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Abstract: We propose and investigate a new estimation method for the parameters of models consisting
of smooth density functions on the positive half axis. The procedure is based on a recently introduced
characterization result for the respective probability distributions, and is to be classified as a minimum
distance estimator, incorporating as a distance function the Lq-norm. Throughout, we deal rigorously
with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide
consistency results in a common asymptotic setting, and compare our new method with classical estimators
for the exponential, the Rayleigh and the Burr Type XII distribution in Monte Carlo simulation studies.
We also assess the performance of different estimators for non-normalized models in the context of an
exponential-polynomial family. The Canadian Journal of Statistics 00: 000–000; 2020 © 2020 Statistical
Society of Canada
Résumé: Les auteurs proposent et étudient une nouvelle méthode d’estimation pour les paramètres de
modèles constitués de fonctions de densité lisses sur le demi-axe positif. Basée sur un résultat récent à
propos de la représentation des distributions de probabilité en question, leur procédure peut être classée
comme un estimateur de distance minimale incorporant la norme Lq comme fonction de distance. Les
auteurs gèrent de façon rigoureuse les questions d’existence et de mesurabilité de ces estimateurs définis
implicitement. Ils fournissent également des résultats de convergence dans un contexte asymptotique
commun, puis présentent des simulations de Monte Carlo où leur nouvelle méthode est comparée à des
estimateurs classiques pour les distributions exponentielles, Rayleigh et Burr de type XII. Les auteurs
évaluent également la performance de différents estimateurs pour les modèles non normalisés dans le
contexte d’une famille exponentielle polynomiale. La revue canadienne de statistique 00: 000–000; 2020
© 2020 Société statistique du Canada

1. INTRODUCTION

One of the most classical problems in statistics is the estimation of the parameter vector of
a parametrized family of probability distributions. It presents itself in a significant share of
applications because parametric models often contribute a reasonable compromise between
flexibility in the shape of the statistical model and meaningfulness of the conclusions that can be
drawn from the model. As a consequence, all kinds of professions are confronted with the issue of
parameter estimation, be it meteorologists, engineers or biologists. Throughout the last decades,
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a vast amount of highly focused estimation procedures for all kinds of situations have been
provided, but the procedure that is arguably used most often remains the maximum likelihood
estimator. Apart from its (asymptotic) optimality properties, its popularity is presumably in direct
relation with its universality: for the professions mentioned above, and many more, whose prime
interest is not the study of sophisticated statistical procedures, it is essential to have at hand a
method that is both, easily communicated and applicable to a wide range of model assumptions.
A second class of methods incorporates the idea of using as an estimator the value that minimizes
some goodness-of-fit measure. To implement this type of estimators, the empirical distribution,
quantile or characteristic function is compared to its theoretical counterpart from the underlying
parametric model in a suitable distance, and the term is minimized over the parameter space,
see Wolfowitz (1957), or Parr (1981) for an early bibliography. These procedures provide some
freedom in adapting the estimation method to the intended inferences from the model and they
regularly possess good robustness properties (see Parr & Schucany, 1980, as well as Millar,
1981). An example which was discussed recently, and which goes by the name of minimum
CRPM estimation, see Gneiting et al. (2005), is tailored to the practice of issuing forecasts:
as argued by Gneiting, Balabdaoui & Raftery (2007), a good probabilistic forecast minimizes
a (strictly) proper scoring rule such as the “CRPM” (Gneiting & Raftery, 2007), and after
constructing a suitable model it appears somewhat more natural to use as an estimator the
one that minimizes the scoring rule instead of a classical estimation method like maximum
likelihood (for a comparison see Gneiting et al., 2018). As it happens, these rather universal
procedures listed above easily run into computational hardships. Just consider that even for
“basic” models, density functions can take complicated forms, and distribution or characteristic
functions, or even normalization constants, may be nowhere near to an explicit formula. This is
where we want to tie on. In a recent work, Betsch & Ebner (2019a) established distributional
characterizations that, from a practical point of view, are comparable to the characterization
of a probability distribution through its distribution function. Their results, which are given in
terms of the derivative of a density function and the density itself, provide explicit formulae that
simplify the dependence of the terms on the parameters (even for rather complicated models), and
extend characterizations via the zero-bias or equilibrium transformation (Goldstein & Reinert,
1997; Peköz & Röllin, 2011, respectively) that arise in the context of Stein’s method, cf. Chen,
Goldstein & Shao (2011). The aim of this work is to investigate these characterizations, which
where already used to construct goodness-of-fit tests (see Betsch & Ebner, 2019b, 2020), more
closely in the context of parameter estimation. An advantage of the resulting estimators lies
in the way the density function of the underlying model appears in the characterization, and
thus also in the estimation method. When considering for some (positive) density function p
the quotient p′

p
, the term no longer depends on the integration constant which ensures that the

function integrates to one, but only on the functional form of the density. As indicated before,
our estimators depend on the underlying model precisely via this quotient, so they are applicable
in cases where the normalization constant is unknown. Models of this type occur (though often
in discrete settings) in such applied areas as image modelling (using Markov random fields, see
Li, 2009) and machine learning, or in any other area where models are complex enough to render
the calculation of the normalization constant impractical. For more specific discussions of such
applications, we refer to the introduction of the work by Uehara et al. (2019a). The problem was
already addressed by Hyvärinen (2005), who set out to find an estimation method which only
takes into account the functional form of a density. The approach introduced there goes by the
name of “score matching,” and the estimation method involves terms of the form p′′

p
− 1

2

( p′

p

)2
and hence does not depend on the normalization constant either. In the univariate case we discuss
here, our method provides a good supplement as it contains no second derivatives and may thus be
applicable to cases where other methods fail. Also note that several other approaches by Pihlaja,
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Gutmann & Hyvärinen (2010), Matsuda & Hyvärinen (2019) and Uehara, Matsuda & Kim
(2020) are available. Later on we also discuss noise-contrastive estimation, a concept introduced
by Gutmann & Hyvärinen (2010). All these references indicate that statistical inference for
non-normalized models is a topic of very recent investigation that also interests researcher in
machine learning, a fact which we further allude to at the end of the following section.

In Section 2 we introduce this new class of parameter estimators that are comparable, in their
range of applicability in the given setting, to the maximum likelihood and minimum Cramér–von
Mises distance estimators (as discussed by Parr & Schucany, 1980, or Parr & De Wet, 1981). We
rigorously deal with the existence and measurability of our estimators in Section 3. In Section 4
we provide results on consistency. Thereafter, we give as (normalized) examples the exponential
(Section 5), the Rayleigh (Section 7) and the Burr Type XII distribution (Section 8). For each
of the three parametric models we compare our new method to classical methods like the
maximum likelihood and minimum Cramér–von Mises distance estimator in competitive Monte
Carlo simulation studies. The Burr distribution (cf. Burr, 1942; Rodriguez, 1977; Tadikamalla,
1980; Section 6.2 of Kleiber & Kotz, 2003; or Kumar, 2017) as a model is relevant in
econometrics, initiated by Singh & Maddala (1976) (see also Schmittlein, 1983), and other areas
like engineering, hydrology and quality assurance, see Shah & Gokhale (1993) for corresponding
references. However, the parameter estimation is non-trivial and can even cause computational
issues. Thus, providing a new estimation method could prove useful in applications. In Section 9
we discuss an exponential-polynomial model for which the normalization constant is intractable,
and we compare the new estimators with the score matching and noise-contrastive estimation
approaches.

2. THE NEW ESTIMATORS

To be specific, recall that the problem of parameter estimation for continuous, univariate
probability distributions presents itself as follows. Consider for Θ ⊂ ℝd a parametric family of
probability density functions

𝔓Θ =
{

p𝜗 |𝜗 ∈ Θ
}
,

and let X1,… ,Xn be a sample consisting of independent real-valued random variables with a
distribution from 𝔓Θ, that is, there exists some 𝜗0 ∈ Θ such that Xi has density function p𝜗0
(Xi ∼ p𝜗0

, for short) for i = 1,… , n. Denote with P𝜗 the distribution function corresponding to
p𝜗. The task is to construct an estimator of the unknown 𝜗0 based on X1,… ,Xn.

For the construction of our new estimation method, we first recall in a non-technical fashion
a famous distributional characterization that can be traced back to Charles Stein, see Chapter VI
of Stein (1986). In the more elaborated version of Ley & Swan (2013) it establishes that, given
a suitable probability density function p, the distribution of a real-valued random variable X is
given through the density function at hand if, and only if,

𝔼
[
𝑓 ′(X) +

p′(X)
p(X)

𝑓 (X)
]
= 0

for a large enough class of suitably chosen test functions 𝑓 . Motivated by the well-known
zero-bias distribution, Betsch & Ebner (2019a) used the above characterization in a recent
publication to derive explicit identities which retain the essence of the characterizing property.
Indeed, they were able to derive from the Stein characterization that, for a suitable density
function p on the positive axis with few technical assumptions (which we adopt below), the

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



4 BETSCH, EBNER AND KLAR Vol. 00, No. 00

distribution of a positive random variable X (satisfying a weak integrability property) is given
through p if, and only if, the distribution function FX corresponding to X satisfies

FX(t) = 𝔼
[
−

p′(X)
p(X)

min{X, t}
]
, t > 0. (1)

As we intent to use this result as a foundation for our estimation method in parametric models
for non-negative quantities, assume that the support of each density function in 𝔓Θ is (0,∞).
In particular, suppose that each p𝜗 is positive and continuously differentiable on (0,∞). Also
assume that

∫
∞

0
|x| ||p′𝜗(x)|| dx < ∞ and sup

x> 0

p′
𝜗
(x) min{P𝜗(x), 1 − P𝜗(x)}

p𝜗2(x)
<∞.

Moreover, suppose that limx↘ 0
P𝜗(x)
p𝜗(x)

= 0. These presumptions where made by Betsch & Ebner
(2019a) to derive the characterization given above, and they are straight forward to check for
most common density functions. Particularly the last condition is exhaustively discussed in
Proposition 3.7 of Döbler (2015). Let X be a positive random variable with

𝔼
|||||
p′
𝜗
(X)

p𝜗(X)
X
||||| <∞, 𝜗 ∈ Θ, (2)

and define the function

𝜂(t, 𝜗) = 𝔼

[
−

p′
𝜗
(X)

p𝜗(X)
min{X, t}

]
− FX(t)

for (t, 𝜗) ∈ (0,∞) × Θ. Then the characterization of Betsch & Ebner (2019a), as built up in
Equation (1) and as given in their Corollary 3, asserts that X has density function p𝜗 if, and only
if, 𝜂(t, 𝜗) = 0 for every t > 0. Therefore, if we assume initially that X ∼ p𝜗0

(note that (2) is
satisfied by requirement on p𝜗), then

‖‖𝜂(⋅ , 𝜗)‖‖Lq = 0 if, and only if, 𝜗 = 𝜗0.

Here, Lq = Lq
(
(0,∞),(0,∞),w(t) dt

)
, 1 ≤ q < ∞, denote the usual Lq-spaces over (0,∞), w

is a positive and integrable weight function, and for 𝑓 ∈ Lq, g ∈ Lq′ (1∕q + 1∕q′ = 1)

‖𝑓‖Lq =
(
∫
∞

0
|𝑓 (t)|q w(t) dt

)1∕q

, ⟨𝑓, g⟩Lq = ∫
∞

0
𝑓 (t) g(t)w(t) dt

are the usual norm and duality in Lq. Thus, with an empirical version

𝜂n(t, 𝜗) = −1
n

n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
min{X𝑗 , t} −

1
n

n∑
𝑗=1

𝟙{X𝑗 ≤ t} (3)

of 𝜂, based on a sample of independent and identically distributed (i.i.d.) random variables
X1,… ,Xn with X1 ∼ p𝜗0

, a reasonable estimator for the unknown 𝜗0 is

𝜗n,q = arg min
{‖𝜂n(⋅ , 𝜗)‖Lq |𝜗 ∈ Θ

}(
= arg min

{‖𝜂n(⋅ , 𝜗)‖q
Lq |𝜗 ∈ Θ

})
, (4)
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that is, we choose 𝜗n,q such that ‖𝜂n(⋅ , 𝜗n,q)‖Lq ≤ ‖𝜂n(⋅ , 𝜗)‖Lq for each 𝜗 ∈ Θ. Heuristically,‖𝜂n(⋅ , 𝜗)‖Lq approximates ‖𝜂(⋅ , 𝜗)‖Lq , so 𝜗n,q should provide an estimate for the minimum
of 𝜗 → ‖𝜂(⋅ , 𝜗)‖Lq which coincides with 𝜗0, the (unique) zero of this function. At this point
of course, there arise questions of existence and measurability of such an estimator, and we
will handle these questions in full detail in Section 3. Intuitively, one might argue to replace
FX and the empirical distribution function in the definition of 𝜂 and 𝜂n, respectively, with the
theoretical distribution function P𝜗. However, there is a bit of a technical point involved, and the
characterizations by Betsch & Ebner (2019a) do not include results that give a rigorous handle
for this slightly (yet decisively) different situation. There are, however, similar characterizations
for univariate distribution with other supports than the positive half axis. We allude to that setting

in Section 10. Note that the availability of the term
p′
𝜗

p𝜗
for the model in consideration is rather

essential. If this term is not amenable explicitly, it might still be calculable using numerical
differentiation (and so 𝜂n and the estimator could be calculated numerically), but it would make
it hard to theoretically justify the validity of the conditions on p𝜗. In our experience, however,

the term
p′
𝜗

p𝜗
is readily available whenever p𝜗 can be differentiated explicitly, and this seems a

manageable assumption.
As we have outlined above, our new estimators are eventually based on Stein characterizations

which rely on some suitable class of test functions (for an overview in the univariate case, and a
record of the vast amount of literature on these identities, see Ley, Reinert & Swan, 2017b). The
goal of Betsch & Ebner (2019a) was to derive from these Stein identities new characterizations
that no longer involve the classes of test functions. While this approach apparently leads to
feasible applications in statistics, other methods are based directly on the Stein characterizations,
using Stein discrepancies which gradually become popular in machine learning. The idea in
the context of parameter estimation, in heuristic terms, boils down to choosing as a parameter
estimator the value which (approximately) minimizes

sup
𝑓

||||||𝔼
[
𝑓 ′(X) +

p′
𝜗
(X)

p𝜗(X)
𝑓 (X)

