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Abstract
A multiphase-field approach for elasto-plastic and anisotropic brittle crack propagation in geological systems consisting
of different regions of brittle and ductile materials is presented and employed to computationally study crack propagation.
Plastic deformation in elasto-plastic materials such as frictional, granular or porous materials is modelled with the pressure-
sensitive Drucker-Prager plasticity model. This plasticity model is combined with a multiphase-field model fulfilling the
mechanical jump conditions in diffuse solid-solid interfaces. The validity of the plasticity model with phase-inherent stress
and strain fields is shown, in comparison with sharp interface finite element solutions. The proposed model is capable of
simulating crack formation in heterogeneous multiphase systems comprising both purely elastic and inelastic phases. We
investigate the influence of different material parameters on the crack propagation with tensile tests in single- and two-phase
materials. To show the applicability of the model, crack propagation in a multiphase domain with brittle and elasto-plastic
components is performed.
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1 Introduction

Computational modelling of fracturing in geological materi-
als and porous media (e.g. sands, rocks or clay) has emerged
as a field of intensive research in the past years. Predictive
investigations of crack-induced failure play a crucial role
in rock engineering applications such as underground exca-
vation, rock cutting, hydrofracturing and rock stability [1].
In production engineering, fracture mechanics approaches
assist in understanding the stress states and mechani-
cal behaviour of naturally fractured reservoir systems [2].
Crack propagation in sedimentary rocks (e.g. sandstones)
is a complex phenomenon due to the presence of physi-
cal inhomogeneities at grain scale along with pre-existing

� Michael Späth
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fractures which impact the strength and other mechani-
cal properties of these rocks [3–5]. There is an exten-
sive literature of experiments dealing with crack initiation,
propagation and coalescence in rocks or rock-like materi-
als under different loading conditions [6–13]. Depending
upon the geophysical factors (e.g. pressure, temperature,
mineralogy, strain rates and grain size), different rocks
exhibit diverse modes of failure, ranging from linear elas-
tic brittle fracturing [14, 15] to elasto-plastic deforma-
tion followed by crack propagation [16, 17]. In order to
model the pressure-sensitive plastic yielding in geologi-
cal materials and porous media, different plasticity models
such as Mohr-Coulomb [18] and Drucker-Prager [19] are
designed. Macroscopic plastic yielding occurs due to fric-
tional sliding of particles or formation and compression of
voids in porous material at microscale. Numerical works of
Zreid and Kaliske [20, 21] demonstrate the sound predic-
tive capacity of the Drucker-Prager model in recovering the
experimentally determined mechanical behaviour of con-
crete that comprises a matrix of rocky material and a binder.
On the other hand, Griffith’s criterion [22] is among the
most popular theories to describe fracturing in linear elas-
tic materials. It states that a crack propagates when the
energy release rate exceeds a critical value necessary to
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create the crack surfaces. This critical value is known
as crack resistance or fracture toughness of the material.
Irwin’s modification [23] extended the theory to ductile
materials and suggested that a plastic zone is formed near
the crack tip when a load is applied, which further grows
with the increase in loading. Moreover, he introduced the so-
called stress intensity factors in order to describe the stress
and displacement fields near the crack tip. The critical val-
ues of the stress intensity factors for different modes are
mathematically related to the crack resistance and are used
as engineering design parameters for fracture-tolerant mate-
rials, employed for the construction purposes (e.g. buildings
and bridges).

In order to computationally deal with crack propagation
in geological materials and porous media, different numeri-
cal approaches may be used, e.g. boundary elements method
(BEM) [24–26], peridynamics [27, 28], discrete element
method (DEM) [29, 30] and extended finite element method
(XFEM) [31, 32]. Using BEM, Zhang et al. [24] investi-
gated the hydraulic fractures in an existing network in 2D.
Furthermore, Wu and Olson [25] and McClure et al. [26]
extended and applied the BEM to 3D fracture networks.
However, the method, although computationally cheaper
than others, faces problems in dealing with heterogeneous
and anisotropic materials, as the discretisation is only lim-
ited to boundaries. Peridynamics was utilised by Ha and
Bobaru [27] to analyse dynamic crack branching in brittle
materials and was coupled with fluid flow by Ouchi et al.
[28] to model fluid-driven fractures in porous media.

Virgo et al. [30] employed DEM in order to investigate
crack propagation in a heterogeneous vein-hosted rock
structure under different boundary conditions. However,
due to high computational costs, the method is not well-
suited for performing large-scale numerical investigations.
Wang et al. [32] investigated hydraulic cracks in existing
fracture networks using XFEM. This method, which is
an extension of the finite element method, computes the
displacements by modifying the shape functions in the
elements exhibiting cracks. For an elaborate review of the
numerical methods and advances in computational fracture
mechanics, interested readers are referred to [33].

All the above-mentioned models treat crack surfaces as
sharp discontinuities in materials and require explicit track-
ing of the interfaces. Design and development of robust
algorithms based on these methodologies and their numeri-
cal implementation become tedious in the treatment of com-
plex crack geometries (e.g. crack branching and merging,
multiple cracks), especially in addressing these processes
in 3D. The phase-field method, already well established in
the materials science community for modelling phase tran-
sition processes involving multiple components and phases
(e.g. solidification, crystal growth; for further examples, see

review articles [34–39]), has emerged as a robust method-
ology for solving problems of crack propagation in brittle
and ductile solids [40–45]. Unlike the aforementioned sharp
interface approaches, the phase field models treat fracture
surfaces as diffuse regions, where a scalar field describes
the state of a material and varies smoothly from the fully
damaged material state to the fully intact material. The
intermediate diffuse regions are interpreted as partially dam-
aged material states, which correspond to the evolution of
micro-cracks and micro-voids. Furthermore, the approach
supersedes the need of tracking the interfaces explicitly
through any external fracturing criteria, making it a con-
venient and computationally efficient approach in dealing
with geometrically complex crack branching and merging
problems. One of the first works of Bourdin et al. [41]
explored the phase-field method for describing fracture. A
treatment of the process taking into account thermodynamic
aspects was presented by Miehe et al. [42]. Different inves-
tigations of ductile crack propagation using the phase-field
method are presented in [46–51]. Choo and Sun [50] and
Kienle et al. [51] utilised a modified Drucker-Prager yield
criterion to model fracture formation in frictional material.
Despite their achievements, these studies were limited to
failure prediction in homogeneous materials. Investigations
addressing fracture propagation in heterogeneous materials
were initiated by Spatschek et al. [52], and further devel-
oped by [53–55] for multiphase systems. Here, one topic
was the impact of fracture toughness of distinct polycrys-
tal domains and their grain boundaries on the crack path.
Furthermore, the impact of anisotropy in the brittle poly-
crystalline solids was investigated by [56–59]. In the recent
works (e.g. [60–63]), flow physics and fracture mechanics
were coupled to investigate hydraulic fracturing in porous
media. The phase-field solution shows a sensitivity depend-
ing on the choice of the length parameter. There have
been approaches setting the length parameter as a physi-
cal material property or presenting techniques which ensure
insensitive solution results [64–66].

