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A B S T R A C T   

The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost- 
effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree spe
cies do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional 
neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in 
temperate forests. We used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of 
temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully 
harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that 
concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, 
site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus- 
level classes, deadwood, and forest floor (mean F1-score 0.73). A larger tile size during CNN training nega
tively affected the model accuracies for underrepresented classes. Additional height information from normalized 
digital surface models slightly increased the model accuracy but increased computational complexity and data 
requirements. A coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 
cm resolution). Our results highlight the key role that UAVs can play in the mapping of forest tree species, given 
that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. The end-to- 
end learning capability of CNNs makes extensive preprocessing partly obsolete. The use of large and diverse 
datasets facilitate a high degree of generalization of the CNN, thus fostering transferability. The synergy of high- 
resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.   

1. Introduction 

Forest ecosystems cover about one-third of the Earth’s land area 
(FAO, 2020) providing countless and substantial ecosystem services. 
There is, therefore, great interest in obtaining information on the state of 
forest ecosystems. Many problems in this context require the acquisition 
of tree species composition at a high spatial resolution—a goal to which 
remote sensing can ultimately contribute significantly (Fassnacht et al., 
2016). A combination of two technological and methodological ad
vances offers great potential for accurately mapping forest tree species: 
the use of unmanned aerial vehicles (UAVs) and deep learning. Whereas 

the use of very high-resolution UAV-data is no novelty in this regard 
(Franklin and Ahmed, 2018; Gini et al., 2014; Michez et al., 2016; 
Nevalainen et al., 2017), deep learning is only recently being introduced 
into vegetation remote sensing (Audebert et al., 2019; Brodrick et al., 
2019; Ma et al., 2019; Zhang et al., 2016; Zhu et al., 2017). The most 
effective deep learning algorithms in analyzing high spatial resolution 
remote sensing data are convolutional neural networks (CNNs) since 
these are specifically designed to analyze spatial patterns. CNNs 
autonomously extract low-, mid-, and high-level feature representations 
(e.g., corners, edges, abstract shapes) that best describe targets, such as 
classes or continuous values, through a series of convolutions and 
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pooling operations. 
Several studies have already used CNNs and very high-resolution 

remote sensing data for the mapping of tree species. To detect tree in
dividuals outside forests, good results have been reported from urban 
environments (dos Santos et al., 2019; Hartling et al., 2019; Lobo Torres 
et al., 2020) and plantations (Csillik et al., 2018; Freudenberg et al., 
2019; Li et al., 2017; Osco et al., 2020) but these results are hardly 
transferable to heterogeneous forest. Specifically targeting forest envi
ronments, Fricker et al. (2019) used a CNN for classifying and mapping 
seven tree species in a mixed-conifer forest from airborne data with very 
accurate results for hyperspectral and moderately accurate results for 
pseudo-RGB data. Trier et al. (2018) also used airborne hyperspectral 
data to classify pine, spruce, and birch trees in a boreal forest using a 
CNN. Nezami et al. (2020) showed very accurate results for classifying 
the same tree species testing CNNs with different combinations of 
hyperspectral and RGB imagery and canopy height models. Thus far, 
mapping tree species in forests often requires high spectral resolution 
data, which is cumbersome to access for non-specialist users. 

Solely relying on RGB information, individual tree species have been 
accurately mapped against a background of other species using CNNs 
(Kattenborn et al., 2020, 2019a; López-Jiménez et al., 2019; Morales 
et al., 2018; Wagner et al., 2020). Natesan et al. (2019) used a CNN to 
classify previously extracted tree crowns from RGB data into white pine, 
red pine, and non-pine. Spectral resolution notwithstanding, many 
studies used additional preprocessing steps prior to classification (e.g., 
tree segmentation or tree localization from ancillary remote sensing 
data, background removal, feature engineering), which limits the 
transferability and increases the computational load of such 
applications. 

With consumer-grade UAVs on the rise, which enable easy and low- 
cost acquisition of very high-resolution RGB data, the mapping of tree 
species in heterogeneous forests using solely RGB imagery is of high 
interest, as it does not rely on sophisticated sensors, does not require 
extensive calibration and preprocessing and, therefore, enables the 
application by a wide audience (Komárek, 2020). The above-mentioned 
studies demonstrated that, regardless of the spectral resolution, high 
spatial resolution remote sensing data can be sufficient for mapping tree 
species when small samples of species or relatively homogeneous envi
ronments with little site variability are considered. To further assess the 
potential of very high-resolution imagery for mapping forest tree species 
it would be desirable to test CNNs on a large and heterogeneous sample 
of species with a wide gradient of forest types, site conditions, and stand 
structures. Moreover, such an assessment based on RGB imagery alone 
would be valuable since the use of RGB data ensures access to such 
applications for a wide audience. Recent CNN architectures for semantic 
segmentation (e.g., U-Net (Ronneberger et al., 2015) or DenseNet 
(Jegou et al., 2017)) facilitate end-to-end learning that can be directly 
applied on the raw remote sensing data and enable mapping at the 
original image resolution and overcome the need for prior segmentation 
and feature engineering steps. 

