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ABSTRACT
The growing use of intermittent renewable energy sources requires an increased amount of stor-
age capacity to match uncertain generation with uncertain demand. A possible solution is the use
of thermal and electrical storages. This paper compares several model formulations: mixed integer
linear programs (MILPs), nonlinear programs (NLPs), mixed integer nonlinear programs (MINLPs) for
optimizing the operation of a multi-modal home energy system comprising heating and electric-
ity subsystems. The respective optimization problems are then resolved within a model predictive
control scheme and the final solutions are compared in terms of runtime and optimality. The results
indicate that a thermocline-based thermal storage model leads to the overall lowest costs while not
significantly impeding computing times. Additionally, the results show that a continuous heat pump
model leads to reduced computing times without affecting the modelling accuracy.
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1. Introduction

The growing use of intermittent renewable energy
sources has created substantial technical, economic and
political challenges. One challenge of particular promi-
nence and importance is the problem of matching
uncertain generation with uncertain demand. A possi-
ble solution is the use of thermal and electrical storages,
which effectively allows for shifting available generation
to meet demand (Setlhaolo, Sichilalu, and Zhang 2017;
Appino et al. 2018). In this work, we concentrate on local
storages within buildings, with a particular focus on bat-
teries and hot water storage tanks. Considering the com-
plexity of such distributed, multi-modal energy systems,
optimizationmethods present a viable option for control-
ling such systems.

1.1. Model predictive control

The optimization of distributed, multi-modal energy sys-
tems requires forecasting upcoming thermal and elec-
trical demands, setting up an optimization model that
represents the energy system and then solving the
optimization model, resulting in control signals that
are sent to the systems actuators, e.g. charging a bat-
tery, curtailing a photovoltaic array or activating a heat
pump. Since each of these steps introduces errors,
such as forecasting errors and modelling errors, Model
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Predictive Control (MPC) is typically applied to such con-
trol problems.

The MPC approach has been in use since the 1980s
and has a well-developed theory (Kwon, Bruckstein, and
Kailath 1983; Mayne et al. 2000; Qin and Badgwell 2003).
The main idea of MPC is to perform a receding hori-
zon optimal control strategy such that the best controller
input over a finite horizon is calculated but only the cur-
rent time step is implemented. Afterwards, the state is
updated and the process repeats for the remaining time
steps. This allows for the consideration of future events
and real-time flexibility. It is also well known that each
new optimization horizon can adjust for some inaccu-
racies (Garcia, Prett, and Morari 1989). Many practical
applications such as battery scheduling problems (Arnold
and Andersson 2011), torque control (Geyer 2009) and
building control (Maasoumy et al. 2014) involve nonlin-
ear effects but the models used in MPC are most fre-
quently only linear. The success of MPC in these applica-
tions derives in part from the fact that even though the
dynamics of the systems in question are nonlinear, they
are approximately linear over sufficiently short time peri-
ods, and thus a linearmodel that is continuously adjusted
by empirical data can allow for robust control while still
guaranteeing some notion of optimality. There are dif-
ferent approaches to model energy systems in such MPC
control models.
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1.2. Energy systemmodelling

Considering local storages within buildings, both batter-
ies and hot water tanks have dynamics which are inher-
ently non-linear and thus are generally not accurately
modelled via linear equations. However, the degree to
which they are inaccurate is only evaluated for static oper-
ation (Oliveski, Krenzinger, and Vielmo 2003).

