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Abstract
We study a novel class of affine invariant and consistent
tests for normality in any dimension in an i.i.d.-setting.
The tests are based on a characterization of the stan-
dard d-variate normal distribution as the unique solu-
tion of an initial value problem of a partial differential
equation motivated by the harmonic oscillator, which
is a special case of a Schrödinger operator. We derive
the asymptotic distribution of the test statistics under
the hypothesis of normality as well as under fixed and
contiguous alternatives. The tests are consistent against
general alternatives, exhibit strong power performance
for finite samples, and they are applied to a classical data
set due to R.A. Fisher. The results can also be used for a
neighborhood-of-model validation procedure.
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1 INTRODUCTION

The multivariate normal distribution plays a key role in classical and hence widely used
procedures, such as multivariate linear regression models with fixed effects and multivari-
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ate analysis of variance, see Eaton (1983), but it is also widespread in image analysis, see
Ghaziasgar, Bagula, Thron, and Ajayi (2020), or in anomaly detection in machine learn-
ing, see Luo and Zhong (2017). Serious statistical inference that involves the assumption
of multivariate normality should therefore start with a test of fit to this model. There
is a continuing interest in this testing problem, as evidenced by a multitude of papers.
The proposed tests may be roughly classified as follows: Arcones (2007), Baringhaus and
Henze (1988), Henze and Wagner (1997), Henze and Zirkler (1990), Pudelko (2005), and Ten-
reiro (2009) consider tests based on the empirical characteristic function, while Henze and
Jiménez-Gamero (2019), Henze, Jiménez-Gamero, and Meintanis (2019), and Henze and Vis-
agie (2019) employ the empirical moment generating function. A classical (and still popular)
approach is to consider measures of multivariate skewness and kurtosis (see Doornik and
Hansen, 2008; Kankainen, Taskinen, and Oja, 2007; Malkovich and Afifi, 1973; Mardia, 1970;
Mardia, 1974; Móri, Rohatgi, and Székely, 1993), as supposedly diagnostic tools with regard
to the kind of deviation from normality when this hypothesis has been rejected, but the defi-
ciencies of those measures in this regard have been clearly demonstrated (see Baringhaus and
Henze, 1991; Baringhaus and Henze, 1992; Henze, 1994a, 1994b, 1997b). Other approaches
involve generalizations of tests for univariate normality (see Kim and Park, 2018; Sürücü, 2006;
Villaseñor Alva and González Estrada, 2009), the examination of nonlinearity of dependence (see
Cox and Small, 1978; Ebner, 2012), canonical correlations (see Thulin, 2014), and the notion of
energy (see Székely and Rizzo, 2005). For a survey of affine invariant tests for multivariate nor-
mality (see Henze, 2002). Monte Carlo studies can be found in Farrell, Salibian-Barrera, and
Naczk (2007), Mecklin and Mundfrom (2005), and Voinov, Pya, Makarov, and Voinov (2016).

To be specific, let X , X1,… , Xn,… be a sequence of independent identically distributed (i.i.d.)
d-dimensional random (column) vectors, which are defined on some common probability space
(Ω,,P). Here, d≥ 1 is a fixed integer, which means that the univariate case is deliberately
not excluded. We write PX for the distribution of X . The d-variate normal distribution with
expectation 𝜇 and nonsingular covariance matrix Σ will be denoted by Nd(𝜇,Σ). Furthermore,

d = {Nd(𝜇,Σ) ∶ 𝜇 ∈ R
d, Σ ∈ R

d×dpositive definite}

stands for the family of nondegenerate d-variate normal distributions. A check of the assumption
of multivariate normality means to test the hypothesis

H0 ∶ P
X ∈ d, (1)

against general alternatives.
Writing Id for the unit matrix of order d, our novel idea for testing H0 is to use a characteri-

zation of the Fourier transform of Nd(0,Id) as the unique solution of an initial value problem of
a partial differential equation motivated by the harmonic oscillator, which is a special case of a
Schrödinger operator. The proposed test statistic is based on the squared norm of a functional of
the empirical characteristic function in a suitably weighted L2-space. This statistic is close to zero
under the hypothesis (1), and rejection will be for large values of the test statistic.

Let L2(Rd) be the space of square integrable functions, equipped with the usual norm and
scalar product ⟨⋅,⋅⟩. Consider for sufficiently regular f ∈ L2(Rd) the partial differential equation{

Δf (x) = (||x||2 − d)f (x), x ∈ Rd,

f (0) = 1.
(2)
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Here, Δ stands for the Laplace operator, and ||⋅|| denotes the Euclidean norm. Notice that we
can rewrite (2) as (−Δ + ||x||2 − d)f (x) = 0 or, equivalently, as

d∑
j=1

(
− 𝜕2

𝜕x2
j

+ x2
j − 1

)
f (x) = 0, x = (x1, … , xd) ∈ R

d. (3)

The operator −Δ + ||x||2 − d is known as the multidimensional harmonic oscillator (see
Gustafson, 2011). The harmonic oscillator plays a fundamental role in quantum mechanics, since
it describes the behavior of a particle in an attractive electrostatic potential. To solve the PDE in
(2) means to search for the null state of the particle. In the univariate case, (2) reduces to a fixed
point problem or, equivalently, to the problem of finding the eigenfunction that corresponds to
the eigenvalue 1, of the Hermite operator, see equation (1.1.9) in Thangavelu (1993). The solu-
tion of this problem is the 0th Hermite function, which coincides with the solution given in the
following theorem.

Theorem 1. The characteristic function

𝜓(t) = exp
(
− ||t||2

2

)
, t ∈ R

d, (4)

of the d-variate standard normal distribution Nd(0,Id) is the unique solution of (2).

Proof. Let f be an arbitrary solution of (2). Writing i for the imaginary unit, we introduce the
creation and annihilation operators aj = xj + ipj and a⋆j = xj − ipj, j= 1,… ,d, where pj = −i 𝜕

𝜕xj
,

j= 1,… ,d. For each j∈{1,… ,d} we have

a⋆j aj =
(

xj −
𝜕

𝜕xj

)(
xj +

𝜕

𝜕xj

)
= x2

j + xj
𝜕

𝜕xj
− 𝜕

𝜕xj
xj −

𝜕2

𝜕x2
j

= − 𝜕2

𝜕x2
j

+ x2
j − 1.

So we can rewrite (3) as
∑d

j=1 a⋆j ajf = 0, which implies

⟨
f ,

d∑
j=1

a⋆j ajf

⟩
=

d∑
j=1
⟨f , a⋆j ajf ⟩ = d∑

j=1
⟨ajf , ajf ⟩ = d∑

j=1
||ajf ||2 = 0

and thus ajf = 0 for each j∈{1,… ,d}. We therefore have (x +∇)f = 0, where ∇ denotes the
gradient operator. By the last statement and the product rule, it follows that

∇
(

exp
(||x||2

2

)
f
)

= x exp
(||x||2

2

)
f − x exp

(||x||2
2

)
f = 0,

which, in view of the condition f (0)= 1, completes the proof. ▪

Remark 1. The operator H = −Δ + ||x||2 is the Hermite operator in Rd, and 𝜓 is the product of
the one-dimensional 0th Hermite functions. Therefore, since H𝜓 = d𝜓 (as we have shown in
Theorem 1), 𝜓 is the eigenfunction associated with the eigenvalue d. For details on the Hermite
operator in Rd and corresponding eigenfunctions (see p. 5 of Thangavelu, 1993).
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In this article, we study a family of affine invariant test statistics for H0 that is based on the
characterization given in Theorem 1. Since the class d is closed under full-rank affine transfor-
mations, Theorem 1 does not restrict the scope of the testing problem. We make the tacit standing
assumption that PX is absolutely continuous with respect to Lebesgue measure, and that n≥ d+ 1.
Let Xn = n−1∑n

j=1 Xj denote the sample mean and Sn = n−1∑n
j=1(Xj − Xn)(Xj − Xn)⊤ the sample

covariance matrix of X1,… ,Xn, where x⊤ means transposition of a column vector x. The assump-
tions made above guarantee that Sn is invertible almost surely (see Eaton and Perlman, 1973). The
test statistic will be based on the so-called scaled residuals

Yn,j = S−1∕2
n (Xj − Xn), j = 1, … ,n, (5)

which represent an empirical standardization of the data. Here, S−1∕2
n is the unique symmetric

positive definite square root of S−1
n . The test statistic will be based on the empirical characteristic

function

𝜓n(t) =
1
n

n∑
j=1

exp(it⊤Yn,j), t ∈ R
d,

of Y n,1,… ,Y n,n. Notice that an application of the Laplace operator Δ to 𝜓n yields Δ𝜓n(t) =
− 1

n

∑n
j=1 ||Yn,j||2 exp(it⊤Yn,j), t ∈ Rd. Motivated by (2) and Theorem 1, we propose the weighted

L2-statistic

Tn,a = n∫ |Δ𝜓n(t) − Δ𝜓(t)|2wa(t) dt

= n∫
|||||| 1
n

n∑
j=1
||Yn,j||2 exp(it⊤Yn,j) + (||t||2 − d) exp

(
− ||t||2

2

)||||||
2

wa(t) dt,

where

wa(t) = exp(−a||t||2), t ∈ R
d, (6)

and a > 0 is a fixed constant. Moreover, |z| is the modulus of a complex number z, and
integration is, unless otherwise specified, over Rd. In principle, other weight functions than
wa are conceivable in the definition of Tn,a. Since, for c ∈ Rd (see Henze and Zirkler, 1990,
p. 3601),

∫ cos(t⊤c) exp(−a||t||2)dt =
(
𝜋

a

) d
2 exp

(
− ||c||2

4a

)
, (7)

as well as

∫ (||t||2 − d) cos(t⊤c) exp
(
−
(

a + 1
2

) ||t||2) dt

= −(2𝜋)
d
2 (||c||2 + 2da(2a + 1))

(2a + 1)2+ d
2

exp
(
− ||c||2

2(2a + 1)

)
, (8)
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∫ (||t||2 − d)2 exp(−(a + 1)||t||2)dt = 𝜋
d
2

(a + 1)2+ d
2

(
a(a + 1)d2 + d(d + 2)

4

)
, (9)

an attractive feature of the choice of wa is that the test statistic takes the simple form

Tn,a =
(
𝜋

a

) d
2 1

n

n∑
j,k=1

||Yn,j||2||Yn,k||2 exp
(
− 1

4a
||Yn,j − Yn,k||2) (10)

− 2(2𝜋)
d
2

(2a + 1)2+ d
2

n∑
j=1
||Yn,j||2(||Yn,j||2 + 2da(2a + 1)) exp

(
−1

2
||Yn,j||2
2a + 1

)
(11)

+ n 𝜋
d
2

(a + 1)2+ d
2

(
a(a + 1)d2 + d(d + 2)

4

)
, (12)

which is amenable to computational purposes. Moreover, Tn,a depends only on the scalar
products Y⊤

n,iYn,j = (Xi − Xn)⊤S−1
n (Xj − Xn), where i,j∈{1,… ,n}. This shows that Tn,a is

invariant with respect to full rank affine transformations of X1,… ,Xn, that is, we have
Tn,a(AX1 + b,… ,AXn + b)=Tn,a(X1,… ,Xn) for each regular (d× d)-matrix A and each b ∈ Rd.
Moreover, not even the square root S−1∕2

n of S−1
n is needed. The three-line-numbering above will

become clear later when we consider the limit of Tn,a as a→ 0.
The rest of the article is organized as follows: In Section 2, we show that, as the tuning parame-

ter a tends to infinity, the test statistic Tn,a, after a suitable scaling, converges to a certain measure
of multivariate skewness. On the other hand, a time-honoured measure of multivariate kurtosis
emerges as a→ 0. Section 3 presents a basic Hilbert space central limit theorem, which proves
beneficial for obtaining the limit distribution of Tn,a both under H0 and under fixed alternatives
to normality. In Section 4, we derive the limit null distribution of Tn,a as n→∞. Section 5 con-
siders the behavior of Tn,a with respect to contiguous alternatives to H0. In Section 6, we show
that the test for multivariate normality that rejects H0 for large values of Tn,a is consistent against
general alternatives. Moreover, the limit distribution of Tn,a under a fixed alternative distribution
is seen to be normal. Since the variance of this normal distribution can be estimated from the
data, there is an asymptotic confidence interval for the measure of distance from normality under
alternative distributions that is inherent in the procedure. Furthermore, there is the option for
a neighborhood-of-model validation procedure. The results of a simulation study, presented in
Section 7, show that the novel test is strong with respect to prominent competitors. In Section 8,
the new tests are applied to the Iris flower data set due to R.A. Fisher. The article concludes
with some remarks. For the sake of readability, most of the proofs and some auxiliary results are
deferred to Appendix A. Finally, the following abbreviations, valid for t, x ∈ Rd, will be used in
several sections:

CS+(t, x) ∶= cos(t⊤x) + sin(t⊤x), CS−(t, x) = cos(t⊤x) − sin(t⊤x). (13)

2 THE LIMITS a→∞ AND a→0

The results of this section show that the class of tests for multivariate normality based on Tn,a is
“closed at the boundaries” a→∞ and a→ 0 and thus shed some light on the tuning parameter a,
which figures in the weight function wa given in (6). We first consider the case a→∞.
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Theorem 2. Elementwise on the underlying probability space, we have

lim
a→∞

2ad∕2+1

n𝜋
d
2

Tn,a = 1
n2

n∑
j,k=1

||Yn,j||2||Yn,k||2Y⊤
n,jYn,k. (14)

Proof. For short, put Y j:=Y n,j. From the representation of Tn,a we have

2ad∕2+1Tn,a

n𝜋d∕2
= 2a

n2

n∑
j,k=1

||Yj||2||Yk||2 exp
(
− 1

4a
||Yj − Yk||2)

−
( 2a

2a + 1

)d∕2+1 2
n(2a + 1)

n∑
j=1
||Yj||2(||Yj||2 + 2da(2a + 1)) exp

(
−1

2
||Yj||2
2a + 1

)
+
( a

a + 1

)d∕2+1 2
a + 1

(
a(a + 1)d2 + d(d + 2)

4

)
=∶ Un,1 − Un,2 + Un,3.