Here, we would like to assess the potential of very high-resolution 
RGB imagery from UAVs to map forest tree species with a large and 
heterogeneous sample on mixed stands of forest trees. We used CNNs to 
map tree species from UAV-based very high-resolution RGB imagery in 
temperate deciduous and mixed-coniferous forests in Germany. We used 
a multiclass semantic segmentation approach (U-net) to simultaneously 
segment and classify 14 classes (i.e., nine tree species, three genus-level 
classes, deadwood, and forest floor). Our main research question is as 
follows: Is RGB imagery sufficient to accurately map tree species in 
heterogeneous forests? Moreover, given the very recent introduction of 
CNNs into vegetation remote sensing, little is known about the re
quirements regarding the remote sensing data. We, therefore, tested 
several spatial resolutions, the additional value of photogrammetric 3D- 
information, and different tile sizes of the input images. 

2. Material and methods 

2.1. Study area 

The study area is in the Southern Black Forest region and the Hainich 
National Park (NP), in the German states of Baden-Württemberg and 
Thuringia, respectively (Fig. 1). The Southern Black Forest study site is 
situated in a mountain range between 120 and 1492 m a.s.l. between the 
Rhine valley and the highest peak at Feldberg. The area is mostly 
covered by mixed and coniferous forests, largely managed for timber 
production (Kändler and Cullmann, 2015) and covers a wide range of 
forest types and age classes (Frey et al., 2018). The main tree species are 
Picea abies L. (40% cover), Fagus sylvatica L. (18%), and Abies alba Mill. 
(13%). Less common tree species are Quercus robur L. (5%), Pinus syl
vestris L. (4%), and Pseudotsuga menziesii Mirbel (4%). Parent rock 
mainly consists of granite and gneiss with some admixture of sandstone 
(Storch et al., 2020). 

The Hainich NP lies on a ridge between 225 and 494 m a.s.l. and 
covers an area of 7600 ha. It is characterized by unmanaged mixed 
deciduous forests on limestone and dominated by F. sylvatica. Subordi
nate species include Fraxinus excelsior L., Acer pseudoplatanus L., Acer 
platanoides L., Q. robur, Quercus petraea (Matt.) Liebl., Tilia cordata Mill., 
Tilia platyphyllos Scop., Carpinus betulus L., and others. The heterogeneity 
of both study areas is exemplified by the forest inventory plots (details 
see Section 2.2), with species numbers per plot between two and ten and 
tree densities ranging from 179 and 851 trees per hectare. 

2.2. Data acquisition 

The ConFoBi-Project (Conservation of Forest Biodiversity in 
Multiple-Use Landscapes of Central Europe) has implemented 135 
research plots (100 × 100 m) within state-owned forests in the Southern 
Black Forest region (Storch et al., 2020). A full forest inventory was 
conducted between October 2016 and February 2018. In each plot we 
recorded tree species, diameter at breast height (DBH), and height of all 
trees with a DBH ≥ 7 cm. In addition, each plot was inventoried with an 
octocopter UAV (OktoXL 6S12, Mikrokopter GmbH, Moormerland, 
Germany) carrying a consumer-grade full-frame RGB camera (Alpha 7R, 
Sony Europe Limited, Weybridge, Surrey, UK) with a 35 mm prime lens. 
Flights were carried out in snowless conditions between March 2017 and 
April 2018. For each flight, the UAV maintained an altitude of 80 m 
above ground at a flight speed of 3.5 m/s and followed a crisscross 
pattern using the onboard GNSS (see Frey et al., 2018 for details). The 
camera was aligned nadir and perpendicular to the flight direction, and 
triggered automatically every 3–4 m of the flight track. This resulted in 
forward overlaps of > 95% and ground sampling distances of about 1.1 
cm. Because we adopted an area-wide digitization of the reference data 
to gain a full picture of the model performance across sites, the digiti
zation of all plots would have been too labor-intensive and we randomly 
selected 47 plots. From all 135 plots, plots with leaf-off conditions, 
plantation-like forest structures as overly easy targets, or cloud shadows 
in parts of a scene were excluded. 

Within the Biodiversity Exploratories framework (Fischer et al., 
2010), 13 research plots (100 × 100 m) were implemented in the Hai
nich NP. In the off-season from 2014 to 2015, all plots were surveyed 
and trees with a DBH ≥ 7 cm were recorded with species information, 
DBH, tree height, and geographic location of the stem (Schall et al., 
2018). For four of these plots, UAV-based RGB imagery was acquired in 
September 2019 with a DJI Phantom 4 Pro+ (DJI Technology Co., Ltd., 
Shenzhen, China) quadcopter with a ground sampling distance of <
1.35 cm, at a flight speed of 2.8 m/s, and forward overlap of 90%. 

We derived a total of 51 orthomosaics using a Structure from Motion- 
based photogrammetric processing chain in Agisoft Metashape v.1.5.4 
(Agisoft LLC, St. Petersburg, Russia). This included filtering of blurry 
images, image matching, and dense point-cloud creation. Digital 
elevation models were derived from the dense point cloud. 
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Fig. 1. Map oft the two study areas Southern Black Forest and Hainich NP in Germany. Green markers indicate the locations of the research plots. Projection: WGS84 
UTM Zone 32 N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Detailed overview of the occurring tree species and classes.  
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Orthomosaics were created by projecting single images on digital 
elevation models. Georeferencing was performed automatically based 
on the GNSS trajectory logs of the respective UAV. 