While simulation software typically discretizes hot
water storage tanks into multiple vertical layers (Oliveski,
Krenzinger, and Vielmo 2003), MPC models follow differ-
ent approaches. Most commonly, thermal storage units
are modelled as thermal capacities that are perfectly
mixed and are represented by their homogeneously dis-
tributed internal energy (Collazos, Maréchal, and Gäh-
ler 2009; Ashouri et al. 2013; Wakui and Yokoyama 2014;
D’Ettorre et al. 2019). This approach therefore neglects
thermal stratification that is inherent to these compo-
nents. Only a few studies tried to represent thermal strat-
ification in mixed-integer linear programs. In Fazlollahi,
Becker, and Marchal (2014), the authors assume the tem-
peratures in the top and bottom layers in their storage
model as parameters. Within the optimization model,
they discretize the temperature difference and compute
the resulting volumes of each layer (Fazlollahi, Becker,
and Marchal 2014). This approach is able to compute
the stratification inside the storage, but in most applica-
tions, the temperature levels are decision variables of the
optimization problem which cannot be computed with
this model. Steen et al. (2015) propose to implement two
simple storage models to represent a high temperature
(HT) and a low temperature (LT) section within the stor-
age tank. Their model is able to account for the charging
of the LT section with HT fluid, but does not consider
LT fluid flowing into the HT section if the HT section is
discharged.

Similar to hot water storage tanks, there exist differ-
ent approaches to model battery storages. There exist
nonlinear approaches to model effects such as pre-
venting a simultaneous charging and discharging of
the battery (Appino et al. 2018). Alternatively, Murray,
Faulwasser, and Hagenmeyer (2018); Sass et al. (2020)
illustrate how such nonlinear battery models can be
reformulated with mixed-integer linear approaches. In
Bösenberg et al. (2015), it is shown that higher cycling
rates can reduce battery lifetime, and thus a controller
which avoids this can reduce long term maintenance
costs. Smart metering is a highly related topic to bat-
tery control and some research has shown that lev-
elling the power profile can help to obscure local
load profiles from a centralized controller Yang et al.
(2014).

1.3. Contribution

As previously mentioned, there exist a number of
approaches that seek to solve the optimal control prob-
lem of distributed, multi-modal energy systems. Each
approach utilizes differentmodels and solutionmethods,
but to date there has been no analysis of how best to
formulate and solve this problem. The various combina-
tions of modelling choices result in non-linear, mixed-
integer linear and mixed-integer nonlinear systems. The
main contribution of the present paper is to provide
some insight as to which components of the Battery and
Thermal Storage Scheduling (BATSS) problem should be
modelled with linear dynamics and which require more
complex modelling.

This paper is organized as follows: Section 2 proposes
a number of different modelling alternatives for the com-
bined battery and thermal storage scheduling problem.
Section 3 solves the problems posed in Section 2 using
state-of-the-art solution methods and these results are
discussed in Section 4. Finally, Section 5 discusses the
results of Section 3 and provides an outlook on possible
future research directions.

2. Models

Although there is no standard formulation of the BATSS
problem, any formulationwill share a number of common
features. Namely, there is a cost for total power used, heat
pump, thermal storage, electric battery and some cou-
pling of the subsystems. There may be multiple storages
and loads, but we will restrict our analysis to the case of
a single household (i.e. a heat pump, battery and thermal
storages for both domestic hot water and space heating
use). All conclusions based on the analysis of the single
house case should apply to BATSS problem for multiple
households as the form of the problem does not change,
except for a linear coupling of the households.

Sections 2.1– 2.5 give detailed descriptions of each of
the major components of the model, which is summa-
rized in Figure 1.

2.1. Model of connection tomain grid

The primary objective of any BATSS problem is to mini-
mize electricity costs. Let the power fed into themain grid
at time t be denoted by P+

G (t) ≥ 0 and the power drawn
from the grid at that time step be likewise denoted by
P−
G (t) ≤ 0. Let the revenue per kW from feed-in at time

t be denoted by c+(t) ≥ 0 and the cost of purchasing
from the grid at time t by c−(t) ≤ 0. The objective of min-
imizing electricity costs over the discretized time horizon



40 A. MURRAY ET AL.

Figure 1. Schematic diagram of the system to be optimized.

t ∈ {1, . . . ,H} can then be formulated as

max
H∑
t=1

(
c+(t)P+

G (t) − c−(t)P−
G (t)