In this work, we present a multiphase-field model, capa-
ble of describing fracture formation processes in hetero-
geneous multiphase materials, where separate regions of
(i) purely brittle and anisotropic material and (ii) frictional
and porous material are present. With the above-mentioned
capabilities, the model may be well suited for various civil
engineering and geotechnical applications (e.g. computa-
tional geomechanics, subsurface energy production). In the
present work, we limit the fracture formation under pure
mechanical loading conditions. However, we remark that
the presented framework allows for further extensions (e.g.
coupling with temperature or fluid flow equations), and for
simulating the process of fracture formation under a wide
range of boundary conditions.
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The content of this work is structured as follows. In
Section 2, the multiphase-field model for crack propagation
in elasto-plastic and anisotropic elastic materials is adapted
from the works of Prajapati et al. [67] and Herrmann et al.
[68]. Section 3 gives a description of the numerical solution
scheme of the implementation. In Section 4.1, we consider
the Drucker-Prager plasticity model for describing the plas-
tic behaviour in inelastic solid phases. This plasticity model
was considered owing to its relative simplicity in reflect-
ing the characteristics of the soil and rock materials with
few parameters. Through the numerical examples of two-
and four-phase specimens under uniaxial mechanical load-
ing, the model implementation is validated by comparing
numerical results with interface solutions. Crack propaga-
tion in single- as well as two-phase materials is presented
in Section 4.2. To demonstrate the capabilities of the model,
crack propagation was simulated in multiphase structures,
with the material parameters of sandstone and a brittle rock
for different solid phases, in Section 4.3. Section 5 con-
cludes the presented work and gives an outlook on possible
future research directions.

2Model formulation

To simulate elasto-plastic crack formation in geological
materials and porous media, the model for anisotropic
crack propagation in brittle grains introduced by Prajap-
ati et al. [67] is adapted to conduct simulation stud-
ies of elasto-plastic crack propagation in a multiphase
system comprising different brittle and ductile regions.
Schneider et al. [70–72] introduced an approach to ful-
fil the mechanical jump conditions in the diffuse interface
to obtain correct stress and strain fields in multiphase
domains within infinitesimal and finite deformations. Her-
rmann et al. [69] extended this work to include the inelastic
material behaviour based on J2 plasticity (see e.g. [73]).
Their homogenisation approach [69] is, in principle, inde-
pendent of the utilised plasticity model. Therefore, we adapt
this approach with the Drucker-Prager plasticity model for
describing the pressure-sensitive flow behaviour of geolog-
ical materials and porous media (e.g. soil or rock) [19]. For
a detailed discussion of the mechanical jump conditions in
the diffuse interface, for small as well as large deformations,
interested readers are referred to the works of [69–72]. The
crack model originates from Schneider et al. [55].

2.1 Multiphase-fieldmodel

We consider a set of N + 1 phase-field order parameters
φ(x, t) = {φ1(x, t), . . . φN(x, t), φc(x, t)} = {φs, φc},

where each phase-field order parameter φα(x, t) ∈
[0, 1] describes the volume-fraction of a particular solid
phase or crack phase α ∈ {1, . . . , N, c} at position
x and time t . The interface between different order
parameters is characterised by a diffuse region of finite
width. The magnitude of order parameter φα(x, t) varies
smoothly from 1 inside the phase α to 0 outside through
the diffuse interface region. Solid phases correspond to
different, physically separated regions with diverse material
properties that may characterise the different rock types.
The crack phase, represented by φc, describes the material
degradation, i.e. φc = 0 for fully intact material and φc = 1
for a fully damaged material. At each point, the sum of all
occurring phase fields is constrained by:

N∑

α

φα = 1 − φc. (1)

Based on Griffith’s criterion [22, 40], the total free energy
functional F of a domain of volume V is given by:

F(φ, ∇φc, εel, ε̄pl) =
∫

V

Gc(φ, ∇φc)k

[
1

εc
ωc(φc)

+ εc|∇φc|2
]

+ fel(εel, φ)

+fpl(ε̄pl, φ)dV (2)

where Gc represents the effective crack resistance, fel
denotes the effective strain energy density and fpl is the
effective plastic dissipation, in which εel is the elastic strain
tensor, ε̄pl is the accumulated plastic strain and ∇φc is the
gradient of φc. The crack resistance maps the energy of an
emerging crack by using the gradient term |∇φc|2 and a
potential term ωc(φc) in a regularised manner.

In the present work, we chose a single obstacle potential
ωc(φc) = kωφc over the conventional well potential, as
it allows much smaller interface widths, resulting in lower
computational costs [74]. The constants k = 3π2/64

and kω = (
8/π2

)2
are calculated on the basis of the

regularisation of the crack resistance in an integral manner
along interface normal direction and equating it with the
sharp interface solution [74]. The length-scale parameter εc

controls the crack interface width. The temporal and spatial
evolution of the crack phase-field is described by the Allen-
Cahn equation [75] in terms of a variational derivative of the
free energy functional which is given as:

∂φc(x, t)

∂t
= −M

εc

δF(φ, ∇φc, εel, ε̄pl)

δφc
, (3)
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where M is a constant positive mobility. Substituting the
expression of the free energy functional (2) in the above (3)
results in:

∂φc(x, t)

∂t
= −M

εc

(
Gc(φ, ∇φc)k

[
1

εc

∂ωc(φc)

∂φc

]

−∇ · ∂Gc(φ, ∇φc)

∂∇φc
k

[
1

εc

ωc(φc) + εc|∇φc|2
]

−∇ · [Gc(φ, ∇φc)εc∇φc] + ∂fel(εel, φ)

∂φc

+ ∂fpl(ε̄pl, φ)

∂φc

)
. (4)

As solid-solid transformations are not considered in the
present work, the evolution of solid phases is formulated as:

∂φα

∂t
= −hα

s (φ)
∂φc

∂t
for α = 1, .., N, (5)

with the interpolation function hα
s for the solid phases given

as the normalised phase fraction:

hα
s (φ) = φα

N∑
β

φβ

. (6)

This formulation ensures the condition
∑N

α hα
s (φ) = 1. As

soon as the crack phase field φc reaches a given critical
value φc,crit , a fully damaged material state is considered.
In this case, the crack phase field is set to 1 and all solid
phase-fields are set to 0. Moreover, effects of crack healing
are neglected and only the growth is considered; therefore,
φ̇c ≥ 0 is enforced [76]. The effective strain energy density
fel and the effective plastic dissipation density fpl are
defined as the volumetric averages of the phase-inherent
strain energy densities f α

el and the phase-inherent plastic
dissipation densities f α

pl , respectively, reading:

fel(εel, φ) =
N∑

α

hα
s (φ)f α

el (ε
α
el, φc), (7)

fpl(ε̄pl, φ) =
N∑

α

hα
s (φ)f α

pl(ε̄
α
pl). (8)

Detailed expressions of the phase-inherent strain energy
densities f α

el and the phase-inherent plastic dissipation
density f α

pl are discussed in Section 2.2. Furthermore, the
effective crack resistance is computed as a volume average
of the phase-inherent crack resistances:

Gc(φ, ∇φc) =
N∑

α

hα
s (φ)Gα

c (∇φc). (9)

For investigations of anisotropic brittle crack propagation
in polycrystalline quartz sandstones, Prajapati et al. [67]

introduced an anisotropy of the crack resistance which is
given by:

Gα
c (∇φc) = Gα

c,0

[
Fα
a,x

(
nα
c,x(∇φc)

)2 + Fα
a,y

(
nα
c,y(∇φc)

)2

+ Fα
a,z

(
nα
c,z(∇φc)

)2] . (10)

The crack resistance Gα
c,0 is reduced by the anisotropy

factor Fα
a,x �= Fα

a,y = Fα
a,z in the x-direction of the rotated

coordinate system and represents an ellipsoid in 3D space.
The rotated normal vector of the diffuse crack interface
nα
c (∇φc) is calculated as the rotation of the normal vector to

the crack interface∇φc/|∇φc| using the rotation matrixQα:

nα
c (∇φc) = −Qα ∇φc

|∇φc| . (11)

The rotation matrix describes the anisotropy orientation
of a solid phase. For materials exhibiting isotropic crack
resistance follows Fα

a,x = Fα
a,y = Fα

a,z.