]|||||| ,
where the supremum is over all test functions in consideration. By the Stein characterization
detailed above, the expectation is 0 for every test function precisely when 𝜗 = 𝜗0, as we assume
that X ∼ p𝜗0

. However, it is not clear how to calculate the supremum in practice taking that
the class of test functions is very large. The theory developed around Stein discrepancies has
produced different formal methods to evaluate such terms. Other than the fact that they are based
on the Stein characterization, the identities derived by Betsch & Ebner (2019a) are not related to
the framework of Stein discrepancies, and so it is surprising that merely measuring the difference
between the functions in (1) in an Lq-norm, which is what we do to construct our estimators,
leads back to so-called feature Stein discrepancies. Indeed, upon defining the “feature” function
Φ(x, t) = min{x, t}, x, t > 0, and considering the Langevin-Stein operators

(𝜗𝑓 )(x, t) = p𝜗(x)−1 𝜕x
(
p𝜗(x) ⋅ 𝑓 (x, t)

)
as applied to suitable functions 𝑓 ∶ (0,∞)2 → ℝ, we obtain

‖𝜂(⋅ , 𝜗)‖2
Lq =
‖‖‖‖‖‖𝔼
[
−

p′
𝜗
(X)

p𝜗(X)
min{X, ⋅}

]
− FX(⋅)

‖‖‖‖‖‖
2

Lq

=
‖‖‖‖∫∞

0
(𝜗Φ)(x, ⋅) dP𝜗0

(x)
‖‖‖‖

2

Lq
,
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which is the right-hand side of equation (1) in the paper by Huggins & Mackey (2018). So by
retracing their calculation,

‖𝜂(⋅ , 𝜗)‖2
Lq = ΦSD2

Φ,q(P𝜗0
,P𝜗) = sup

g∈Φ,q

||||||𝔼
[
𝜕x
(
g(X) ⋅ p𝜗(X)

)
p𝜗(X)

]||||||
2

,

where Φ,q is the class of test functions as defined by Huggins & Mackey (2018) (the precise
form of which is inessential at this point). This means that we can embed our setting into the
framework of these feature Stein discrepancies, as the construction of our estimator cumulating
in (4) corresponds to minimizing the quantity at the beginning of this paragraph which sought to
motivate these discrepancies. Now, of course, the starting point of our estimation method being
the characterizations by Betsch & Ebner (2019a), we already had our estimator at hand explicitly
and could choose the feature function accordingly. Still, the fact that both the characterization
of Betsch & Ebner (2019a) and the (feature) Stein discrepancy approach (for the above feature
function), when translated into an estimation method, lead to the same procedure is remarkable
and deems it worthwhile to study the method further, as we were assured that it can be rather
hard to find explicit examples for which the Stein discrepancy approach is feasible in practice.

To complete this insightful tour into the realm of Stein discrepancies, we mention some
contributions of various solutions to statistical problems based on those discrepancies. In
particular, Chwialkowski, Strathmann & Gretton (2016), Liu, Lee & Jordan (2016) and
Yang et al. (2018) construct tests of fit, Gorham & Mackey (2015) measure sample quality and
Barp et al. (2019) develop estimation methods for non-normalized statistical models.

3. EXISTENCE AND MEASURABILITY

We discuss the measurability properties of 𝜂n and derive an existence result for a measurable
version of (approximate) estimators of the type in (4). The result that is central to us in this
section can be found in Chapter III of Castaing & Valadier (1977) (see the references therein and
Chapter 8 by Cohn, 2013, for further background). Before we summarize these results, recall that
a Suslin space is a Hausdorff topological space which is the image of a separable, completely
metrizable topological space under a continuous map (for an overview, consult Chapter II of
Schwartz, 1973). See also Remark 9 in the Appendix for more information.

Theorem 1. Let (Ω, ,ℙ) be a complete probability space and (𝔖,𝔖) a Suslin topological
space with Borel-𝜎-field (𝔖). Assume that Γ maps Ω into the non-empty subsets of 𝔖, and that

graph(Γ) =
{
(𝜔, x) ∈ Ω ×𝔖 | x ∈ Γ(𝜔)

}
∈  ⊗ (𝔖).

Then, there exists an
( ,(𝔖)

)
-measurable map 𝜗 ∶ Ω → 𝔖 such that 𝜗(𝜔) ∈ Γ(𝜔) for every

𝜔 ∈ Ω. Additionally, if 𝜓 ∶ Ω ×𝔖 → ℝ is
( ⊗ (𝔖),)-measurable, then

m(𝜔) = inf
x∈Γ(𝜔)

𝜓(𝜔, x) and M(𝜔) = sup
x∈Γ(𝜔)

𝜓(𝜔, x)

are ( ,)-measurable. Here, (ℝ,) denotes the extended real line with its usual 𝜎-field, and
we write ⊗ for the product of 𝜎-fields.

To apply Theorem 1, we first have to investigate the measurability properties of 𝜂n. In the
setting of Section 2, assume the following regularity condition.

(R1) The map Θ ∋ 𝜗 →
p′
𝜗
(x)

p𝜗(x)
is continuous for every x > 0.
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Let (Ω, ,ℙ) be a complete probability space, which is assumed to underlie all random
quantities of the previous and subsequent sections. Notice that the function 𝜂n defined in (3)
depends on the random variables X1,… ,Xn defined on Ω, hence 𝜂n (as a random quantity)
can be understood as a map Ω × (0,∞) × Θ → ℝ. Exploiting the structure of 𝜂n, we obtain the
following lemma. The proof is simple, and the basic thoughts can be found in the Appendix.

Lemma 2. The map 𝜂n ∶ Ω × (0,∞) × Θ → ℝ from (3) is
( ⊗ (0,∞)⊗ (Θ),1

)
-

measurable. Moreover, as an element in Lq, 𝜂n ∶ Ω × Θ → Lq is
( ⊗ (Θ),(Lq)

)
-measurable.

In particular,

(𝜔, 𝜗) → ‖‖𝜂n(𝜔, ⋅ , 𝜗)‖‖Lq

is an
( ⊗ (Θ),[0,∞)

)
-measurable mapping.

Similar measurability results hold for 𝜂 ∶ (0,∞) × Θ → ℝ. For the remainder of this work
assume that

(R2) the parameter space ∅ ≠ Θ ⊂ ℝd is a Borel set in ℝd.

As such, Θ is a Suslin topological space (see Proposition 8.2.10 of Cohn, 2013) with
the subspace topology induced by ℝd. It is also a metric space with the standard metric
in ℝd restricted to Θ. For n ∈ ℕ, let 𝜀n be positive random variables such that 𝜀n → 0
ℙ-almost surely (a.s.), as n → ∞. Define 𝜓n,q(𝜔, 𝜗) = ‖‖𝜂n(𝜔, ⋅ , 𝜗)‖‖Lq which, by Lemma 2,
is a product-measurable function from Ω × Θ into [0,∞). Theorem 1 implies that mn,q(𝜔) =
inf𝜗∈Θ 𝜓n,q(𝜔, 𝜗) is ( ,1)-measurable. Hence the set-valued function

Γn,q(𝜔) =
{
𝜗 ∈ Θ |||𝜓n,q(𝜔, 𝜗) ≤ mn,q(𝜔) + 𝜀n(𝜔)

}
(5)

has a measurable graph. By construction, Γn,q takes as values only non-empty subsets of Θ. In
fact, Γn,q(𝜔) is also closed in Θ for every 𝜔 ∈ Ω, see Remark 11 in the Appendix. Theorem

1 yields the existence of an
( ,(Θ))-measurable map 𝜗n,q ∶ Ω → Θ with 𝜗n,q(𝜔) ∈ Γn,q(𝜔),

which is, by definition of Γn,q,

‖‖‖𝜂n
(
𝜔, ⋅ , 𝜗n,q(𝜔)

)‖‖‖Lq
≤ inf

𝜗∈Θ
‖‖‖𝜂n(𝜔, ⋅ , 𝜗)

‖‖‖Lq
+ 𝜀n(𝜔) (6)

for each 𝜔 ∈ Ω or, equivalently,

𝜓n,q

(
𝜔, 𝜗n,q(𝜔)

) ≤ inf
𝜗∈Θ

𝜓n,q
(
𝜔, 𝜗
)
+ 𝜀n(𝜔).

Whenever we refer to an estimator that satisfies (4), we mean precisely such an (approximate)
measurable version. This settles the existence problem and for our asymptotic studies we have
measurability of 𝜗n,q at hand.

4. CONSISTENCY

In this section, we investigate the asymptotic behaviour of our estimators. Unfortunately, we
cannot apply the general results for minimum distance estimators given by Millar (1984), since
a major assumption in that work is that the term in the norm is differentiable (with respect to
𝜗) with derivative not depending on 𝜔, that is, in a sense, the parameter and the “uncertainty”
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have to be separated, which is clearly not the case in our setting. Thus, we need to deal with the
empirical process involved.

Assume the setting from Section 2. For brevity, we keep the notation from the previous
section, 𝜓n,q(𝜗)

(
= 𝜓n,q(𝜔, 𝜗)

)
= ‖‖𝜂n(𝜔, ⋅ , 𝜗)‖‖Lq and set 𝜓q(𝜗) = ‖‖𝜂(⋅ , 𝜗)‖‖Lq . Recall from the

construction that 𝜗n,q (approximately) minimizes 𝜓n,q (see (6)), and 𝜗0 is the unique minimum
of 𝜓q. The heuristic of the consistency statement proven in this section is as follows. If 𝜓n,q

converges to 𝜓q in a suitable function space, then the random minimal points 𝜗n,q converge to
𝜗0. In order to establish convergence of 𝜓n,q, we need the functions to be sufficiently smooth

in 𝜗. In most applications the mapping 𝜗 →
p′
𝜗
(x)

p𝜗(x)
will be continuously differentiable for every

x > 0, which can often be used to derive the following regularity condition.

(R3) For each non-empty compact subset K of Θ there exists some 0 < 𝛼 = 𝛼K < ∞ and a
measurable function H = HK ∶ (0,∞) → [0,∞) with 𝔼

[
H(X)X

]
<∞ such that

|||||
p′
𝜗(2)

(x)

p𝜗(2) (x)
−

p′
𝜗(1)

(x)

p𝜗(1) (x)

||||| ≤ H(x) ||𝜗(2) − 𝜗(1)||𝛼, x > 0, 𝜗(1), 𝜗(2) ∈ K.

Now, let K ≠ ∅ be an arbitrary compact subset of Θ. Then on Ω and for 𝜗(1), 𝜗(2) ∈ K, we have

|||𝜓n,q
(
𝜗(2)
)
− 𝜓n,q

(
𝜗(1)
)||| ≤ ||𝜗(2) − 𝜗(1)||𝛼 ⋅

(
∫
∞

0
w(t) dt

)1∕q

⋅
1
n

n∑
𝑗=1

H(X𝑗)X𝑗

with H and 𝛼 as in (R3). In particular, K ∋ 𝜗 → 𝜓n,q(𝜔, 𝜗) is continuous for every 𝜔 ∈ Ω, and,
by Lemma 2, it constitutes a product measurable map. This already implies that 𝜗 → 𝜓n,q(𝜗)
is a random element of C(K)+ (see Lemma 3.1 of Kallenberg, 2002), the space of continuous
functions from K to [0,∞) which is a complete, separable metric space (endowed with the usual
metric that induces the uniform topology). From (R3) it also follows that K ∋ 𝜗 → 𝜓q(𝜗) is an
element of C(K)+. We can now state the convergence results for 𝜓n,q that are essential for our
consistency proof.

Lemma 3. In the setting of Section 2, assume that (R1)–(R3) are satisfied. Let K ≠ ∅ be a
compact subset of Θ. Then 𝜓n,q −→ 𝜓q in C(K)+ ℙ-a.s., as n → ∞. Moreover,

inf
𝜗∈F
‖‖𝜂n( ⋅ , 𝜗)‖‖Lq = inf

𝜗∈F
𝜓n,q(𝜗) −→ inf

𝜗∈F
𝜓q(𝜗) = inf

𝜗∈F
‖‖𝜂( ⋅ , 𝜗)‖‖Lq

ℙ-a.s., as n → ∞, for every non-empty closed subset F of K.

The proof of this lemma is rather technical and deferred to the Appendix. Note that the term
inf𝜗∈F 𝜓n,q(𝜗) is a random variable by Theorem 1 (cf. the measurability of mn,q in the previous
section). The following theorem uses the above lemma to establish consistency. In the second
statement, we assume that the parameter space Θ is compact, thus rendering Lemma 3 applicable
on the whole of Θ, which will turn out essential to prove strong consistency. For most practical
purposes this is sufficient, when parameters relevant for modelling in applications can be taken
to stem from some (huge) compact set. Note that with this compactness assumption we actually
do not need the 𝜀n-term in (6) since 𝜓n,q is lower semi-continuous by (R1) and Fatou’s lemma,
and thus attains its minimum in Θ. The first statement of the following theorem shows that if the
sequence 𝜗n,q is already known to be tight, no compactness assumption is needed, but we can

only expect weak consistency in general, thus denoting by “
ℙ
−→” convergence in probability.

After the proof of the theorem, we provide an insight in which cases this is possible (Remark 5).
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Theorem 4 (Consistency). Take the setting from Section 2, let 𝜓n,q, 𝜓q be as above, and

consider 𝜗n,q from (6). Further assume that (R1)–(R3) are satisfied.

(i) If
{
𝜗n,q
}

n∈ℕ is tight in Θ, then 𝜗n,q
ℙ
−→ 𝜗0, as n → ∞.

(ii) If Θ is compact, then 𝜗n,q −→ 𝜗0 ℙ-a.s., as n → ∞.