)
�t (1)

where �t is the length of each time step. In principle, it
is possible for the solution to contain both P+

G (t) > 0 and
P−
G (t) > 0 for some time step t. To avoid this, one can use

complementarity constraints. These may be formulated
exactly as mixed-integer linear inequality constraints
(Equation (2)) or inexactly via the continuous-valued
nonlinear Fischer–Burmeister relaxation (Fischer 1992)
(Equation (3)):

0 ≤ P+
G (t) ≤ (1 − z(t))PG

z(t)PG ≤ P−
G (t) ≤ 0

where z(t) ∈ {0, 1} (2)

0 ≤ P+
G (t) ≤ PG

PG ≤ P−
G (t) ≤ 0

ε ≤ P+
G (t)P−

G (t) ≤ 0

for some ε < 0 (3)

where PG and PG are the upper and lower bounds on
the power to/from the grid. A tighter Fischer–Burmeister
relaxation (i.e., where ε is closer to 0) will result in more
accurate solutions, but runs the risk of numerical issues
for some solution methods.

As the cost of buying electricity from the main grid
typically differs from the price of selling electricity to the
grid, an integer decision variable can be used to differ-
entiate between these two cases and enforce a comple-
mentarity constraint between them. Alternatively, abso-
lute value functions may be used, but this would imply
solving a real-valued Nonlinear Program (NLP) instead
of a Mixed Integer Linear Program (MILP). As shown
in Murray, Faulwasser, and Hagenmeyer (2018), the lat-
ter generally gives better results for the BATSS problem
(Table 1).
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Table 1. Grid connection parameters. Based on most recent val-
ues for private households in Western Germany.

Electricity Tariff c−(t) 0.30 $/kWha

Remuneration for feed-in c+(t) 0.11 $/kWhb

awww.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/Energ
iepreisentwicklungPDF_5619001.pdf

bwww.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Ene
rgie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInfor
mationen/PV_Datenmeldungen/DegressionsVergSaetze_08-10_18.xlsx?_
blob= publicationFile&v= 2

2.2. Models of heat pump

One of the major components of the battery and ther-
mal storage system is the heat pump. It is a device that
uses electricity to heat water for domestic hot water or
space heating usage or for charging either of the ther-
mal storage tanks. We consider a two-point controlled
air-to-water heat pump. Using different set-temperatures
for domestic hot water and space heating results in three
discrete operating modes for each time step, depending
on whether it is providing water for domestic or space
heating use1, or neither. Thus an integer decision variable
is used to model this choice. More information on heat
pumps can be found in Langley (2002); Grassi (2017).

Equations:

• Power usage of heat pump
Php(t) = Pdhwydhw(t) + Pshysh(t)

• Heat output
Qhp(t) = μ(t, T)Php(t)

• Only choose one temperature setting
ydhw(t) + ysh(t) ≤ 1

Thereby Pdhw and Psh are the power usages of the heat
pump for water at 60◦C and 35 ◦C, respectively. Like-
wise, ydhw and ysh are the controls associatedwith each of
these temperature outputs (cf. Table 2). The heat added
to the thermal storage tanks is denoted by Qhp, where

Table 2. Heat pump parameters. Technical data based on Dim-
plex LA 12TU heat pump Dimplex.

Coefficient of performance (domestic hot water) μ(t, 60) See Figure 3
Coefficient of performance (space heating) μ(t, 35) See Figure 3
Power usage for heating domestic hot water Pdhw 3.75 kW
Power usage for space heating Psh 2.5 kW

the coefficient of performance (COP) μ(t, T) depends on
the environment temperature at time t and desired out-
put temperature T. For the domestic hot water tank, this
is 60 ◦, and 35 for the space heating tank. If a tem-
perature forecast is given, then these coefficients can
be precomputed. The ambient temperature and heating
demand are shown in Figure 2, and the temperature-
dependent COP for the investigated heat pump is illus-
trated in Figure 3. Thereby, theblue curvedepicts theCOP
when providing heat for space heating and the red curve
shows the COP for domestic hot water provision.