We calculated normalized digital surface models (nDSM) via sub
traction of digital terrain models. The digital terrain models were 
derived from airborne laserscans with 1 m resolution and were provided 
by the states Baden-Württemberg (State Agency for Spatial Information 
and Rural Development Baden-Wuerttemberg, LGL, Stuttgart, www. 
lgl-bw.de) and Thuringia (State Agency for Land Management and 
Geoinformation, TLBG, Erfurt, www.geoportal-th.de). Orthomosaics 
were resampled to a spatial resolution of 2 cm. To compensate for dif
ferences in the illumination properties of the individual UAV scenes, we 
applied a histogram stretch to the 0.01 and 99.99% percentiles to all 
orthomosaics. 

2.3. Reference data extraction 

Training of the U-net segmentation algorithm requires regular tiles of 
the RGB imagery. Besides, classified areas in the form of masks need to 
be provided for training. We derived these masks by visual interpreta
tion and manual delineation of classes in the orthomosaics and nDSM 
using ArcGIS v.10.6.1 (ESRI, Redlands, CA, USA). A total of nine tree 
species, three genus-level classes, deadwood, and forest floor were 
classified in this study (Fig. 2). Tree species composition, tree height, 
DBH, and relative position of trees from the forest inventory data aided 
the visual classification. For each plot, we digitized the classes. We did 
not explicitly delineate tree individuals because this was beyond the 
scope of the study. Delineation and the class assignment were cross- 
checked by at least one other interpreter. The visual, area-wide classi
fication is not a necessity of the CNN approach but it was, as already 
mentioned above, a requirement for gaining a comprehensive picture of 
the model performance across sites and with different tile sizes. Parts of 
the canopy that could not be assigned to classes with certainty (0.07% of 
the area, i.e., due to blurry image areas) were excluded from further 
analysis. The area-related share of a species in the dataset and the 
number of sites in which the species occurred is shown in Table 1 (two 
right columns). 

We tested squared tiles with three different edge sizes: 128 pixel, 256 
pixel, and 512 pixel corresponding to 2.56 m, 5.12 m, and 10.24 m, 
respectively. We seamlessly cropped orthomosaics and class de
lineations into non-overlapping tiles, resulting in a maximum of 362, 

182, and 92 tiles for the respective tile sizes per scene. Tiles containing 
empty raster cells (artifacts from the SfM-workflow caused by too little 
image overlap) in the orthomosaics or unidentified species in the mask 
were excluded from further analysis. In total, we extracted 62826, 
15094, and 3112 tiles for the respective tile sizes. 

2.4. Data splitting 

Training of a CNN is performed in epochs, which are defined as one 
complete pass through a training dataset. To assess whether a CNN is 
starting to over-optimize on training data, the CNN is evaluated using a 
validation dataset after each epoch. To get an independent assessment of 
the model accuracy, a model has to be evaluated with independent test 
data. Prior to model training, we randomly sampled 10% of the dataset 
(based on the 512-pixel tiles) as independent test data. Additionally, for 
visual inspection of the results, the UAV-scene of an entire 100 × 100 m 
plot was set aside. The area covered by the 512-pixel test tiles was also 
used for the test datasets of the smaller tiles, with an accordingly higher 
resulting number of tiles. With the same procedure as for the test 
dataset, we randomly split the remaining dataset into 75% for model 
training and 25% for model validation. 

2.5. CNN-based tree species mapping 

For tree species mapping, we adapted the U-net CNN-architecture 
(Ronneberger et al., 2015, Fig. 3). The U-net consists of a contracting 
path (Fig. 3, left side) to capture context and a symmetric expanding 
path (Fig. 3, right side) to map the contextual information to the original 
image resolution. In our implementation, the contracting path featured 
four blocks. Each block consisted of two 3 × 3 convolutions, both fol
lowed by batch normalization and rectifier linear unit (ReLU) activation. 
A 2 × 2 max pooling operation with a striding of two concluded each 
block, reducing the spatial dimensions of the feature maps by half. After 
each max pooling operation, we doubled the number of feature maps. 
Each block of the expanding path consisted of up-sampling of the feature 
maps and subsequent 2 × 2 convolution (“up-convolution”), reducing 
the number of feature maps by half. The resulting feature maps were 
concatenated with the feature maps of the corresponding blocks from 
the contracting path. This was followed by repeated 3 × 3 convolutions, 
batch normalization, and ReLU activation. With each block of the 
expanding path, we halved the number of feature maps and doubled the 

Table 1 
Tree species mapping model accuracies. Classes are sorted descending by their area-related share. For each class, the highest class-specific F1-score is highlighted in 
bold.   