Since
∑n

j=1 ||Yj||2 = nd, an expansion of the exponential function yields

Un,1 = 2ad2 − d
n

n∑
j=1
||Yj||4 + 1

n2

n∑
j,k=1

||Yj||2||Yk||2Y⊤
j Yk + o(1)

as a→∞. To tackle Un,2, we use

( 2a
2a + 1

)d∕2+1
=
(

1 + 1
2a

)−(d∕2+1)
= 1 −

(
d
2
+ 1
)

1
2a

+ O(a−2)

and, after some algebra, obtain Un,2 = 4ad2 − (d∕2 + 1)2d2 − dn−1∑n
j=1 ||Yj||4 + o(1). Finally, a

binomial expansion of (a/(a+ 1))d/2+ 1 yields Un,3 = 2ad2 − (d∕2 + 1)2d2 + o(1). Summing up, the
assertion follows. ▪

Remark 2. The limit b̃1,d ∶= n−2∑n
j,k=1 ||Yn,j||2||Yn,k||2Y⊤

n,jYn,k (say), which figures on the
right-hand side of (14), is a measure of multivariate (sample) skewness, introduced by Móri,
Rohatgi, and Székely (see Móri et al., 1993). A much older time-honoured measure of multivari-
ate (sample) skewness is skewness in the sense of Mardia (see Mardia, 1970), which is given by
b1,d ∶= n−2∑n

j,k=1 (Y⊤
n,jYn,k)3. It is interesting to compare Theorem 2 with similar results found

in connection with other weighted L2-statistics that have been studied for testing H0. Thus, by
theorem 2.1 of Henze (1997a), the time-honoured class of BHEP-statistics for testing for multi-
variate normality (see Henze and Wagner, 1997), after suitable rescaling, approaches the linear
combination 2b1,d + 3b̃1,d, as a smoothing parameter (called 𝛽 in that article) tends to 0. Since 𝛽
and a are related by 𝛽 = a−1∕2, this corresponds to letting a tend to infinity. The same linear com-
bination 2b1,d + 3b̃1,d also showed up as a limit statistic in Henze and Jiménez-Gamero (2019)
and Henze et al. (2019). Notice that, in the univariate case, the limit statistic b̃1,d figuring in
Theorem 2 is nothing but three times squared sample skewness. We stress that tests for multivari-
ate normality based on b1,d or b̃1,d or on related measures of multivariate skewness and kurtosis
lack consistency against general alternatives (see Baringhaus and Henze, 1991; Baringhaus and
Henze, 1992; Henze, 1994a, 1994b, 1997b).
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We now consider the case a→ 0. Since, elementwise on the underlying probability space, the
expressions in (11) and (12) have finite limits as a→ 0, and since the double sum figuring in (10)
converges to

∑n
j=1 ||Yn,j||4 as a→ 0, we have the following result.

Theorem 3. Elementwise on the underlying probability space, we have

lim
a→0

(a
𝜋

)d∕2
Tn,a = 1

n

n∑
j=1
||Yn,j||4. (15)

Remark 3. The limit statistic on the right-hand side of (15) is Mardia’s celebrated measure b2,d of
multivariate sample kurtosis (see Mardia, 1970). Together with Theorem 2, this result shows that,
just like the class of BHEP tests for multivariate normality (see Henze, 1997a), also the class of
tests based on Tn,a is “closed at the boundaries” a→∞ and a→ 0. Notably, Mardia’s measure of
kurtosis shows up for the first time in connection with limits of weighted L2-statistics for testing
for multivariate normality. The corresponding limit statistic for the class of BHEP tests is, up to a
linear transformation, n−1∑n

j=1 exp(−||Yn,j||2∕2), see theorem 3.1 of Henze (1997a).

3 A BASIC HILBERT SPACE CENTRAL LIMIT THEOREM

In this chapter, we present a basic Hilbert space central limit theorem. This theorem implies the
limit distribution of Tn,a under the null hypothesis (1), but it is also beneficial for proving a limit
normal distribution of Tn,a under fixed alternatives to H0. Throughout this section, we assume
that the underlying distribution satisfies E||X||4 < ∞. Moreover, in view of affine invariance of
Tn,a, we may (and do) w.l.o.g. assume that E(X) = 0 and E(XX⊤) = Id, since both the finite-sample
and the limit null distribution of Tn,a do not depend on the mean and covariance matrix of the
underlying normal distribution. To motivate the benefit of a Hilbert space setting and for later
purposes, it will be convenient to represent Tn,a in a different way.

Proposition 1. Recall 𝜓(t) from (4), and let

m(t) ∶= (d − ||t||2)𝜓(t), t ∈ R
d, (16)

Zn(t) ∶=
1√
n

n∑
j=1

{||Yn,j||2(cos(t⊤Yn,j) + sin(t⊤Yn,j)) − m(t)}, t ∈ R
d. (17)

We then have

Tn,a = ∫ Z2
n(t) wa(t) dt. (18)

Proof. The proof follows by straightforward algebra using the addition theorems for the sine
function and the cosine function and the fact that ∫ sin(t⊤y)m(t)wa(t) dt = 0, y ∈ Rd. ▪

A convenient setting for asymptotics will be the separable Hilbert space H of (equivalence
classes of) measurable functions f ∶ Rd → R satisfying ∫ f 2(t)wa(t) dt < ∞. The scalar product
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and the norm in H will be denoted by

⟨f , g⟩H = ∫ f (t)g(t) wa(t) dt, ||f ||H = ⟨f , f ⟩1∕2
H
, f , g ∈ H,

respectively. Notice that Tn,a = ||Zn||2
H

. Recalling CS±(t,x) from (13), and putting

𝜇(t) ∶= E[||X||2CS+(t,X)], t ∈ R
d, (19)

the main object of this section is the random element V n of H, defined by

Vn(t) ∶=
1√
n

n∑
j=1

(||Yn,j||2CS+(t,Yn,j) − 𝜇(t)), t ∈ R
d. (20)

Observe that V n =Zn if the distribution of X is Nd(0,Id), since then the functions 𝜇 and m coin-
cide. We will show that, as n→∞, V n converges in distribution to a centered Gaussian random
element V of H. The only technical problem in proving such a result is the fact that V n is based on
the scaled residuals Y n,1,… ,Y n,n and not on X1,… ,Xn. If V 0

n (t) denotes the modification of V n(t)
that results from replacing Y n,j with Xj, a Hilbert space central limit theorem holds for V 0

n , since
the summands comprising V 0

n (t) are i.i.d. square-integrable centered random elements of H. Writ-

ing

→ for convergence in distribution of random elements of H and random variables, the basic

idea to prove Vn

→ V is to find a random element Ṽ n of H, such that Ṽ n


→ V and Ṽ n − Vn = oP(1)

as n→∞. In what follows, the stochastic Landau symbol oP(1) refers to convergence to zero in
probability in H, that is, we have to show

||Ṽ n − Vn||2H = ∫ (Ṽ n(t) − Vn(t))2wa(t) dt = oP(1) as n → ∞. (21)

To state the main result of this section, let 𝜓X (t) = E[exp(it⊤X)], t ∈ Rd, denote the character-
istic function of X , and put

𝜓+
X (t) ∶= Re 𝜓X (t) + Im 𝜓X (t), 𝜓−

X (t) ∶= Re 𝜓X (t) − Im 𝜓X (t),

where Re w and Im w stand for the real and the imaginary part of a complex number w, respec-
tively. For a twice continuously differentiable function f ∶ Rd → R, let Hf (t) denote the Hessian
matrix of f , evaluated at t. Furthermore, recall the gradient operator ∇ and the Laplace operator
Δ from Section 1.

Proposition 2. Let

Ṽ n(t) ∶=
1√
n

n∑
j=1

v(t,Xj), t ∈ R
d, (22)

where

v(t, x) = v1(t, x) + v2(t, x) + v3(t, x) + v4(t, x), (23)
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v1(t, x) = ||x||2CS+(t, x), v2(t, x) =
1
2

t⊤(xx⊤ − Id)∇Δ𝜓+
X (t), (24)

v3(t, x) = (2∇𝜓−
X (t) + Δ𝜓−

X (t)t)
⊤x, v4(t, x) = x⊤H𝜓+

X (t)x. (25)

We then have (21).

The proof of Proposition 2 is given in Appendix A.
Since E(X) = 0, E(XX⊤) = Id and E[||X||2CS+(t,X)] = −Δ𝜓+

X (t), we have (writing tr
for trace) Ev(t,X) = −Δ𝜓+

X (t) + tr(H𝜓+
X (t)) = 0. Thus, v(⋅,X1),… ,v(⋅,Xn) are i.i.d. centered

square-integrable random elements of H, and the central limit theorem in Hilbert spaces gives
Ṽ n


→ V for some centered Gaussian element V of H. In view of (21) and Slutsky’s lemma, we

therefore can state the main result of this section.

Theorem 4. Let X ,X1,X2,… be i.i.d. random vectors satisfying E||X||4 <∞, E(X) = 0 and
E(XX⊤) = Id. For the sequence of random elements V n defined in (20) we have

Vn

→ V as n → ∞,

where V is a centered Gaussian element of H having covariance kernel

L(s, t) = E[v(s,X)v(t,X)], s, t ∈ R
d, (26)

where v(t,x) is given in (23).

4 THE LIMIT NULL DISTRIBUTION OF Tn,a

In this section we derive the limit distribution of Tn,a under the null hypothesis (1). In view of
affine invariance, we assume that X has a d-variate standard normal distribution. Since the pro-
cess Zn(t) given in (17) is nothing but V n, as defined in (20), in this special case, we have the
following result.

Theorem 5. Suppose that X has some non-degenerate normal distribution. Putting d2:= d+ 2,
d4:= d+ 4, we have the following:

(a) There is a centered Gaussian random element Z of H with covariance kernel

K(s, t) = 𝜓(s − t)((||s − t||2 − d2)2 − 2d2) + 𝜓(s)𝜓(t)
{
−(s⊤t)2

2
(||s||2 − d4)(||t||2 − d4)

+ 2d2(||s||2 + ||t||2) − ||s||4 − ||t||4 − ||s||2||t||2 − s⊤t(||s||2 − d2)(||t||2 − d2) − dd2
}
,

s, t ∈ Rd, such that, with Zn defined in (17), we have Zn

→ Z in H as n → ∞.

(b) We have

Tn,a

→ ∫ Z2(t) wa(t) dt.
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Notice that (b) follows from (a) and the continuous mapping theorem. Part (a) follows
from Theorem 4. For the special case X ∼Nd(0,Id), we have 𝜓+

X (t) = 𝜓−
X (t) = exp(−||t||2∕2) =

𝜓(t), which entails∇𝜓(t) = −t𝜓(t),Δ𝜓(t) = (||t||2 − d)𝜓(t), H𝜓(t) = (tt⊤ − Id)𝜓(t), and∇Δ𝜓(t) =
t𝜓(t)(2 + d − ||t||2). Thus, the function v(t,x) figuring in the statement of Proposition 2 takes the
special form

h(x, t) = ||x||2CS+(t, x) − (2𝜓(t) + m(t))t⊤x − 𝜓(t)||x||2 (27)

+
(

2𝜓(t) + m(t)
2

)
(t⊤x)2 −

(
𝜓(t) + m(t)

2

) ||t||2.
Long but straightforward computations, using symmetry arguments and the identities

E[||X||2(s⊤X)2] = (d + 2)||s||2,
E[||X||4 cos(t⊤X)] = ((d + 2 − ||t||2)(d − ||t||2) − 2||t||2)𝜓(t),

E[||X||2s⊤X sin(t⊤X)] = s⊤t(d + 2 − ||t||2)𝜓(t),
E[||X||2(s⊤X)2 cos(t⊤X)] = (d + 2 − ||t||2)(||s||2 − (s⊤t)2)𝜓(t) − 2(s⊤t)2𝜓(t),

s, t ∈ Rd, show that the covariance kernel K(s, t) = E[h(s,X)h(t,X)] takes the form given
above.

Let T∞,a be a random variable with the limit null distribution of Tn,a, that is, with the distri-
bution of ∫ Z2(t)wa(t) dt. Since E(T∞,a) = ∫ K(t, t)wa(t) dt, the following result may be obtained
by straightforward but tedious manipulations of integrals.

Theorem 6. Putting cj(a, d) ∶= 𝜋d∕2d(a + 1)−d∕2−j, j = 1, 2, 3, 4, we have

E(T∞,a) = d(d + 2)
((

𝜋

a

)d∕2
−
(

𝜋

a + 1

)d∕2
)

− c4(a, d)
(d + 2)(d + 4)(d + 6)

32
+ c3(a, d)

(d + 2)(d + 3)(d + 4)
8

− c2(a, d)
(d + 2)(d2 + 4d + 14)

8
+ c1(a, d)

(d − 2)(d + 2)
2

.

The quantiles of the distribution of T∞,a can be approximated by a Monte Carlo method, see
Section 7.

5 CONTIGUOUS ALTERNATIVES

In this section, we consider a triangular array (Xn1,… ,Xnn), n≥ d+ 1, of rowwise i.i.d.
random vectors with Lebesgue density fn(x) = 𝜑(x)(1 + g(x)∕

√
n), x ∈ Rd, where 𝜑(x) =

(2𝜋)−d∕2 exp(−||x||2∕2), x ∈ Rd, is the density of the standard normal distribution Nd(0,Id), and g is
some bounded measurable function satisfying ∫ g(x)𝜑(x) dx = 0. We assume that n is sufficiently
large to render g nonnegative. Recall Zn(t) from (17).

Theorem 7. Under the triangular Xn,1,… ,Xn,n given above, we have Zn

→ Z + c as n → ∞,

where Z is the centered random element of H figuring in Theorem 5, and c(t) = ∫ h(x, t)g(x)𝜑(x) dx,
with h(x,t) given in (27).



DÖRR et al. 11

Proof. Since the reasoning uses standard LeCam theory on contiguous probability measures and
closely parallels that given in section 3 of Henze and Wagner (1997), it will be omitted. ▪

Corollary 1. Under the conditions of Theorem 7, we have Tn,a

→ ∫ (Z(t) + c(t))2wa(t) dt.