Proof. In the proof of (i) we follow Theorem 3.2.2 from van der Vaart & Wellner (2000),
but we adapt the reasoning to our setting, using the measurability properties we established in
Section 3, and Lemma 3. For completeness, as well as to prepare the proof of the second result,
we give a full proof. We start with a preliminary observation, establishing that the minimum at
𝜗0 is (locally) well separated. If K is a compact subset of Θ, and O an open subset of ℝd which
contains 𝜗0, then

0 = 𝜓q(𝜗0) < inf
𝜗∈K⧵O

𝜓q(𝜗). (7)

Indeed, if this is not the case, we find a sequence 𝜗(k) ∈ K ⧵ O such that𝜓q
(
𝜗(k)
)
−→ 0 as k → ∞.

Since K ⧵ O is compact, there exists a subsequence {𝜗(k𝑗 )}𝑗 ∈ℕ and some 𝜗∗ ∈ K ⧵ O such that
𝜗(k𝑗 ) −→ 𝜗∗ as 𝑗 → ∞. By continuity of 𝜓q, it holds that 𝜓q(𝜗∗) = lim𝑗→∞ 𝜓

(
𝜗(k𝑗 )
)
= 0, but

K ⧵ O ∋ 𝜗∗ ≠ 𝜗0 ∈ O which is a contradiction to the fact that 𝜗0 is the unique zero of 𝜓q.

Now, let 𝜀, 𝛿 > 0. Choose a compact subset K = K𝛿 ⊂ Θ with supn∈ℕ ℙ
(
𝜗n,q ∉ K

)
< 𝛿, and

define F = K ⧵ B𝜀(𝜗0), where B𝜀(𝜗0) denotes the open ball in ℝd of radius 𝜀 around 𝜗0. Applying
Lemma 3 and (7) to K and F, together with (6) and the Portmanteau theorem (cf. Theorem 2.1
of Billingsley, 1968), we get

lim sup
n→∞

ℙ
(||𝜗n,q − 𝜗0

|| ≥ 𝜀
) ≤ lim sup

n→∞
ℙ
(
𝜗n,q ∈ F

)
+ lim sup

n→∞
ℙ
(
𝜗n,q ∉ K

)
≤ lim sup

n→∞
ℙ
(

inf
𝜗∈F

𝜓n,q(𝜗) ≤ 𝜓n,q(𝜗0) + 𝜀n

)
+ 𝛿

≤ ℙ
(

inf
𝜗∈F

𝜓q(𝜗) ≤ 𝜓q(𝜗0)
)
+ 𝛿

= 𝛿.

Note that if F = ∅, the inequality holds trivially. Since both 𝜀 and 𝛿 were arbitrary, the claim
follows. For this first part of the proof, we only needed the convergences from Lemma 3 to be
valid in probability. For the following proof of (ii), we rely on the stronger result. The arguments
we use are scattered over Section 3 of the work by Sahler (1970). For reasons alluded to in
Remark 9, and since that work contains some typos, we provide the adapted arguments. Let 𝜀 > 0
and define 𝛽𝜀 = inf𝜗∈Θ⧵B𝜀(𝜗0) 𝜓q(𝜗). By (7), we have 𝛽𝜀 > 0. Using the well-known equivalent
criterion for almost sure convergence, Lemma 3 gives

lim
n→∞

ℙ
(⋃

k≥n

{
sup

𝜗∈Θ⧵B𝜀(𝜗0)

|||𝜓k,q(𝜗) − 𝜓q(𝜗)
||| ≥ 𝛽𝜀

2

})
= 0.

By definition of 𝛽𝜀 this implies

lim
n→∞

ℙ
(⋃

k≥n

{
inf

𝜗∈Θ⧵B𝜀(𝜗0)
𝜓k,q(𝜗) ≤ 𝛽𝜀

2

})
= 0.
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Moreover, 𝜓n,q(𝜗0) + 𝜀n −→ 𝜓q(𝜗0) = 0 ℙ-a.s., as n → ∞, and thus

lim
n→∞

ℙ
(⋃

k≥n

{|||𝜓k,q(𝜗0) + 𝜀k
||| ≥ 𝛽𝜀

2

})
= 0.

Putting everything together,

lim sup
n→∞

ℙ
(⋃

k≥n

{||𝜗k,q − 𝜗0
|| ≥ 𝜀
})

≤ lim sup
n→∞

ℙ
(⋃

k≥n

{
inf

𝜗∈Θ⧵B𝜀(𝜗0)
𝜓k,q(𝜗) ≤ 𝜓k,q(𝜗0) + 𝜀k

})

≤ lim sup
n→∞

(
ℙ
(⋃

k≥n

{
inf

𝜗∈Θ⧵B𝜀(𝜗0)
𝜓k,q(𝜗) ≤ 𝛽𝜀

2

})
+ ℙ
(⋃

k≥n

{
𝜓k,q(𝜗0) + 𝜀k ≥ 𝛽𝜀

2

}))
= 0,

that is, 𝜗n,q −→ 𝜗0 ℙ-a.s., as n → ∞. ◼

Remark 5 (A priori tightness of the estimators). We provide a tool for proving tightness
of the estimators before having established consistency, which we can use in Theorem 4 to get
consistency even for unbounded parameter spaces. The statement essentially yields that if 𝜓n,q is

strictly convex,
{
𝜗n,q
}

n∈ℕ is tight. More precisely, suppose that conditions (R1)–(R3) hold. Let
Θ be convex with 𝜗0 ∈ Θ∘, the interior of Θ. Further, let 𝜓n,q be strictly convex (almost surely).

Then the sequence of estimators 𝜗n,q is tight in Θ. The proof is straight-forward and some hints
are given in exercise problem 4 in Section 3.2 of van der Vaart & Wellner (2000) (for more
details, find the proof in the Appendix).

5. EXAMPLE: THE EXPONENTIAL DISTRIBUTION

Let Θ = (0,∞) and p𝜗(x) = 𝜗 exp(−𝜗x), x > 0. This trivially is an admissible class of density
functions. Moreover, let 𝜗0 ∈ Θ, X ∼ p𝜗0

, and take a sample X1,… ,Xn of i.i.d. copies of X. An
easy calculation gives(

𝜓q(𝜗)
)q = ∫

∞

0

|||𝔼[𝜗min{X, t}
]
−
(
1 − exp(−𝜗0t)

)|||q w(t) dt

= ||| 𝜗𝜗0
− 1|||q ∫∞

0

|||1 − exp(−𝜗0t)|||q w(t) dt,

which nicely illustrates that 𝜗0 is indeed the unique zero of this functions. For the particular
choice of weight w(t) = exp(−at), t > 0, with some tuning parameter a > 0, and in the case
q = 2, straight-forward calculations give(

𝜓n,2(𝜗)
)2 = 𝜗2Ψ(1)

n + 𝜗Ψ(2)
n + Ψ(3)

n ,

where

Ψ(1)
n = 2

a3
+ 2

a2n2

n∑
𝑗=1

e−aX(𝑗)
(

X(𝑗)(−n + 𝑗 − 1) − 1
a
(2n − 2𝑗 + 1)

)
− 2

a2n2

∑
1≤𝑗<k≤n

X(𝑗) e−aX(k) ,
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Ψ(2)
n = 2

an2

n∑
𝑗=1

e−aX(𝑗)
(

X(𝑗)(−n + 𝑗 − 1) − 1
a
(n − 2𝑗 + 1)

)
− 2

an2

∑
1≤𝑗<k≤n

X(𝑗) e−aX(k) ,

Ψ(3)
n = 1

an2

n∑
𝑗=1

e−aX(𝑗) (2𝑗 − 1),

and X(1) < · · · < X(n) is the ordered sample. Using that e−aX(k) ≤ e−aX(𝑗) ℙ-a.s. for 𝑗 < k, we
obtain

Ψ(1)
n ≥ 2

a3n2

n∑
𝑗=1

(2n − 2𝑗 + 1)
(

1 −
(
1 + aX(𝑗)

)
e−aX(𝑗)

)
,

and since 1 + aX(𝑗) < eaX(𝑗) ℙ-a.s., we have Ψ(1)
n > 0 almost surely. Therefore,

(
𝜓n,2
)2 is strictly

convex (almost surely), and has a unique minimum. By Remark 5 and Theorem 4 (i), the
estimator

𝜗
(a)
n,2 = arg min

{
𝜓n,2(𝜗) ||𝜗 > 0

}
= arg min

{(
𝜓n,2(𝜗)

)2 || 𝜗 > 0
}

= arg min
{
𝜗2Ψ(1)

n + 𝜗Ψ(2)
n + Ψ(3)

n
||𝜗 > 0

}
is consistent for 𝜗0 (over the whole of Θ). Note that we have not made the dependence of Ψ(1)

n ,
Ψ(2)

n , and Ψ(3)
n on “a” explicit to prevent overloading the notation. With a similar argument as

above, we may show that Ψ(2)
n < 0 almost surely, thus we can calculate 𝜗(a)n,2 explicitly as

𝜗
(a)
n,2 = −

Ψ(2)
n

2Ψ(1)
n

.

To provide insight on the performance of this estimator, we compare it with the maximum
likelihood estimator and the minimizer of the mean squared error (MSE) (for n ≥ 3) which are
given as

𝜗ML
n =
(

1
n

n∑
𝑗=1

X𝑗

)−1

and 𝜗MSE
n =

(
1

n − 2

n∑
𝑗=1

X𝑗

)−1

,

respectively, as well as with the minimum Cramér–von Mises distance estimator discussed in
the introduction, namely

𝜗CvM
n = arg min

{
∫
∞

0

(
F̂n(t) − P𝜗(t)

)2
dP𝜗(t)

||| 𝜗 > 0
}

= arg min
{

1
n

n∑
𝑗=1

[
exp
(
− 2𝜗X(𝑗)

)
+ exp

(
− 𝜗X(𝑗)

)
⋅
(2𝑗 − 1

n
− 2
)] ||| 𝜗 > 0

}
,

where P𝜗(x) = 1 − exp(−𝜗x), x > 0, denotes the distribution function of the exponential distri-
bution, and where F̂n is the empirical distribution function of X1,… ,Xn. For this comparison
we simulate (for fixed values of n and 𝜗0) D = 100,000 samples of size n from an exponential
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TABLE 1: Approximated biases calculated with 100,000 exponentially distributed Monte Carlo samples.

𝜗0 n 𝜗ML
n 𝜗MSE

n 𝜗CvM
n 𝜗

(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2

0.5 10 0.0557 −0.0554 0.0510 0.0428 0.0376 0.0333 0.0302 0.0291

25 0.0212 −0.0205 0.0187 0.0161 0.0144 0.0129 0.0118 0.0114

50 0.0098 −0.0106 0.0089 0.0075 0.0067 0.0062 0.0057 0.0055

100 0.005 −0.0051 0.0045 0.0039 0.0035 0.0032 0.0030 0.0029

200 0.0023 −0.0027 0.0020 0.0018 0.0016 0.0015 0.0014 0.0013

2 10 0.2193 −0.2245 0.2004 0.2011 0.1871 0.1680 0.1476 0.1371

25 0.0830 −0.0836 0.0746 0.0754 0.0701 0.0634 0.0569 0.0538

50 0.0398 −0.0418 0.0345 0.0358 0.0332 0.0298 0.0263 0.0246

100 0.0191 −0.0213 0.0165 0.0171 0.0158 0.0142 0.0126 0.0118

200 0.0095 −0.0106 0.0074 0.0084 0.0077 0.0067 0.0057 0.0052

5 10 0.5437 −0.5651 0.4863 0.5238 0.5059 0.4753 0.4303 0.3997

25 0.2102 −0.2066 0.1832 0.2015 0.1940 0.1818 0.1649 0.1540

50 0.1048 −0.0994 0.0923 0.1004 0.0967 0.0908 0.0829 0.0779

100 0.0520 −0.0491 0.0440 0.0496 0.0477 0.0446 0.0404 0.0378

200 0.0264 −0.0238 0.0224 0.0253 0.0243 0.0229 0.0209 0.0196

10 10 1.1230 −1.1016 1.0316 1.1028 1.0837 1.0484 0.9885 0.9401

25 0.4177 −0.4157 0.3719 0.4089 0.4008 0.3863 0.3628 0.3448

50 0.2041 −0.2040 0.1826 0.1996 0.1955 0.1883 0.1768 0.1681

100 0.0991 −0.1029 0.0873 0.0967 0.0945 0.0908 0.0848 0.0804

200 0.0556 −0.0450 0.0483 0.0544 0.0533 0.0513 0.0483 0.0460

distribution with parameter 𝜗0, calculate the values of the estimator for each sample yielding
values 𝜗1,… , 𝜗D, and approximate the bias and MSE via

1
D

D∑
k=1

(
𝜗k − 𝜗0

)
and 1

D

D∑
k=1

(
𝜗k − 𝜗0

)2

for each of the above estimators. We perform all simulations with Python 3.7.2 (as provided
by the Python Software Foundation, https://www.python.org, accessed 28 August 2019). For
the minimization required to calculate the minimum Cramér–von Mises distance estimator, we
choose as initial value the maximum likelihood estimator and use a sequential least squares
programming method (“SLSQP”) (cf. Kraft, 1988) implemented in the “optimize.minimize”
function of the Python module “scipy,” see Virtanen. P. et al., (2020). Tables 1 and 2 contain the
results for the bias and MSE values.

As for the biases, the maximum likelihood estimator and the minimum MSE estimator
perform almost identically in terms of the absolute bias, and the minimum Cramér–von Mises
distance estimator has a slight edge. Our new estimator outperforms all other methods (virtually)
uniformly. More precisely, it seems as if for larger tuning parameters “a” the bias decreases. We
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TABLE 2: Approximated MSE calculated with 100,000 exponentially distributed Monte Carlo samples.

