KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors

Scholz, Alexander; Zimmermann, Lukas; Gengenbach, Ulrich; Koker, Liane; Chen, Zehua; Hahn, Horst; Sikora, Axel; Tahoori, Mehdi B.; Aghassi-Hagmann, Jasmin

Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.

Verlagsausgabe §
DOI: 10.5445/IR/1000125900
Veröffentlicht am 10.11.2020
DOI: 10.1038/s41467-020-19324-5
Zitationen: 8
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2020
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000125900
HGF-Programm 43.22.03 (POF III, LK 01) Printed Materials and Systems
Erschienen in Nature Communications
Verlag Nature Research
Band 11
Heft 1
Seiten Art.-Nr. 5543
Vorab online veröffentlicht am 02.11.2020
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page