From Theorem 7 and the above corollary, we conclude that the test for multivariate normality
based on Tn,a is able to detect alternatives which converge to the normal distribution at the rate
n−1/2, irrespective of the underlying dimension d. The test of Bowman and Foster (see Bowman
and Foster, 1993) is a prominent example of an affine invariant tests for multivariate normality
that is consistent against each fixed non-normal alternative distribution but nevertheless lacks
this property of n−1/2-consistency, see section 7 of Henze (2002).

6 FIXED ALTERNATIVES AND CONSISTENCY

In this section we assume that X ,X1,X2,… are i.i.d. with a distribution that is absolutely contin-
uous with respect to Lebesgue measure, and that E||X||4 < ∞. In view of affine invariance, we
make the additional assumptions E(X) = 0 and E(XX⊤) = Id. Recall m(t) from (16) and 𝜇(t) from
(19). Writing

a.s.
→ for P-almost sure convergence, our first result is a strong limit for Tn,a/n.

Theorem 8. If E||X||4 < ∞, we have

Tn,a

n
a.s.
→ Δa = ∫ (𝜇(t) − m(t))2wa(t) dt as n → ∞. (28)

The proof of Theorem 8 is given in Appendix A.

Remark 4. Let 𝜓X (t) = E[exp(it⊤X)], t ∈ Rd, denote the characteristic function of X . We have
Δ𝜓X (t) = −E[||X||2 exp(it⊤X)]. Since Δ𝜓(t) = (||t||2 − d)𝜓(t), some algebra gives

Δa = ∫ |Δ𝜓X (t) − Δ𝜓(t)|2wa(t) dt.

By Theorem 1, we have Δa = 0 if and only if X has the normal distribution Nd(0,Id).
In view of Theorem 8, Tn,a →∞ P-almost surely under any alternative distribution sat-
isfying E||X||4 < ∞. Since, according to Theorem 5, the sequence of critical values of a
level-𝛼-test of H0 that rejects H0 for large values of Tn,a stays bounded, we have the following
result.

Corollary 2. The test for multivariate normality based on Tn,a is consistent against any fixed
alternative distribution satisfying E||X||4 <∞.

By analogy with Theorem 2, the next result shows that the (population) measure of multivari-
ate skewness in the sense of Móri, Rohatgi, and Székely (see Móri et al., 1993) emerges as the limit
of Δa, after a suitable normalization, as a→∞.

Theorem 9. If E||X||6 < ∞, then

lim
a→∞

2ad∕2+1

𝜋d∕2
Δa = ||E(||X||2X)||2.
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The proof of Theorem 9 is given in Appendix A. We now show that the limit distribution of√
n(Tn,a∕n − Δa) as n→∞ is centered normal. This fact is essentially a consequence of theorem

1 in Baringhaus, Ebner, and Henze (2017). The reasoning is as follows: By (18), we have Tn,a =||Zn||2
H

, where Zn is given in (17). Putting z(t) ∶= 𝜇(t) − m(t), t ∈ Rd, display (28) shows that Δa =||z||2
H

. Now, defining Z∗
n(t) ∶= n−1∕2Zn(t), it follows that

√
n
(

Tn,a

n
− Δa

)
=
√

n(||Z∗
n||2H − ||z||2

H
) =

√
n⟨Z∗

n − z,Z∗
n + z⟩H

=
√

n⟨Z∗
n − z, 2z + Z∗

n − z⟩H
= 2⟨√n(Z∗

n − z), z⟩H + 1√
n
||√n(Z∗

n − z)||2
H
. (29)

A little thought shows that
√

n(Z∗
n(t) − z(t)) = Vn(t), where V n is given in (20). By Theorem 4,

Vn

→ V for a centered Gaussian element V of H. As a consequence, the second sum-

mand in (29) is oP(1) as n→∞, and, by the continuous mapping theorem, the first sum-
mand converges in distribution to 2⟨V , z⟩H. The latter random variable has a centered nor-
mal distribution with variance 𝜎2

a ∶= 4E[⟨V , z⟩2
H
]. The following theorem summarizes our

findings.

Theorem 10. For a fixed alternative distribution satisfying E||X||4 <∞, E(X) = 0 and E(XX⊤) =
Id, we have

√
n
(

Tn,a

n
− Δa

) 
→ N(0, 𝜎2

a) as n → ∞,

where

𝜎2
a = 4∫ ∫ L(s, t)z(s)z(t) wa(s)wa(t) dsdt (30)

and L(s,t) is given in (26).

Proof. To complete the proof, notice that, by Fubini’s theorem,

𝜎2
a = 4E[⟨V , z⟩2

H
] = 4E

[(
∫ V(s) z(s) wa(s) ds

)(
∫ V(t) z(t) wa(t) dt

)]
= 4∫ ∫ E[V(s)V(t)] z(s) z(t) wa(s)wa(t) dsdt.

▪

Under slightly stronger conditions on PX , there is a consistent estimator of 𝜎2
a. To obtain such

an estimator, we replace L(s,t) as well as z(s) and z(t) figuring in (30) with suitable empirical
counterparts. To this end, notice that, by (26), we have

L(s, t) =
4∑

i=1

4∑
j=1

Li,j(s, t), (31)
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where

Li,j(s, t) = E[vi(s,X)vj(t,X)] (32)

and vj(t,x), j∈{1,2,3,4}, are given in (24), (25). Since ∇Δ𝜓±
X (t) = ∓E[CS∓(t,X)||X||2X], ∇𝜓±

X (t) =
±E[CS∓(t,X)X], Δ𝜓±

X (t) = −E[CS±(t,X)||X||2] and H𝜓+
X (t) = −E[CS+(t)(t,X) XX⊤], parts a) – d)

of the following lemma show that the unknown quantities ∇Δ𝜓+
X (t), ∇𝜓

−
X (t), Δ𝜓

−
X (t) and H𝜓+

X (t)
that figure in the expressions of v2(t,x), v3(t,x) and v4(t,x) can be replaced with consistent
estimators that are based on the scaled residuals Y n,1,… ,Y n,n defined in (5).

Lemma 1. If E||X1||6 < ∞, we have

(a) Ψ1,n(t) ∶= n−1∑n
j=1 CS+(t,Yn,j)Yn,j

a.s.
→ −∇𝜓−

X (t),

(b) Ψ2,n(t) ∶= n−1∑n
j=1 CS+(t,Yn,j)Yn,jY⊤

n,j
a.s.
→ −H𝜓+

X (t),

(c) Ψ±
3,n(t) ∶= n−1∑n

j=1 CS±(t,Yn,j)||Yn,j||2 a.s.
→ −Δ𝜓±

X (t),

(d) Ψ±
4,n(t) ∶= n−1∑n

j=1 CS±(t,Yn,j)||Yn,j||2Yn,j
a.s.
→ ±∇Δ𝜓∓

X (t),

(e) Ψ5,n(t) ∶= n−1∑n
j=1 CS+(t,Yn,j)||Yn,j||2Yn,jY⊤

n,j
a.s.
→ HΔ𝜓+

X (t).

The proof of Lemma 1 is given in Appendix A. In view of Lemma 1, a suitable estimator of
L(s,t) defined in (31) is

Ln(s, t) =
4∑

i=1

4∑
j=1

Li,j
n (s, t), (33)

where

Li,j
n (s, t) =

1
n

n∑
k=1

vn,i(s,Yn,k)vn,j(t,Yn,k), (34)

and

vn,1(s,Yn,k) = ||Yn,k||2CS+(s,Yn,k), vn,2(s,Yn,k) = −1
2

s⊤(Yn,kY⊤
n,k − Id)Ψ−

4,n(s),

vn,3(s,Yn,k) = −(2Ψ1,n(s) + Ψ−
3,n(s)s)

⊤Yn,k, vn,4(s,Yn,k) = −Y⊤
n,kΨ2,n(s)Yn,k.

By straightforward algebra we have

L1,1
n (s, t) = n−1

n∑
j=1
||Yn,j||4 cos((t − s)⊤Yn,j) + n−1

n∑
j=1
||Yn,j||4 sin((t + s)⊤Yn,j),

L1,2
n (s, t) = −1

2
Ψ−

4,n(s)
⊤Ψ5,n(t)s +

1
2
Ψ+

3,n(t)Ψ
−
4,n(s)

⊤s,

L1,3
n (s, t) = (−2Ψ1,n(s) − Ψ−

3,n(s)s)
⊤Ψ+

4,n(t)

L1,4
n (s, t) = −n−1

n∑
j=1
||Yn,j||2CS+(t,Yn,j)Y⊤

n,jΨ2,n(s)Yn,j
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L2,2
n (s, t) = 1

4
Ψ−

4,n(t)
⊤n−1

n∑
j=1

Yn,jY⊤
n,jtΨ

−
4,n(s)

⊤(Yn,jY⊤
n,j − Id)s,

L2,3
n (s, t) = Ψ−

4,n(t)
⊤n−1

n∑
j=1

Yn,jY⊤
n,jt
(
Ψ1,n(s) +

1
2
Ψ−

3,n(s)s
)⊤

Yn,j, (35)

as well as

L2,4
n (s, t) = 1

2
Ψ−

4,n(t)
⊤n−1

n∑
j=1

(Yn,jY⊤
n,j − Id)tY⊤

n,jΨ2,n(s)Yn,j,

L3,3
n (s, t) = (2Ψ1,n(t) + Ψ−

3,n(t)t)
⊤(2Ψ1,n(s) + Ψ−

3,n(s)s),

L3,4
n (s, t) = n−1

n∑
j=1

(2Ψ1,n(s) + Ψ−
3,n(s)s)

⊤Yn,jY⊤
n,jΨ2,n(t)Yn,j,

L4,4
n (s, t) = n−1

n∑
j=1

Y⊤
n,jΨ2,n(t)Yn,jY⊤

n,jΨ2,n(s)Yn,j.

Notice that, by symmetry, Li,j
n = Lj,i

n if i≠ j. Since z(s) = 𝜇(s) − m(s) = E[||X||2CS+(s,X)] − m(s),
a natural estimator of z(s) is

zn(s) =
1
n

n∑
k=1

CS+(s,Yn,k)||Yn,k||2 − m(s). (36)

Writing
P

→ for convergence in probability, we then have the following result.

Theorem 11. Suppose E||X||6 < ∞, E(X) = 0 and E(XX⊤) = Id. Let

𝜎̂2
n,a = 4∫ ∫ Ln(s, t) zn(s) zn(t) wa(s)wa(t) dsdt, (37)

where Ln(s,t) and zn(s) are defined in (33) and (36), respectively. We then have 𝜎̂2
n,a

P

→ 𝜎2
a.

The proof of Theorem 11 is given in Appendix A. Under the conditions of Theorem 11,
Theorem 10 and Sluzki’s lemma yield√

n
𝜎̂n,a

(
Tn,a

n
− Δa

) 
→ N(0, 1) as n → ∞, (38)

provided that 𝜎2
a > 0. We thus obtain the following asymptotic confidence interval for Δa.

Corollary 3. Let 𝛼 ∈ (0, 1), and writeΦ1−𝛼∕2 for the (1 − 𝛼∕2)-quantile of the standard normal law.
Then

In,a,𝛼 ∶=

[
Tn,a

n
−
𝜎̂n,a√

n
Φ1−𝛼∕2,

Tn,a

n
+
𝜎̂n,a√

n
Φ1−𝛼∕2

]

is an asymptotic confidence interval for Δa.
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T A B L E 1 Percentages of coverage of Δ0.1 by In,0.1,𝛼 for
different distributions (5,000 replications)

n U(−
√

3,
√

3) L(0, 1∕
√

2) Lo(0,
√

3∕𝝅)
20 91.5 87.5 83.4

50 93.6 96.9 95.2

100 94.4 97.8 98.4

200 94.8 97.9 99.0

300 94.5 97.5 98.9

Example 1. We consider the case d= 1, a= 0.1 and the following standardized symmetric alter-
native distributions: the uniform distribution U(−

√
3,
√

3), the Laplace distribution L(0, 1∕
√

2),
and the logistic distribution Lo(0,

√
3∕𝜋). The corresponding characteristic functions and their

second derivatives are given by

𝜑U(t) =
sin(

√
3t)√

3t
, 𝜑′′

U(t) =
√

3(2 − 3t2) sin(
√

3t) − 6t cos(
√

3t)
3t3 ,

𝜑L(t) =
2

2 + t2 , 𝜑′′
L (t) =

12t2 − 8
(2 + t2)3 ,

𝜑Lo(t) =
√

3t

sinh(
√

3t)
, 𝜑′′

Lo(t) =
3
2

3
√

3t − 2 sinh(2
√

3t) +
√

3t cosh(2
√

3t)

sinh (
√

3t)3
.

The pertaining values of Δ0.1 are Δ0.1,U ≈ 0.3322, Δ0.1,L ≈ 0.127 and Δ0.1,Lo ≈ 0.033. Table 1
shows the percentages of coverage of the confidence intervals In,0.1,𝛼 for 𝛼 = .05 and several sample
sizes. Each entry is based on 5,000 Monte-Carlo-replications. The results are quite satisfactory for
n≥ 50.

Remark 5. A further application of (38) addresses a fundamental drawback inherent in any good-
ness of fit test (see Baringhaus et al., 2017). If a level-𝛼-test of H0 does not reject H0, the hypothesis
H0 is by no means validated or confirmed, since each model is wrong, and there is probably only
not enough evidence to reject H0. However, if we define a certain “essential distance” 𝛿0 > 0,
we can consider the inverse testing problem H𝛿0 ∶ Δa(F) ≥ 𝛿0 against K𝛿0 ∶ Δa(F) < 𝛿0. Here, the
dependence of Δa on the underlying distribution has been made explicit.

