.R-project.org/package=caret. 

Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C., 
Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S.J., Aiba, M., Baraloto, C., 
Caspersen, J., Cornelissen, J.H.C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., 
Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., 
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