Tile size [pixel] Spatial resolution [cm] Area-related sharea Occurencesb 

Input data RGB RGB + nDSM RGB + nDSM 

Tile size/resolution 128 256 512 128 256 512 2 4 8 16 32 

F1-Score              
Picea abies  0.89  0.93  0.91  0.93  0.93  0.93  0.93  0.91  0.86  0.81  0.70  32.97 45 
Fagus sylvatica  0.89  0.90  0.87  0.90  0.90  0.86  0.90  0.86  0.79  0.75  0.66  29.80 46 
Abies alba  0.79  0.85  0.86  0.86  0.87  0.86  0.87  0.83  0.60  0.60  0.34  10.91 37 
Pseudotsuga menziesii  0.84  0.89  0.74  0.89  0.91  0.88  0.91  0.86  0.79  0.77  0.36  3.89 12 
Pinus sylvestris  0.89  0.90  0.89  0.91  0.91  0.87  0.91  0.81  0.78  0.60  0.24  3.59 19 
Acer spp.  0.70  0.72  0.53  0.80  0.73  0.40  0.73  0.60  0.40  0.37  0.12  2.33 23 
Fraxinus excelsior  0.75  0.79  0.16  0.87  0.82  0.52  0.82  0.59  0.28  0.15  –  1.01 14 
Larix decidua  0.80  0.82  0.80  0.83  0.89  0.82  0.89  0.65  0.21  0.17  –  0.98 19 
Quercus spp.  0.64  0.49  0.28  0.58  0.39  0.02  0.39  0.38  0.00  –  –  0.88 10 
Carpinus betulus  0.45  0.33  –  0.38  0.36  0.00  0.36  0.24  0.08  0.06  –  0.39 4 
Tilia spp.  0.26  0.20  –  0.50  0.02  –  0.02  0.01  –  –  –  0.24 4 
Betula pendula  0.07  0.33  –  0.27  –  –  –  –  –  –  –  0.20 8 
Forest floor  0.78  0.83  0.82  0.83  0.84  0.84  0.84  0.82  0.80  0.77  0.72  11.79 50 
Deadwood  0.71  0.73  0.68  0.72  0.75  0.69  0.75  0.70  0.53  0.57  0.44  0.95 44  

Mean F1-Score  0.68  0.69  0.54  0.73  0.67  0.55  0.67  0.59  0.44  0.40  0.26   
Overall Accuracy  0.86  0.88  0.86  0.89  0.89  0.87  0.89  0.85  0.78  0.73  0.62    

a Area-related share of the class in the dataset [%]. 
b Occurrence of class in number of sites. 
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spatial dimensions. The pixel-wise classification was performed at a 
subsequent 1 × 1 convolutional layer with a softmax activation. This 
softmax activation mapped the learned features to the final class prob
abilities. The maximum class probability of a pixel represented the final 
class of the respective pixel. 

Due to the imbalanced distribution of the tree species (see Table 1), 
we used weighted categorical cross entropy as loss function during 
model training. Thereby, the categorical cross entropy between masks 
and model output was weighted by the area-related share of a species; in 
this case inversely proportional. As optimizer, we chose RMSprop with a 
learning rate of 1e-4. For better model generalization, we performed a 
random data augmentation during model training. This augmentation 
included inflating the training dataset to four times its size, applying 
random horizontal and vertical flips, and randomly changing brightness 
(90–110%) and contrast (80–120%) values of input tiles. Models were 
trained for 40 epochs with batch sizes of 3, 12, and 46 for 128 × 128, 
256 × 256, and 512 × 512 pixel tiles, respectively. The epoch with the 
lowest loss value from the validation dataset was kept as the final model. 

All code was written in R v.3.6.3 (R Core Team, 2020), using the 
packages ‘tensorflow’ (Allaire and Tang, 2019), ‘keras’ (Allaire and 
Chollet, 2019), ‘tfdatasets’ (Allaire et al., 2019), and ‘tibble’ (Müller and 
Wickham, 2019), and is available at https://github.com/FelixSchiefe 
r/TreeSeg. We used the R interface to Keras (Chollet and Allaire, 
2017) with the TensorFlow backend v.2.0.0 (Abadi et al., 2016). 
Training of a CNN model on a CUDA-compatible NVIDIA GPU (GeForce 
RTX 2080 Ti, 11 GB RAM) and the cuDNN library (Chetlur et al., 2014) 
took between 7 and 14 h. Upon request, the data used in this study can 
also be made available. 

2.6. Accuracy assessment 

To analyze the effects of the tile size, height information, and spatial 
resolution on CNN accuracy, we compared the results of several models. 
Three CNNs were trained with RGB data; each with a different tile size. 
Another three CNNs were trained with RGB + nDSM data; each with a 
different tile size. To analyze the influence of spatial resolution, we 
trained four CNNs with RGB + nDSM data and a fixed tile size of 256 ×
256 pixel; each with a different spatial resolution (4, 8, 16, and 32 cm). 

We compared manually delineated tree crowns from the test dataset 
with CNN predictions to evaluate CNN models based on overall accuracy 
(OA), precision, recall, and F1-score (harmonic mean of precision and 
recall). The reported accuracies are based on the pixel-level. For visual 
inspection, we applied the best model to an entire UAV-scene that was 
not used during model training. We used a moving window approach 
with a half tile size overlap in x- and y-direction. From the resulting nine 

predictions per pixel, final predictions were derived through majority 
vote. 

3. Results 

3.1. Model training 

For each model, the validation loss reached a minimum during the 40 
epochs (Fig. 4). After reaching its minimum, the training loss for all 
models converged towards zero (not depicted) whereas the validation 
loss stagnated or increased again. Models that were trained with smaller 
tiles, displayed a faster decrease in validation loss. 