From (38), we obtain an asymptotic level-𝛼-neighborhood-of-model-validation test of H𝛿0

against K𝛿0 , which rejects H𝛿0 if and only if n−1Tn,a ≤ 𝛿0 − 𝜎̂n,aΦ−1(1 − 𝛼)∕
√

n. Indeed, from (38)
we have for each F ∈ H𝛿0

limsup
n→∞

PF

(
Tn,a

n
≤ 𝛿0 −

𝜎̂n,a√
n
Φ−1(1 − 𝛼)

)
= limsup

n→∞
PF

(√
n

𝜎̂n,a

(
Tn,a

n
− 𝛿0

)
≤ −Φ−1(1 − 𝛼)

)
≤ 𝛼.

Moreover, it follows that

lim
n→∞

PF

(
Tn,a

n
≤ 𝛿0 −

𝜎̂n,a√
n
Φ−1(1 − 𝛼)

)
= 𝛼
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for each F such that Δa(F) = 𝛿0. Finally, we have

lim
n→∞

PF

(
Tn,a

n
≤ 𝛿0 −

𝜎̂n,a√
n
Φ−1(1 − 𝛼)

)
= 1

if Δa(F) < 𝛿0. Thus, the test is consistent against each alternative.

Remark 6. The double integral figuring (37) may be calculated explicitly. To this end, notice that
𝜎̂2

n,a =
∑4

i,j=1 𝜎̂
i,j
n,a, where

𝜎̂
i,j
n,a = 4∫ ∫ Li,j

n (s, t)zn(s)zn(t)wa(s)wa(t) dsdt (39)

and 𝜎̂i,j
n,a = 𝜎̂

j,i
n,a, i,j∈{1,… ,4}, by symmetry. We put

q1,a(y) ∶= ∫ m(t)CS+(t, y)wa(t)dt = (2𝜋)d∕2

(2a + 1)d∕2+2
(||y||2 + 2da(2a + 1)) exp

(
−1

2
||y||2

2a + 1

)
,

p1,a(y, z) ∶= ∫ CS+(t, y)CS+(t, z)wa(t)dt =
(
𝜋

a

)d∕2
exp

(
−
||y − z||2

4a

)
,

p2,a(y, z) ∶= ∫ CS+(t, y)CS−(t, z)twa(t)dt =
(
𝜋

a

)d∕2 1
2a

exp
(
−
||y − z||2

4a

)
(y − z),

q2,a(y) ∶= ∫ m(t)CS−(t, y)twa(t)dt

= (2𝜋)d∕2

(2a + 1)d∕2+3
(2(2a + 1)(1 − ad) − ||y||2) exp

(
−1

2
||y||2

2a + 1

)
y

for y, z ∈ Rd and

P1,a,1
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2p1,a(Yj,Yk) −
1
n

n∑
j=1
||Yj||2q1,a(Yj),

P̃1,a,1
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2p1,a(Yj,Yk)Yk −
1
n

n∑
j=1
||Yj||2q1,a(Yj)Yj,

P̃1,a,2
n ∶= 1

n2

n∑
j,k=1

||Yj||2p1,a(Yj,Yk)Yk −
1
n

n∑
j=1

q1,a(Yj)Yj,

P
1,a
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2p1,a(Yj,Yk)YkY⊤
k − 1

n

n∑
j=1
||Yj||2YjY⊤

j q1,a(Yj),

P1,a,2
n (Yj) ∶=

1
n2

n∑
k,𝓁=1

||Yk||2(Y⊤
j Y𝓁)2p1,a(Yk,Yl) −

1
n

n∑
k=1

(Y⊤
j Yk)2q1,a(Yk),

P1,a,3
n (Yj) ∶=

1
n

n∑
k=1
||Yk||2p1,a(Yj,Yk) − q1,a(Yj),

P2,a,1
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2Y⊤
k p2,a(Yj,Yk) −

1
n

n∑
j=1
||Yj||2Y⊤

j q2,a(Yj),
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P2,a,2
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2Y⊤
k P1,ap2,a(Yj,Yk) −

1
n

n∑
j=1
||Yj||2Y⊤

j P1,aq2,a(Yj),

P̃2,a
n ∶= 1

n2

n∑
j,k=1

||Yj||2||Yk||2p2,a(Yj,Yk) −
1
n

n∑
j=1
||Yj||2q2,a(Yj),

P2,a,3
n (Yj) ∶=

1
n2

n∑
k,𝓁=1

||Yk||2||Y𝓁||2Y⊤
k YjY⊤

j p2,a(Yk,Y𝓁) −
1
n

n∑
k=1
||Yk||2Y⊤

k YjY⊤
j q2,a(Yk),

where Y j is shorthand for Y n,j. Notice that P̃1,a,1
n , P̃1,a,2

n , and P̃2,a
n are vectors and P

1,a
n is a matrix.

By straightforward but tedious manipulations of the integrals in (39), each 𝜎̂i,j
n is seen to be an

arithmetic mean of functions of the scaled residuals, namely,

𝜎̂
1,1
n,a = 4

n

n∑
j=1
||Yj||4P1,a,3

n (Yj)2, 𝜎̂
1,2
n,a = 2P1,a,1

n P2,a,1
n − 2P2,a,2

n ,

𝜎̂
1,3
n,a = −4(2P̃1,a,2

n + P̃2,a
n )⊤P̃1,a,1

n , 𝜎̂
1,4
n,a = − 4

n

n∑
j=1
||Yj||2P1,a,2

n (Yj)P1,a,3
n (Yj),

𝜎̂
2,2
n,a = 1

n

n∑
j=1

P2,a,3(Yj)2 − (P2,a,1
n )2, 𝜎̂

2,3
n,a = 4

n

n∑
j=1

P2,a,3(Yj)
(

P̃1,a,2
n + 1

2
P̃2,a

n

)⊤
Yj,

𝜎̂
2,4
n,a = 2

n

n∑
j=1

(P2,a,3
n (Yj) − P2,a,1

n )P1,a,2
n (Yj), 𝜎̂

3,3
n,a = 4 ⋅ ||2P̃1,a,2

n + P̃2,a
n ||2,

𝜎̂
3,4
n,a = 4

n

n∑
j=1

P1,a,2
n (Yj)(2P̃1,a,2

n + P̃2,a
n )⊤Yj, 𝜎̂

4,4
n,a = 4

n

n∑
j=1

P1,a,2
n (Yj)2.

7 SIMULATIONS

In this section, we present the results of a Monte Carlo simulation study on the finite-sample
power performance of the test based on Tn,a with that of several competitors. Since different pro-
cedures have been used for univariate and multivariate data, we distinguish the cases d= 1 and
d≥ 2. In the univariate case, the sample sizes are n∈{20,50,100}, and in the multivariate case
we consider n∈{20,50,100,200}. The nominal level of significance is fixed throughout all simu-
lations to 0.05. Critical values for Tn,a (in fact, for a scaled version of Tn,a in order to obtain values
of a similar magnitude across the range of values for d and a considered) have been simulated
under H0 with 100,000 replications (see Table 2). The critical values in the rows in Table 2 denoted
by “∞” represent approximations of quantiles of the distribution of the limit random element
T∞,a = ∫ Z2(t) wa(t) dt in Theorem 5(b). To obtain these values we simulate (say) m i.i.d. random
supporting points U1,… ,Um where U1 ∼ Nd(0, (2a)−1Id), which are adapted to the integration
over Rd with respect to the weight function wa(t) = exp(−a||t||2) and a large number (say)𝓁 of ran-
dom variables Zj = ||Xj||2/d2m, j= 1,… ,𝓁, with i.i.d. Xj ∼ Nm(0,ΣK), where the covariance matrix
Σk is given byΣK = (K(Uk1 ,Uk2))k1,k2∈{1,… ,m} and K is the covariance kernel in Theorem 5(a). Next,
we calculate the empirical 95% quantile of Z1,… ,Z𝓁 . Each approximation was simulated with
𝓁 = 100,000 and m= 1,000 for d∈{2,3,5,10} and each entry in Tables 3–6, which exhibit percent-
ages of rejection of H0 of the tests under consideration against various alternative distributions,
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T A B L E 2 Empirical and approximate quantiles for d−2(a∕𝜋)d∕2Tn,a and 𝛼 = .05
(100,000 replications)

d n∖a 0.1 0.25 0.5 0.75 1 2 3 5 10
1 20 3.489 2.754 2.099 1.777 1.603 1.337 1.190 0.971 0.643

50 3.651 2.953 2.291 1.954 1.756 1.445 1.294 1.064 0.721

100 3.662 2.967 2.336 1.995 1.797 1.482 1.329 1.104 0.753

200 3.616 2.927 2.301 1.978 1.795 1.486 1.330 1.106 0.759

∞ 3.518 2.839 2.348 1.915 1.765 1.495 1.289 1.151 0.736

2 20 2.207 1.916 1.482 1.172 0.957 0.622 0.529 0.434 0.298

50 2.263 1.978 1.551 1.255 1.039 0.689 0.592 0.494 0.349

100 2.245 1.963 1.543 1.241 1.044 0.707 0.608 0.514 0.364

200 2.220 1.941 1.519 1.217 1.024 0.698 0.605 0.512 0.368

∞ 2.235 2.018 1.489 1.187 1.013 0.674 0.598 0.491 0.362

3 20 1.769 1.610 1.304 1.042 0.842 0.462 0.352 0.277 0.193

50 1.814 1.662 1.360 1.105 0.908 0.525 0.407 0.325 0.234

100 1.799 1.649 1.347 1.092 0.899 0.525 0.412 0.334 0.244

200 1.777 1.636 1.330 1.074 0.883 0.518 0.409 0.336 0.247

∞ 1.777 1.617 1.314 1.049 0.857 0.505 0.408 0.348 0.243

5 20 1.407 1.360 1.201 1.011 0.835 0.417 0.263 0.169 0.110

50 1.471 1.420 1.260 1.073 0.902 0.482 0.315 0.210 0.144

100 1.469 1.420 1.259 1.072 0.901 0.485 0.321 0.218 0.154

∞ 1.498 1.437 1.260 1.028 0.862 0.485 0.312 0.221 0.161

10 20 1.130 1.129 1.108 1.049 0.959 0.569 0.336 0.153 0.060

50 1.207 1.205 1.181 1.121 1.032 0.652 0.409 0.201 0.090

100 1.221 1.219 1.194 1.132 1.043 0.664 0.422 0.211 0.098

200 1.223 1.220 1.195 1.133 1.044 0.665 0.424 0.214 0.102

∞ 1.289 1.284 1.254 1.194 1.061 0.696 0.427 0.215 0.106

is based on 10,000 replications. Entries that are marked with ∗ denote 100% and the tests with the
highest rejection rate are highlighted for easy reference. The simulations have been performed
using the statistical computing environment R (see R Core Team, 2019).

7.1 Testing univariate normality

For testing the hypothesis H0 that the distribution of X is univariate normal (i.e., PX ∈ 1), we
considered the following competitors to the new test statistic:

1. the Shapiro–Wilk test (SW), see Shapiro and Wilk (1965),
2. the Shapiro–Francia test (SF), see Shapiro and Francia (1972),



DÖRR et al. 19

T
A

B
L

E
3

Em
pi

ric
al

po
w

er
of

T n
,a

ag
ai

ns
tc

om
pe

tit
or

s(
d
=

1,
𝛼
=
.0

5,
10

,0
00

re
pl

ic
at

io
ns

)

T
n,

a

A
lt

.
n∖

a
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

B
E

SW
B

C
M

R
B

H
EP

A
D

SF
N

(0
,1

)
20

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
M

ix
(0

.3
,1

,0
.2

5)
20

12
14

15
17

18
20

19
19

18
23

28
28

27
30

25

50
28

33
38

42
44

46
45

43
40

54
60

60
62

68
57

10
0

61
67

72
74

76
78

76
73

69
85

89
89

90
94

88

N
M

ix
(0

.5
,1

,4
)

20
36

37
38

38
38

37
35

33
32

36
40

43
42

46
48

50
65

67
69

69
69

65
60

54
48

64
78

80
80

86
83

10
0

90
93

94
94

94
92

88
79

68
92

97
98

98
99

98

t 3
20

40
40

40
40

39
38

37
37

36
34

35
37

34
33

40

50
68

69
69

68
68

66
64

61
58

57
64

65
61

60
69

10
0

87
89

89
89

88
87

86
83

78
81

88
89

86
85

91

t 5
20

23
23

23
22

22
21

21
21

21
20

19
20

18
17

22

50
41

41
41

41
40

38
37

35
34

31
35

37
32

31
41

10
0

58
61

61
61

60
57

55
51

47
46

56
58

50
48

63

t 10
20

12
12

12
12

12
11

11
11

11
11

10
11

9
9

12

50
19

19
19

19
18

17
17

16
16

14
16

17
13

12
20

10
0

26
27

28
28

27
25

24
23

21
19

22
24

16
15

28

U
(−
√ 3,

√ 3)
20

1
1

1
1

1
2

1
1

1
3

21
17

13
17

8

50
40

25
14

13
12

5
2

1
0

8
75

70
55

58
47

10
0

98
96

89
83

80
59

24
3

1
45

*
99

95
95

97

(C
on

tin
ue

s)



20 DÖRR et al.

T
A

B
L

E
3

(C
on

tin
ue

d)

T
n,

a

A
lt

.
n∖

a
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

B
E

SW
B

C
M

R
B

H
EP

A
D

SF
𝜒

2 5
20

33
35

37
38

40
42

42
42

41
44

44
44

42
38

42

50
75

79
82

83
84

85
85

85
84

87
89

88
84

80
85

10
0

99
99

99
*

*
*

*
99

99
*

*
*

99
99

*

𝜒
2 15

20
16

16
17

18
18

19
19

19
19

19
18

18
17

16
18

50
33

37
40

42
43

45
45

46
45

45
42

42
39

33
40

10
0

60
67

71
73

74
76

76
77

77
77

75
74

68
61

71

Γ(
1,

5)
20

60
64

67
70

71
73

73
72

71
77

83
83

77
77

80

50
99

99
99

99
*

*
*

99
99

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

Γ(
5,

1)
20

19
21

22
23

24
24

25
25

25
25

24
24

23
20

24

50
45

50
53

55
57

59
59

60
59

61
59

59
55

49
56

10
0

79
85

88
88

89
90

90
90

90
91

90
90

85
81

88

W
(1

,0
.5

)
20

61
65

68
70

72
74

74
73

72
*

84
83

78
77

80

50
99

99
99

99
99

*
*

99
99

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

G
um

(1
,2

)
27

29
30

31
31

33
33

33
33

33
34

31
32

31
28

32

50
57

63
66

68
69

70
71

71
71

72
69

69
66

60
67

10
0

88
92

94
94

95
95

95
95

95
96

94
94

91
89

93

(C
on

tin
ue

s)