While the heat pump has discrete settings, one may
require these to be applied for the entire time step or
just for a fraction. In the first case, the control decisions
ydhw and ysh will be discrete valued and in the second
case, they will be continuous. Both cases are shown in
Equations (4) and (5):

ydhw(t) ∈ {0, 1}, ∀ t (4)

0 ≤ ydhw(t) ≤ 1, ∀ t (5)

The advantage of (4) is that the solution is clear and well-
defined, however, it can lead to some inefficiency due
to overcharging. For (5), the precise amount of heating
can be applied, but the exact time when the heatpump
is activated is unclear. One could define the activation to
always be from the beginning of the time step, however
for multiple time steps with partial activations this could
lead to cycling losses or increased maintenance costs to
sequences of short activations.

Figure 2. Ambient temperature data taken from Deutscher Wetterdienst (2017). The time frame spans several days in spring in Aachen.
The solid red line is the ambient temperature, the dotted blue line is the domestic hot water demand and the dashed green line is the
space heating demand.

http://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/EnergiepreisentwicklungPDF_5619001.pdf
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/PV_Datenmeldungen/DegressionsVergSaetze_08-10_18.xlsx?_blob=publicationFile\&v=2
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Figure 3. Collected data for the coefficient of performance for a given heat pumpDimplex with a linear interpolation. The solid blue line
denotes the COP given the required 60 deg output for the domestic hot water tank. Likewise, the dashed red line denotes the COP for
the 35 deg required by the space heating tank.

2.3. Models of thermal storage tanks

Typically, simulation software discretizes thermal energy
storages into multiple segments (nodes) in the vertical
direction (Powell and Edgar 2013). Each node has a cer-
tain temperature and water mass. The temperature of
the tank is constantly losing thermal energy to the envi-
ronment, based on tank parameters (shown in Table 3)
and ambient temperature (shown in Figure 2). Further-
more, if the storage is discharged, a net flow from the
bottom to the top mixes the storage and vice versa dur-
ing charging events. Thereby, the top and bottom seg-
ments have the largest surface areas; therefore, the top
segment can become colder than the second-to-the-top
segment in such simulation models. This is not a physi-
cal phenomenon; thus simulation software typically sorts
the segments after each time-discrete step or at least per-
forms a mixing (Oliveski, Krenzinger, and Vielmo 2003).

However, simulation of the thermal storage tanks in
such granularity is not necessarily useful nor practical in
embedded systems. Herein we shall assume that temper-
ature readings T1, T2 and T3 are available. These corre-
spond to the temperature of the water at the bottom,
middle and top of the tank, respectively. Given this infor-
mation, oneway tomodel the state X of a tank is by using
two nodes: the section of the tank with water at a usable
temperature and the sectionwith low, unusable tempera-
ture. This ‘thermocline’ model is depicted in Equation (7).
Another option is to model X as the total energy con-
tent of the tank as shown in Equation (6). Doing so may
be a poor choice if the temperature difference between
the bottom and top of the tank is no longer very large,
but can be more accurate if the water temperature in
the top of the tank greatly exceeds the fixed tempera-
ture assumed in the thermocline model. In other words,
if the hot water tank is charged a lot in a short period of
time, then Equation (6) will likely be more accurate while

Table 3. Thermal storage tank parameters.