3.2. Model results 

The model that performed best was trained with RGB + nDSM data 
and a tile size of 128 × 128 pixel (OA = 89%, mean F1-Score = 73%), 
albeit only marginally better than models trained only with RGB data or 
with a larger tile size (Table 1). A coarser spatial resolution resulted in 
overall accuracy reduction from 89% at 2 cm to 62% at 32 cm resolu
tion, and mean F1-scores from 67% to 26%. Class-specific F1-scores 
were highest for P. abies (93%). Moreover, these scores did not differ 
much between models with different tile sizes, especially not for abun
dant species (i.e., P. abies, F. sylvatica, A. alba, P. menziesii, and 
P. sylvestris). For underrepresented species (i.e., Acer spp., F. excelsior, L. 
decidua, Quercus spp., C. betulus, Tilia spp., and B. pendula), however, 
larger tile sizes resulted in lower F1-scores, with rare classes no longer 
being classified. The use of weighted categorical cross entropy did not 
compensate for the imbalanced dataset. Setting the weights higher even 
worsened the results (see Appendix A for details). The same applied for 
models with a decreasing spatial resolution; 13 out of 14 classes were 
recognized at a spatial resolution of 4 cm, but only 8 classes at 32 cm 
resolution. Such decrease in model accuracy was even more evident for 
classes with a lower share. For example, Larix decidua had a high F1- 
score at 2 cm spatial resolution (F1 = 89%), but was not classified at 
32 cm spatial resolution. This variation was species dependent. For 
example, for P. abies the F1-score decreased far less, from 93% at a 
spatial resolution of 4 cm to 70% at 32 cm resolution. Site-specific F1- 
scores did not show large fluctuations over the research plots from 
different study areas and years (see Appendix B for details). 

3.3. Prediction on an independent scene 

We applied the best model (i.e. CNN trained with RGB + nDSM on 
128 × 128 pixel tiles) to a UAV-scene that had not been used for training 

Fig. 3. Adapted U-net CNN-architecture for the tree species segmentation (Ronneberger et al., 2015). This scheme illustrates how 128 × 128 pixel tiles were 
analyzed. Values on top of the boxes depict the number of calculated feature maps with the respective x-y-dimensions as vertically oriented labels. 
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(Fig. 5). Model inference took about 3 min for the entire 100 × 100 m 
UAV-scene. Abundant classes were almost perfectly predicted, but the 
model struggled with underrepresented classes. The CNN predictions on 
larger tiles resulted in similar patterns, but edge effects of the tiles were 
less pronounced (not shown). 

4. Discussion 

4.1. Model performance 

The model accuracies achieved in our study were relatively high, 
especially when considering the high number of 14 classes (i.e., nine tree 
species, three genus-level classes, deadwood, and forest floor) and the 
fact that we only used RGB imagery. Moreover, our data are charac
terized by a high degree of heterogeneity, as they include different forest 
types (i.e. mixed, deciduous and coniferous), different types of use (i.e. 
unmanaged forests in Hainich NP and commercial forest in the Southern 
Black Forest), and feature a diverse age structure. By using a semantic 
segmentation approach, no tree segmentation or localization steps prior 
to model inference were required, allowing us to fully exploit the end-to- 
end learning capabilities of CNNs. 

The classification of comparably high numbers of tree species using 
CNNs has been demonstrated in subtropical forests (OA = 84%), but 
hyperspectral UAV data was used and the targeted tree crowns were 
previously extracted from the imagery (Sothe et al., 2020). Similar ac
curacies have been reported for the classification of seven tree species in 
mixed coniferous forest using airborne hyperspectral data (F1 = 87%) 
and pseudo-RGB data (F1 = 64%), after previous identification of the 
trees in LiDAR-derived canopy height models (Fricker et al., 2019). Atfer 
the removal of shadowed, low-, and non-vegetated pixels prior to CNN- 
classification, P. abies, P. sylvestris, and B. pendula have been mapped in 
boreal forests in airborne hyperspectral data (OA = 87%) and RGB data 
(OA = 74%) (Trier et al., 2018). The same species have been mapped 
with different combinations of hyperspectral data, RGB imagery, and 
canopy height models with highest accuracies (OA = 98%) (Nezami 
et al., 2020). CNNs have been successfully used to classify two Pinus 
species and non-Pinus in previously extracted tree crowns from UAV- 
based RGB imagery (F1 = 80%) (Natesan et al., 2019). However, a 
more detailed comparison of our results with the existing literature is 

hampered by the variety of applied CNN approaches (i.e., object 
detection, image classification/regression, and semantic segmentation), 
CNN architectures, forest types, and most of all tree species studied. 

4.2. Tile size 

For most of the classes, the tile size did not have a prominent effect 
on model performance. Only for underrepresented classes a larger tile 
size was disadvantageous. This depended less on the tile size itself but 
rather on the species coverage within the tiles. With smaller tiles, the 
area percentage of rare species on the tile was larger and underrepre
sented species thus contributed more to the model update during 
training. Whereas with larger tiles, underrepresented species got lost in 
the surrounding information of more frequent species. This was despite 
the use of weighted categorical cross entropy as loss function to 
compensate for such imbalances. The situation was different for classes 
that feature distinct characteristics (i.e. L. decidua and deadwood) as 
they were modeled equally well, regardless of the tile size. From the 
prediction map (Fig. 5c) it becomes evident that the CNN, despite the 
employed moving window approach, sufferd from edge effects, a known 
problem with CNNs. Obviously, this effect is more problematic with a 
smaller tile size. Hence, if sufficiently enough reference data for the 
targeted classes is available a larger tile size should be preferred. This 
allows a larger spatial context to be considered—which is key infor
mation to CNNs—and speeds up model inference over large spatial 
extents. 