2.2 Elasto-plastic multiphase-fieldmodel
with Drucker-Prager plasticity

The mechanical calculations are performed within the
theory of small deformations for the sake of simplicity and
to limit the computational costs. However, the presented
model is not restricted to small deformations and can be
extended to account for finite strains [71]. The total strain ε

is given as ε = 1
2 (H + HT), where H is the displacement

gradient. Furthermore, the elastic εel and plastic strain εpl
contributions are additively retrieved as ε = εel + εpl.

Herrmann et al. [69] introduced an elasto-plastic multi-
phase model according to the mechanical jump conditions,
where the inelastic deformations were calculated based
on J2 plasticity theory (see e.g. [73]). The homogenisa-
tion approach for computing the phase-inherent stresses
σ α and plastic strains εα

pl in the interface regions results
in well-defined stress and strain fields between brittle and
elasto-plastic phases. We incorporate the Drucker-Prager
plasticity theory [19] into the homogenisation approach,
which describes plastic deformation in geological materials
and porous media.

The pressure-sensitive yield function of the Drucker-
Prager plasticity model is given by:

f α
y (σ α, ε̄α

pl) :=
√
3Jα

2 + tan (βα)pα(σ α) − cα(ε̄α
pl) ≤ 0,

(12)

where cα and βα are the phase-inherent cohesion and
friction angle, respectively. It is used to calculate the phase-
inherent plastic strains εα

pl, depending on the phase-inherent
stresses σ α . The deviatoric part of the stress tensor σα is
given by (σ α)′ = σ α − pα(σ α)I in terms of the pressure
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pα(σ α) = 1/3(σα
11 + σα

22 + σα
33) and the second-order

unit tensor I . The second invariant of the deviatoric stress
is given as Jα

2 = 1
2 [(σ α)′ : (σ α)′]. The cohesion cα of

phase α is dependent on the accumulated plastic strain ε̄α
pl.

For the case of linear hardening, the cohesion is given as
cα = cα

0 + Hαε̄α
pl, where cα

0 is the initial cohesion and Hα

is the hardening modulus. In the principal stress space, the
Drucker-Prager flow surface forms a cone where the apex
lies on the positive hydrostatic axis, and its position depends
upon the chosen values for the cohesion and the friction
angle. Figure 1 illustrates the variation of the yield surface
for different values of cohesion cα and friction angle βα . If
the stress state at a material point is outside the cone, the
inequality (12) is violated and plastic flow occurs.

The evolution of plastic strains is then given by the
associative flow rule that reads:

ε̇α
pl = γ̇ αNα = γ̇ α

df α
y ((σ α)′, ε̄α

pl)

d(σ α)′
, (13)

Fig. 1 Drucker-Prager yield surface in a the principle stress space (σ1-
σ2-σ3) for different values of cohesions c1 > c2 > c3. For a yield cone,
when the stress state lies in the complementary cone (green region
shown for the largest cone), the stress is mapped to the apex (turquoise
point). b Drucker-Prager yield surface in the pressure-deviatoric stress
space (p-

√
3J2) for different values of friction angles β1 > β2 > β3

where Nα determines the direction of plastic flow and is
perpendicular to the yield surface. A predictor-corrector
return-mapping algorithm is used to compute the plastic
strains. When the predicted stress state falls inside the
complementary cone of the yield surface (green region in
Fig. 1(a), the stress state is mapped to the apex of the
cone (turquoise in Fig. 1(a)). Otherwise, it is mapped to the
cone surface. Due to the pressure dependency of the yield
criterion, plastic deformation can occur even within a purely
hydrostatic stress state.

The elasto-plastic multiphase-field model fulfils the
jump conditions of both, stress vector t = σ [n] as well as
the displacement gradient H , given by the sharp interface
theory [77]. With the conservation of linear momentum at a
material singular surface,

(σ α − σ β)nαβ = 0, (14)

the continuity of the stress vector t follows. Here, nαβ

is the singular surface normal vector between a α and β

phase. Hadamard’s compatibility condition [77] is given for
small-strain theory by

(Hα − H β) = aαβ ⊗ nαβ . (15)

It is a kinematic compatibility condition which ensures that
the displacement gradient is continuous in the tangential
directions of a material singular surfaces. Here, aαβ is an
arbitrary vector and ⊗ is the dyadic product. In order to
determine the jumps of the phase-inherent displacement
gradients (Hα − H β ) at the α–β transition along the nαβ -
direction in a diffuse multiphase region with N occurring
solid phases,N−1 unknown vectors, i.e. a12, a13, . . . , a1N ,
have to be evaluated. These unknown vectors are set with
respect to the phase with the largest volume fraction (phase
1 in this case) and are arranged in an N −1 tuple â given by

â =
(
a12, a13, . . . , a1N

)T

. (16)

The effective displacement gradient H̄ (φ) is expressed
as the volumetric interpolation of the phase-inherent
displacement gradients Hα , i.e. H̄ (φ) = ∑N

α hα
s (φ)Hα .

Therefore, the displacement gradient of phase 1 is written as

H 1 = H̄ +
N∑

α=2

hα
s (φ)a1α ⊗ n1α . (17)

Deformation gradients for the remaining phases can be
expressed as

Hα = H 1 − a1α ⊗ n1α . (18)

Utilising Hooke’s law σα(â) = Cα[εα
el] = Cα[ 12 (H α +

(Hα)T ) − εα
pl] and the phase-inherent displacement gra-

dients (in Eq. 18) the unknown vectors (in Eq. 16) can
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be calculated by solving the following system of equa-
tions based on the balance of linear momentum on material
singular surfaces (14):

ĝ(â)=

⎛

⎜⎜⎜⎜⎜⎜⎝

g12(â)

g13(â)

...

g1N(â)

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

(
σ 1(â) − σ 2(â)

)
n12

(
σ 1(â) − σ 3(â)

)
n13

...
(
σ 1(â) − σN(â)

)
n1N

⎞

⎟⎟⎟⎟⎟⎟⎠
=0. (19)

Here, Cα denotes the phase-inherent stiffness. Due to the
plastic strains, the system of equations is highly non-linear,
and is solved by using the Newton-Raphson scheme:

â
n+1 = â

n −
(

∂ĝ(â
n
)

∂ â
n

)−1

ĝ(â
n
). (20)

The phase-inherent strain energy density for elastic and
isotropic materials is additively decomposed into positive
and negative parts:

f α
el (ε

α
el, φc) = hc(φc)

(
1

2
εα
el · Cα[εα

el]
)+

+
(
1

2
εα
el · Cα[εα

el]
)−

= hc(φc)

(
1

2
λα〈εα

1 + εα
2 + εα

3 〉2+ + μα(〈εα
1 〉2+ + 〈εα

2 〉2+

+ 〈εα
3 〉2+)