DÖRR et al. 21

T
A

B
L

E
4

Em
pi

ric
al

po
w

er
of

T n
,a

ag
ai

ns
tc

om
pe

tit
or

s(
d
=

2,
𝛼
=
.0

5,
10

,0
00

re
pl

ic
at

io
ns

)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

N
(0

,I 2
)

20
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
4

4
5

5
5

5
5

5
5

5
5

5
5

5
4

5

20
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
(𝜇

2,
Σ 1

)
20

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
4

5
5

4
5

5
5

5
5

5
5

5
4

4
5

4
4

5
5

5

20
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
M

ix
(0

.1
,3

,I 2
)

20
33

39
27

39
40

42
42

39
24

17
12

9
32

34
35

35
36

39
39

39
38

50
69

86
36

86
87

89
87

83
62

47
30

16
72

80
82

83
84

87
86

85
84

10
0

97
*

45
*

*
*

99
99

93
84

63
32

98
99

99
*

*
*

*
99

99

20
0

*
*

56
*

*
*

*
*

*
99

96
69

*
*

*
*

*
*

*
*

*

N
M

ix
(0

.5
,0

,B
2)

20
17

17
16

17
17

16
16

15
12

10
9

6
20

19
19

18
19

18
17

16
15

50
25

21
23

21
22

26
30

31
28

24
17

11
40

40
38

35
34

31
28

24
21

10
0

37
24

31
24

27
42

54
60

59
49

34
18

68
69

65
61

57
49

43
34

27

20
0

55
26

40
26

38
71

88
92

92
86

70
39

95
96

93
91

88
78

69
56

39

N
M

ix
(0

.9
,0

,B
2)

20
28

27
27

26
26

25
24

20
12

10
8

6
28

28
28

28
28

27
26

25
25

50
54

43
53

43
45

47
43

37
22

17
12

9
54

55
56

55
55

53
51

48
45

10
0

77
55

76
57

65
69

66
59

39
30

20
12

76
78

79
79

79
76

74
70

66

20
0

94
62

93
69

85
90

89
85

68
54

37
20

93
94

95
95

95
94

92
90

87

(C
on

tin
ue

s)



22 DÖRR et al.

T
A

B
L

E
4

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

t 3
(0

,I 2
)

20
54

53
53

52
52

52
51

48
36

30
23

15
57

56
56

56
57

56
55

52
51

50
85

78
83

77
80

84
85

84
75

67
55

36
89

88
88

89
89

89
88

85
81

10
0

98
90

97
91

95
98

98
98

96
93

85
66

99
99

99
99

99
99

99
98

96

20
0

*
96

*
98

*
*

*
*

*
*

99
94

*
*

*
*

*
*

*
*

*

t 5
(0

,I 2
)

20
32

32
32

31
31

30
29

25
16

13
11

8
34

34
34

34
34

33
32

31
30

50
60

53
58

52
53

55
53

49
35

27
20

12
64

63
64

64
65

64
62

58
53

10
0

82
67

79
66

71
78

78
75

61
50

36
21

84
84

85
86

87
87

85
80

74

20
0

96
77

94
80

89
95

96
95

90
82

66
40

96
97

98
98

98
99

98
97

93

t 10
(0

,I 2
)

20
16

16
16

15
15

14
13

11
7

6
6

6
16

16
16

16
17

16
15

15
14

50
29

25
28

24
24

23
20

17
11

9
8

7
30

30
30

30
31

30
28

26
24

10
0

44
32

42
32

32
33

31
27

17
13

10
7

42
42

44
45

46
45

42
38

34

20
0

62
39

58
39

44
51

51
46

31
23

15
10

58
58

62
65

66
67

63
57

48

C
2 (0

,1
)

20
94

93
94

93
93

95
96

96
95

94
90

82
97

97
97

97
97

96
96

94
93

50
*

99
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

L2 (0
,1

)
20

17
16

16
16

16
15

13
12

8
7

6
6

17
17

17
17

17
17

16
15

15

50
29

25
27

24
24

23
21

18
12

10
8

7
31

30
31

31
32

30
28

26
24

10
0

42
31

40
30

31
34

33
29

20
15

11
8

46
45

47
48

48
47

43
38

33

20
0

61
37

56
36

42
52

55
52

37
27

18
11

63
65

68
70

71
70

65
57

47

(C
on

tin
ue

s)



DÖRR et al. 23

T
A

B
L

E
4

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

Γ2 (
0.

5,
1)

20
90

96
77

96
97

98
99

99
98

97
95

87
92

93
92

93
94

96
96

96
95

50
*

*
97

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

97
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

97
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

Γ2 (
5,

1)
20

23
27

20
28

28
29

28
25

15
12

9
7

20
22

22
23

24
26

27
27

27

50
53

69
36

70
71

73
69

63
40

29
19

11
47

54
58

59
61

67
68

68
68

10
0

87
97

53
97

97
98

96
94

75
58

38
19

82
89

92
94

95
96

96
96

96

20
0

*
*

74
*

*
*

*
*

98
93

76
41

99
*

*
*

*
*

*
*

*

P2 V
II
(5
)

20
28

27
27

27
27

25
24

20
13

10
9

7
29

29
29

29
29

29
27

26
25

50
51

44
49

44
45

45
43

39
26

20
14

10
55

55
56

55
56

55
51

48
44

10
0

73
57

70
57

61
66

66
62

46
37

26
15

77
77

78
79

79
78

75
69

63

20
0

92
68

89
71

81
90

91
89

77
65

47
27

94
95

96
96

96
96

94
91

85

P2 V
II
(1

0)
20

13
13

13
13

13
12

11
10

7
6

6
6

14
14

14
14

14
13

13
13

12

50
23

21
22

20
20

19
16

14
9

8
7

7
23

23
24

24
25

24
23

21
20

10
0

35
26

33
25

26
25

23
19

12
10

8
7

34
34

35
36

36
35

33
29

26

20
0

49
31

46
30

32
36

35
31

20
15

11
8

46
47

50
53

54
52

48
42

35

2 (
Ex

p(
1)
)

20
67

66
64

65
65

69
74

76
78

77
72

59
77

75
75

76
77

76
73

68
64

50
92

83
89

83
89

96
99

99
*

*
99

97
98

98
98

98
99

99
98

96
91

10
0

99
90

98
92

99
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
93

*
98

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

(C
on

tin
ue

s)



24 DÖRR et al.

T
A

B
L

E
4

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

2 (
B(

1,
2)
)

20
15

16
14

16
16

18
21

24
34

36
35

28
25

22
22

22
23

22
19

17
15

50
10

12
7

12
13

22
38

53
75

79
77

67
35

33
33

33
35

33
26

19
14

10
0

7
10

2
9

12
34

66
85

97
98

98
94

52
53

55
58

59
53

42
26

15

20
0

6
9

0
8

15
65

95
*

*
*

*
*

81
84

89
91

92
88

76
51

22

2 (
𝜒

2 5
)

20
22

21
21

21
20

20
18

16
10

9
8

6
23

23
23

23
23

23
21

20
20

50
38

32
36

32
32

33
32

30
20

16
12

9
43

41
42

43
44

43
40

36
32

10
0

55
40

51
39

42
49

51
50

37
29

19
12

61
60

62
64

65
64

60
52

44

20
0

76
47

68
48

59
76

81
81

70
58

40
22

80
81

84
87

88
89

86
79

66



DÖRR et al. 25

T
A

B
L

E
5

Em
pi

ric
al

po
w

er
of

T n
,a

ag
ai

ns
tc

om
pe

tit
or

s(
d
=

3,
𝛼
=
.0

5,
10

,0
00

re
pl

ic
at

io
ns

)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

N
(0

,I 3
)

20
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

20
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
(𝜇

3,
Σ 1

)
20

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

20
0

5
5

5
5

5
5

6
5

5
6

6
5

5
5

5
5

5
5

5
5

5

N
M

ix
(0

.1
,3

,I 3
)

20
32

39
28

40
41

44
44

39
21

14
10

7
31

34
35

35
35

38
39

39
38

50
65

91
35

91
93

95
93

89
64

42
22

10
71

84
87

86
86

89
91

89
87

10
0

95
*

35
*

*
*

*
*

95
81

47
17

99
*

*
*

*
*

*
*

*

20
0

*
*

38
*

*
*

*
*

*
*

89
37

*
*

*
*

*
*

*
*

*

N
M

ix
(0

.5
,0

,B
3)

20
27

28
25

27
28

29
29

28
21

16
12

9
37

37
35

34
33

32
30

27
25

50
45

40
37

39
42

53
64

68
62

50
29

12
76

77
73

69
67

63
58

50
40

10
0

62
45

46
43

55
82

94
97

95
88

63
24

97
98

96
94

93
90

85
75

57

20
0

87
48

61
51

80
99

*
*

*
*

96
54

*
*

*
*

*
*

99
97

85

N
M

ix
(0

.9
,0

,B
3)

20
43

42
42

41
41

39
34

28
15

11
8

7
42

43
43

43
43

43
42

40
38

50
79

72
78

71
73

73
67

59
35

25
15

9
80

80
80

80
80

80
78

75
72

10
0

96
87

95
88

92
93

90
85

63
46

27
13

96
96

96
96

97
96

96
95

92

20
0

*
93

*
96

99
*

99
98

90
77

51
21

*
*

*
*

*
*

*
*

99

(C
on

tin
ue

s)



26 DÖRR et al.

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

t 3
(0

,I 3
)

20
65

65
62

64
64

64
61

56
40

31
21

11
70

70
69

69
69

69
68

64
61

50
94

91
91

90
91

94
94

93
85

75
56

28
97

97
97

96
97

97
96

95
92

10
0

*
98

99
98

99
*

*
*

99
97

89
56

*
*

*
*

*
*

*
*

99

20
0

*
*

*
*

*
*

*
*

*
*

*
90

*
*

*
*

*
*

*
*

*

t 5
(0

,I 3
)

20
40

40
38

39
39

37
34

29
17

13
10

8
44

43
43

42
42

43
41

38
36

50
73

69
69

67
68

69
67

62
44

32
20

10
81

79
79

79
79

79
78

73
68

10
0

92
83

88
82

86
91

91
89

75
60

38
17

96
95

95
95

96
96

96
94

89

20
0

99
93

98
94

98
*

*
*

97
91

71
33

*
*

*
*

*
*

*
*

99

t 10
(0

,I 3
)

20
19

20
18

19
19

18
15

12
7

7
6

6
21

21
21

21
21

21
20

18
17

50
38

34
35

33
33

31
27

22
13

10
8

6
43

41
41

41
41

42
40

36
32

10
0

56
46

51
44

46
46

42
36

21
15

11
7

64
60

60
61

62
64

62
55

46

20
0

79
56

70
55

62
70

69
64

41
28

16
9

84
79

80
83

84
87

85
79

68

C
3 (0

,1
)

20
98

98
97

97
98

98
98

99
97

96
91

76
99

99
99

99
99

99
99

98
97

50
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

L3 (0
,1

)
20

17
17

16
17

16
16

14
11

7
7

6
6

18
18

18
18

18
18

17
16

15

50
31

28
29

27
27

25
21

17
11

9
8

6
37

35
35

35
35

35
33

29
26

10
0

48
37

42
35

37
38

35
31

19
14

10
7

58
55

55
55

56
57

53
46

38

20
0

68
44

57
43

49
59

60
55

35
24

14
8

79
76

78
79

80
81

77
69

55

(C
on

tin
ue

s)



DÖRR et al. 27

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

Γ3 (
0.

5,
1)

20
91

98
80

98
98

99
*

*
98

96
89

66
94

96
95

95
95

97
98

98
97

50
*

*
98

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

Γ3 (
5,

1)
20

22
27

20
27

28
29

28
24

13
10

8
6

19
21

22
22

22
25

26
27

26

50
53

74
37

74
76

77
74

65
37

23
13

8
47

55
59

60
62

68
71

72
71

10
0

87
99

53
98

99
99

98
95

74
50

25
11

80
91

94
95

96
98

98
97

97

20
0

*
*

74
*

*
*

*
*

98
89

55
20

99
*

*
*

*
*

*
*

*

P3 V
II
(5
)

20
29

29
28

29
28

27
23

20
11

9
7

6
32

32
32

32
32

31
30

28
26

50
58

53
55

51
52

52
47

41
25

18
12

8
66

64
64

65
65

64
61

56
51

10
0

82
70

76
69

72
76

74
68

48
34

21
11

89
87

87
88

88
88

86
81

74

20
0

96
81

92
82

90
95

95
94

80
64

39
16

99
98

98
99

99
99

98
97

93

P3 V
II
(2

0)
20

14
14

14
14

13
13

11
9

7
6

6
5

15
15

15
15

15
15

14
13

12

50
26

23
24

23
22

20
16

13
8

7
6

6
29

28
28

28
28

28
27

23
21

10
0

40
31

36
30

30
28

24
19

12
9

8
6

44
41

42
43

44
44

41
36

30

20
0

58
39

51
37

39
42

39
34

19
14

10
8

62
58

59
62

63
65

61
52

43

(C
on

tin
ue

s)



28 DÖRR et al.

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

3 (
Ex

p(
1)
)

20
87

89
83

87
88

91
94

95
96

95
89

75
96

95
94

94
94

95
93

90
85

50
*

98
98

98
99

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
99

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

3 (
B(

1,
2)
)

20
44

48
36

45
47

52
59

64
73

72
65

49
67

63
61

61
61

61
58

50
44

50
56

53
39

49
59

82
94

97
99

99
98

91
93

91
90

91
92

92
90

80
63

10
0

68
53

34
52

75
98

*
*

*
*

*
*

*
99

*
*

*
*

*
98

88

20
0

89
53

27
58

96
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

3 (
𝜒

2 5
)