𝜗0 n 𝜗ML
n 𝜗MSE

n 𝜗CvM
n 𝜗

(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2

0.5 10 0.0416 0.0277 0.0593 0.0409 0.0428 0.0496 0.0662 0.0837

25 0.0123 0.0105 0.0162 0.0127 0.0138 0.0167 0.0229 0.0294

50 0.0055 0.0051 0.0072 0.0058 0.0064 0.0078 0.0109 0.0140

100 0.0026 0.0025 0.0034 0.0028 0.0031 0.0038 0.0053 0.0069

200 0.0013 0.0013 0.0017 0.0014 0.0015 0.0019 0.0026 0.0034

2 10 0.6645 0.4449 0.9504 0.6569 0.6525 0.6537 0.6845 0.7346

25 0.1949 0.1661 0.2573 0.1942 0.1952 0.2006 0.2184 0.2403

50 0.0887 0.0821 0.1165 0.0889 0.0898 0.0932 0.1029 0.1141

100 0.0418 0.0402 0.0549 0.0420 0.0426 0.0444 0.0493 0.0549

200 0.0205 0.0201 0.0269 0.0207 0.0210 0.0220 0.0244 0.0272

5 10 4.0739 2.7374 5.6848 4.0529 4.0350 4.0092 3.9977 4.0335

25 1.2302 1.0465 1.621 1.2272 1.2259 1.2284 1.2493 1.2842

50 0.5522 0.5087 0.7246 0.5518 0.5524 0.5561 0.5706 0.5908

100 0.2635 0.2529 0.3445 0.2636 0.2641 0.2665 0.2745 0.2850

200 0.1295 0.1268 0.1692 0.1296 0.1299 0.1313 0.1355 0.1410

10 10 16.8106 11.1652 23.5189 16.7647 16.7219 16.6460 16.5344 16.4779

25 4.8850 4.1598 6.4565 4.8785 4.8739 4.8702 4.8831 4.9188

50 2.2069 2.0371 2.8967 2.2053 2.2048 2.2069 2.2213 2.2464

100 1.0473 1.007 1.3747 1.0471 1.0474 1.0497 1.0594 1.0740

200 0.5126 0.5014 0.6658 0.5127 0.513 0.5144 0.5198 0.5274

will show, however, that this observation is not correct in that generality. The results for the
MSE reveal that the minimum MSE estimator is the best method with respect to this measure of
quality, which is no surprise as it is constructed to minimize the MSE. For sample size n = 10
the superiority is particularly obvious, but for larger samples, the maximum likelihood estimator
is only slightly worse. Our new estimator shows almost identical results (for a = 0.25) as the
maximum likelihood estimator, undermining that the method is sound and powerful. In contrast
to the observation with the bias values, the MSE appears to increase with “a.” This nicely
illustrates the variance-bias trade-off commonly observed in the context of estimation problems.

6. THE CASE a → ∞
As discussed previously, the simulation results for the exponential distribution somewhat indicate
that as the tuning parameter “a” grows, the bias decreases while the MSE increases. Interestingly,
we can lay observations for a → ∞ on a rigorous theoretical basis. To be precise, observe the
following general result.

Theorem 6. Consider the setting from Section 2 with weight function w(t) = e−at. For the
quantity 𝜓n,q(𝜗, a) = 𝜓n,q(𝜗) = ‖𝜂n( ⋅ , 𝜗)‖Lq from the end of Section 3, we make the dependence
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on the tuning parameter “a” explicit. Then

lim
a→∞

aq+1 (𝜓n,q(𝜗, a)
)q = Γ(q + 1)

||||1n
n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
||||q,

on a set of measure one, where Γ(⋅) denotes the Gamma function.

The proof consists of an almost trivial application of an Abelian theorem for the Laplace
transform, see p. 182 of Widder (1959), or the work by Baringhaus, Gürtler & Henze (2000).
Since a, q > 0, the functions 𝜓n,q(𝜗) and aq+1

(
𝜓n,q(𝜗)

)q attain their minimum in the same point.
Thus, in the limit a → ∞, our procedure essentially yields as an estimators the minimizer of the
quantity

||||1n
n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
||||q.

In the situation of the exponential distribution as discussed in Section 5, the result reduces to
lima→∞ a3

(
𝜓n,2(𝜗, a)

)2 = 2𝜗2, so in the limit a → ∞, the procedure will choose 𝜗 = 0 ∉ Θ
as the estimator, which leads to a bias of −𝜗0 and an MSE of 𝜗2

0. The observation from the
simulations is, therefore, not universal. An example for which the limit in Theorem 6 is less
trivial is the Rayleigh distribution.

7. EXAMPLE: THE RAYLEIGH DISTRIBUTION

Let Θ = (0,∞) and take the density function of the Rayleigh distribution with parameter 𝜗 ∈ Θ,

p𝜗(x) =
x
𝜗2

exp
(
− x2

2𝜗2

)
, x > 0.

It is easy to check that the Rayleigh density satisfies all regularity conditions stated throughout

the work, and that we have
p′
𝜗
(x)

p𝜗(x)
= 1

x
− x

𝜗2 . The limit in Theorem 6 thus takes the form

Γ(q + 1)
||||1n

n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
||||q = Γ(q + 1)

||||1n
n∑
𝑗=1

(
1
X𝑗

−
X𝑗
𝜗2

)||||q,
where X1,… ,Xn are i.i.d. random variables which follow the Rayleigh law, X1 ∼ p𝜗0

, for some
unknown scale parameter 𝜗0 ∈ Θ. In the case q = 2, it is easy to calculate that the minimum of
the above function over 𝜗 > 0 is given through

𝜗AM
n =

√√√√√ 1
n

∑n
𝑗=1 X𝑗

1
n

∑n
𝑗=1

1
X𝑗

.

Strikingly, this asymptotically derived moment-type estimator is itself consistent for 𝜗0, as

𝜗AM
n =

√√√√√ 1
n

∑n
𝑗=1 X𝑗

1
n

∑n
𝑗=1

1
X𝑗

−→

√√√√√ 𝔼
[
X1
]

𝔼
[

1
X1

] =
√√√√√√
√

𝜋

2
𝜗0√

𝜋

2
⋅ 1
𝜗0

= 𝜗0
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ℙ-a.s., as n → ∞, where we used the law of large numbers, as well as the fact that X1,… ,Xn
all follow the Rayleigh distribution with parameter 𝜗0. We compare this estimator with other
methods. Among them is our new estimator

𝜗
(a)
n,2 = arg min

{(
𝜓n,2(𝜗)

)2 || 𝜗 > 0
}
= arg min

{
𝜗−4Ψ̃(1)

n + 𝜗−2Ψ̃(2)
n + Ψ̃(3)

n
|| 𝜗 > 0

}
,

where

Ψ̃(1)
n = 2

n2

∑
1≤𝑗<k≤n

[
X(𝑗)X(k) ⋅

2
a3

(
1 − e−aX(𝑗)

)
−

X2
(𝑗)X(k)

a2

(
e−aX(𝑗) + e−aX(k)

)]

+ 1
n2

n∑
𝑗=1

[
2X2

(𝑗)

a3

(
1 − e−aX(𝑗)

)
−

2X3
(𝑗)

a2
e−aX(𝑗)

]
,

Ψ̃(2)
n = 2

n2

∑
1≤𝑗<k≤n

[
X2
(𝑗)e

−aX(k)

a

(
1

aX(k)
− 1
)
+

X(𝑗)e
−aX(𝑗)

a

( X(𝑗)

aX(k)
− X(k)

)

− 2
a3

(
1 − e−aX(𝑗)

)(X(k)

X(𝑗)
+

X(𝑗)

X(k)

)]

+ 1
n2

n∑
𝑗=1

[
2e−aX(𝑗)

a
⋅ X(𝑗)

(
2𝑗
a

− X(𝑗)

)
− 4

a3

(
1 − e−aX(𝑗)

)]
,

and

Ψ̃(3)
n = 2

n2

∑
1≤𝑗<k≤n

[
X(𝑗)

aX(k)
e−aX(𝑗) + 2

a3X(𝑗)X(k)

(
1 − e−aX(𝑗)

)]

+ 1
n2

n∑
𝑗=1

[
2

a3X2
(𝑗)

(
1 − e−aX(𝑗)

)
+ e−aX(𝑗)

a

(
4𝑗 − 1 − 2

aX(𝑗)
(2𝑗 − 1)

)]
,

and X(1) < · · · < X(n) denotes the ordered sample. It is easily seen that if both Ψ̃(1)
n > 0 and

Ψ̃(2)
n < 0 ℙ-a.s., then the minimum can be calculated explicitly as

𝜗
(a)
n,2 =

√√√√−
2Ψ̃(1)

n

Ψ̃(2)
n

,

and indeed, using that e−aX(k) < e−aX(𝑗) and 1 − e−aX(𝑗) − aX(𝑗)e
−aX(𝑗) > 0 ℙ-a.s., we have

Ψ̃(1)
n >

2
n2

∑
1≤𝑗<k≤n

2X(𝑗)X(k)

a3

(
1 − e−aX(𝑗) − aX(𝑗)e

−aX(𝑗)
)

+ 1
n2

n∑
𝑗=1

2X2
(𝑗)

a3

(
1 − e−aX(𝑗) − aX(𝑗)e

−aX(𝑗)
)

> 0 ℙ − a.s.,

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



16 BETSCH, EBNER AND KLAR Vol. 00, No. 00

TABLE 3: Approximated biases calculated with 100,000 Rayleigh-distributed Monte Carlo samples.

𝜗0 n 𝜗ML
n 𝜗Mom

n 𝜗AM
n 𝜗CvM

n 𝜗
(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2

0.5 10 −0.0061 0.0001 0.0269 0.0029 −0.0050 −0.0040 −0.0023 0.0006 0.0028

25 −0.0025 0.0001 0.0140 0.0012 −0.0020 −0.0016 −0.0009 0.0002 0.0011

50 −0.0011 0.0001 0.0085 0.0007 −0.0009 −0.0007 −0.0003 0.0002 0.0007

100 −0.0006 0 0.0047 0.0003 −0.0005 −0.0004 −0.0002 0.0001 0.0003

200 −0.0004 0 0.0027 0.0001 −0.0003 −0.0002 −0.0002 0 0.0001

2 10 −0.0246 0.0001 0.1074 0.0107 −0.0093 0.0019 0.0189 0.0434 0.0598

25 −0.0097 0 0.0549 0.0039 −0.0036 0.0007 0.0073 0.0169 0.0237

50 −0.0057 −0.0007 0.0320 0.0013 −0.0025 −0.0003 0.0030 0.0079 0.0114

100 −0.0026 −0.0001 0.0190 0.0008 −0.0011 0 0.0017 0.0041 0.0058

200 −0.0015 −0.0003 0.0104 0 −0.0007 −0.0002 0.0005 0.0016 0.0025

5 10 −0.0624 −0.0009 0.2642 0.0255 0.0156 0.0640 0.1293 0.1926 0.2199

25 −0.0245 −0.0002 0.1388 0.0097 0.0063 0.0251 0.0519 0.0817 0.0973

50 −0.0132 −0.0002 0.0848 0.0049 0.0030 0.0129 0.0270 0.0432 0.0523

100 −0.0059 0 0.0477 0.0021 0.0016 0.0062 0.0128 0.0206 0.0253

200 −0.0028 0.0002 0.0279 0.0010 0.0010 0.0033 0.0066 0.0106 0.0129

10 10 −0.1248 −0.0004 0.5383 0.0537 0.1302 0.2617 0.3919 0.4777 0.5055

25 −0.0565 −0.0076 0.2699 0.0123 0.0430 0.0965 0.1564 0.2074 0.2293

50 −0.0261 −0.0021 0.1582 0.0083 0.0225 0.0480 0.0783 0.1073 0.1214

100 −0.0109 0.0013 0.0979 0.0057 0.0138 0.0272 0.0430 0.0586 0.0671

200 −0.0077 −0.0010 0.0545 0.0011 0.0057 0.0128 0.0207 0.0289 0.0334

and with similar thoughts, Ψ̃(2)
n < 0 ℙ-a.s. Additionally, we consider the maximum likelihood

estimator and a moment estimator, which are given as

𝜗ML
n =

√√√√ 1
2n

n∑
𝑗=1

X2
𝑗

and 𝜗Mom
n =

√
2
𝜋
⋅

1
n

n∑
𝑗=1

X𝑗 ,

respectively. Note in particular that the moment estimator is unbiased and we can expect it to
outperform the other estimators in this regard. Finally, we include the minimum Cramér–von
Mises distance estimator given through

𝜗CvM
n = arg min

{
1
n

n∑
𝑗=1

[(
2𝑗 − 1

n
− 2
)

exp
(
−

X2
(𝑗)

2𝜗2

)
+ exp

(
−

−X2
(𝑗)

𝜗2

)] ||| 𝜗 > 0
}
,

where we solve the minimization numerically via a sequential least squares programming method
as in the case of the exponential distribution in Section 5, using as initial value the maximum

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 PARAMETER ESTIMATION IN NON-NORMALIZED MODELS 17

TABLE 4: Approximated MSE calculated with 100,000 Rayleigh-distributed Monte Carlo samples.

𝜗0 n 𝜗ML
n 𝜗Mom

n 𝜗AM
n 𝜗CvM

n 𝜗
(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2

0.5 10 0.0061 0.0067 0.0135 0.0082 0.0062 0.0062 0.0064 0.0068 0.0072

25 0.0025 0.0027 0.0061 0.0033 0.0025 0.0025 0.0025 0.0027 0.0028

50 0.0013 0.0014 0.0033 0.0017 0.0013 0.0013 0.0013 0.0013 0.0014

100 0.0006 0.0007 0.0019 0.0008 0.0006 0.0006 0.0006 0.0007 0.0007

200 0.0003 0.0003 0.001 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004

2 10 0.0992 0.1089 0.2185 0.1316 0.1030 0.1090 0.1248 0.1570 0.1800

25 0.0401 0.0438 0.0977 0.0527 0.0412 0.0433 0.04880 0.0601 0.0690

50 0.0199 0.0219 0.0543 0.0264 0.0205 0.0215 0.0242 0.0297 0.0341

100 0.0100 0.0109 0.0300 0.0130 0.0102 0.0106 0.0119 0.0146 0.0167

200 0.0050 0.0055 0.0167 0.0065 0.0051 0.0053 0.0060 0.0073 0.0083

5 10 0.6205 0.6827 1.3695 0.8271 0.7057 0.8359 1.0635 1.2775 1.3473

25 0.2521 0.2760 0.6122 0.3314 0.2803 0.3258 0.4097 0.5088 0.5566

50 0.1250 0.1371 0.3398 0.1648 0.1385 0.1606 0.2015 0.2529 0.2811

100 0.0627 0.0684 0.1876 0.0819 0.0688 0.0793 0.0989 0.1242 0.1392

200 0.0311 0.0341 0.1039 0.0409 0.0343 0.0395 0.0491 0.0618 0.0695

10 10 2.4749 2.7278 5.4528 3.3202 3.3485 4.2534 5.0993 5.4722 5.5230

25 0.9966 1.0933 2.4305 1.3171 1.2922 1.6219 2.0109 2.3024 2.3989

50 0.5000 0.5445 1.3528 0.6504 0.6342 0.7926 0.9955 1.1792 1.2600

100 0.2499 0.2735 0.7504 0.3290 0.3179 0.3959 0.4966 0.5962 0.6473

200 0.1248 0.1364 0.4200 0.1637 0.1579 0.1961 0.2470 0.2999 0.3288

likelihood estimator. The execution of the comparison is as in the example on the exponential
distribution, and the results are displayed in Tables 3 and 4.