)
+

(
1

2
λα〈εα

1 + εα
2 + εα

3 〉2− + μα(〈εα
1 〉2−

+〈εα
2 〉2− + 〈εα

3 〉2−)

)
(21)

where λα and μα are the phase-inherent Lamé coefficients,
εα
i is the phase-inherent elastic principal strain and 〈εα

i 〉± =
(εα

i ± |εα
i |)/2. This spectral decomposition was introduced

by Miehe et al. [43] in order to avoid non-physical
crack propagation in compressive stress states. The crack
interpolation function hc(φc) degrades the strain energy
density of solid phases and is given by [55]:

hc(φc) = (1 − φc)
2. (22)

In contrast to [68], only one interpolation function is
used for the brittle and the elasto-plastic material because
crack propagation in the elasto-plastic material is possible
irrespective of the occurrence of plastic deformation. The
static balance of linear momentum without body forces,
∇ · σ̄ = 0, is solved for the displacement field u with the
degraded volume-averaged stresses:

σ̄ = hc(φc)

N∑

α=1

hα
s (φ)σ α . (23)

With the solution for â from Eq. 19 at hand, the phase-
inherent stresses can be calculated as follows:

σ α = ∂

∂εα
el

(
1

2
εα
el · Cα[εα

el]
)

= Cα[εα
el]. (24)

Unlike the strain energy formulation in Eq. 21, the full stress
tensor is degraded by the interpolation function hc(φc),
similar to [68]. Therefore, this formulation is considered as
a hybrid model [47]. The plastic dissipation density for each
phase α [78] is given by:

f α
pl(ε̄

α
pl) = 1

2
Hα(ε̄α

pl)
2 (25)

in terms of the phase-inherent hardening modulus Hα and
the accumulated plastic strain ε̄α

pl.

3 Numerical treatment

In the present work, we utilise an equidistant, orthogonal
grid for the numerical calculations. Using this grid, the
curvatures can be sufficiently described through the diffuse
interfaces; thus, no complex discretisation is necessary.
The values of the phase fields are evaluated at the central
positions of the grid points, while the mechanical fields are
computed in a staggered manner implicitly. The phase-field
evolution (3) is numerically solved using an explicit Euler
scheme for the time derivative and second-order accurate
central difference scheme for the spatial derivatives [55].
The rotated staggered grid, where the stress and strain
fields are calculated, is equivalent to finite element (FE)
discretisation with linear elements using full integration.
The phase fields and the mechanical fields serve as input
for each other. Based on elastic assumption, the initial
predictor displacement fields are computed by solving the
static conservation of linear momentum ∇ · σ̄ = 0 (23),
using the values of the plastic fields from the previous
time step. The plastic strains are computed using a return-
mapping algorithm for Drucker-Prager plasticity (see [73]
for algorithmic equations), where each phase is treated
separately. After the evaluation of plastic strains, the jump
conditions in the diffuse interface region might be violated,
and thus are adjusted by solving (19). The calculations of
plastic strains and adjustment of the displacement fields to
satisfy the jump conditions are performed iteratively until a
steady state is reached. For the calculation of ∇ · σ̄ = 0,
a biconjugate gradient stabilized (BICGSTAB) algorithm
with a Jacobi preconditioner is utilised, which shows a
slightly better convergence than the standard conjugate
gradient (CG) algorithm. The mechanical fields serve as
input for the evolution of the crack phase field (3). The
crack phase field φc is updated such that it fulfils φ̇c ≥ 0
after each time step. After the crack phase field reaches
a steady state, the next increment in the mechanical load
is applied. A material point is considered fully cracked
above a critical value φc,crit, while a steady-state crack
phase field is assumed to be reached when ∂φc(x, t)/∂t <

[∂φc(x, t)/∂t]steady state. As a result of this procedure, the
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influence of mobility M and incremental time step Δt on
the simulated fracture paths is negligible and their values
are chosen in such a way that the simulations are stable.
For the present work, we chose the values φc,crit = 0.9
and [∂φc(x, t)/∂t]steady state = 1 × 10−4, based on the
sensitivity analysis performed in Section 4.2.1. Moreover, as
the present investigation is limited to quasi-static problems,
only the information about the crack pathways and the
resulting stress-strain relationships can be deduced, while
no inferences on the kinetics of crack propagation can
be drawn. All the simulations are performed as quasi-
2D with unit thickness in z-direction. The orthogonal
displacement in z-direction is set to 0 according to plane
strain condition. In general, the material parameters in the
elasto-plastic and fracture formation model are dependent
upon the temperature. However, for the sake of simplicity,
we assume the temperature to be constant. The model
equations are implemented in the in-house software package
PACE3D (Parallel Algorithms for Crystal Evolution in
3D). For details about the implementation of optimisation
and parallelisation algorithms in the software package,
interested readers are referred to [79].

4 Representative numerical examples

Fracture formation in heterogeneous multiphase materials,
including anisotropies and inelastic effects, is a highly
complex phenomenon. Therefore, a systematic study is
conducted, where each model ingredient is validated in
a step-by-step procedure. In Section 4.1, we validate
the implemented Drucker-Prager plasticity model coupled
with the homogenisation approach by comparing the
simulation results for the loading of two-phase and four-
phase specimens obtained from PACE3D with the sharp
interface results of the commercial FEM solver ABAQUS.
In order to ensure a direct comparison, the material
parameters, boundary conditions and the integration scheme
are kept identical for both the solvers. In Section 4.2,
crack propagation in ductile material and impact of various
parameters on the material response is investigated. Finally,
in Section 4.3, we demonstrate the capabilities of the model
through simulation of crack propagation in multiphase
geological structures comprising of brittle and ductile
regions. Furthermore, we discuss the factors influencing the
crack pathways in such systems.

4.1 Model validation: Drucker-Prager plasticity with
homogenisation approach

In ductile sandstones comprising of different regions with
varying plastic properties, stresses and plastic strains have to

be treated in accordance with mechanical jump conditions
in the diffuse interface and junctions. As a starting point,
we compare our plasticity implementation in multiphase
systems with the results of ABAQUS, through the following
examples (in Sections 4.1.1 and 4.1.2). The simulations with
PACE3D and ABAQUS are performed on an equidistant
orthogonal grid, under the same boundary conditions. The
mechanical load is applied quasi-statically in one time-step.
Linear elements with full Gaussian integration are chosen
in ABAQUS, which is equivalent to the finite difference
discretisation with a rotated staggered grid in PACE3D.