Diameter of domestic hot water
storage

ddhw 0.45m

Diameter of space heating water
storage

dsh 0.79m

Height of domestic hot water
storage

hdhw 0.75m

Height of space heating water
storage

hsh 2m

Volume of domestic hot water
storage

Vdhw 0.12m3

Volume of space heating water
storage

Vsh 0.98m3

Area of lid of domestic hot water
storage

Adhw 0.16m2

Area of lid of space heating water
storage

Ash 0.49m2

Set-point for flow temperature for
domestic hot water

Tdhw 60◦C

Set-point for flow temperature for
space heating

Tsh 35◦C

Temperature of water pumped into
storage

T� 25◦C

Temperature of environment TR(t) See Figure 2
Specific heat capacity of water c 4.1796 kJ/(kg K)
Density of water ρ 997 kg/m3

Thermal conductivity of water k 0.64W/mK
Coefficient of heat losses U 0.617W/m2K
Time step length �t 30mina

Building’s (space heating/domestic
hot water) demand

m(t) See Figure 2

Efficiency of electric heater for
DHW tank

εDHWeh 1

Efficiency of electric heater for SH
tank

εSHeh 1

a The time step length was chosen to be 30 minutes due to the granularity of
the available data sets.

a long period without charging will result in the usable
water being more accurately modelled by Equation (7).
Of course, the nonlinear dynamics of the thermal stor-
ages may be explicitly modelled as in Equation (8), how-
ever, doing somay lead to longer runtimes. Section 4 will
present the results of each of these thermal storagemod-
els in combination with several other modelling options
for the system.
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The dynamics of thermal storage dynamics involve a
number of parameters, which are given in Table 3. Note
that the subscripts dhw and sh are omitted in (6), (7)
and (8) for brevity, as the same dynamics hold for each
tank.

1. Energy state dynamics

ρVc(X(t + 1) − X(t))/�t

= −m(t)/c +
(
Qeh(t) + Qhp(t)

− UA(T1 + T3 − 2TR(t))

− Uπdh(T2 − TR(t))
)
/(Tts − T3). (6)

2. Thermocline between usable and unusable water

ρVc(X(t + 1) − X(t))/�t

= −m(t)(T1 − TR(t))/c(Tts − TR(t))

+
(
(Qeh(t) + Qhp(t)

− UA(T1 + T2 − 2TR(t))

− Uπdh(T1 − TR(t))
)
/(Tts − TR(t)). (7)

3. Nonlinear thermocline model. Includes the same state
dynamics as in Equation (7), except that T1, T2, and T3 are
non-constant and have the following dynamics ∀t > 0 :

ρVc(T1(t + 1) − T1(t))/�t

= m(t)/c(T2(t) − T1(t))

+ Qhp(t)(Tts − T1(t))/(Tts − T3(t))

− Uπdh(T1(t) − TR(t))

+ kA(T2(t) − T1(t)/0.2 h

ρVc(T2(t + 1) − T2(t))/�t

= m(t)/c(T3(t) − T2(t))

+ Qhp(t)(T1(t) − T2(t))/(Tts − T3(t))

− Uπdh(T2(t) − TR(t))

+ kA(T3(t) + T1(t) − 2T2(t))/0.2 h (8)

ρVc(T3(t + 1) − T3(t))/�t

= m(t)/c(TR(t) − T3(t))

+ Qhp(t)(T2(t) − T3(t))/(Tts − T3(t))

− Uπdh(T3(t) − TR(t))

+ kA(T2(t) − T3(t))/0.2 h

and where T1(0), T2(0) and T3(0) are the thermal storage
temperature readings.

In all three models, the main idea is to equate the
change in usable water with the heat added by the heat
pump (Qhp) and electric heater (Qeh), minus the hot water

demand (m), and heat lost to the environment. Note that
the notation Tts is used refer to the temperature set-point
of the thermal storage tank in question. These values are
given as Tdhw and Tsh in Table 3 for the domestic hotwater
and space heating tanks, respectively. It should also be
noted that for Equations (6) and (7) the thermoclinesX are
further constrained by

0 ≤ X(t) ≤ 1,

where X(t) = 1 corresponds to a completely ‘charged’
hotwater tank,whileX(t) = 0would correspond to a tank
without any usable hot water.