Apparently, the moment estimator 𝜗Mom
n outperforms the other estimators with respect to the

bias values, while the maximum likelihood estimator 𝜗ML
n gets the smallest MSE. The estimator

we obtained via the limit results from the previous section seems sound in itself but is completely
negligible compared to the other methods. In terms of bias, the minimum Cramér–von Mises
distance estimator is preferable to the maximum likelihood method, and both are outdone by
our new estimator, which even keeps up with the unbiased moment estimator for the smaller
values of the parameter 𝜗0. Notice that the maximum likelihood and moment estimator tend to
underestimate the parameter, while the other procedures tend to a slight overestimation. As for
the MSE, the moment estimator and our new method perform similarly and follow the maximum
likelihood estimator closely. The minimum Cramér–von Mises distance estimator is a bit behind.
To summarize, the maximum likelihood and moment estimator for the Rayleigh parameter are
both simple and very convincing, but the newly proposed method keeps up (for suitably chosen
tuning parameter) and appears to find a good compromise between bias and MSE. The only
graver weakness shows for the large parameter value 𝜗0 = 10 and small sample sizes n = 10, 25.
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8. EXAMPLE: THE BURR TYPE XII DISTRIBUTION

Consider the density function of the Burr distribution,

p𝜗(x) = c k xc−1 (1 + xc)−k−1
, x > 0,

where 𝜗 = (c, k) ∈ (0,∞)2 = Θ. It is not exactly trivial, but still straight-forward, to prove that
this is an admissible distribution in terms of the setting in Section 2 (see also Betsch & Ebner,
2019a) and the regularity conditions (R1)–(R3). With q = 2 and weight w(t) = e−at, a > 0, the
function 𝜓n,2(𝜗) = ‖‖𝜂n( ⋅ , 𝜗)‖‖L2 from Section 3 (see also Section 2) can be calculated explicitly
as

(
𝜓n,2(𝜗)

)2
= 2

n2

∑
1≤𝑗<𝓁≤n

{
A(𝓁)(c, k)

[2A(𝑗)(c, k)
a3

(
1 − e−aX(𝑗)

)
+

B(𝑗)(c, k)
a2

(
e−aX(𝑗) + e−aX(𝓁)

)
+c − 2

a2
e−aX(𝑗) −

X(𝑗)

a
e−aX(𝑗)

]
+

B(𝑗)(c, k)
a

e−aX(𝓁)

}
+ 1

n2

n∑
𝑗=1

{(
A(𝑗)(c, k)

)2(−2X(𝑗)

a2
e−aX(𝑗) − 2

a3
e−aX(𝑗) + 2

a3

)

+ 2(𝑗 − 1) c
a2

A(𝑗)(c, k) e−aX(𝑗) +
2B(𝑗)(c, k)

a
e−aX(𝑗)

}
+ 2c

a n2

n∑
𝑗=1

𝑗 e−aX(𝑗) − 1
a n2

n∑
𝑗=1

e−aX(𝑗) ,

where

A(𝑗)(c, k) = c (k + 1)
Xc−1
(𝑗)

1 + Xc
(𝑗)

− c − 1
X(𝑗)

, B(𝑗)(c, k) = −c (k + 1)
Xc
(𝑗)

1 + Xc
(𝑗)
,

and where X(1) < · · · < X(n) denotes the ordered sample. Our estimator 𝜗(a)n,2 =
(
ĉ(a)n , k̂(a)n

)
, as

defined in (4), can be calculated as the minimizer of the above function over Θ. We use the
“L-BFGS-B”-method (L-BFGS-B algorithm, see Byrd et al., 1995; Zhu et al., 1997) implemented
in the “optimize.minimize” function of “scipy” to solve the minimization numerically, using (1, 1)
as initial values. (Note that in preliminary simulations we have tried several other optimization
routines, like a truncated Newton algorithm or the “SLSQP” from previous sections, but the
“L-BFGS-B”-method appeared to be the most reliable for our purpose.) As competitors to our
estimator we consider the maximum likelihood estimator with implementation as suggested by
Shah & Gokhale (1993) (for a different algorithm, see Wingo, 1983). More precisely we use the
Newton–Raphson method (with initial value c = 1) to find the root

n
c
+

n∑
𝑗=1

log(X𝑗) −
[(

1
n

n∑
𝑗=1

log(1 + Xc
𝑗
)
)−1

+ 1
]
⋅

n∑
𝑗=1

Xc
𝑗

log(X𝑗)
1 + Xc

𝑗

!
= 0
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giving an estimate ĉML
n for c which we then introduce into

k̂ML
n =
(

1
n

n∑
𝑗=1

log
(
1 + X

ĉML
n
𝑗

))−1

.

Both relations are easily derived from the likelihood equations. Additionally, we consider the
minimum Cramér–von Mises distance estimator, which can be calculated from

𝜗CvM
n =

(
ĉCvM

n , k̂CvM
n

)
= arg min

{
1
n

n∑
𝑗=1

(
1 + Xc

(𝑗)
)−k
[

2𝑗 − 1
n

− 2 +
(
1 + Xc

(𝑗)
)−k
] ||| c, k > 0

}
(the minimization is solved numerically, similar to our new estimator). Note that there have been
further contributions to the estimation of the Burr parameters (see Schmittlein, 1983; Shah &
Gokhale, 1993; Wingo, 1993; Wang & Cheng, 2010).

Like for the exponential- and Rayleigh distribution, we approximate bias and MSE of
these estimators and show the results in Tables 5 and 6. For each value of 𝜗0 and n, the
first line corresponds to the bias/MSE of the estimator for the c-parameter, and the second
line corresponds to the k-parameter. As before, it becomes evident that our new procedure
outperforms the maximum likelihood and minimum Cramér–von Mises distance estimator in
terms of the bias. Unlike for the exponential distribution, the dependence on the tuning parameter
“a” is less clear: for a great deal of parameter values and sample sizes, the estimator 𝜗(3)n,2 yields

the best result, but in some cases (mostly for the k-parameter) the estimator 𝜗(0.25)
n,2 , with tuning

parameter from the other end of the spectrum, performs best. Also observe the oddity that in some
cases the estimator fares noticeably worse for a = 0.5 than for both smaller and larger tuning
parameters. Thus, if one seeks to minimize some measure of quality of the estimators, an optimal,
data-dependent choice of the tuning parameter would be useful (more on this in Section 10). In
the light of our simulations, we suggest the use of 𝜗(3)n,2 in practice as long as no adaptive tuning
is available. Both in the bias and in the MSE simulation, the maximum likelihood estimator ran
into computational issues for sample size n = 10. The minimum Cramér–von Mises distance
estimator is more stable in this regard, but still a lot less so than our new estimators which show
notably slighter outliers only for large values of the Burr parameters. Once samples get larger
(n = 50+), the asymptotic optimality properties of the maximum likelihood estimator appear to
kick in, as its performance stabilizes. Still for suitably chosen tuning parameter, our estimators
are very close in virtually all instances. The small sample behaviour of the maximum likelihood
estimator poses a huge drawback for applications and the problem is well-known.

9. EXAMPLE: EXPONENTIAL-POLYNOMIAL MODELS

We now proceed to consider an example of a non-normalized parametric model, one of the major
motivations to this work. In particular, let

p𝜗(x) = C(𝜗)−1 exp
(
𝜗1x + · · · + 𝜗dxd), x > 0, (8)

𝜗 = (𝜗1,… , 𝜗d) ∈ ℝd−1 × (−∞, 0) = Θ, where

C(𝜗) = ∫
∞

0
exp
(
𝜗1x + · · · + 𝜗dxd) dx.
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TABLE 5: Approximated biases calculated with 100,000 Burr-distributed Monte Carlo samples.

𝜗0 =
(c0

k0

)
n 𝜗ML

n 𝜗CvM
n 𝜗

(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2( 0.8

2

)
10 – 0.1420 0.0094 −0.1608 0.0375 0.0636 0.0585

– 1.3014 0.1750 −0.2579 0.0243 0.1635 0.1382

25 0.0406 0.0451 −0.0377 −0.1960 0.0240 0.0223 0.0152

0.1057 0.1311 0.0184 −0.3010 0.0503 0.0490 0.0131

50 0.0197 0.0207 −0.0411 −0.1673 0.0121 0.0102 0.0034

0.0491 0.0565 −0.0089 −0.2435 0.0256 0.0214 −0.0122

100 0.0097 0.0102 −0.0307 −0.1102 0.0062 0.0056 0.0010

0.0234 0.0266 −0.0128 −0.1505 0.0125 0.0125 −0.0095

200 0.0046 0.0050 −0.0120 −0.0510 0.0030 0.0029 0.0012

0.0114 0.0131 −0.0048 −0.0660 0.0064 0.0071 −0.0001( 2
5

)
10 0.2956 0.3458 −0.2755 −1.0773 0.2152 0.1987 0.1841

2.8551 37.1075 1.6188 −2.1985 2.3500 2.2870 2.1681

25 0.1027 0.1082 −0.1434 −1.2772 0.0725 0.0655 0.0618

0.6208 0.8619 0.2341 −2.6011 0.5033 0.4754 0.4647

50 0.0476 0.0492 −0.0347 −1.4268 0.0326 0.0298 0.0283

0.2669 0.3415 0.1278 −2.8090 0.2126 0.2039 0.2021

100 0.0233 0.0233 0.0079 −1.5877 0.0159 0.0145 0.0138

0.1285 0.1565 0.0946 −3.0394 0.1025 0.0989 0.0983

200 0.0120 0.0113 0.0089 −1.7622 0.0082 0.0076 0.0073

0.0627 0.0732 0.0526 −3.3064 0.0500 0.0485 0.0483( 5
0.8

)
10 – 2.1411 1.0267 1.0622 1.0927 1.1037 1.1374

– 0.0451 0.0322 0.0313 0.0327 0.0380 0.0432

25 0.3731 0.4635 0.3177 0.3233 0.3167 0.3101 0.3146

0.0143 0.0113 0.0096 0.0095 0.0106 0.0130 0.0151

50 0.1748 0.2071 0.1519 0.1530 0.1488 0.1453 0.1463

0.0063 0.0046 0.0038 0.0039 0.0045 0.0057 0.0067

100 0.0835 0.0960 0.0731 0.0729 0.0708 0.0690 0.0693

0.0031 0.0023 0.0019 0.0019 0.0022 0.0028 0.0033

200 0.0421 0.0481 0.0375 0.0370 0.0360 0.0348 0.0347

0.0016 0.0012 0.0010 0.0010 0.0012 0.0015 0.0017

These density functions correspond to a so-called exponential-polynomial model, which consti-
tutes a special type of exponential family. It is trivial to see that these density functions obey
the regularity assumptions (R1)–(R3), and also not hard to verify that the regularity conditions
stated by Betsch & Ebner (2019a) (as summarized in Section 2) are satisfied. Thus, we can first
of all note, as a corollary to Theorem 3 of Betsch & Ebner (2019a), the following characterization
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TABLE 6: Approximated MSE values calculated with 100,000 Burr-distributed Monte Carlo samples.

𝜗0 =
(c0

k0

)
n 𝜗ML

n 𝜗CvM
n 𝜗

(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2( 0.8

2

)
10 – 0.1790 0.1398 0.2562 0.1209 0.1092 0.1199

– 22686.9274 1.9083 0.9712 1.0083 2.2673 2.5852

25 0.0228 0.0293 0.0724 0.2017 0.0310 0.0344 0.0406

0.2354 0.3578 0.2867 0.3025 0.3438 0.5130 0.7007

50 0.0090 0.0121 0.0518 0.1577 0.0137 0.0159 0.0200

0.0957 0.1242 0.1437 0.1853 0.1557 0.2298 0.3430

100 0.0042 0.0056 0.0337 0.1009 0.0066 0.0076 0.0100

0.0483 0.0545 0.0781 0.1136 0.0737 0.1066 0.1710

200 0.0020 0.0027 0.0144 0.0472 0.0032 0.0036 0.0045

0.2070 0.0255 0.0368 0.0582 0.0358 0.0507 0.0769( 2
5

)
10 0.4819 0.9394 1.0985 2.6895 0.4657 0.4352 0.4291

260.2839 1671094.1072 88.3851 22.0669 164.7637 180.7299 168.6383

25 0.1139 0.1717 0.4778 2.7278 0.1143 0.1135 0.1163

3.5036 10.6678 4.6982 9.5310 3.3494 3.3022 3.3652

50 0.0477 0.0699 0.1719 2.9353 0.0497 0.0504 0.0526

1.0590 1.8952 1.5019 10.0855 1.0549 1.0890 1.1556

100 0.0221 0.0321 0.0410 3.2160 0.0237 0.0243 0.0254

0.4312 0.6940 0.5032 10.9842 0.4435 0.4665 0.5016

200 0.0107 0.0153 0.0119 3.5414 0.0116 0.0119 0.0125

0.1954 0.2996 0.2009 12.0603 0.2039 0.2156 0.2330( 5
0.8

)
10 – 63.9726 14.0301 14.8418 16.3923 16.7479 17.2525

– 0.2941 0.1349 0.1370 0.1405 0.1479 0.1565

25 1.6759 2.7939 1.6869 1.6671 1.6310 1.6163 1.6767

0.0403 0.0496 0.0443 0.0450 0.0461 0.0483 0.0508

50 0.6177 0.8648 0.6609 0.6460 0.6299 0.6307 0.6597

0.0189 0.0227 0.0212 0.0215 0.0220 0.0229 0.0239

100 0.2746 0.3641 0.2958 0.2891 0.2827 0.2844 0.2992

0.0091 0.0108 0.0103 0.0105 0.0107 0.0111 0.0116

200 0.1293 0.1671 0.1395 0.1366 0.1338 0.1350 0.1430

0.0045 0.0054 0.0052 0.0052 0.0053 0.0055 0.0058

Corollary 7. A positive random variable X with 𝔼Xd <∞ follows the exponential-polynomial
model in (8) if, and only if, the distribution function FX of X satisfies