4.1.1 Benchmark case 1: serial and parallel combinations of
a two-phase specimen

We consider a computational domain comprising of two
ductile phases (see Fig. 2(a, b)). The computational domain
was generated by the following preprocessing procedure:
(i) filling the domain with two different solid phases,
followed by (ii) a step to create diffuse solid-solid interface.
To study the influence of the diffuse solid-solid interface
width, the length-scale parameter, εs, was varied in order
to generate different initial simulation settings. We refer
to them as phases 1 and 2, where the material parameters
are represented with the indices 1 and 2. The phase-field
parameter φ1 determines the presence of the bulk and the
diffuse interface regions. For both phases, Young’s modulus
E1 = E2 = E0 = 25 GPa and Poisson’s ratio of
ν1 = ν2 = 0.33 is assigned. In order to obtain different
plastic strains, the cohesion in phase 2 is chosen to be
c2 = 1.2 c0, whereas the cohesion of phase 1 is
c1 = c0 = E0/1000. Moreover, the linear hardening
modulus H1 = H2 = E0/10 and the friction angle
β = 15◦ are chosen. Based on the applied loading conditions,
two simulation setups are considered: serial and parallel
combinations (see Fig. 2(a, b)). In a single step, orthogonal
displacements u1 and u2 = u1/5 are applied in the serial
and parallel combinations, respectively, which amounts
to the same total strain in the case of a homogeneous
and purely elastic material for the two loadings. On the
remaining boundaries, the orthogonal displacements are
set to 0. Simulations are performed for different interface
widths of the solid phases, i.e. εs = {0, 3Δx, 5Δx}, with
Δx being the grid spacing in the x-direction. Here, εs = 0
implies a sharp interface between the two solid phases,
without utilising the second step of the above-mentioned
preprocessing procedure where only a diffuse interface
between the crack and corresponding solid phase is present
in one computational cell. For the numerical examples,
where multiple solid phases and the crack phase are present,
the choice εs = 0 essentially implies that, at any given
computational cell, the crack phase field and only one solid
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Fig. 2 The simulation setup depicting the domain sizes, the phases
(indicated by the phase field φ1) and direction of the applied displace-
ment loading u1 and u2 for (a) serial and (b) parallel combinations
of a two-phase specimen with different cohesions of each phase. The
plots of normalised vonMises equivalent stresses (σvM/σvM,max) along
the red dashed line for different interface widths and the result from

ABAQUS for (c) serial and (d) parallel combinations. The legend of
all plots is shown in (b). The area of the diffuse interface is highlighted
with dash-dotted lines. The plots of normalised accumulated plastic
strain ε̄pl /ε̄pl,max along the red dashed line for (e) serial and (f) paral-
lel combinations are depicted for different interface widths and sharp
interface ABAQUS solution

phase field (from the set φφφs of all the solid phase fields)
is present, while satisfying the summation constraint (1).
Figure 2 (c, d) depicts the variation of the normalised von
Mises equivalent stress σvM/σvM,max along the red-dashed
line (in Fig. 2(a, b)) for different interface widths and
the sharp interface solution from ABAQUS. Due to the
distinct values of cohesion of the two phases, a different
amount of plastification occurs in each phase, resulting in
different stress distributions. In the sharp interface solution
of ABAQUS (blue curve), the normalised von Mises
equivalent stress sharply jumps at the two-phase boundary.
For the diffuse interface solution (dark green and red lines
from PACE3D), a smooth and continuous increase over the
whole interface width is observed, following the chosen
interpolation function hα

s . A higher value of the length
parameter εs leads to widening of the diffuse interface,
and therefore, results in an expanded transition zone of the
von Mises stress (see zoomed inset picture in Fig. 2(c)),
without influencing the values in the bulk regions. Similarly,
the normalised accumulated plastic strain ε̄pl /ε̄pl,max along
the red dashed line (in Fig. 2(e, f)), for the respective serial
and parallel combinations, exhibits a continuous and smooth
decrease of ε̄pl in the diffuse interface solution, and a jump
at the phase boundary in the sharp interface solution. It
is worthy to mention that the von Mises stresses and the
accumulated plastic strains in the bulk phases are invariant
for the different widths of the diffuse interface and also
match with the sharp interface solution.

4.1.2 Benchmark case 2: four-phase specimen

In this section, we consider a simulation domain comprising
four different ductile phases (see Fig. 3(a)). Such a
specimen is expected to exhibit more complex stress states
compared with the previous cases. The values of material
parameters (i.e. E and ν) are kept identical in all the phases
and are given in Section 4.1.1. The values of cohesion for
different phases are as follows: c1 = c0, c2 = 1.1c0, c3 =
1.2c0, c4 = 0.9c0. On the upper edge of the domain,
an orthogonal displacement loading is applied, while the
orthogonal displacements on the remaining edges are kept 0.
For different solid-solid interface length parameters εs = {0,
3Δx, 5Δx} simulations are performed, and their results are
compared with the sharp interface solution of ABAQUS.

Figure 3 (b–e) depict the plots of normalised von Mises
equivalent stress σvM/σvM,max and the normalised accumu-
lated plastic strain ε̄pl/ε̄pl,max along the dashed lines
- , highlighted in Fig. 3(a). The scaling factors (max-
imum values) along all lines are distinct. For the lines
intersecting the binary interfaces, i.e. and , the val-
ues of von Mises stress and accumulated plastic strain in
the bulk regions, obtained from the PACE3D simulations,
are invariant with respect to the interface width and fur-
ther exhibit good quantitative agreement with the results
of ABAQUS. Moreover, in the diffuse interface region, a
continuous and smooth transition is seen (see zoomed inset
pictures in Fig. 3(b)), in accordance with the results for the
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Fig. 3 a The simulation setup of depicting the domain size and the
direction of the applied displacement loading for the four-phase spec-
imen. The diffuse interface is marked with the dotted lines. b–e
Comparison of the results of PACE3D and the ABAQUS through the

plots of normalised von Mises equivalent stresses (σvM/σvM,max) and
normalised accumulated plastic strain ε̄pl /ε̄pl,max along the dashed
lines –

two-phase specimen (in Section 4.1.1). Next, we analyse the
variations along the lines passing through the intersection
of the four phases, i.e. lines and . At the quadru-
ple point, the simulations of PACE3D predict a relatively
smooth transition in the von Mises equivalent stress and the
accumulated plastic strains, compared with the sharp transi-
tion of ABAQUS. Moreover, the smoothness of the results

of PACE3D increases with increasing interface width, as
expected. In the bulk regions, the von Mises stresses match
well (error approx. 0.03%), while an acceptable deviation
(error approx. 4.9%) is observed for the values of accu-
mulated plastic strains near the domain edges, which is
attributed to the differences in the solution scheme for the
calculation of the plastic strains in ABAQUS and PACE3D.
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These results advocate the accuracy of the implemented
plasticity model with the homogenisation approach in pre-
cisely computing the stresses and strains in the bulk phases,
while exhibiting good agreement in the interface regions.

4.2 Elasto-plastic crack propagation

We investigate the elasto-plastic crack propagation in
ductile geological materials and porous media based on
Drucker-Prager plasticity in Section 4.2.1. Using a two-
phase specimen comprising brittle and ductile phases, the
brittle to ductile transition at the interface during crack
propagation is discussed in Section 4.2.2.

