Abstract:
Die moderne Gesellschaft strebt mehr denn je nach digitaler Konnektivität - überall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) führt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von Geräten werden in unserer täglichen Umgebung allgegenwärtig sein und über das Internet in Verbindung stehen.
Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein Schlüsselelement für das IoE, indem sie neuartige Gerätetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. ... mehrDarüber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengünstige und großflächige Herstellung am Einsatzort.
Diese einzigartigen Eigenschaften von PE ergänzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftsträchtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen.
Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener Geräte und Systeme eine der größten zu lösenden Herausforderungen. Komplexe Hochleistungsgeräte interagieren mit hochspezialisierten, leichtgewichtigen elektronischen Geräten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten Geräten oder in der Cloud ausgetauscht. Dabei wirft die Fülle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf.
Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und Systemkomplexität erfordern, was sie wiederum für viele leichtgewichtige Geräte ungeeignet macht.
Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der Geräteidentifikation und -authentifizierung. Dabei hängt das Sicherheitslevel hauptsächlich von der Qualität der Entropiequelle und der Vertrauenswürdigkeit der abgeleiteten Schlüssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der Schlüssel sind von großer Bedeutung, um einzelne Entitäten genau unterscheiden zu können.
In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen für IoT-Geräte erlangt. PUFs verwenden ihre inhärenten Variationen, um gerätespezifische eindeutige Kennungen abzuleiten, die mit Fingerabdrücken in der Biometrie vergleichbar sind.
Zu den größten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von Sicherheitsschlüsseln nach Bedarf sowie die inhärente Schlüsselspeicherung.
In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische Geräte und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlässig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven für die Schlüsselgenerierung zur eindeutigen Geräteidentifikation im IoE sind.
Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen für ressourcenbeschränkte gedruckte Geräte und Systeme bereitzustellen.
Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere Schlüssel für Sicherheitsanwendungen für ressourcenbeschränkte Geräte bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthält. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen.
Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgeführt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte für die Uniqueness- und Reliability-Metriken aufweist. Darüber hinaus werden die Identifikationsfähigkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusätzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann.
Im dritten Beitrag dieser Arbeit wird zunächst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind.
Des Weiteren werden angefertigte PE-basierte PUF-Cores für statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen überein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklärt werden kann. Die Untersuchung der Identifikationsfähigkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusätzliches Post-Processing nicht für kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur Geräteidentifikation eignet.
Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die Sicherheitsfähigkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgeführt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine Anfälligkeit für Angriffe auf Modellbasis hauptsächlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhängt. Darüber hinaus wird ein Angriffsmodell eingeführt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingeführt und mit häufig verwendeten Classifiers für überwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP).
Die Ergebnisse zeigen, dass die Hybrid-PUF anfällig für modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kürzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs übertreffen die ML-Algorithmen den Sortieralgorithmus.
Abstract (englisch):
Modern society is more than ever striving for digital connectivity - everywhere and at any time, giving rise to megatrends such as the Internet of Things (IoT). Already today, 'things' communicate and interact autonomously with each other and are managed in networks. In the future, people, data, and things will be interlinked, which is also referred to as the Internet of Everything (IoE). Billions of devices will be ubiquitously present in our everyday environment and are being connected over the Internet.
As an emerging technology, printed electronics (PE) is a key enabler for the IoE offering novel device types with free form factors, new materials, and a wide range of substrates that can be flexible, transparent, as well as biodegradable. ... mehrFurthermore, PE enables new degrees of freedom in circuit customizability, cost-efficiency as well as large-area fabrication at the point of use.
These unique features of PE complement conventional silicon-based technologies. Additive manufacturing processes enable the realization of many envisioned applications such as smart objects, flexible displays, wearables in health care, green electronics, to name but a few.
From the perspective of the IoE, interconnecting billions of heterogeneous devices and systems is one of the major challenges to be solved. Complex high-performance devices interact with highly specialized lightweight electronic devices, such as e.g. smartphones and smart sensors. Data is often measured, stored, and shared continuously with neighboring devices or in the cloud. Thereby, the abundance of data being collected and processed raises privacy and security concerns.