FX(t) = 𝔼
[
−
( d∑

k=1

k𝜗kXk−1
)

min{X, t}
]
, t > 0.
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This is the characterization which underlies our estimation method as constructed in Section 2.
Notice that C(𝜗) cannot be written in a closed form, so maximum likelihood estimators are

not readily available for the model in (8). Using the method of holonomic gradient descent,
introduced by Nakayama et al. (2011), Hayakawa & Takemura (2016) identify a differential
equation which allows to numerically calculate C(𝜗) and its derivatives, and thus to get an
approximation of the ML estimator. In our simulations, however, we focus on methods that do
not try to approximate C(𝜗) numerically, but get rid of the normalization constant altogether.
Namely, we consider our new method and compare it to the well-known score matching approach
of Hyvärinen (2007), in generalization of his method introduced in Hyvärinen (2005), as well
as to the noise-contrastive estimation technique of Gutmann & Hyvärinen (2012). In the case of
non-negative, univariate observations, the score matching approach boils down to finding the
minimum of

J̃NN(𝜗) =
1
n

n∑
𝑗=1

⎡⎢⎢⎣2X𝑗 ⋅
p′
𝜗
(X𝑗)

p𝜗(X𝑗)
+

p′′
𝜗
(X𝑗)

p𝜗(X𝑗)
X2
𝑗
− 1

2
⋅

(
p′
𝜗
(X𝑗)
)2(

p𝜗(X𝑗)
)2 X2

𝑗

⎤⎥⎥⎦
= 1

n

n∑
𝑗=1

[( d∑
k=1

k(k + 1)𝜗kXk
𝑗

)
+ 1

2

( d∑
k=1

k𝜗kXk
𝑗

)2 ]

(see Section 3 of Hyvärinen, 2007), where X1,… ,Xn are i.i.d. random variables such that
X1 ∼ p𝜗0

, for some unknown 𝜗0 ∈ Θ. Clearly, the quantity does not rely on C(𝜗). As for the
estimator constructed in this article, fixing q = 2 and the weight w(t) = e−at, where a > 0 is a
tuning parameter, we may calculate 𝜓n,2(𝜗) = ‖‖𝜂n( ⋅ , 𝜗)‖‖L2 (see Sections 2 and 3) explicitly as

𝜓n,2(𝜗) =
1
n2

n∑
𝑗=1

{
e−aX𝑗

a

[
2

d∑
𝓁=1

𝓁𝜗𝓁X𝓁
𝑗
+ 1 −

( d∑
𝓁=1

𝓁𝜗𝓁X𝓁−1
𝑗

)2(2X𝑗
a

+ 2
a2

)]

+ 2
a3

( d∑
𝓁=1

𝓁𝜗𝓁X𝓁−1
𝑗

)2}

− 2
n2

∑
1≤𝑗<k≤n

{( d∑
𝓁=1

𝓁𝜗𝓁X𝓁
(𝑗) + 1

)[
− e−aX(k)

a
+ e−aX(k)

a2

d∑
𝓁=1

𝓁𝜗𝓁X𝓁−1
(k)

]

+
( d∑

𝓁=1

𝓁𝜗𝓁X𝓁−1
(k)

)[
e−aX(𝑗)

a2

( d∑
𝓁=1

𝓁𝜗𝓁X𝓁
(𝑗)

)
−

X(𝑗) e−aX(𝑗)

a
− e−aX(𝑗)

a2

−
( d∑

𝓁=1

𝓁𝜗𝓁X𝓁−1
(𝑗)

)
2
a3

(
1 − e−aX(𝑗)

)]}
,

where X(1) < · · · < X(n) are the ordered values X1,… ,Xn. This formula is notably more com-
plicated than the one resulting from the score matching approach, but in the two-parameter
setting we now turn to, both estimators can be calculated explicitly. More precisely, to keep the
presentation clear, we intent to focus on a two parameter case, but in order not to end up with a
Gaussian-type model, we consider d = 3 and fix 𝜗2 = 0, thus effectively considering the model

p𝜗(x) = C(𝜗1, 𝜗3)−1 exp
(
𝜗1x + 𝜗3x3), x > 0, 𝜗1 ∈ ℝ, 𝜗3 ∈ (−∞, 0).
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In this case, each time by solving a quadratic equation in 𝜗1 and 𝜗3 (which is obtained by
simplifying the above quantities J̃NN and 𝜓n,2 further), we obtain the estimators explicitly. The
score matching estimators for 𝜗 = (𝜗1, 𝜗3) are given as

𝜗SM
n =
(
−

2m1

m2
−

3m4

m2
⋅

4m2m3 − 2m1m4

3(m4)2 − 3m2m6
,

4m2m3 − 2m1m4

3(m4)2 − 3m2m6

)
,

where mk =
∑n
𝑗=1 Xk

𝑗
, and our new estimators are

𝜗
(a)
n,2 =
⎛⎜⎜⎝
Ψ

(3)
n Ψ

(5)
n − 2Ψ

(2)
n Ψ

(4)
n

4Ψ
(1)
n Ψ

(2)
n −
(
Ψ

(3)
n

)2 , Ψ
(3)
n Ψ

(4)
n − 2Ψ

(1)
n Ψ

(5)
n

4Ψ
(1)
n Ψ

(2)
n −
(
Ψ

(3)
n

)2 ⎞⎟⎟⎠ ,
where

Ψ
(1)
n = 2

a3
+ 1

n2

n∑
𝑗=1

e−aX(𝑗)

(
−

2X(𝑗)

a2
− 2

a3

(
2n − 2𝑗 + 1

))

+ 2
n2

∑
1≤𝑗<k≤n

−
X(𝑗)

a2

(
e−aX(k) + e−aX(𝑗)

)
,

Ψ
(2)
n = 1

n2

n∑
𝑗=1

{
−

18X5
(𝑗)

a2
e−aX(𝑗) +

18X4
(𝑗)

a3

(
1 − e−aX(𝑗)

)}

+ 2
n2

∑
1≤𝑗<k≤n

{
−

9X3
(𝑗)X

2
(k)

a2

(
e−aX(k) + e−aX(𝑗)

)
+

18X2
(𝑗)X

2
(k)

a3

(
1 − e−aX(𝑗)

)}
,

Ψ
(3)
n = 1

n2

n∑
𝑗=1

{
−

12X3
(𝑗)

a2
e−aX(𝑗) +

12X2
(𝑗)

a3

(
1 − e−aX(𝑗)

)}

+ 2
n2

∑
1≤𝑗<k≤n

{(
e−aX(k) + e−aX(𝑗)

)(
−

3X(𝑗)X
2
(k)

a2
−

3X3
(𝑗)

a2

)

+ 6
a3

(
1 − e−aX(𝑗)

)(
X2
(𝑗) + X2

(k)
)}

,

Ψ
(4)
n = 1

n2

n∑
𝑗=1

e−aX(𝑗)

(2X(𝑗)

a
+ 2(n − 2𝑗 + 1)

a2

)
+ 2

n2

∑
1≤𝑗<k≤n

X(𝑗)

a

(
e−aX(k) + e−aX(𝑗)

)
,

and

Ψ
(5)
n = 2

n2

∑
1≤𝑗<k≤n

{3X3
(𝑗)

a
e−aX(k) +

3X(𝑗)X
2
(k)

a
e−aX(𝑗) +

3X2
(k)

a2

(
e−aX(𝑗) − e−aX(k)

)}

+ 1
n2

n∑
𝑗=1

6X3
(𝑗)

a
e−aX(𝑗) .

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



24 BETSCH, EBNER AND KLAR Vol. 00, No. 00

Moreover, we consider the noise-contrastive estimators in the refined version of Gutmann &
Hyvärinen (2012) that generalizes the initial results of Gutmann & Hyvärinen (2010). The
idea is motivated by a binary classification problem and proceeds to consider the unknown
normalization constant as an additional parameter to be estimated. The objective function is
constructed in such a way that it ensures that the obtained estimator for the normalization constant
truly provides (in numerical approximation) a normalized density without any further constraints
on the optimization. Following Gutmann & Hyvärinen (2012), we implement this technique as
follows. Given the sample X1,… ,Xn, choose the noise sample size Tn = 𝜈 ⋅ n (for some fixed
𝜈 ∈ ℕ, in our case 𝜈 = 10) and sample from the noise distribution (in our case, the exponential
distribution with rate parameter 𝜆n = n∕

∑n
𝑗=1 X𝑗) to obtain values Y1,… ,YTn

. Then, minimize
the objective function

J(𝜗1, 𝜗3, c) =
1
n

n∑
𝑗=1

log
(

1 + 𝜈 𝜆n exp
(
− (𝜆n + 𝜗1)X𝑗 − 𝜗3X3

𝑗
− c
))

− 𝜈

Tn

Tn∑
k=1

log
(

1 − 1
1 + 𝜈 𝜆n exp

(
− (𝜆n + 𝜗1)Yk − 𝜗3Y3

k − c
))

to obtain an estimator 𝜗NC
n for the unknown parameters (𝜗(0)1 , 𝜗

(0)
3 ) as well as for the logarithm of

the inverse of the normalization constant. In our simulations we used the “L-BFGS-B”-method,
which we have also applied in previous examples, for this optimization (with initial values
(0,−0.1, 0) and with the second parameter constrained to the negative numbers). As in the
previous simulations, we approximate bias and MSE of the competing estimators. The results
are presented in Tables 7 and 8. In the tables, for each underlying parameter 𝜗0 =

(
𝜗
(0)
1 , 𝜗

(0)
3

)
and each sample size, the first line corresponds to the bias/MSE of the 𝜗1-parameter, while the
second line corresponds to the 𝜗3-parameter.

It is immediate that our new estimator and the noise-contrastive estimator outperform the
score matching method distinctively over all tuning parameters, sample sizes, and parameter
values for both the bias and the MSE, with the only exception being the parameter vector
(1,−0.05), for which the estimator 𝜗(5)n,2 fares worse than the score matching approach in MSE

terms. We propose as a very good compromise choice of the tuning parameter the use of 𝜗(1)n,2 as
an estimator. This particular estimator outperforms the score matching method by factors of (at
least) 4 in terms of MSE and also fares notably better in terms of the bias. It also outperforms
the noise-contrastive estimation method uniformly, except for four instances in the MSE values
(in three of which our method still performs better when another tuning parameter is chosen).
The simulation in this non-normalized models conforms with the observation from previous
examples that the new method fares remarkably well bias-wise. We also note that all of the
estimators admit a large MSE for very small sample sizes, a behaviour to be expected. From our
simulations we conclude that the new estimation method is to be preferred clearly over the other
approaches in this univariate setting of the exponential-polynomial models, but of course larger
scale simulations involving different types of multi-parameter versions of the model would be
needed to further strengthen this position (also, generalizations of the score matching technique,
like Yu, Drton & Shojaie (2019), could be taken into account). One massive advantage of
the score matching and noise-contrastive estimation approaches, however, is that they readily
generalize to the multivariate situation, a generalization we were not (yet) able to establish for
our approach (see the last paragraph of Section 10).

Remark 8. We observed in our simulations that the noise-contrastive estimators can run
into computational problems when the exponentials in the objective function raise an overflow
warning. A step by step analysis of the code suggests that for large noise sample sizes Tn
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TABLE 7: Approximated biases calculated with 100,000 Monte Carlo samples.

𝜗0 n 𝜗SM
n 𝜗NC

n 𝜗
(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2 𝜗

(5)
n,2( 1

−0.05

)
10 1.4804 (0.4925) 0.4559 0.3977 0.3223 0.2779 0.3353 0.7036

−0.0619 (−0.0268) −0.0248 −0.0223 −0.0192 −0.0176 −0.0206 −0.0387

25 0.5724 (0.1589) 0.1531 0.1320 0.1067 0.0903 0.0960 0.1651

−0.0221 (−0.0084) −0.0080 −0.0072 −0.0062 −0.0057 −0.0062 −0.0100

50 0.2982 0.0740 0.0725 0.0620 0.0495 0.0406 0.0418 0.0641

−0.0111 (−0.0039) −0.0038 −0.0034 −0.0029 −0.0026 −0.0028 −0.0042

100 0.1521 (0.0344) 0.0339 0.0290 0.0233 0.0199 0.0215 0.0335

−0.0056 (−0.0019) −0.0018 −0.0016 −0.0014 −0.0013 −0.0014 −0.0022

200 0.0790 (0.0172) 0.0170 0.0145 0.0117 0.0101 0.0109 0.0162

−0.0029 (−0.0010) −0.0009 −0.0008 −0.0007 −0.0007 −0.0007 −0.0011( 0
−0.5

)
10 4.3787 0.9147 0.9046 0.8328 0.7070 0.5174 0.3913 0.2530

−1.9839 −0.7007 −0.6992 −0.6667 −0.6091 −0.5203 −0.4607 −0.4004

25 1.6908 0.3153 0.3014 0.2722 0.2237 0.1570 0.1166 0.0738

−0.6081 −0.2038 −0.1984 −0.1868 −0.1673 −0.1407 −0.1254 −0.1127

50 0.8920 0.1540 0.1456 0.1310 0.1077 0.0771 0.0592 0.0402

−0.2963 −0.0951 −0.0917 −0.0861 −0.0771 −0.0657 −0.0595 −0.0549

100 0.4785 0.0729 0.0691 0.0617 0.0499 0.0344 0.0250 0.0148

−0.1512 −0.0443 −0.0430 −0.0402 −0.0358 −0.0301 −0.0269 −0.0243

200 0.2571 0.0375 0.0351 0.0314 0.0255 0.0177 0.0129 0.0075

−0.0789 −0.0223 −0.0213 −0.0199 −0.0177 −0.0149 −0.0133 −0.0119(−0.5
−3

)
10 8.5068 1.7608 1.7578 1.6817 1.5396 1.2927 1.0904 0.7944

−14.5606 −5.1057 −5.1765 −5.0482 −4.8060 −4.3777 −4.0194 −3.4851

25 3.2683 0.6169 0.5935 0.5616 0.5036 0.4084 0.3361 0.2394

−4.3203 −1.481 −1.4566 −1.4099 −1.3245 −1.1834 −1.0761 −0.9369

50 1.7089 0.2881 0.2739 0.2577 0.2288 0.1832 0.1499 0.1066

−2.0575 −0.6602 −0.6428 −0.6200 −0.5793 −0.5151 −0.4688 −0.4119

100 0.9238 0.1453 0.1376 0.1293 0.1148 0.0921 0.0758 0.0545

−1.0552 −0.3193 −0.3114 −0.2999 −0.2798 −0.2486 −0.2266 −0.1996

200 0.4917 0.0730 0.0674 0.0634 0.0564 0.0457 0.0380 0.0282

−0.5441 −0.1588 −0.1518 −0.1463 −0.1367 −0.1222 −0.1122 −0.1002

(that is, for large 𝜈) one tends to obtain some large values in the sample Y1,… ,YTn
which are

cubed in the exponential terms and thus become very (if not too) large. The behaviour seems to
appear more often for small parameter values 𝜗(0)3 , but it seems to affect only single evaluations
of the objective function during the optimization routine. We believe that most values for the
noise-contrastive estimation approach in the table are intact and they also replicated when
we reran the whole simulation, with a bit of an exception in the case of the parameter vector
(1,−0.05), where the values show a rather noticeable dependence on the initial value chosen
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TABLE 8: Approximated MSE values calculated with 100,000 Monte Carlo samples.