4.2.1 Single-phase ductile specimen with pre-existing crack

We consider a square computational domain (151Δx ×
151Δx) having a pre-existing crack (length = 68Δx) which
shares a diffuse interface with a ductile solid phase (see
Fig. 4(a)). At the lower boundary, the displacements in all
directions are set to 0 (u = 0), while the right and left
boundaries are rendered stress free (σ̄ [n] = 0). On the
upper boundary of the domain, an orthogonal displacement
u is applied in an incremental manner. As discussed in
Section 3, the load increment is applied only after the
evolution of the crack phase reaches a steady state. If not
specified differently, the material parameters are chosen as
follows: E0 = 25 GPa, c0 = E0/2500, H0 = E0/5,
β = 40 ◦, Gc,0 = 1 J/m2 and εc = 5Δx. We remark that the
chosen value of the hardening modulus is higher in orders
of magnitude compared with engineering alloys. However,
given the small-strain assumption of the present model, and
non-availability of precise data of the above parameters
for the geo-materials along with experimental benchmarks,
the present numerical examples are illustrated only for
the purpose of demonstrating the model capabilities, and
should not be considered precisely quantitative in nature.
Thus, in order to generate a sufficiently high driving
force for a macroscopic fracture propagation, a high
hardening modulus is chosen. Figure 4 (f–i) depict the
load-displacement response for varying values of cohesion
c, hardening modulus H , friction angle β and the crack
interface length parameter εc, respectively, while keeping
the other parameters fixed. Force and displacement are
plotted as normalised quantities, i.e. F/Fmax and u/umax,
scaled by their maximum absolute value. After the loading
is sufficiently high, and the yield condition is violated,
inelastic deformation starts. The plastic strains evolve in
such a way that a so-called active plastic zone is formed
around the crack tip (see Fig. 4(b)).

As soon as a cell is fully cracked, the plastic fields
are set to 0, resulting in a plasticity field around the
crack boundaries. This zone is described in literature as

a relic plastic zone [4]. For the chosen range of material
parameters, only a small region around the crack tip
plastifies. As no precise material properties and loading
conditions of experimental samples are available, we
remark that reproduction and comparison of plastic zones
in simulations and experiments are not straightforward.
Nonetheless, the occurrence of an active and a relic plastic
zone in the simulations is in qualitative agreement with
experimental observations [4].

A sensitivity analysis of the load-displacement response
for different values of ∂φc(x, t)/∂t and φc,crit is depicted
in Fig. 4(c and d). It is observed that, when the chosen
value ∂φc(xxx, t)/∂t is smaller than 1×10−4, the evolution of
the crack phase-field is sufficiently relaxed and no visible
difference in the material response is present anymore
(see Fig. 4(c)). A higher value of φc,crit results in the
retardation of the drop-off of the load (Fig. 4(d)), while
the computational time for macroscopic crack formation
increases significantly (i.e. approx. 2.5 times higher for
φc,crit = 0.95 than for φc,crit = 0.9 in Fig. 4(e)). Therefore,
we chose φc,crit = 0.9 as a trade-off between sufficiently
accurate results and computational costs for the further
simulations. Due to the small plastic region and the high
hardening modulus, the non-linear inelastic regime in all the
load-displacement curves is small compared to the elastic
regime. The result of a purely elastic crack propagation,
in which the cohesion c = 100c0 is chosen, is given
in Fig. 4(f) as the brown line in the plot. As the cohesion
decreases, the plastic strains at the crack tip increase,
resulting in the lower elastic strain and driving force for
the propagation. Therefore, a higher displacement has to
be applied before further crack propagation, as reflected in
the plot in Fig. 4(f). As the hardening modulus decreases,
the amount of plastic strains increases due to the slower
expansion of the flow cone of Drucker-Prager plasticity
(discussed in Section 2.2). As a result, a higher displacement
load is required for lower values of hardening modulus (see
Fig. 4(g)). Figure 4(h) illustrates the influence of varying
friction angle on the load-displacement response. As the
friction angle decreases, the apex of the flow cone moves
to the right on the positive hydrostatic axis (illustrated in
Fig. 1(b)), resulting in smaller plastic strains compared with
higher friction angles at the same stress state. Therefore, for
smaller friction angles, the crack starts propagating at lower
displacements. Furthermore, in the present diffuse interface
framework, there is an influence of the crack interface width
(related to εc), as depicted in Fig. 4(i). The sensitivity of
the material response with the interface width is attributed
to the evolution equation of the crack phase (see Eq. 4).
In order to describe a smooth transition in the interface
with a sufficient number of grid points (approx. 10 see
e.g. [80]) and to reduce computational time, we chose εc =
5Δx for the simulations in the forthcoming sections. The
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Fig. 4 a Simulation setup depicting the domain size, and the location
of the initial diffuse crack phase as determined by the crack phase field
φc. b Isotropic crack propagation following a straight path orthogonal
to the direction of displacement loading, highlighted by the contour
plot of the normalised accumulated plastic strain. Load-displacement
responses for varying values of c ∂φc(x, t)/∂t , d critical value when a

material point is considered fully fractured φc,crit, f cohesion c, g hard-
ening H , h friction angle β and i crack interface length parameter εc,
while keeping the other simulation parameters constant. e Comparison
of the computational time for (d). The blue line represents the plot cor-
responding to the reference simulation whose parameters are given in
Section 4.2.1

length-scale parameter εc can be associated to a physical
interface width and can be set as a material parameter,
provided the availability of precise information about
the physical material properties, real microstructures and
experimental loading conditions (see e.g. [65]).

4.2.2 Crack propagation in a two-phase specimen: brittle to
elasto-plastic transition

In this section, we investigate the fracturing behaviour in
a two-phase specimen consisting of a purely elastic and
an elasto-plastic phase. The simulation setup along with
the initial crack is displayed in Fig. 5(a). The initial tip
of the crack lies in the elastic phase. Moreover, the purely
elastic solid is on the left (described by the phase-field
φ1), while the elasto-plastic material (with phase-field φ2)

obeying Drucker-Prager flow criterion is present on the
right. A diffuse solid-solid interface is present between the
two phases, where the diffuse region lies in the transition
enclosed by the dashed lines in Fig. 5(a). The boundary
conditions and the incremental displacement loading are
the same as in the previous Section 4.2.1. Moreover, the
material parameters in both phases are identical and their
chosen values are also the same as in Section 4.2.1. In
contrast to the cohesion of the ductile phase, c2 = c0, a
higher value of c1 = 100c0 is chosen for the purely elastic
phase, so that no plastification can occur.

We analyse results at three different positions of the
crack tip:

In the bulk region of the brittle phase,
Just after passing the brittle-ductile diffuse interface and
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Fig. 5 a Simulation setup for a two-phase specimen comprising of a
brittle and a ductile phase with a pre-existing crack. b Analysis of the
stress states at three different positions of the crack tip: in the bulk
region of the brittle phase, past the diffuse interface in the bulk
region of the ductile phase. c Contour plot of the normalised accumu-
lated plastic strains after the crack has penetrated the ductile phase,

illustrating a continuous relic plastic zone in the interface region. d
Load-displacement responses for different values of the cohesion of
the ductile phase. e Stress field in front of the crack tip at the three
times - along the white dashed line for the reference simulation
(blue curve in (d)). f Load-displacement responses for different values
of the brittle-ductile interface widths

