KIT | KIT-Bibliothek | Impressum | Datenschutz

Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring

Gandyra, Daniel 1; Walheim, Stefan 1; Gorb, Stanislav; Ditsche, Petra; Barthlott, Wilhelm; Schimmel, Thomas 2,3
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
3 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)


The ability of floating ferns Salvinia to keep a permanent layer of air under water is of great interest, e.g., for drag‐reducing ship coatings. The air‐retaining hairs are superhydrophobic, but have hydrophilic tips at their ends, pinning the air–water interface. Here, experimental and theoretical approaches are used to examine the contribution of this pinning effect for air‐layer stability under pressure changes. By applying the capillary adhesion technique, the adhesion forces of individual hairs to the water surface is determined to be about 20 µN per hair. Using confocal microscopy and fluorescence labeling, it is found that the leaves maintain a stable air layer up to an underpressure of 65 mbar. Combining both results, overall pinning forces are obtained, which account for only about 1% of the total air‐retaining force. It is suggested that the restoring force of the entrapped air layer is responsible for the remaining 99%. This model of the entrapped air acting is verified as a pneumatic spring (“air‐spring”) by an experiment shortcircuiting the air layer, which results in immediate air loss. Thus, the plant enhances its air‐layer stability against pressure fluctuations by a factor of 100 by utilizing the entrapped air volume as an elastic spring.

Verlagsausgabe §
DOI: 10.5445/IR/1000125929
Veröffentlicht am 10.11.2020
DOI: 10.1002/smll.202003425
Zitationen: 24
Web of Science
Zitationen: 23
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2020
Sprache Englisch
Identifikator ISSN: 1613-6810, 1613-6829
KITopen-ID: 1000125929
HGF-Programm 43.22.03 (POF III, LK 01) Printed Materials and Systems
Erschienen in Small
Verlag John Wiley and Sons
Band 16
Heft 42
Seiten Art.Nr. 2003425
Vorab online veröffentlicht am 29.09.2020
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page