𝜗0 n 𝜗SM
n 𝜗NC

n 𝜗
(0.25)
n,2 𝜗

(0.5)
n,2 𝜗

(1)
n,2 𝜗

(2)
n,2 𝜗

(3)
n,2 𝜗

(5)
n,2( 1

−0.05

)
10 5.9091 (1.5668) 1.4652 1.3332 1.2118 1.5497 3.2052 25.4377

0.0120 (0.0041) 0.0038 0.0035 0.0031 0.0037 0.0068 0.0434

25 1.1954 (0.2810) 0.2982 0.2726 0.2568 0.3570 0.7326 4.1544

0.0019 (0.0006) 0.0006 0.0006 0.0006 0.0007 0.0015 0.0082

50 0.4758 0.1143 0.1228 0.1133 0.1090 0.1558 0.3253 1.6347

0.0007 (0.0002) 0.0002 0.0002 0.0002 0.0003 0.0006 0.0033

100 0.2113 (0.0514) 0.0550 0.0511 0.0500 0.0735 0.1541 0.7475

0.0003 (0.0001) 0.0001 0.0001 0.0001 0.0001 0.0003 0.0015

200 0.1012 (0.0249) 0.0262 0.0245 0.0241 0.0358 0.0752 0.3573

0.0001 (0) 0 0 0 0.0001 0.0001 0.0007( 0
−0.5

)
10 42.1253 4.8720 5.7900 5.5517 5.1880 4.8596 5.0047 6.6628

15.2937 3.2687 3.4841 3.3680 3.1697 2.8990 2.7841 3.0120

25 7.3114 1.1328 1.2154 1.1777 1.1311 1.1409 1.2750 1.9169

1.1392 0.2851 0.2938 0.2836 0.2690 0.2614 0.2814 0.4100

50 2.6352 0.4930 0.4993 0.4874 0.4765 0.4997 0.5766 0.8948

0.3115 0.0934 0.0929 0.0905 0.0878 0.0907 0.1040 0.1660

100 1.1005 0.2248 0.2221 0.2175 0.2144 0.2292 0.2688 0.4246

0.1097 0.0362 0.0358 0.0350 0.0345 0.0370 0.0439 0.0736

200 0.5090 0.1099 0.1066 0.1046 0.1038 0.1120 0.1320 0.2093

0.0456 0.0164 0.0159 0.0156 0.0156 0.0170 0.0205 0.0351(−0.5
−3

)
10 158.3410 17.0727 21.1996 20.7230 19.8873 18.6499 17.9361 17.9169

911.2872 171.7483 206.1279 202.4045 195.4680 183.5396 174.0526 161.9207

25 26.1605 3.9728 4.2928 4.2173 4.0966 3.9673 3.9750 4.3622

56.2301 14.0880 14.6718 14.3849 13.8935 13.2242 12.9520 13.5457

50 9.2065 1.6764 1.7049 1.6816 1.6482 1.6295 1.6687 1.9025

14.5421 4.2357 4.2429 4.1757 4.0717 3.9785 4.0302 4.5485

100 3.7881 0.7814 0.7736 0.7647 0.7531 0.7527 0.7795 0.9053

4.9664 1.6415 1.6254 1.6052 1.5777 1.5715 1.6264 1.9134

200 1.7190 0.3773 0.3638 0.3601 0.3559 0.3585 0.3740 0.4388

1.9962 0.7272 0.7056 0.6988 0.6914 0.6987 0.7334 0.8830

for the optimization (though this does not happen for the other parameter values). Therefore,
one possible way to reduce the occurrence of overflows, which lies in choosing small initial
values for the 𝜗3-parameter in the optimization routine, has an impact on the performance of
the estimator. Another way out could be to adopt noise distributions with extremely short tails.
It could prove useful to see if our observations replicate in other simulation studies. Note that no
computational issues arise for the score matching and our new approach, where the estimators
can be calculated explicitly.
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10. NOTES AND COMMENTS

Note that there remain some problems for further research on our newly proposed estima-
tors, the discussion or extension of which would be too extensive for this contribution. First,
for all estimators we considered explicitly, we incorporate a tuning parameter “a” on which
the performance depends strongly. It would be beneficial to have an adaptive choice of this
parameter (see Allison & Santana, 2015, and the refinements by Tenreiro, 2019, who discuss
such a method in the context of goodness-of-fit testing problems), probably adaptable to which
criterion (minimal bias etc.) the estimator should satisfy. In the context of deriving results for
a → ∞, we obtained another consistent estimator for the Rayleigh parameter, and it would
be interesting to see if such results can be derived for other distributions. Also, we have not
used in practice the flexibility gained by providing all results for the general Lq-spaces, but
restricted our attention to the case q = 2, mostly because of the explicit formulae obtainable
in that case. If no closed formula for 𝜓n,q is feasible, either because of the use of some q ≠ 2
or because some advanced weight function w is chosen, the integral in 𝜓n,q has to be solved
numerically which could lead to a computationally highly demanding procedure overall. As for
the choice of a specific weight function w, to the best of our knowledge there exist no theoretical
results which favour specific choices over others. Considering the vast amount of weighted
L2-statistics put to use in goodness-of-fit testing problems, it seems we cannot hope for general
results in that direction. As such, the choice of the weight function provides some flexibility,
but without clear guidance to satisfy specific objectives other than𝜓n,q being calculable explicitly.

We have proven in a quite usual setting the consistency of our estimators. Surely, a limit
theorem of the type

s(n)
(
𝜗n,q − 𝜗0

) d
−→  ,

where s(n) −→ ∞, as n → ∞, and where is some limit distribution (e.g., the normal distribution)
is desirable. Such a result would pave the way for constructing confidence regions for the true
parameter based on our method. The main hurdle in direct approaches of proving such a
limit result, like some Taylor expansion or methods from empirical process theory, is that the
terms involved in such calculations become too complicated and make the endeavour appear
impractical to us. One hope is that, since Barp et al. (2019) provide limit results for special
classes of Stein discrepancy-based estimators, the interpretation of our estimation method in
terms of the feature Stein discrepancy might at some point lead to advances.

Moreover, a larger-scale simulation study, involving more underlying parameters, sample
sizes, and distributions could provide further insight into the estimation method. Improvements
from a numerical point of view would, of course, benefit the approach. From a theoretical
perspective, an important step in this last direction is to study whether the minimization method
that is used in cases where the estimators cannot be calculated explicitly will always find a global
minimum, or if not, in which situations it is likely to get stuck in some local minimum.

Note that Betsch & Ebner (2019a) also give characterization results for density functions on
bounded intervals or on the whole real line. These can be used to construct similar estimation
methods in the corresponding cases. To sketch the idea in the case of parametric models on the
whole real line, assume that the support of each density function p𝜗 in 𝔓Θ is the whole real line
(and that some mild regularity conditions hold). Let X̃ be a real-valued random variable with

𝔼
[ ||||p

′
𝜗
(X̃)

p𝜗(X̃)
||||(|X̃| + 1

)]
<∞, 𝜗 ∈ Θ,
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and consider

𝜂̃(t, 𝜗) = 𝔼

[
p′
𝜗
(X̃)

p𝜗(X̃)
(
t − X̃
)
𝟙{X̃ ≤ t}

]
− FX̃(t)

for (t, 𝜗) ∈ ℝ × Θ. Then, similar to our elaborations in Section 2, Theorem 4.1 of Betsch & Ebner
(2019a) shows that X̃ ∼ p𝜗0

if, and only if, 𝜂̃(t, 𝜗0) = 0 for every t ∈ ℝ. Therefore, if, initially,
X̃ ∼ p𝜗0

, then ‖𝜂̃(⋅ , 𝜗)‖Lq = 0 if, and only if, 𝜗 = 𝜗0. Here, Lq = Lq
(
ℝ,1, w̃(t) dt

)
, 1 ≤ q < ∞,

with a positive weight function w̃ satisfying

∫ℝ
(|t|q + 1

)
w̃(t) dt < ∞.

Thus, with

𝜂̃n(t, 𝜗) =
1
n

n∑
𝑗=1

p′
𝜗
(X̃𝑗)

p𝜗(X̃𝑗)
(
t − X̃𝑗

)
𝟙{X̃𝑗 ≤ t} − 1

n

n∑
𝑗=1

𝟙{X̃𝑗 ≤ t},

a reasonable estimator for 𝜗0 is

𝜗̃n,q = arg min
{‖𝜂̃n(⋅ , 𝜗)‖Lq |𝜗 ∈ Θ

}
.

Apparently, once we switch to density function supported by the whole real line, the charac-
terization result due to Betsch & Ebner (2019a), and thus our estimator, have slightly different
forms, but using the results from Section 3, we could still prove existence and measurability for
this type of estimator, and give a formal definition as in (6). Moreover, a classical proof via the
law of large numbers for random elements in separable Banach spaces and the Arzelà-Ascoli
theorem (considering the modulus of continuity, as employed by Billingsley, 1968) yields the
convergence results from Lemma 3 for 𝜓̃n,q = ‖𝜂̃n(⋅ , 𝜗)‖Lq , but with all convergences only in
probability. That result can then be used to derive consistency as in Theorem 4, again with
all convergences only in probability. However, choosing a fixed (i.e., parameter-independent)
weight function on ℝ with a mere scale-tuning, as we employ it throughout (using the weight
t → e−at), appears not to be sufficient to account for the possible location-dependence of the
model. Thus, in simulations (for instance with the Cauchy distribution) the problem, to us, seems
empirically more involved and is therefore not addressed in the work at hand.

Still, we deem it possible to apply our new type of estimator to models which are supported
by any connected subset of ℝ as indicated in the previous lines. Of course, the next question
which forces itself on us is whether a similar method can be devised for multivariate models.
Here the frontiers are somewhat blurry: the Stein density approach identity which appears at the
beginning of Section 2 is not yet fully understood in the multivariate case (as stated in Remark
1.1 by Ley, Reinert & Swan, 2017a), and the characterizations derived by Betsch & Ebner
(2019a) rely on further calculations, the generalization of which is not immediate. Thus, we have
to state at this point that, to us, it is an open question how a generalization to the multivariate
setting could look like (with no clear indication of it being possible at all).

APPENDIX

Remark 9 (Comments on Theorem 1). There is another result which gives measurable
selections without the completeness assumption on the probability space (as provided by Brown
& Purves, 1973), but it requires 𝜎-compactness of the parameter space, thus essentially reducing
the study to euclidean parameters (a Banach space is 𝜎-compact if, and only if, it is of finite
dimension, which follows easily from Baire’s category theorem). Of course this is enough for our
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purposes, but currently the interest in statistical inference for infinite dimensional models grows
remarkably. Hence if a statistician was to investigate measurability of an estimator for some
infinite dimensional quantity, she would have to resort to a result in the generality of Theorem 1.
Another reason for us to build on Theorem 1 is that other measurability results known to us do
not quite fit the construction of our estimators. For instance, Sahler (1970) considers minimum
discrepancy estimators, where discrepancies are (certain) functions on the Cartesian product of
a suitable set of probability measures with itself. It is (formally) not possible to identify such a
set of probability measures in our setting, as we ought to introduce the empirical distribution of
a sample into the discrepancy function, while only considering parametric distributions with a
continuously differentiable density. Even though we believe this to be a purely formal issue which
might be resolved to render results from Sahler (1970) applicable, additional caution is needed
that Theorem 1 does not require. Likewise, the setting considered by Pfanzagl (1969) does
not cover our estimators. Note that since completing (the 𝜎-field of) an underlying probability
space does not interfere with measurability properties of random maps, nor does it meddle with
push-forward measures, the corresponding assumption in Theorem 1 is no restriction. If 𝔖 is a
complete, separable metric space and the map Γ from Theorem 1 takes compact subsets of 𝔖 as
values, the condition imposed on the graph is equivalent to Γ being measurable with respect to
the Borel-𝜎-field generated by the Hausdorff topology (see Theorems III.2 and III.30 by Castaing
& Valadier, 1977). Likewise, if 𝔖 is a locally compact, complete, separable metric space and Γ
maps into the closed subsets of 𝔖, the condition is equivalent to Γ being measurable with respect
to the Borel-𝜎-field generated by the Fell topology (this can be proven using results from Beer,
1993, and Castaing & Valadier, 1977).

Proof of Lemma 2. First recall the following lemma on product-measurability, the proof of
which is an easy exercise.