20
42

43
38

41
41

42
40

37
29

23
16

11
53

51
50

49
49

49
47

42
39

50
72

67
65

65
68

75
78

79
72

63
43

20
88

85
84

84
85

86
84

78
68

10
0

91
79

84
78

86
96

98
98

97
93

79
42

99
98

98
98

99
99

99
97

91

20
0

99
87

96
89

98
*

*
*

*
*

99
80

*
*

*
*

*
*

*
*

∗



DÖRR et al. 29

T
A

B
L

E
6

Em
pi

ric
al

po
w

er
of

T n
,a

ag
ai

ns
tc

om
pe

tit
or

s(
d
=

5,
𝛼
=
.0

5,
10

,0
00

re
pl

ic
at

io
ns

)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

N
(0

,I 5
)

20
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

50
5

5
5

5
5

5
6

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

20
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
(𝜇

5,
Σ 1

)
20

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

50
5

5
5

5
5

5
6

5
5

5
5

5
5

5
5

5
5

5
5

5
5

10
0

5
5

5
5

5
5

5
5

5
4

4
5

5
5

5
5

5
5

5
5

5

20
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

N
M

ix
(0

.1
,3

,I 5
)

20
30

33
28

34
34

35
31

24
12

9
8

3
25

26
28

28
28

30
32

33
31

50
50

86
30

86
90

95
94

85
38

18
9

8
48

65
78

78
76

75
81

84
82

10
0

78
*

25
*

*
*

*
*

84
43

14
9

76
98

*
*

*
*

*
*

*

20
0

99
*

21
*

*
*

*
*

*
89

29
9

99
*

*
*

*
*

*
*

*

N
M

ix
(0

.5
,0

,B
5)

20
55

60
45

57
57

60
59

55
38

25
19

5
72

73
71

69
67

65
64

58
50

50
77

77
60

73
80

92
98

98
95

76
35

20
98

99
98

98
97

95
95

91
80

10
0

93
84

73
83

95
*

*
*

*
*

71
26

*
*

*
*

*
*

*
*

97

20
0

*
89

84
92

*
*

*
*

*
*

99
36

*
*

*
*

*
*

*
*

*

N
M

ix
(0

.9
,0

,B
5)

20
62

60
61

59
58

55
44

33
14

10
9

3
57

57
57

58
59

60
60

58
55

50
96

94
95

94
94

92
86

75
43

25
13

10
95

95
95

95
95

95
95

95
93

10
0

*
*

*
99

*
99

98
96

78
51

19
12

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

98
86

40
13

*
*

*
*

*
*

*
*

*

(C
on

tin
ue

s)



30 DÖRR et al.

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

t 3
(0

,I 5
)

20
79

80
74

79
79

77
71

62
38

26
19

5
84

84
83

83
83

83
82

79
74

50
99

99
98

98
99

99
99

98
91

76
42

24
*

*
*

*
*

*
*

*
99

10
0

*
*

*
*

*
*

*
*

*
98

79
36

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

99
56

*
*

*
*

*
*

*
*

*

t 5
(0

,I 5
)

20
54

55
49

54
53

49
41

30
16

12
10

3
59

59
58

58
58

57
57

53
48

50
90

89
84

87
87

87
85

77
51

30
15

11
96

96
95

94
94

95
95

92
87

10
0

99
98

97
97

98
99

99
98

88
64

26
13

*
*

*
*

*
*

*
*

99

20
0

*
*

*
*

*
*

*
*

*
95

58
17

*
*

*
*

*
*

*
*

*

t 10
(0

,I 5
)

20
26

26
23

25
25

22
17

12
8

7
7

2
29

28
28

28
28

28
27

25
22

50
55

54
48

50
50

46
40

28
14

11
8

7
67

65
63

62
62

62
62

57
48

10
0

78
71

68
67

69
70

63
54

28
16

9
7

91
88

86
86

86
87

87
83

73

20
0

95
85

87
82

89
93

92
87

56
31

13
9

99
99

98
98

98
99

99
98

94

C
5 (0

,1
)

20
*

*
99

*
*

*
*

99
98

94
87

61
*

*
*

*
*

*
*

*
99

50
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

L5 (0
,1

)
20

16
17

15
16

16
14

12
9

6
6

6
2

18
18

18
18

18
18

17
16

14

50
35

33
30

31
30

27
24

15
9

7
6

6
45

44
42

42
42

41
40

35
29

10
0

54
48

45
44

45
44

36
29

15
10

7
6

73
70

67
67

67
68

67
59

47

20
0

75
58

60
54

60
66

63
55

27
16

9
7

94
90

88
88

88
90

89
83

68

(C
on

tin
ue

s)



DÖRR et al. 31

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

Γ5 (
0.

5,
1)

20
93

98
84

98
99

*
*

99
93

81
69

34
93

96
97

96
96

97
98

98
97

50
*

*
99

*
*

*
*

*
*

*
99

91
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

Γ5 (
5,

1)
20

20
23

18
24

25
26

23
18

9
7

7
4

17
18

19
20

20
21

22
24

24

50
50

76
37

77
79

80
76

59
23

12
8

7
44

52
60

62
62

64
69

73
72

10
0

83
99

55
99

99
*

98
95

54
24

9
7

73
87

94
96

96
97

98
98

98

20
0

*
*

72
*

*
*

*
*

93
57

17
7

97
*

*
*

*
*

*
*

*

P5 V
II
(5
)

20
32

33
29

32
31

28
21

15
8

7
7

2
35

34
34

34
34

34
34

30
28

50
66

64
60

62
62

58
52

39
20

13
9

7
77

76
74

74
74

73
72

68
60

10
0

89
83

82
81

83
84

80
72

40
23

11
9

96
96

95
95

95
95

95
92

85

20
0

99
93

95
92

96
98

98
96

76
47

19
9

*
*

*
*

*
*

*
*

98

P5 V
II
(1

0)
20

14
14

13
14

13
12

9
7

6
6

5
3

14
14

14
14

14
14

14
13

12

50
28

26
25

25
24

21
18

11
7

6
6

6
34

32
32

32
32

31
31

27
23

10
0

45
38

39
36

36
31

23
18

10
8

6
6

58
53

51
51

51
53

52
45

36

20
0

66
49

54
46

48
48

41
32

16
10

8
6

82
75

71
72

73
76

76
68

54

5 (
Ex

p(
1)
)

20
99

99
96

99
99

99
99

99
99

98
95

83
*

*
*

*
*

*
*

99
98

50
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

10
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

(C
on

tin
ue

s)



32 DÖRR et al.

T
A

B
L

E
5

(C
on

tin
ue

d)

B
H

EP
a

T
n,

a

A
lt

.
n

H
V

5
H

V
∞

H
JG

1.
5

0.
1

0.
25

0.
5

0.
75

1
2

3
5

10
0.

1
0.

25
0.

5
0.

75
1

2
3

5
10

5 (
B(

1,
2)
)

20
87

91
75

89
89

91
93

94
94

91
86

66
97

97
96

96
95

95
94

91
84

50
98

98
90

97
99

*
*

*
*

*
*

99
*

*
*

*
*

*
*

*
*

10
0

*
99

96
99

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

20
0

*
*

99
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

5 (
𝜒

2 5
)

20
77

81
68

78
78

77
75

71
58

45
36

12
89

88
87

86
85

85
84

80
72

50
97

98
93

96
98

99
*

*
99

95
75

51
*

*
*

*
*

*
*

*
98

10
0

*
*

99
*

*
*

*
*

*
*

98
73

*
*

*
*

*
*

*
*

*

20
0

*
*

*
*

*
*

*
*

*
*

*
95

*
*

*
*

*
*

*
*

*



DÖRR et al. 33

3. the Anderson–Darling test (AD), see Anderson and Darling (1952),
4. the Baringhaus–Henze–Epps–Pulley test (BHEP), see Henze and Wagner (1997),
5. the del Barrio–Cuesta–Albertos–Mátran–Rodríguez-Rodríguez test (BCMR), see del Barrio,

Cuesta-Albertos, Matran, and Rodriguez-Rodriguez (1999),
6. the Betsch–Ebner test (BE), see Betsch and Ebner (2020).

For the implementation of the first three tests in Rwe refer to the package nortest by Gross
and Ligges (2015). Tests based on the empirical characteristic function are represented by the
BHEP-test with tuning parameter a > 0. The statistic is given in (40), a= 1 is fixed, and the critical
values are taken from Henze (1990).

The BCMR-test is based on the L2-Wasserstein distance, see section 3.3 in del Barrio
et al. (2000), and is given by

BCMR = n
⎛⎜⎜⎝1 − 1

S2
n

( n∑
k=1

X(k) ∫
k
n

k−1
n

Φ−1(t) dt

)2⎞⎟⎟⎠ − ∫
n

n+1

1
n+1

t(1 − t)
(𝜑(Φ−1(t)))2

dt.

Here, X (k) is the kth order statistic of X1,… ,Xn, S2
n is the sample variance, and Φ−1 is the quantile

function of the standard normal law. Simulated critical values can be found in Krauczi (2009), or
in table 4 of Betsch and Ebner (2020).

The BE-test is based on a L2-distance between the empirical zero-bias transformation and
the empirical distribution. Since the zero-bias transformation has a unique fixed point under
normality, this distance is minimal under H0. The statistic is given by

BEa = 2
n
∑

1≤j<k≤n

{(
1 − Φ

(
Y(k)√

a

))
((Y 2

(j) − 1)(Y 2
(k) − 1)

+aY(j)Y(k)) +
a√
2𝜋a

exp

(
−

Y 2
(k)

2a

)
(−Y 2

(j)Y(k) + Y(k) + Y(j))

}

+ 1
n

n∑
j=1

{(
1 − Φ

(
Yj√

a

))
(Y 4

j + (a − 2)Y 2
j + 1) + a√

2𝜋a
exp

(
−

Y 2
j

2a

)
(2Yj − Y 3

j )

}
,

where Y 1,… ,Y n is shorthand for the scaled residuals Y n,1,… ,Y n,n, Y (1) ≤ … ≤Y (n) are the order
statistics of Y 1,… ,Y n, and Φ stands for the distribution function of the standard normal law.
The implementation employs a bootstrap procedure to find a data-driven version of the tuning
parameter a, see Allison and Santana (2015). We used B= 400 bootstrap replications and the same
grid of tuning parameters as in Betsch and Ebner (2020, p. 19).

The alternative distributions are chosen to fit the extensive power study of univariate nor-
mality tests by Romão, Delgado, and Costa (2010), in order to ease the comparison with a wide
variety of other existing tests. As representatives of symmetric distributions we simulate the
Student t𝜈-distribution with 𝜈 ∈ {3, 5, 10} degrees of freedom, as well as the uniform distri-
bution U(−

√
3,
√

3). The asymmetric distributions are represented by the 𝜒2
𝜈 -distribution with

𝜈 ∈ {5, 15} degrees of freedom, the Gamma distributions Γ(1, 5) and Γ(5, 1), parametrized by
their shape and rate parameter, the Gumbel distribution Gum(1,2) with location parameter 1 and
scale parameter 2 as well as the Weibull distribution W(1,0.5) with scale parameter 1 and shape
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parameter 0.5. As representatives of bimodal distributions we take the mixture of normal distri-
butions NMix(p, 𝜇, 𝜎2), where the random variables are generated by (1 − p) N(0, 1) + p N(𝜇, 𝜎2),
p ∈ (0, 1), 𝜇 ∈ R, 𝜎 > 0.

Table 3 shows that the empirical power estimates of the new test Tn,a outperform the other
strong procedures for the symmetric t-distribution, and they can compete for most of the other
alternatives. Interestingly, the power does not differ too much when varying the tuning parameter
a, although an effect is clearly visible, especially for the uniform distribution. A data-driven choice
as in Allison and Santana (2015), criticized and revised in Tenreiro (2019), might be of benefit
also in connection with the new testing procedure.

7.2 Testing multivariate normality

In this subsection we consider testing the hypothesis H0 that the distribution of X is multivariate
normal (i.e., belongs tod), for the dimensions d∈{2,3,5}. As competitors to the new test statistic
we chose

1. the Henze–Visagie test (HV), see Henze and Visagie (2019),
2. the Henze–Jiménez–Gamero test (HJG), see Henze and Jiménez-Gamero (2019),
3. the Baringhaus–Henze–Epps–Pulley test (BHEP), see Henze and Wagner (1997).

The HV-test uses a weighted L2-type statistic based on a characterization of the moment gen-
erating function that employs a system of first-order partial differential equations. The statistic is
defined by

HV𝛾 =
1
n

(
𝜋

𝛾

) d
2

n∑
j,k=1

exp
(||Yn,j + Yn,k||2

4𝛾

)(
Y⊤

n,jYn,k + ||Yn,j + Yn,k||2( 1
4𝛾2 − 1

2𝛾

)
+ d

2𝛾

)
,

where 𝛾 > 2. We followed the recommendation of the authors in Henze and Visagie (2019) and
fixed 𝛾 = 5. Since the limiting statistic HV∞ for 𝛾 → ∞ is a linear combination of sample skewness
in the sense of Mardia and that of Móri, Rohatgi and Székely, we also included HV∞.

The HJG-test uses a weighted L2-distance between the empirical moment generating func-
tion of the standardized sample and the moment generating function of the standard normal
distribution. The test statistic is given by

HJG𝛽 =
1

n𝛽
d
2

n∑
j,k=1

exp
(||Yn,j + Yn,k||2

4𝛽

)
− 2√

𝛽 − 1∕2

n∑
j=1

exp
(||Yn,j||2

4𝛽 − 2

)
+ n

(𝛽 − 1)
d
2

,

with 𝛽 > 0. In our simulation we fix 𝛽 = 1.5. For each of the tests based on HV5, HV∞, and HJG1.5,
critical values were simulated with 100,000 replications.