In the bulk region of the ductile phase,

as shown in Fig. 5(b). After an initial linear elastic
behaviour, when the displacement is sufficiently high,
crack propagation begins in the brittle phase (at position

in Fig. 5(b)), resulting in a drop in the reaction
force until the crack reaches the diffuse interface of the
sample (see in Fig. 5(d)). Plastic strains evolve at
the crack tip accompanied by a reduction of the strain
energy density in the diffuse interface region. Consequently,
further displacement increments are applied to propagate
the crack. Due to the employed homogenisation approach,
a continuous relic plastic zone is formed over the diffuse
interface region between the brittle and ductile phases, as
illustrated in the inset picture of Fig. 5(c). After passing
the diffuse interface, the crack reaches the bulk region of
the ductile phase (at position in Fig. 5(b)), and crack
propagates without further displacement increments. The
reaction force drops to 0 until complete fracture of the
specimen. In order to analyse the stress distribution near
the crack tip, we plot the normalised stress in the loading

direction, i.e. σyy/σyy,max along the white dashed-dotted line
at the three positions , and (see Fig. 5(e)). The
chosen value of the scaling factor for the normalised stresses
corresponds to the stress peak at position . Due to the
incorporated linear hardening, the stress increases with the
plastification of phase φ2. Furthermore, the stress peaks
in the plastic regions no longer remain close to the crack
tip, as illustrated in Fig. 5(e). Moreover, simulations are
performed for different values of cohesion c2 of the ductile
phase (see Fig. 5(d) for the load-displacement responses).
It is observed that all curves show the same behaviour in
the brittle phase until the crack reaches the diffuse interface.
In the diffuse interface, lower cohesion of the second phase
results in a higher amount of plastic strains at the crack
tip, therefore requiring higher displacement loads for crack
propagation. Finally, in order to analyse the influence of
the interface width of the solid-solid interface εs, additional
simulations are conducted for εs = 3Δx and εs = 8Δx.
The curves (in Fig. 5(f)) reveal an insignificant impact
of the solid-solid interface width on the resulting load-
displacement responses. For the values of εs = {3Δx, 8Δx},
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a maximal deviation of about 1.3% is obtained that is arising
due to the homogenisation approach with phase-inherent
plastic strains.

4.3 Crack propagation inmultiphase system:
application to exemplary non-homogeneous
geological structures

In the above numerical examples, we present a systematic
study of modelling elasto-plastic crack propagation in
single- and two-phase domains. Through the benchmark
examples (in Section 4.1), we validate the implemented
plasticity model in the diffuse interface framework (using
the homogenisation approach) for binary and higher
order interfaces, and show that a sound agreement is
achieved when compared with the sharp interface results
of the commercial FE solver (ABAQUS). Moreover,
the simulations of crack propagation in a single-phase
ductile material elucidate the influence of different material
parameters on the load-displacement response, while
successfully recreating the (a) active plastic zone near the
crack tip and the (b) relic plastic zone around the crack
boundaries (see e.g. [4]). The present approach further
captures the brittle-to-ductile transition during fracturing of
a two-phase heterogeneous specimen with a pre-existing
crack and reveals that a continuous relic plastic zone can
be expected for a smooth transition between brittle and
ductile regions. All these examples advocate that the present
approach is capable of computationally mimicking the
elasto-plastic fracturing in multiphase systems.

In this section, we apply the model to multiphase geo-
logical structures consisting of spatially separated regions
of brittle and ductile rocks, which are observed in the
earth’s crust. For the sake of demonstrating the numeri-
cal performance, we chose the elastic material parameters
(i.e. Young’s modulus E and Poisson’s ratio ν) for the
ductile phase corresponding to sandstone, while for the brit-
tle phase, the values corresponding to quartz are chosen.
The elastic material parameters for sandstone vary [81–85]
depending upon various geophysical factors such as water
content, average grain size and porosity. We consider the
values for sandstone from [81] and [82], as listed in Table 1.
The values of the plastic parameters, i.e. cohesion c and
friction angle β, are taken from [81]. The elastic material
parameters for the brittle phase are chosen from [86]. Fur-
thermore, the brittle phase is assumed to exhibit isotropic
material behaviour (i.e. isotropic stiffness), consistent with
the implemented tension-compression split (see Eq. 21).
As the elastic material parameters, the fracture toughness
for sandstone is dependent upon the geophysical factors as
well and is reported in the range of KIc = 0.3–1.5 MPa

√
m

[83, 85]. The energy release rate of an elasto-plastic frac-
ture includes both the specific fracture energy and the

plastic dissipation, which can be hardly separated in exper-
imental measurements of fracture toughness. Therefore, the
measured fracture toughness includes both elastic and dis-
sipative effects [87]. In the present work, the dissipative
effects are already considered in the strain energy density.
Therefore, we assess a reduced Gc compared with experi-
mental results (Gc = 1.5 J/m2) for both sandstone and the
brittle phases. Due to the incorporated isotropic Drucker-
Prager plasticity, the fracture toughness for sandstone is
embraced to be isotropic. However, in order to show the
influence of the anisotropy (Eq. 10), the fracture toughness
of the brittle phase is assumed to be anisotropic with a factor
of Fa,x = 0.7 and Fa,y = Fa,z = 1.

Crack propagation in a heterogeneous system is a
complex phenomenon and is dependent on mechanical
properties, material response and structure of the rocks.
In a rock composed of brittle and ductile phases, the
crack path is primarily decided by an interplay of the
elastic strain energy distribution, the fracture resistance
of the rock phases and their associated anisotropies (see
[67]). In order to illustrate this interplay, we consider two
different geological structures comprising of brittle and
ductile phases (see Figs. 6(a) and 7(a)). The simulation
domain size for both the setups is 151Δx × 151Δx, where
Δx represents a physical length of 100 μm. The phase
structures for the two simulation domains are constructed
using a Voronoi algorithm. The blue and orange phases are
assigned the brittle material parameters, where the ellipse
determines the orientation of the fracture toughness. The
yellow phase is assigned the ductile material properties of
sandstone and isotropic fracture toughness as highlighted
by the circle in Figs. 6(a) and 7(a). The ductile and brittle
material parameters are given in Table 1. An initial crack
is set into the blue brittle phase on the left-hand side of
both the setups, and an incremental displacement loading
is applied in the orthogonal direction of the upper domain
edge. The maximal displacement for structure 1 is umax,1=
1.8 μm and for structure 2 umax,2= 2.06 μm. We analyse the
results at two different stages of crack propagation for both
the structures.

For structure 1, Fig. 6(b–d) depicts the crack phase, the
accumulated plastic strain and the strain energy density at
an intermediate stage after 2000 dimensionless time steps.
The inset picture of Fig. 6(b) displays the contour plot
of the strain energy density when the crack propagation
is about to begin at position . Due to uniaxial loading,
the elastic driving force is observed to be the highest in
positive x-direction in the cell next to the crack tip. On
the other hand, the crack resistance is lowest along the
direction highlighted in the same inset picture. As a result
of the interplay of the two factors, the initially horizontal
crack takes an intermediate path towards the direction of the
lowest crack resistance, as shown in Fig. 6(b).
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Table 1 Used material
parameters for the multiphase
structure in Figs. 6 and 7

c in MPa E in GPa β in ◦ ν Gc in J m−2

Ductile phase: sandstone 13 [81] 16.8 [81] 37 [81] 0.09 [82] 1.5

Brittle phase – 99.45 [86] – 0.06 [86] 1.5

As soon as it reaches the interface of the brittle-ductile
transition, the plastic strains begin to accumulate near the
crack tip forming plastic zones, as depicted in the zoomed
inset picture in Fig. 6(c). In the bulk region of isotropic
ductile phase, the direction of crack path is determined
solely by the elastic strain energy distribution, which is
observed to be high in the region adjacent to the tip
due orthogonal loading (see Fig. 6(d)). Therefore, the
crack propagates in a straight path (in positive x-direction)
perpendicular to the direction of the loading, leaving behind
a continuous relic plastic zone in the ductile phase, as
can be seen in the zoomed inset picture of Fig. 6(f). As
the crack moves into the brittle material, it again aligns
itself towards the direction of lowest crack resistance until

complete fracturing (after 8800 time steps, in Fig. 6(e, f)).
For structure 2, similar to the former case, the crack deflects
in the brittle phase according to the previously discussed
interplay (Fig. 7(b)) and enters the ductile phase, with
plastification near the tip (Fig. 7(c)). However, although the
crack resistance is isotropic in the ductile phase, the crack
prefers to stay in this phase passing through the regions of
higher strain energy density (illustrated in Fig. 7(d)) which
is energetically more favourable, and thereby, following a
curved path (see Fig. 7(e)). Towards the end, when the crack
again enters the brittle phase, a slight deflection is observed
in the direction of lowest crack resistance as expected. In
the ductile regions, both fractured structures exhibit a relic
plastic zone, as illustrated in Figs. 6(f) and 7(f).