Lemma 10. Let (S,, 𝜇) be a measure space, I ⊂ ℝ an open interval, and let ( , ) be a
topological vector space. Furthermore, let h ∶ S × I →  be a map such that

• s → h(s, x) is
(,( )

)
-measurable for every x ∈ I, and

• x → h(s, x) is right-continuous for every s ∈ S.

Then h is
(⊗ (I),( )

)
-measurable.

Notice that for fixed (t, 𝜗) ∈ (0,∞) × Θ the map 𝜔 → 𝜂n(𝜔, t, 𝜗) is ( ,1)-measurable, and
for fixed (𝜔, t) ∈ Ω × (0,∞) the map 𝜗 → 𝜂n(𝜔, t, 𝜗) is continuous. By a statement analogous to
Lemma 10 (see Lemma III.14 by Castaing & Valadier, 1977), the map (𝜔, 𝜗) → 𝜂n(𝜔, t, 𝜗) is( ⊗ (Θ),1

)
-measurable for fixed t > 0. Since t → 𝜂n(𝜔, t, 𝜗) is continuous for fixed (𝜔, 𝜗) ∈

Ω × Θ, Lemma 10 implies that 𝜂n is
( ⊗ (0,∞)⊗ (Θ),1

)
-measurable. Consequently, the

maps
(𝜔, 𝜗) →

⟨
𝜂n(𝜔, ⋅ , 𝜗), g

⟩
Lq

are measurable for every g ∈ Lq′ by Fubini’s theorem, and since Lq is a separable Banach
space, the mapping (𝜔, 𝜗) → 𝜂n(𝜔, ⋅ , 𝜗) is

( ⊗ (Θ),(Lq)
)
-measurable (cf. Corollary 1.1.2

of Hytönen et al., 2016). ◾

Remark 11 (Γn,q from (5) is closed). Note that (R1) and Fatou’s lemma imply the lower
semi-continuity of 𝜗 → 𝜓n,q(𝜔, 𝜗). Thus if 𝜗(k) ∈ Γn,q(𝜔), k ∈ ℕ, converges (with respect to the
metric in Θ) to 𝜗∗ ∈ Θ as k → ∞, then

𝜓n,q(𝜔, 𝜗∗) = ‖‖𝜂n(𝜔, ⋅ , 𝜗∗)‖‖Lq ≤ lim inf
k→∞

‖‖𝜂n
(
𝜔, ⋅ , 𝜗(k)

)‖‖Lq ≤ mn,q(𝜔) + 𝜀n(𝜔),
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that is, 𝜗∗ ∈ Γn,q(𝜔), so Γn,q(𝜔) is closed in Θ for every 𝜔 ∈ Ω. Hence we can note that if Θ is
closed, and therefore locally compact (cf. p. 42 of Kuratowski, 1968) and complete, Γn,q is a
random element in the space of all closed subsets of Θ endowed with the Fell topology (see also
Remark 9).

Proof of Lemma 3. First note that for any non-empty closed subset F of K,||| inf
𝜗∈F

𝜓n,q(𝜗) − inf
𝜗∈F

𝜓q(𝜗)
||| ≤ sup

𝜗∈K

||𝜓n,q(𝜗) − 𝜓q(𝜗)||,
so the second claim of Lemma 3 follows from the first. For the first claim, let K ≠ ∅ be a
compact subset of Θ. Note that

sup
𝜗∈K

||𝜓n,q(𝜗) − 𝜓q(𝜗)|| ≤ sup
𝜗∈K

‖‖𝜂n( ⋅ , 𝜗) − 𝜂( ⋅ , 𝜗)‖‖Lq

≤ C ⋅ sup
𝜗∈K
t> 0

||||1n
n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
min{X𝑗 , t} − 𝔼

[p′
𝜗
(X)

p𝜗(X)
min{X, t}

]||||
+ C ⋅ sup

t> 0

||||1n
n∑
𝑗=1

𝟙{X𝑗 ≤ t} − FX(t)
||||, (A.1)

where C =
( ∫∞0 w(t) dt

)1∕q. The second term on the right-hand side of (A.1) converges to 0
almost surely by the classical Glivenko–Cantelli theorem. For a function 𝑓 ∶ (0,∞) → ℝ we
write ℙn𝑓 = 1

n

∑n
𝑗=1 𝑓 (X𝑗) and ℙX𝑓 = 𝔼

[
𝑓 (X)
]
. Then the first term on the right-hand side of

(A.1) can be written as

sup
𝜗∈K
t> 0

||||1n
n∑
𝑗=1

p′
𝜗
(X𝑗)

p𝜗(X𝑗)
min{X𝑗 , t} − 𝔼

[p′
𝜗
(X)

p𝜗(X)
min{X, t}

]|||| = sup
𝜗∈K
t> 0

|||ℙn𝑓t,𝜗 − ℙX𝑓t,𝜗
|||

= sup
𝑓 ∈Θ

|||ℙn𝑓 − ℙX𝑓
|||, (A.2)

where 𝑓t,𝜗(x) =
p′
𝜗
(x)

p𝜗(x)
min{x, t}, x > 0, is a measurable function for every 𝜗 ∈ K and t > 0, and

Θ =
{
𝑓t,𝜗
||𝜗 ∈ K, t > 0

}
is the collection of all such functions. Note that the supremum in

(A.2) is finite (ℙ-a.s.) by (R1), (2), and (R3), and that the terms in (A.2) constitute measurable
maps from (Ω, ) to (ℝ,1) by Theorem 1.

As is commonly done, we denote, for given functions l, u ∶ (0,∞) → ℝ, by [l, u] the set
of all functions 𝑓 such that l ≤ 𝑓 ≤ u pointwise. An 𝜀-bracket with respect to L1(ℙX) =
L1
(
(0,∞), (0,∞), ℙX

)
is one such set [l, u] with ‖u − l‖L1(ℙX ) < 𝜀. The bracketing number

[ ]
(
𝜀,Θ,L

1(ℙX)
)

of Θ is the minimum number of 𝜀-brackets needed to cover Θ. If the
bracketing number of Θ is finite for every 𝜀 > 0, then Θ is a Glivenko-Cantelli class, that
is, sup𝑓 ∈Θ

||ℙn𝑓 − ℙX𝑓 || −→ 0 almost surely (see Theorem 2.4.1 by van der Vaart & Wellner,
2000), which, combined with (A.1) and (A.2), implies the claim. Note that the result by van der
Vaart & Wellner (2000) is formulated to give convergence outer almost surely, but as we work
on a complete probability space, the transition to an outer probability measure is not necessary
(since we can provide enough measurability on a complete probability space and the notions of
almost sure convergence and outer almost sure convergence agree).

Thus, to prove Lemma 3, it remains to show that the bracketing numbers of Θ are finite.
The following argument combines ideas from the classical Glivenko-Cantelli theorem and from
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Example 19.7 of van der Vaart (1998). Let 𝜀 > 0 be arbitrary, and set 𝛿 = 𝜀1∕𝛼 (4𝔼[H(X)X])−1∕𝛼 ,
where H and 𝛼 are as in (R3). Since K is compact there exist 𝜗1,… , 𝜗m ∈ K, m = m𝜀 ∈ ℕ, such
that
⋃m

i=1 B𝛿(𝜗i) ⊃ K. Additionally, since for each i = 1,… ,m the function

[0,∞) ∋ t → Ei(t) = 𝔼
[ ||||p

′
𝜗i
(X)

p𝜗i
(X)
|||| min{X, t}

]
is continuous, monotonically increasing, and satisfies Ei(0) = limt↘ 0 Ei(t) = 0, as well as

Ei(∞) = limt↗∞ Ei(t) = 𝔼||| p′𝜗i
(X)

p𝜗i
(X) X||| < ∞, there exist some 0 = t0 < t1 < · · · < t𝓁 = ∞, 𝓁 =

𝓁𝜀 ∈ ℕ, such that
Ei(t𝑗) − Ei(t𝑗−1) < 𝜀∕4

for 𝑗 = 1,… ,𝓁 and i = 1,… ,m. Upon setting 𝑓0,𝜗(x) = 0, 𝑓∞,𝜗(x) =
p′
𝜗
(x)

p𝜗(x)
x, for x > 0 and 𝜗 ∈ K,

we define the brackets

i,𝑗 =
[
𝑓t𝑗−1,𝜗i

− ||𝑓t𝑗 ,𝜗i
− 𝑓t𝑗−1,𝜗i

|| − 𝛿𝛼 ⋅ H∗, 𝑓t𝑗−1,𝜗i
+ ||𝑓t𝑗 ,𝜗i

− 𝑓t𝑗−1,𝜗i
|| + 𝛿𝛼 ⋅ H∗

]
,

for 𝑗 = 1,… ,𝓁 and i = 1,… ,m, where H∗(x) = H(x) ⋅ x, x > 0. These brackets cover Θ.
Indeed, if 𝜗 ∈ K and t > 0 are arbitrary, there exist i ∈ {1,… ,m} and 𝑗 ∈ {1,… ,𝓁} such that
𝜗 ∈ B𝛿(𝜗i) and t𝑗−1 ≤ t < t𝑗 , so 𝑓t,𝜗 ∈ i,𝑗 since for every x > 0||𝑓t,𝜗(x) − 𝑓t𝑗−1,𝜗i

(x)|| ≤ ||𝑓t,𝜗(x) − 𝑓t,𝜗i
(x)|| + ||𝑓t,𝜗i

(x) − 𝑓t𝑗−1,𝜗i
(x)||

=
||||p

′
𝜗
(x)

p𝜗(x)
−

p′
𝜗i
(x)

p𝜗i
(x)
|||| min{x, t}

+
||||p

′
𝜗i
(x)

p𝜗i
(x)
||||(min{x, t} − min{x, t𝑗−1}

)
≤ H(x) ⋅ x ⋅ ||𝜗 − 𝜗i

||𝛼 + ||||p
′
𝜗i
(x)

p𝜗i
(x)
||||(min{x, t𝑗} − min{x, t𝑗−1}

)
≤ 𝛿𝛼 ⋅ H∗(x) + ||𝑓t𝑗 ,𝜗i

(x) − 𝑓t𝑗−1,𝜗i
(x)||.

Moreover, the brackets i,𝑗 are 𝜀-brackets with respect to L1(ℙX), as‖‖‖2(||𝑓t𝑗 ,𝜗i
− 𝑓t𝑗−1,𝜗i

|| + 𝛿𝛼 ⋅ H∗
)‖‖‖L1(ℙX )

= 2𝔼
[||𝑓t𝑗 ,𝜗i

(X) − 𝑓t𝑗−1,𝜗i
(X)|| + 𝛿𝛼 ⋅ H(X)X

]
= 2
(
Ei(t𝑗) − Ei(t𝑗−1)

)
+ 𝜀

2

< 𝜀.

Hence [ ]
(
𝜀,Θ,L

1(ℙX)
) ≤ m𝜀 ⋅ 𝓁𝜀 <∞. ◼

Proof of Remark 5. From Lemma 3 we know that 𝜓n,q(𝜗) → 𝜓q(𝜗) ℙ-a.s., as n → ∞, for
each 𝜗 ∈ Θ. Since 𝜗0 ∈ Θ∘, there exists a 𝛿 > 0 such that B2𝛿(𝜗0) ⊂ Θ. Then the closed ball
B = B𝛿(𝜗0) also lies in Θ. Denote by R = 𝜕B𝛿(𝜗0) the boundary of that ball. It follows from
Lemma 3 that

inf
𝜗∈B

𝜓n,q(𝜗) −→ inf
𝜗∈B

𝜓q(𝜗) = 0 and inf
𝜗∈R

𝜓n,q(𝜗) −→ inf
𝜗∈R

𝜓q(𝜗) > 0,
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both ℙ-a.s., as n → ∞, where the positiveness of the last term follows from (7). Now, let 𝜀 > 0
and choose n0 = n0(𝜀) ∈ ℕ such that

ℙ
(

inf
𝜗∈B

𝜓n,q(𝜗) + 𝜀n < inf
𝜗∈R

𝜓n,q(𝜗)
) ≥ 1 − 𝜀

2
, n ≥ n0.

Next, note that if inf
𝜗∈B 𝜓n,q(𝜗) + 𝜀n < inf𝜗∈R 𝜓n,q(𝜗) then 𝜓n,q has a local minimum in B𝛿(𝜗0)

(since 𝜀n > 0) which, by strict convexity, is the unique global minimum. Additionally, we
have inf

𝜗∈B 𝜓n,q(𝜗) + 𝜀n < inf𝜗∈Θ⧵B𝛿 (𝜗0) 𝜓n,q(𝜗). On the other hand, if we have the relation

𝜗n,q ∈ Θ ⧵ B𝛿(𝜗0), then

inf
𝜗∈Θ⧵B𝛿 (𝜗0)

𝜓n,q(𝜗) ≤ 𝜓n,q
(
𝜗n,q
) ≤ inf

𝜗∈Θ
𝜓n,q(𝜗) + 𝜀n = inf

𝜗∈B
𝜓n,q(𝜗) + 𝜀n.

Consequently, for all n ≥ n0,

1 − 𝜀

2
≤ ℙ
(

inf
𝜗∈B

𝜓n,q(𝜗) + 𝜀n < inf
𝜗∈R

𝜓n,q(𝜗)
)

≤ ℙ
(

inf
𝜗∈B

𝜓n,q(𝜗) + 𝜀n < inf
𝜗∈Θ⧵B𝛿 (𝜗0)

𝜓n,q(𝜗)
)

≤ ℙ
(
𝜗n,q ∈ B

)
.

Since
{
ℙ𝜗n,q || n ≤ n0

}
is a finite set of measures on ℝd, there exists a compact set K ⊂ ℝd such

that ℙ
(
𝜗n,q ∈ K

) ≥ 1 − 𝜀

2
for all n ≤ n0. The set K ∩ B ⊂ Θ is a compact subset of ℝd and thus

also of Θ, for a compact metric space is a compact subset of every metric space it embeds into
continuously (see p. 21, Theorem 3, of Kuratowski, 1968). By choice of the sets,

ℙ
(
𝜗n,q ∈ K ∩ B

) ≥ 1 − 𝜀,

which is the claim. ◼
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