Finally, the now classical BHEP-test examines the weighted L2-distance between the empirical
characteristic function of the standardized data and the characteristic function of the d-variate
standard normal distribution. The statistic has the simple form

BHEPa = 1
n2

n∑
j,k=1

exp
(
−a2

2
||Yn,j − Yn,k||2) − 2(1 + a2)−

d
2

1
n

n∑
j=1

exp
(
−

a2||Yn,j||2
2(1 + a2)

)
+ (1 + 2a2)−

d
2 ,

(40)
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with a tuning parameter a > 0. A variety of values of a, that is, a∈{0.1,0.25,0.5,0.75,1,2,3,5,10},
has been considered. Critical values can be found in tables I and III of Henze and Wagner (1997),
whereas missing critical values have been simulated separately with 100,000 replications.

In order to show that all procedures indeed have the stated Type I error and exhibit their
affine invariance, we include the d-dimensional standard normal distribution N(0,Id) as well as
the N(𝜇d,Σ1) distribution, where 𝜇d = (1, 2, … , d)⊤ and Σ1 is a positive definite matrix with 1’s
on the diagonal and 0.1 on every off-diagonal entry. The alternative distributions are chosen to
fit the simulation study in Henze and Visagie (2019) and are defined as follows. We denote by
NMix(p, 𝜇,Σ) the normal mixture distributions generated by (1 − p) Nd(0, Id) + p Nd(𝜇,Σ), p ∈
(0, 1), 𝜇 ∈ Rd, Σ > 0, where Σ > 0 stands for a positive definite matrix. We write in the nota-
tion of above 𝜇 = 3 for a d-variate vector of 3’s and Σ = Bd for a (d× d)-matrix containing 1’s on
the main diagonal and 0.9’s on each off-diagonal entry. We denote by t𝜈(0, Id) the multivariate
t-distribution with 𝜈 degrees of freedom, see Genz and Bretz (2009). By DISTd(𝜗) we denote the
d-variate random vector generated by independently simulated components of the distribution
DIST with parameter vector (𝜗), where DIST is taken to be the Cauchy distribution C, the logistic
distribution L, the Gamma distribution Γ as well as the Pearson-type VII distribution PVII, with
𝜗 denoting in this specific case the degrees of freedom. The spherical symmetric distributions
where simulated using the R package distrEllipse, see Ruckdeschel, Kohl, Stabla, and Cam-
phausen (2006), and are denoted by d(DIST), where DIST stands for the distribution of the radii
and was chosen to be the exponential, the beta and the 𝜒2-distribution.

From Tables 4 to 6, it is obvious that Tn,a outperforms the competing tests for most of the
alternatives considered, again showing that the tuning parameter has—compared to the BHEP
test—little effect on the power. As in the univariate case Tn,a has very strong power against
the multivariate t-distribution. If the radial distribution of the spherical symmetric alternatives
has compact support, the BHEP test exhibits a better performance than Tn,a. The HV5- and the
HJG1.5-test have a good power, but they are mostly dominated by the BHEP-test and the Tn,a-test.
From our simulation results, it seems that the test performs better for greater values of a if the
underlying alternative is skewed. For nonskewed alternatives, we observe a higher power for
smaller values of the tuning parameter. Overall, we suggest to choose a small tuning param-
eter like a= 0.25, or, alternatively, if the practitioner suggests skewness of the data, to select
a= 3. Again, a data-driven choice of the tuning parameter a would be beneficial for the test,
but to the best of our knowledge no reliable multivariate method is yet available. It should be
stressed, however, that there cannot be an “optimal” value of a, since the global power function
of any nonparametric test is flat on balls of alternatives except for alternatives coming from some
finite dimensional subspace, see Janssen (2000). Finally, note that all of the tests for multivariate
normality under discussion are implemented in the R package mnt, see Butsch and Ebner (2020).

8 REAL DATA EXAMPLE: THE IRIS DATA SET

In 1936 R.A. Fisher presented the classical data set called Iris Flower, see table I in
Fisher (1936). The data consist of the four variables sepal length, sepal width, petal length, and
petal width, measured on n= 50 specimens of each of three types or iris, namely Iris setosa, Iris
versicolor, and Iris virginica. This data set is included in the statistical language R, and it can
be downloaded from the UCI Machine Learning Repository, see Dua and Graff (2017). That ref-
erence provides a list of articles that use this specific data set to validate clustering methods,
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F I G U R E 1 2D projections of the iris data set with colored species [Color figure can be viewed at
wileyonlinelibrary.com]

neural networks or learning algorithms, and it presents a typical test case for statistical classi-
fication techniques in machine learning, such as support vector machines. A visualization of
two-dimensional projections of the data set is given in Figure 1.

In Table 7 we present empirical p-values, that is, estimated probabilities of obtaining a value
at least as large as the observed value of Tn,a under the null hypothesis, simulated with 10,000
replications. As can be seen, the test does not reject the hypothesis of normality on a small signif-
icance level (like 𝛼 = .01) for the different species for each of the tuning parameters considered.
For the Iris setosa data, however, an increase of the significance level to .05 results in a rejection
of the hypothesis for a= 2 and a= 3. For the whole data set, we observe a small p-value due to the
mixture of the three populations and consequently reject the hypothesis H0.

9 CONCLUDING REMARKS

We proved consistency of the test for multivariate normality based on Tn,a against each alternative
distribution that satisfies the moment condition E||X||4 < ∞. Intuitively, the test should be "all

http://wileyonlinelibrary.com
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T A B L E 7 Empirical p-values for Tn,a

Species∖a 0.25 0.5 1 2 3 5 10
setosa .0631 .0706 .0683 .0431 .0386 .0555 .0918

versicolor .4402 .3560 .2912 .2766 .2707 .2626 .2573

virginica .1943 .1671 .1336 .1385 .1643 .2042 .2071

Mixed populations .0000 .0000 .0000 .0000 .0012 .0048 .0150

the more consistent" if E||X||4 = ∞. In fact, we conjecture consistency of the new test against any
non-normal alternative distribution.

The limiting random element T∞,a = ||Z||2
H

from Theorem 5(b) has the same distribu-
tion as

∑∞
j=1 𝜆jN2

j , where the Nj are i.i.d. standard normal random variables, and the 𝜆j
are the positive eigenvalues corresponding to eigenfunctions of the linear integral opera-
tor Kf (s) = ∫

Rd K(s, t)f (t) wa(t) dt associated with the covariance kernel K from Theorem 5(a),
that is, we have 𝜆f (s) = ∫

Rd K(s, t)f (t) wa(t) dt. These positive eigenvalues clearly depend
on K and the weight function wa. It is hardly possible to obtain a closed form expres-
sion for 𝜆1, 𝜆2, … . It would be interesting to approximate the eigenvalues either numer-
ically or by some Monte Carlo method, since the largest eigenvalue has a crucial influ-
ence on the approximate Bahadur efficiency, see Bahadur (1960) and the monograph
Nikitin (1995), as well as Henze, Nikitin, and Ebner (2009) for results on distribution-free
Lp-type statistics.
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APPENDIX . PROOFS AND AUXILIARY RESULTS

This section contains the proofs of some of the theorems as well as some auxiliary results that
are used in the main text. Recall our standing assumption that the distribution of X is absolutely
continuous. In what follows, let Δn,j = (S−1∕2

n − Id)Xj − S−1∕2
n Xn, j = 1, … ,n. Notice that Δn,j =

Yn,j − Xj, where the scaled residuals Y n,j are given in (5).

Proposition 3. Let X ,X1,X2,… be i.i.d. random vectors satisfying E||X||4 < ∞, E(X) = 0 and
E(XX⊤) = Id. We then have:
(a)

∑n
j=1 ||Δn,j||2 = OP(1).

(b) 1
n

Xn
j=1||Δn,j||2 a.s.

→ 0.
(c) max j=1,… ,n||Δn,j|| = oP(n−1∕4).

Proof. (a) Notice that ||Δn,j||2 = X⊤
j (S

−1∕2
n − Id)2Xj − 2X

⊤

n S−1∕2
n (S−1∕2

n − Id)Xj + XnS−1
n Xn and thus,

using tr(AB)= tr(BA), where tr(C) denotes the trace of a square matrix C,

n∑
j=1
||Δn,j||2 = tr

(
(S−1∕2

n − Id)2
n∑

j=1
XjX⊤

j

)
− 2nX

⊤

n S−1∕2
n (S−1∕2

n − Id)Xn + nXnS−1
n Xn. (A1)

Due to E||X1||4 < ∞, the central limit theorem implies
√

n(S−1
n − Id) = −S−1

n
√

n(Sn − Id) =
OP(1). Since

√
n(S−1∕2

n − Id)(S−1∕2
n + Id) =

√
n(S−1

n − Id), it follows that
√

n(S−1∕2
n − Id) = OP(1). In

view of
∑n

j=1 XjX⊤
j = OP(n) and

√
nXn = OP(1), we are done.

(b) After dividing both sides of (A1) by n, the first summand on the right hand side converges
to 0 P-almost surely because n−1Xn

j=1XjX⊤
j

a.s.
→ Id, and S−1∕2

n
a.s.
→ Id. The same holds for the other two

terms, since Xn
a.s.
→ 0.

(c) Let ||A||sp be the spectral norm of a matrix A. Then

||Δn,j|| ≤ ||S−1∕2
n − Id||sp ||Xj|| + ||S−1∕2

n ||sp||Xn|| (A2)

and thus max j=1,… ,n||Δn,j|| ≤ ||S−1∕2
n − Id||sp max j=1,… ,n||Xj|| + ||S−1∕2

n ||sp||Xn||. From theorem
5.2 of Barndorff-Nielsen (1963) we have max j=1,… ,n||Xj||∕n1∕4 a.s.

→ 0. Since
√

n||S−1∕2
n − Id||sp =

OP(1), ||S−1∕2
n ||sp = OP(1) and

√
n||Xn|| = OP(1), we are done. ▪
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Proposition 4. Let X ,X1,X2,… be i.i.d. random vectors satisfying E||X||6 < ∞, E(X) = 0 and
E(XX⊤) = Id. We then have n−1∑n

j=1 ||Δn,j||k||Xj||𝓁 a.s.
→ 0 as n→∞ for each k ∈ N and 𝓁 ∈ N0 such

that k+𝓁 ≤ 6.

Proof. From (A2) we have ||Δn,j||k ||Xj||𝓁 ≤ 2k||S−1∕2
n − Id||ksp ||Xj||k+𝓁 + 2k||S−1∕2

n ||ksp||Xn||k||Xj||𝓁 .

Since ||S−1∕2
n − Id||sp

a.s.
→ 0, S−1∕2

n
a.s.
→ Id and ||Xn|| a.s.

→ 0, the assertion follows from the strong law of
large numbers. ▪

Proof. In what follows, we put Y j =Y n,j and Δj = Δn,j for the sake of brevity. Notice that
cos(t⊤Yj) = cos(t⊤Xj) − sin(Θj)t⊤Δj, sin(t⊤Yj) = sin(t⊤Xj) + cos(Γj)t⊤Δj, where Θj,Γj depend on
X1,… ,Xn and t and satisfy

|Θj − t⊤Xj| ≤ |t⊤Δj|, |Γj − t⊤Xj| ≤ |t⊤Δj|. (A3)

Since ||Yj||2 = ||Xj||2 + ||Δj||2 + 2X⊤
j Δj, it follows that Vn(t) =

∑6
k=1 Vn,k(t), where

Vn,1(t) =
1√
n

n∑
j=1

{||Xj||2CS+(t,Xj) − 𝜇(t)}, Vn,2(t) =
1√
n

n∑
j=1
||Xj||2t⊤Δj(cos(Γj) − sin(Θj),

Vn,3(t) =
2√
n

n∑
j=1

X⊤
j ΔjCS+(t,Xj), Vn,4(t) =

2√
n

n∑
j=1

X⊤
j Δjt⊤Δj(cos(Γj) − sin(Θj)),

Vn,5(t) =
1√
n

n∑
j=1
||Δj||2CS+(t,Xj), Vn,6(t) =

1√
n

n∑
j=1
||Δj||2t⊤Δj(cos(Γj) − sin(Θj)). (A4)

We first show that Vn,𝓁 = oP(1) if 𝓁 ∈{4,5,6}. As for V n,4, notice that, by the Cauchy–Schwarz
inequality, |Vn,4(t)| ≤ 4||t||n−1∕2max i=1,… ,n||Xi||∑n

j=1 ||Δj||2. Since E||X||4 < ∞, theorem 5.2 of
Barndorff-Nielsen (1963) yields max i=1,… ,n||Xi|| = oP(n1∕4). In view of Proposition 3(a), we
have Vn,4 = oP(1). The same proposition immediately also gives Vn,5 = oP(1). Since |Vn,6(t)| ≤
2||t||n−1∕2max i=1,… ,n||Δi||∑n

j=1 ||Δj||2, we have Vn,6 = oP(1) in view of Proposition A1(a) and
Proposition 3(c).