Fig. 6 a Simulation setup for structure 1 depicting a domain with brit-
tle (orange and blue) and ductile (yellow) phases, and pre-existing
crack phase along with the domain size and the direction of the incre-
mental displacement loading. b The crack path in the brittle phase is
determined by the interplay of the strain energy density and the direc-
tion of lowest crack resistance. The contour plots of c illustrate the

accumulated plastic strains and d the strain energy density when the
crack reaches the diffuse interface. In the interface regions, the plas-
tification results in the formation of a plastic zone. e The crack is
continuously deflected in the direction of the reduced crack resistance.
f A continuous relic zone is left in the ductile regions after complete
fracturing
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Fig. 7 a Simulation setup for structure 2 depicting a domain with brit-
tle (orange and blue) and ductile (yellow) phases, and pre-existing
crack phase along with the domain size and the direction of the
incremental displacement loading. b The crack deflects itself in the
direction decided by the interplay of the strain energy density and
direction of the lowest crack resistance. The contour plots of c refer to

the accumulated plastic strains and d the strain energy density when the
crack reaches the diffuse interface. e The crack takes a curved path in
order to stay in the ductile material with regions of high strain energy
density. f A continuous relic zone is left in the ductile regions after
complete fracturing

5 Conclusion and outlook

In this work, we present an approach for modelling crack
propagation in heterogeneous rocks consisting of brittle and
elasto-plastic regions. The impact of anisotropic fracture
toughness of the brittle phase and the plastic flow of the
ductile phase on the crack propagation paths is illustrated.
At first, the implemented plasticity model (based on the
Drucker-Prager yield criterion) and its extension to the mul-
tiphase systems (based on the homogenisation approach)
are validated through the following numerical experiments:

1. The simulations of two-phase specimens loaded accord-
ing to parallel and serial combinations are able to
recover the values of the von Mises equivalent stresses
and accumulated plastic strains in the bulk regions,
regardless of the chosen interface width. Moreover, in
the bulk regions, the diffuse interface results exhibit
sound agreement when compared with the sharp inter-
face solutions of the commercial solver ABAQUS. In
the diffuse interface region, a smooth and continuous

transition of both the fields is obtained in accordance
with the employed interpolation function hα

s .
2. In a four-phase specimen, similar to the above case,

the values of the von Mises equivalent stress and
accumulated plastic strains in the bulk regions are
independent of the chosen interface width, and further
match (within 0.03%) with those obtained from
ABAQUS. Near the domain edges and the quadruple
junction, a relatively higher deviation of 4.9% is
observed, which is attributed to the different solution
schemes or chosen residuals in both the approaches.

After validating the plasticity model and the homogenisa-
tion approach for multiphase systems, we investigate the
formulation of crack evolution based on Griffith’s criterion.
The simulations of crack propagation in elasto-plastic spec-
imens successfully recreated the active plastic zone near the
crack tip and a relic plastic zone around the crack bound-
aries, consistent with experimental observations [4]. Fur-
thermore, the following aspects about elasto-plastic crack
propagation are illustrated:
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1. A homogeneous ductile specimen obeying Drucker-
Prager flow criterion is analysed with a pre-existing
crack and undergoing incremental displacement-driven
loading. The amount of plastic strain near the crack
tip increases with decreasing cohesion c and hardening
modulus H values and increasing friction angle β

values. The variation of parameters yields that higher
displacements are required for crack propagation.
Moreover, due to the influence of εc in the evolution
equation of the crack phase-field, the load-displacement
behaviour exhibits a dependency on the crack interface
width.

2. Simulations of crack propagation in a two-phase
specimen comprising of a purely elastic and an elasto-
plastic phase further suggest that a continuous relic
zone is formed if the transition region between the
brittle and ductile regions is smooth and continuous.
Moreover, after the occurrence of plastification in the
ductile regions, the earlier vicinal stress peak shifts
away from the crack tip.

Finally, in order to demonstrate the capabilities of the
presented modelling, crack propagation is simulated in
exemplary multiphase geological structures. To evaluate the
influence of anisotropy in fracture toughness on the crack
path, the brittle phases are assigned with an anisotropy of
Gc. The simulation results of two different structures reveal
the following:

1. In a brittle phase exhibiting anisotropy in the fracture
toughness, the crack path is determined by an interplay
of the strain energy density and the direction of the
lowest crack resistance (see also [67]).

2. In a ductile phase exhibiting isotropic plasticity and
fracture toughness, the crack path is solely determined
by the strain energy density distribution.

The presented numerical model is capable of simulating
crack propagation under a wide variety of boundary con-
ditions and heterogeneities of multiphase systems, on the
basis of plasticity, anisotropic fracture toughness and formu-
lation for crack growth in homogeneous and heterogeneous
systems with purely elastic and inelastic phases. Given the
strongly non-linear nature of the multiphase-field model,
due to the incorporation of the Drucker-Prager plasticity,
brittle phase anisotropy and the mechanical jump condi-
tions, a staggered scheme for the update of mechanical
and phase fields is employed. The mechanical fields were
updated implicitly, while the phase fields are updated in
an explicit manner. For this coupled multiphase-field mod-
elling of fracture, from the algorithmic point of view, a fully
implicit solution scheme should be implemented, while
assessing the convergence characteristics. With the afore-
mentioned model ingredients (i.e. plasticity, anisotropic

elasticity, jump conditions and coupling with fracture), the
present work serves as an initial treatment and paves the
way for more advanced and quantitative ductile fracture
models for heterogeneous materials at large strains. The
constraint on the choice of hardening modulus can be
further relaxed by appropriately formulating the crack resis-
tance and/or crack driving force, such that the accumulated
plastic strains enter their formulations, i.e. Gc(φ, ∇φc, ε̄pl)

and fαel(ε
α
el, φc, ε̄pl) [47]. Another approach would be the

extension of the implemented rate-independent plasticity
model to a viscoplastic formulation [50]. Model extensions
based on these topics are currently a work in progress, and
will be addressed in the future. The presented modelling
framework can be extended to include other plasticity mod-
els (e.g. Mohr-Coulomb). Although the present work is a
two-dimensional treatment of the fracturing process, the
extension to three dimensions is straightforward, although
with higher computational costs. The present work, when
coupled with fluid flow and temperature equations, would
enable further investigations on the formation of fracture
networks (by hydraulic pressure and mechanical deforma-
tion) and alternating crack-sealing processes in geother-
mal/hydrocarbon reservoirs, along with their impact on the
flow behaviour of rocks. When coupled with the crys-
tal growth model of Ankit et al. [88], this work can
also be employed to investigate different vein formation
mechanisms.
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