The fact that the models with smaller tile sizes reached their minimal 
validation loss earlier can be explained by the different batch sizes. The 
batch size is limited by the computational complexity of the CNN- 
architecture, the available RAM, and the size of the images. To 
analyze the influence of the batch size on the model performance is 
beyond the scope of this study. With the different batch sizes for the 
CNNs of the different tile sizes, we ensured that the models were exposed 
to the same amount of information in terms of area coverage. 

4.3. Canopy height information 

Adding height information from nDSM to the CNN slightly increased 
the model accuracies for most of the classes. This contrasts with Sothe 

Fig. 4. Validation loss during CNN model training. Curves were smoothed for better visualization. The symbols represent the unsmoothed validation loss of the 
best epoch. 
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Fig. 5. Predictions of a trained CNN on a 100 × 100 m plot. (a) UAV-based RGB orthomosaic, (b) manually delineated reference data, (c) CNN prediction based on 
128 × 128 pixel tiles (RGB + nDSM). For illustrative purposes, the two sides of the plot are shown one above the other. Classes that did not appear in the reference 
data are grouped in the category “other”. 
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et al. (2020) and Hartling et al. (2019) who found additional height 
information to decrease the model performance. Kattenborn et al. 
(2020) found no clear positive effect of combining height information 
with RGB data and suggested that the structural aspect is redundant in 
both height and RGB information. Analogous to our visual perception of 
the tree crowns, we assume that the basic structural information of 
nDSMs is already inherently included in RGB data through shadows and 
illumination differences. Whereas the creation of a digital surface model 
from UAV data is required for the calculation of the orthomosaic any
way, one should keep in mind that for the calculation of nDSMs a digital 
terrain model is needed (Wallace et al., 2019), which in turn requires 
additional processing steps. Furthermore, including additional layers to 
the CNN increases the number of parameters and thus computational 
complexity and could outweigh the benefit introduced. 

4.4. Spatial resolution 

Our results showed that very-high spatial resolution was essential for 
accurate mapping of forest tree species using RGB data. These findings 
underline the key role that UAVs can play for the remote sensing-based 
forest assessment, given that airborne and satellite remote sensing data 
currently do not provide a comparable spatial resolution. While most 
species with small shares of the dataset could not be identified with 
coarsening spatial resolution deadwood could still be sufficiently iden
tified, despite its small share of the dataset (0.95%). This is probably 
because the visual characteristics of deadwood were still represented at 
coarser spatial resolutions. This indicates that for some classes mapping 
might be possible even at coarser spatial resolutions if prominent fea
tures exist. Accordingly, Safonova et al. (2019) used CNNs on UAV- 
based RGB imagery with 5–10 cm spatial resolution to detected 
damaged and dead trees of Abies sibirica after bark beetle infections with 
F1-scores up to 93%. 

For a qualitative inspection of the effect of the spatial resolution and 
to obtain a causal explanation for our results we inspected the learned 
features of the CNN based on filter visualizations (Fig. 6). The latter are 
synthetic images that would maximally activate the respective filter of a 
trained network—in other words, they reflect what the network is 
looking for (technical details on the filter visualization are given in 

Appendix C). The filter visualizations of the fourth block and the center 
block of the CNN revealed fine-scale patterns that resemble typical 
canopy features, e.g., conifer-like branching structures (Fig. 6a,c), or 
broad-leaf-like canopy structures (Fig. 6b,d). Such patterns could not be 
revealed with coarser spatial resolutions, which underlines our findings 
that a very high resolution is key to identify forest tree species. It, 
therefore, seems possible that further increasing the spatial resolution 
(e.g. sub-centimeter) may even improve the capabilities for a CNN-based 
tree species mapping. 

Nevertheless, a higher resolution also comes in hand with lower 
spatial coverage of the UAV data and therefore the ideal trade-off be
tween area coverage and spatial resolution should be considered when 
designing imaging campaigns. Given its good performance at very-high 
spatial resolution, CNNs applied to small extents can aid in the gener
ation of reference data for remote sensing approaches at large spatial 
extents with a coarse spatial resolution (Kattenborn et al., 2019b). 

4.5. Model generalization 

The validation from the test dataset revealed high generalization 
abilities for the identification of 14 classes with a mean F1-score of 73% 
(128 × 128 pixel tiles, RGB + nDSM) and evenly distributed site-specific 
F1-scores across all sites and years. Sothe et al. (2020) reported prob
lems in generalizing the learned features of nine tree species when in
dividual CNNs were trained locally on different sites. For the 
discrimination of two Pinus species from non-Pinus, Natesan et al. (2019) 
reported a higher F1-score (80%) when CNNs were trained with samples 
from several years than when trained with only one year (50%). Simi
larly, Weinstein et al. (2020) reported high generalization abilities of 
CNNs for the detection of individual trees over four different forest 
types. They found a CNN trained on all available forest types to 
outperform individual, locally trained CNNs. Their results suggest high 
model transferability when CNNs are trained over large and heteroge
neous data. 