Figure 4 provides an illustrative example of the
behaviour of the state X in the dynamics given by (6), (7)
and (8). Here, the hot water demands and ambient tem-
perature are as given in Table 3, however, no control
actions are undertaken. The shaded cells use values taken
from a detailed simulation of both tanks. Both the lin-
ear and nonlinear models seem to underestimate the
heat losses for the thermal storages. Interestingly, the lin-
ear model (Equation (6)), seems to be the best predictor
despite only relying on relatively simple dynamics.

2.4. Models of battery

If the cost of electricity varieswith time or local renewable
generationexceeds local demand, thenbatteries canhelp
to reduce long-term costs by storing excess energy. We
assume that the battery has no self-discharge. It is further
assumed that there are constant charging and discharg-
ing efficiencies, although this may not hold for some bat-
teries when applied power is low (Belvedere et al. 2012).
Equation (9) models the dynamics of the state of charge
of the battery, E, given these assumptions.

E(t + 1) = E(t) + (
(1 − η)P+

bat(t) + (1 + η)P−
bat(t)

)
�t

(9)

where η denotes the charging efficiency of the battery,
P+
bat(t) is the power injection to the battery at time t and

P−
bat(t) is the power withdrawn from the battery at time t.

In analogy to Section 2.1, we also introduce the following
complementarity constraints on P+

bat(t) and P−
bat(t):

For all t ∈ {1, . . . ,H} :
E ≤ E(t) ≤ E

0 ≤ P+
bat(t) ≤ (1 − zbat(t))Pbat

zbat(t)Pbat ≤ P−
bat(t) ≤ 0

where zbat(t) ∈ {0, 1}

Additionally, the objective function may include a term
that penalizes the emptiness of the battery at the end of
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Figure 4. The solid green line is the prediction of Model 1 (Equation (6)). The dashed purple line depicts the prediction of Model 2
(Equation 7), and the dotted black line depicts what is predicted by the model defined by Model 3 (Equations (7) and (8)). The plot
depicts 1−X for each model in order to better demonstrate alignment with the thermocline.

the time horizon:

min
P+
bat,P

−
bat

γ (E − E(H)) (10)

for some penalty parameter γ . Augmenting the objective
function by (10) can improve operation costs if unex-
pectedly high electricity demands occur, where a grid
connection would otherwise have to be utilized.

2.5. Model of electricity balance

A balance between the power from each source and the
power used by each device is necessary to obtain phys-
ically relevant solutions. This constraint is modelled as
shown in Equation (11). It is assumed that the load fore-
casts are deterministic2

PL(t) + Php(t) + P+
G (t) + P+

bat(t) + Peh→dhw(t)

+ Peh→sh(t) = Ppv(t) + P−
G (t) + P−

bat(t) (11)

Table 4. Load and demand.

Building’s electricity demand at each time step t PL(t) See Figure 5
Power generated by PV panels at each time step t Ppv(t) See Figure 5

where Peh→dhw is the power used by the electric heater
at time t to heat the domestic hot water tank and Peh→sh

is the power used by the electric heater at time t to heat
the space heating tank. The parameters PL and Ppv are the
local demand and generation of electricity (cf. Table 4).

3. Simulation results

The values listed in the tables of Section 2 are those that
were used for the simulation. Recall that γ is the penal-
ization factor for the emptiness of the battery at the final
time step and recall the definitions of the following equa-
tions:

• Equation (2): Mixed-integer linear grid connection
complementary constraints.
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Table 5. Model comparison part 1: MILP models.

Model # Grid connection Heat pump dynamics TS dynamics γ Run-time (s) Final cost ($) DHW error SH error