We now consider V n,2(t). Since |Vn,2(t)| ≤ 2||t||n−1∑n
j=1 ||Xj||2n1∕4max i=1,… ,n||Δi||n1∕4, the law

of large numbers and Proposition A1(c) show that Vn,2 = oP(n1∕4). In view of (A3) and Propo-
sition A1(c), the error is thus oP(1) if we replace both Γj and Θj with t⊤Xj. Moreover, plugging
Δj = (S−1∕2

n − Id)Xj − S−1∕2
n Xn into the definition of V n,2(t), the error is oP(1) if we replace S−1∕2

n Xn
with Xn. Recalling (13), we thus obtain

Vn,2(t) =
1√
n

n∑
j=1
||Xj||2t⊤{(S−1∕2

n − Id)Xj − Xn}CS−(t,Xj) + oP(1). (A5)

We now use display (2.13) of Henze and Wagner (1997), according to which 2
√

n(S−1∕2
n − Id) =

−n−1∕2∑n
j=1(XjX⊤

j − Id) + OP(n−1∕2). Plugging this expression into (A5) we obtain

Vn,2(t) = − 1
2n

n∑
k=1
||Xk||2CS−(t,Xk)t⊤

1√
n

n∑
j=1

(XjX⊤
j
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−Id)Xk −
1
n

n∑
k=1
||Xk||2CS−(t,Xk)

1√
n

n∑
j=1

t⊤Xj + oP(1). (A6)

In (A6) we now use the fact that tr(AB)= tr(BA), where tr denotes trace and AB
is a square matrix. Furthermore, the error is oP(1) if we replace n−1∑n

j=1 ||Xj||2CS−(t,Xj)
and n−1∑n

j=1 ||Xj||2XjCS−(t,Xj) with their almost sure limits E[||X||2CS−(t,X)] = −Δ𝜓−
X (t) and

E[||X||2XCS−(t,X)] = −∇Δ𝜓+
X (t), respectively. We therefore obtain

Vn,2(t) =
1√
n

n∑
j=1

{1
2
∇Δ𝜓+

X (t)(XjX⊤
j − Id)t + Δ𝜓−

X (t)t
⊤Xj

}
+ oP(1). (A7)

In the same way, we proceed with V n,3(t) and, using E[XCS+(t,X)X⊤] = −H𝜓+
X (t) as well as

E[XCS+(t,X)] = −∇𝜓−
X (t), finally arrive at

Vn,3(t) =
1√
n

n∑
j=1

{2X⊤
j ∇𝜓

−
X (t) + X⊤

j H𝜓−
X (t)Xj + 𝜇(t)} + oP(1). (A8)

By adding (A4), (A7), and (A8), we have Vn = Ṽ n + oP(1), where Ṽ n is given in (22). ▪

Proof of Theorem 8. By analogy with Zn(t), as defined in (17), let Z0
n(t) ∶=

n−1∕2∑n
j=1 ||Xj||2{CS+(t,Xj) − m(t)}, t ∈ Rd. A straightforward calculation gives n−1∕2(Zn(t) −

Z0
n(t)) =

∑3
j=1 Un,j(t), where

Un,1(t) =
1
n

n∑
j=1
||Xj||2(CS+(t,Yn,j) − CS+(t,Xj)),

Un,2(t) =
2
n

n∑
j=1

X⊤
j Δn,jCS+(t,Yn,j), Un,3(t) =

1
n

n∑
j=1
||Δn,j||2CS+(t,Yn,j).

Since | cos(t⊤Yn,j) − cos(t⊤Xj)| ≤ ||t|| ||Δn,j||, | sin(t⊤Yn,j) − sin(t⊤Xj)| ≤ ||t|| ||Δn,j||, the
Cauchy–Schwarz inequality gives |Un,1(t)| ≤ 2||t||(n−1∑n

j=1 ||Xj||4)1∕2(n−1∑n
j=1 ||Δn,j||2)1∕2. By

the strong law of large numbers, we have n−1∑n
j=1 ||Xj||4 a.s.

→ E||X||4. In view of Proposition 3

b), we thus obtain ||Un,1||2
H

a.s.
→ 0. Next, notice that, again by the Cauchy–Schwarz inequality,|Un,2(t)| ≤ 4

(
n−1∑n

j=1 ||Xj||2)1∕2(
n−1∑n

j=1 ||Δn,j||2)1∕2
. Hence, we have ||Un,2||2

H

a.s.
→ 0. Finally,|Un,3(t)| ≤ 2n−1∑n

j=1 ||Δn,j||2 which, in view of Proposition 3 b), shows that ||Un,3||2
H

a.s.
→ 0.

Summarizing, we have

||n−1∕2(Zn(⋅) − Z0
n(⋅))||H a.s.

→ 0. (A9)

By the strong law of large numbers in Banach spaces, it follows that n−1∕2Z0
n(⋅)

a.s.
→ 𝜇(⋅) −

m(⋅) as n→∞ in H. In view of (A9), we thus obtain Tn,a

n
= ||n−1∕2Zn(⋅)||2

H

a.s.
→ ||𝜇(⋅) − m(⋅)||2

H
=

∫ (𝜇(t) − m(t))2wa(t) dt. ▪

Proof of Theorem 9. Starting with (28), we have
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Δa = ∫ (E(||X||2CS+(t,X)))2 exp(−a||t||2) dt

− 2∫ (d − ||t||)2
E(||X||2CS+(t,X)) exp

(
−2a + 1

2
||t||2) dt

+ ∫ (d − ||t||2)2 exp(−(a + 1)||t||2) dt

=∶ I1,a − I2,a + I3,a,

say. Letting X1,X2 be independent copies of X , Fubini’s theorem, the addition theorems for the
sine function and the cosine function, considerations of symmetry and (7) yield

I1,a =
(
𝜋

a

)d∕2
E

[||X1||2||X2||2 exp
(
− ||X1 − X2||2

4a

)]
.

From (8) and (9), we have

I2,a = 2(2𝜋)d∕2

(2a + 1)d∕2+2
E

[||X||2(||X||2 + 2da(2a + 1)) exp
(
− ||X||2

2(2a + 1)

)]
,

I3,a = 𝜋d∕2

(a + 1)d∕2+2

(
a(a + 1)d2 + d(d + 2)

4

)
and thus

2a
(a
𝜋

)d∕2
Δa = 2a E

[||X1||2||X2||2 exp
(
− ||X1 − X2||2

4a

)]
− 2(2a)d∕2+1

(2a + 1)d∕2+2
E

[||X||2(||X||2 + 2da(2a + 1)) exp
(
− ||X||2

2(2a + 1)

)]
+ 2ad∕2+1

(a + 1)d∕2+2

(
a(a + 1)d2 + d(d + 2)

4

)
=∶ J1,a − J2,a + J3,a,

say. An expansion of the exponential terms, dominated convergence (notice that exp(−u) ≤ 1 −
u + u2 if u≥ 0) and a binomial expansion gives

J1,a = 2ad2 − dE||X1||4 + E(||X1||2||X2||2X⊤
1 X2) + O(a−1),

J2,a = 4ad2 − d3 − 2d2 − dE||X1||4 + O(a−1),
J3,a = 2ad2 − d3 − 2d2 + O(a−1)

and thus

lim
a→∞

2a
(a
𝜋

)d∕2
Δa = E(||X1||2||X2||2X⊤

1 X2) = E(||X1||2X1)⊤E(||X2||2X2) = ||E(||X||2X)||2.
Notice that the condition E||X||6 < ∞ is not only needed for the existence of the final limit, but it
also occurs when dealing with J2,a. ▪
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Proof of Lemma 1. Putting Y j =Y n,j and Δj = Yj − Xj, we have

cos(t⊤Yj) = cos(t⊤Xj) − t⊤Δj sin(t⊤Xj) + 𝜀j(t), sin(t⊤Yj) = sin(t⊤Xj) + t⊤Δj cos(t⊤Xj) + 𝜂j(t),

where |𝜀j(t)|, |𝜂j(t)| ≤ ||t||2||Δj||2 (see Henze and Wagner 1997, p. 8) and thus

CS±(t,Yj) = CS±(t,Xj) ± t⊤ΔjCS∓(t,Xj) + 𝜀j(t) + 𝜂j(t). (A10)

To prove (a), notice that Ψ1,n(t) = n−1∑n
j=1 CS+(t,Xj)Xj + R1,n(t), where

R1,n(t) =
1
n

n∑
j=1

(t⊤ΔjCS−(t,Xj) + 𝜀j(t) + 𝜂j(t))Xj

+ 1
n

n∑
j=1

(CS+(t,Xj) + t⊤ΔjCS−(t,Xj) + 𝜀j(t) + 𝜂j(t))Δj.

Since |CS±(t,Xj)|≤ 2 and |𝜀j(t) + 𝜂j(t)| ≤ 2||t||2||Δj||2, the Cauchy–Schwarz inequality yields

|R1,n(t)| ≤ 2||t||
n

n∑
j=1
||Δj||||Xj|| + 2||t||2

n

n∑
j=1
||Δj||2||Xj||

+ 2
n

n∑
j=1
||Δj|| + 2||t||

n

n∑
j=1
||Δj||2 + 2||t||2

n

n∑
j=1
||Δj||3.

In view of Proposition 4, each summand converges to zero almost surely, which proves (a). The
remaining assertions (b), … , (e) are treated similarly. To tackle (b) and (e), one can show negligi-
bility of terms by using the fact that the spectral norm ||⋅||sp of a matrix satisfies ||xy⊤||sp = ||x|| ||y||,
if x,y are (column) vectors in Rd. The condition E||X1||6 < ∞ is needed for part e), since

||Yj||2||YjY⊤
j ||sp ≤ (||Xj||2 + 2||Xj||||Δj|| + ||Δj||2)2

= ||Xj||4 + 4||Xj||3||Δj|| + 6||Xj||2||Δj||2 + 4||Xj||||Δj||3 + ||Δj||4,
and multiplication with ||Δj||2 (which arises from an expansion of CS+(t,Y n,j)) gives monomials
of order 6. ▪

Proof of Theorem 11. The proof is similar to the proof of theorem 5 of Henze and Mayer (2020)
and will therefore only be sketched. From (26), (23), and (30), we have 𝜎2

a =
∑4

i,j=1 𝜎
i,j
a ,

where

𝜎
i,j
a = 4∫ ∫ Li,j(s, t)z(s)z(t)wa(s)wa(t) dsdt,

and Li,j(s,t) is given in (32). It thus suffices to prove 𝜎̂i,j
n,a

P

→ 𝜎
i,j
a for each pair (i,j), where 𝜎̂i,j

n,a is given
in (39). The first step of the proof is to replace Li,j

n (s, t)with Li,j
n,0(s, t), which arises from Li,j

n (s, t) given
in (34) by throughout replacing Y n,k with Xk in the functions vn,j(s,Y n,k), j∈{1,… ,4}. Notice that
this replacement also refers to the quantities Ψ−

4,n(s), Ψ1,n(s), Ψ−
3,n(s) and Ψ2,n(s) that figure in the
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definition of vn,2, vn,3 and vn,4. Moreover, we replace zn(s) with zn,0(s) = n−1∑n
j=1 CS+(s,Xj)||Xj||2 −

m(s). Putting

𝜎̂
i,j
n,0,a = 4∫ ∫ Li,j

n,0(s, t)zn,0(s)zn,0(t)wa(s)wa(t) dsdt,

Fubini’s theorem shows that 𝜎̂i,j
n,0,a

P

→ 𝜎
i,j
a . It thus remains to prove 𝜎̂

i,j
n,a − 𝜎̂

i,j
n,0,a = oP(1) as

n→∞. To tackle 𝜎̂i,j
n,a − 𝜎̂

i,j
n,0,a, we put Λn(s, t) = Li,j

n (s, t)zn(s)zn(t) − Li,j
n,0(s, t)zn,0(s)zn,0(t) and notice

that

Λn(s, t) = (Li,j
n (s, t) − Li,j

n,0(s, t))zn(s)zn(t) + Li,j
n,0(s, t)(zn(s)zn(t) − zn,0(s)zn,0(t)), (A11)

zn(s)zn(t) − zn,0(s)zn,0(t) = (zn(s) − zn,0(s))(zn(t) − zn,0(t))

+ zn,0(s)(zn(t) − zn,0(t)) + zn,0(t)(zn(s) − zn,0(s)). (A12)

From (36), we have |zn(s)|≤ 2d+m(s). Moreover, |zn,0(s)| ≤ 2n−1∑n
j=1 ||Xj||2 + m(s). A Taylor

expansion shows that |zn(s)− zn,0(s)| is bounded from above by a finite sum of terms of the type||s||𝓁n−1∑n
j=1 ||Xj||𝛽||Δn,j||𝛾 , where s∈{0,1}, 𝛾 ≥ 1 and 𝛽 + 𝛾 ≤ 3. Next, by straightforward calcu-

lations we obtain that |Li,j
n,0(s, t)| is bounded from above by ||s||𝓁 || t||m times finitely many products

of the type n−1∑n
j=1 ||Xj||𝛽 , where 𝓁,m∈{0,1} and 𝛽 ∈ {1, 2, 3, 4}. It now follows from Proposi-

tion 4 that the term figuring in (A12), multiplied with wa(s)wa(t) and integrated over Rd × Rd,
converges to zero in probability.

As for the term figuring in (A11), we have |zn(s)zn(t)|≤ (2d+m(s))(2d+m(t)). To tackle
Li,j

n (s, t) − Li,j
n,0(s, t), we confine ourselves to the case i= 1,j= 2, since the other cases can be treated

in a similar way. From (35), we have

L1,2
n (s, t) = −1

2

{
1
n

n∑
j=1

CS−(s,Yj)||Yj||2Yj}⊤{
1
n

n∑
j=1

CS+(t,Yj)||Yj||2YjY⊤
j s

}
(A13)

+ 1
2

{
1
n

n∑
j=1

CS+(t,Yj)||Yj||2}{
1
n

n∑
j=1

CS−(s,Yj)||Yj||2Y⊤
j s

}
. (A14)

Moreover,

L1,2
n,0(s, t) = −1

2

{
1
n

n∑
j=1

CS−(s,Xj)||Xj||2Xj

}⊤{
1
n

n∑
j=1

CS+(t,Xj)||Xj||2XjX⊤
j s

}
(A15)

+ 1
2

{
1
n

n∑
j=1

CS+(t,Xj)||Xj||2}{
1
n

n∑
j=1

CS−(s,Xj)||Xj||2X⊤
j s

}
. (A16)

Using (A10), some calculations show that, for each i∈{1,2}, the norm of the difference of the
ith curly bracket in (A13) and the ith curly bracket in (A15) is bounded from above by finite sum
of terms of the type

||s||𝓁||t||m 1
n

n∑
j=1
||Xj||𝛽||Δn,j||𝛾 , (A17)
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where 𝓁,m∈{0,1,2}, 𝛾 ≥ 1, and 𝛽 + 𝛾 ≤ 5. Since the same holds for the norm of the difference of
the ith curly bracket in (A14) and the ith curly bracket in (A16), i∈{1,2}, it follows that |L1,2

n (s, t) −
L1,2

n,0(s, t)| is bounded from above by a finite sum of terms, which are either products of two terms of
type (A17), or a product of a term of type (A17) and one of the terms inside one of the curly brackets
in (A15) or (A16). From Proposition 4, it follows that the term figuring in (A11), multiplied with
wa(s)wa(t) and integrated over Rd × Rd, converges to zero in probability. ▪