The data used in this study were collected in 51 one-hectare plots in 
two different forest types (temperate deciduous and mixed coniferous 
forests), different managements (managed and unmanaged), and study 
areas (Southern Black Forest and NP Hainich), and included a variety of 
growth stages. UAV data acquisition took place in the years 2017–2019 
from June–September (day of the year 110–307) and covered a variety 
of illumination situations due to the different recording times from 7 am 
to 6 pm. In addition, data augmentation was used to increase size and 
variance of the training dataset, and to minimize spatial autocorrelation 
of adjacent tiles. We, therefore, assume that the high generalization 
abilities of the CNNs, as indicated by the overall accuracy, as well as the 
evenly distributed F1-scores across all sites, are the result of including 
many sites from different areas, different forest structures, different 
seasons and years, and varying illumination properties. This way it can 
be ensured that the CNN learns features of tree species that are repre
sentative for different growth stages and site conditions. In line with 
Weinstein et al. (2020) we assume that more training data and increased 
heterogeneity will further enhance the accuracy and generalization of 
CNNs. Coupled with the establishment of large databases of remote 
sensing and reference data (Zhu et al., 2017), this opens the possibilities 
of transfer learning or even the creation of universal models. In the case 
of transfer learning, CNNs are pre-trained on large and heterogeneous 
datasets and the model weights are fine-tuned for the respective use 
case, while a universal model is trained on all existing data and is 
therefore transferable across sites. Weinstein et al. (2020) already 
demonstrated this future perspective for the detection of trees over 
various landscapes. Our results show a path for widely applicable 
mapping of tree species in temperate forests using only low-cost UAV- 
based RGB data and CNNs. Fig. 6. Selection of synthetic filter visualizations resembling patterns that 

would most stimulate the CNN (for technical details see Appendix C). The filter 
visualizations correspond to the dimensions of the tile size (here 256 × 256 
pixel) and highlight the importance of fine-scale features. 
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4.6. CNN architecture 

Frequently applied approaches for mapping vegetation from remote 
sensing data using CNN comprise image classification/regression or 
object detection. Classification and regression approaches either rely on 
prior segmentation of the target (cf. Hartling et al., 2019; Natesan et al., 
2019; Sothe et al., 2020) or predictions are assigned to an entire image 
tile (cf. Kattenborn et al., 2020; Qian et al., 2020; Rezaee et al., 2018). 
The output of the object detection task is typically a bounding box drawn 
around the object of interest (cf. Chen et al., 2019; Csillik et al., 2018; 
dos Santos et al., 2019; Fromm et al., 2019; Safonova et al., 2019; 
Weinstein et al., 2020, 2019). The capability of such approaches to 
derive spatially explicit maps can be limited by a number of reasons: (1) 
they require additional preprocessing steps (e.g. segmentation, back
ground removal), or (2) classification on the single-pixel level is 
required to retrieve pixel-based predictions, or (3) the results represent 
object location and (rectangular) extent rather than spatially explicit 
objects. In contrast, semantic segmentation is an end-to-end learning 
approach that combines segmentation and classification in a pixel-based 
fashion at the original spatial resolution and is thus ideally suited for 
mapping tree species in forests. No prior segmentation or classification is 
necessary apart from the creation of training samples. 

In this study, we used the U-net architecture given its good perfor
mance even with small amounts of labeled data (Ronneberger et al., 
2015). Besides its relatively low computational complexity, several 
studies have successfully demonstrated the suitability of the U-net for 
mapping single plant species (Kattenborn et al., 2019a; Wagner et al., 
2020), individual trees (Freudenberg et al., 2019; Lobo Torres et al., 
2020), forest damage and disturbance (Hamdi et al., 2019; Kislov and 
Korznikov, 2020; Wagner et al., 2019), forest types (Wagner et al., 
2019), and plant communities (Kattenborn et al., 2019a). Since we were 
interested in the general applicability of CNNs for mapping forest tree 
species, we did not aim for benchmarking multiple architectures. Be
sides U-net, a variety of more elaborate model architectures for semantic 
segmentation exist (e.g., FC-DenseNet (Jegou et al., 2017), SegNet 
(Badrinarayanan et al., 2017), or DeepLabv3+ (Chen et al., 2017)). Lobo 
Torres et al. (2020) compared five models of varying complexity, 
namely U-net, FC-DenseNet, SegNet, and two variants of the Deep
Labv3+ for semantic segmentation of tree species in urban environ
ments. Their results suggest the model accuracies of the architectures to 
be comparable, whereas more complex models (i.e. DeepLabv3+) 
required up to two or four times more time during model training and 
inference. 

Another alternative to semantic segmentation is instance segmen
tation, i.e. segmenting not only classes but also individuals. Detecting 
individual trees would truly be of high value for forestry and conser
vation. However, from our experience from the visual interpretation, 
many tree crowns of the same species are hard to differentiate because 
branches may have crown-like characteristics (e.g., F. sylvatica, 
F. excelsior). This suggests that generating labels for the segmentation of 
individuals requires more sophisticated procedures that either require 
in-situ data with high-quality GNSS data on tree stem locations or a 
sophisticated link to ancillary remote sensing data (e.g. LiDAR data) to 
aid visual inspection. However, even if labels were available, we doubt 
that instance segmentation algorithms would be able to locate in
dividuals in RGB orthomosaics given the above-described difficulties. 