Conventional cryptographic operations are typically based on deterministic algorithms requiring high circuit and system complexity, which makes them unsuitable for lightweight devices.
Many applications do exist, where strong cryptographic operations are not required, such as e.g. in device identification and authentication. Thereby, the security level mainly depends on the quality of the entropy source and the trustworthiness of the derived keys. Statistical properties such as the uniqueness of the keys are of great importance to precisely distinguish between single entities.
In the past decades, hardware-intrinsic security, particularly physically unclonable functions (PUFs), gained a lot of attraction to provide security features for IoT devices. PUFs use their inherent variations to derive device-specific unique identifiers, comparable to fingerprints in biometry.
The potentials of this technology include the use of a true source of randomness, on demand key derivation, as well as inherent key storage.
Combining these potentials with the unique features of PE technology opens up new opportunities to bring security to lightweight electronic devices and systems. Although PE is still far from being matured and from being as reliable as silicon technology, in this thesis we show that PE-based PUFs are promising candidates to provide key derivation suitable for device identification in the IoE.
Thereby, this thesis is primarily concerned with the development, investigation, and assessment of PE-based PUFs to provide security functionalities to resource constrained printed devices and systems.
As a first contribution of this thesis, we introduce the scalable PE-based Differential Circuit PUF (DiffC-PUF) design to provide secure keys to be used in security applications for resource constrained printed devices. The DiffC-PUF is designed as a hybrid system architecture incorporating silicon-based and inkjet-printed components. We develop an embedded PUF platform to enable large-scale characterization of silicon and printed PUF cores.
In the second contribution of this thesis, we fabricate silicon PUF cores based on discrete components and perform statistical tests under realistic operating conditions. A comprehensive experimental analysis on the PUF security metrics is carried out. The results show that the silicon-based DiffC-PUF exhibits nearly ideal values for the uniqueness and reliability metrics. Furthermore, the identification capabilities of the DiffC-PUF are investigated and it is shown that additional post-processing can further improve the quality of the identification system.
In the third contribution of this thesis, we firstly introduce an evaluation workflow to simulate PE-based DiffC-PUFs, also called hybrid PUFs. Hereof, we introduce a Python-based simulation environment to investigate the characteristics and variations of printed PUF cores based on Monte Carlo (MC) simulations. The simulation results show, that the security metrics to be expected from the fabricated devices are close to ideal at the best operating point.
Secondly, we employ fabricated printed PUF cores for statistical tests under varying operating conditions including variations in ambient temperature, relative humidity, and supply voltage. The evaluations of the uniqueness, bit aliasing, and uniformity metrics are in good agreement with the simulation results. The experimentally determined mean reliability value is relatively low, which can be explained by the missing passivation and encapsulation of the printed transistors. The investigation of the identification capabilities based on the raw PUF responses shows that the pure hybrid PUF is not suitable for cryptographic applications, but qualifies for device identification tasks.
The final contribution is to switch to the perspective of an attacker. To judge on the security capabilities of the hybrid PUF, a comprehensive security analysis in the manner of a cryptanalysis is performed. The analysis of the entropy of the hybrid PUF shows that its vulnerability against model-based attacks mainly depends on the selected challenge building method. Furthermore, an attack methodology is introduced to assess the performances of different mathematical cloning attacks on the basis of eavesdropped challenge-response pairs (CRPs). To clone the hybrid PUF, a sorting algorithm is introduced and compared with commonly used supervised machine learning (ML) classifiers including logistic regression (LR), random forest (RF), as well as multi-layer perceptron (MLP).
The results show that the hybrid PUF is vulnerable against model-based attacks. The sorting algorithm benefits from shorter training times compared to the ML algorithms. If the eavesdropped CRPs are erroneous, the ML algorithms outperform the sorting algorithm.