4.7. Reference data 

Reference data were derived through manual delineation in the 
orthomosaics after visual interpretation. Given the very high spatial 
resolution (<1.35 cm) of the imagery tree species were clearly identi
fiable. To minimize errors in the visual interpretation, we used addi
tional information from forest inventories (i.e., tree height, DBH, and 
partly tree stem coordinates), cross-checked the delineations by at least 
one other interpreter, and removed tree crowns that we could not 

identify with certainty. Several reasons suggest that when using very 
high-resolution image data, no other method is appropriate for obtain
ing reference data, especially in the case of deep learning: (1) acquisition 
of in-situ data of the required amount is costly, time- and labor-intensive 
and might thus not be feasible; (2) reference data from visual interpre
tation of the image data is not subject to geolocation errors of GNSS- 
measurements as for in-situ measurements. Such errors are typically in 
the range of decimeters to meters when using differential GNSS and 
might even exceed several meters when using stand-alone GNSS, 
particularly under dense canopies (Kaartinen et al., 2015; Valbuena 
et al., 2012). Especially when using very high-resolution imagery, errors 
might exceed the spatial resolution by far, which makes in-situ mea
surements difficult to use; (3) in-situ data that can be recorded with the 
least effort in forests are typically point observations (e.g. tree stem 
coordinates) that do not necessarily allow for a spatially explicit link 
with the targeted variable (e.g. tree crowns). However, visual inter
pretation from RGB imagery is not free of misinterpretation, but due to 
the high amount of reference data required for CNNs and the need for 
high precision geolocation within the high-resolution imagery, it seems 
to be the most effective way of collecting reference data. Furthermore, it 
has been shown that CNNs can compensate for faulty labels to some 
extent and that correct classes were predicted despite incorrectly labeled 
reference data (Hamdi et al., 2019; Kattenborn et al., 2020). 

A probable reason for the decreasing accuracy with decreasing share 
of the species might be that less abundant species share similar features 
with more abundant species and are therefore misclassified. This could 
be the case especially with F. sylvatica and C. betulus whose leaves have a 
similar size and shape. On the other hand, rarely occurring species that 
show no or less similarities with more abundant species (e.g. small 
leaves and distinct habitus of B. pendula) have also been poorly classi
fied, most likely due to their underrepresentation in the data set. The 
majority of observations in this study was situated along a gradient of 
forest connectivity and structure (Storch et al., 2020) and, hence, not 
optimized for representing all species for a remote sensing application. 
Thus, designing or updating a database towards sufficient observations 
for rare taxa, may be key for an accurate species mapping. More tech
nical alternatives for improving the accuracy for underrepresented 
species include tuning the weights in the loss function and setting them 
higher for less frequent classes (which in our case however rather 
worsened the results at some point), weight updating (i.e., updating the 
weights of an already trained CNN using solely data of less frequent 
species), or sampling tiles containing less frequent species more often 
during model training. The latter, however, was not an option due to the 
large range of occurrences in our dataset (0.2–33% area-related share), 
as it would have drastically reduced the dataset size or assumedly would 
have introduced large redundancies. 

For the genera Acer, Tilia, and Quercus, we grouped the respective 
species into genus-level classes, since they were only present in very 
small quantities in the plots. While for some of these species a distinction 
in the RGB data might be easier due to visible differences in tree habitus 
or leaf shape (e.g. Acer platanoides and Acer pseudoplatanus), for other 
species with only subtle differences it might be very difficult or even 
impossible (e.g. Quercus petraea and Quercus robur). The mapping of such 
species using very high-resolution UAV-based RGB data and CNNs could 
prove to be very difficult and should be subject to further research. 

5. Conclusion 

We showed that RGB imagery from consumer-grade UAVs in concert 
with a CNN-based semantic semgnetation enables to map tree species 
across heterogeneous temperate forests with high accuracies. We tested 
CNN-based tree species mapping with different tile sizes, incorporation 
of height information (nDSM), and varying spatial resolutions. The tile 
size had no prominent influence on the model accuracy if enough 
reference data was available. By choosing a larger tile size, a larger 
spatial context was considered by the CNN, thereby minimizing edge 
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effects, and accelerating the application over a large spatial extent. 
Additional height information from nDSMs slightly increased the model 
accuracy. Still, the inclusion of nDSMs should be carefully considered, 
since the increased computational complexity of the CNN and the need 
for a digital terrain model are major drawbacks. A high spatial resolu
tion was indeed decisive for the accurate mapping of forest tree species 
using RGB data. Overall, our results showed that CNN models generalize 
well over the diverse dataset in terms of site conditions, forest types, 
stand structure, phenology, and illumination properties. 

Our findings underline the synergies between high resolution UAV 
imagery and CNN-based segmentation procedures. In view of the 
increasingly easy and affordable way to obtain very high-resolution RGB 
imagery with consumer-grade UAVs, and given that air- and spaceborne 
data currently do not provide comparable spatial resolutions, UAVs can 
play a crucial role in the mapping of forest tree species. CNN are able to 
learn species-specific features from such high resolution imagery, while 
their end-to-end learning capabilities make extensive preprocessing of 
remote sensing data obsolete and simplify a widespread application. Our 
study demonstrates the potential of a concerted use of UAVs and CNNs 
and thus provides promising future perspectives for applications in 
forestry or large-scale and long-term ecological research. Such applica
tions usually require large-scale and accurate maps of forest tree species, 
for which field-based methods might be too labor-intensive while 
commonly used machine learning approaches might not be accurate 
enough. 

Given that training data generation for semantic segmentation is a 
laborious task and generalization across forest types is of primary 
concern, a flexible, widespread, and operational application of such an 
approach may be facilitated by incorporating transfer learning (i.e. 
updating and refining the learned feature representations of an already 
trained CNN by retraining the model with new image data) or the 
development of universal models (i.e. one single model that has been 
trained over a variety of landscapes and many species). 
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