1 Equation (2) Equation (4) Equation (7) 0 236.21 1.97 0.10 0.10
2 Equation (2) Equation (4) Equation (7) 0.1 239.36 2.34 0.14 0.09
3 Equation (2) Equation (4) Equation (7) 0.5 247.23 2.05 0.11 0.09
4 Equation (2) Equation (4) Equation (6) 0 225.02 2.11 0.50 0.13
5 Equation (2) Equation (4) Equation (6) 0.1 222.56 2.33 0.48 0.06
6 Equation (2) Equation (4) Equation (6) 0.5 263.23 2.24 0.37 0.20
7 Equation (2) Equation (5) Equation (7) 0 4.45 1.77 0.11 0.08
8 Equation (2) Equation (5) Equation (7) 0.1 4.51 2.09 0.11 0.08
9 Equation (2) Equation (5) Equation (7) 0.5 4.51 1.73 0.21 0.10
10 Equation (2) Equation (5) Equation (6) 0 4.30 1.84 0.29 0.08
11 Equation (2) Equation (5) Equation (6) 0.1 4.32 2.27 0.27 0.08
12 Equation (2) Equation (5) Equation (6) 0.5 4.43 2.52 0.34 0.08

Table 6. Model comparison part 2: NLP models.

Model # Grid connection Heat pump dynamics TS dynamics γ Run-time (s) Final cost ($) DHW error SH error

13 Equation (3) Equation (5) Equation (8) 0 4.04 1.96 0.10 0.08
14 Equation (3) Equation (5) Equation (8) 0.1 4.05 1.96 0.10 0.08
15 Equation (3) Equation (5) Equation (8) 0.5 4.15 2.14 0.19 0.08
16 Equation (3) Equation (5) Equation (7) 0 4.12 1.89 0.11 0.08
17 Equation (3) Equation (5) Equation (7) 0.1 4.10 2.04 0.11 0.07
18 Equation (3) Equation (5) Equation (7) 0.5 4.20 1.89 0.14 0.09
19 Equation (3) Equation (5) Equation (6) 0 3.81 1.77 0.27 0.08
20 Equation (3) Equation (5) Equation (6) 0.1 3.88 2.18 0.29 0.08
21 Equation (3) Equation (5) Equation (6) 0.5 3.92 2.55 0.30 0.07

• Equation (3): Continuous, non-convex grid connection
complementary constraints.

• Equation (4): Mixed-integer linear heat pump dynam-
ics.

• Equation (5): Linear heat pump dynamics (continuous
relaxation of Equation (4)).

• Equation (6): Linear thermal storage dynamics.
• Equation (7): Alternative linear thermal storage

dynamics.
• Equation (8): Nonlinear thermal storage dynamics.

The space heating demand data is calculated for a typi-
cal one-family dwelling with 2 storeys, 150m2 living area
and a saddle roof. The building is located in Aachen,
Germany, and has a building construction that complies
with the German energy savings ordinance from 1984
(Constantin, Streblow, and Müller 2014). Specifically, the
model considers thermal mass by modelling each of
the nine rooms of the two-storey building separately.
Thereby, each wall, ceiling and ground floor are com-
posed of multiple layers that each have a different ther-
mal capacitance and resistance. The thermal capacitances
of windows and doors are not considered in this model,
however, the capacitance of these elements is negligi-
ble compared to the other building elements. Further-
more, the model accounts for a quite detailed set point
management including night setback. During operation,
the set point temperature is guaranteed by a standard
P-controller .3

The electrical consumption profile for a 4-person
household (where hot water is not generated electrically)
living in a one-family dwelling is based on Richardson
et al. (2010), but with total consumption of 4000 kWh/a,
which represents a typical consumption for such a house-
hold in 2017.4 The domestic hot water consumption
is based on the occupancy profile used for determin-
ing the electrical demand (Richardson et al. 2010). Like-
wise, the hourly space heating profiles are computed
with the freely available building simulation library Aixlib
(Müller et al. 2016). PV output is determined for 21 mod-
ules, which corresponds to 7.6 kW peak PV output. The
implemented PV model is based on Dubey, Sarvaiya, and
Seshadri (2013). Weather data is obtained from the Ger-
man Weather Service at 10-minute resolution for Aachen
(Deutscher Wetterdienst 2017). It is assumed that the PV
modules are facing south and have a pitch angle of 30◦.

The results using the aforementioned parameters are
shown in Tables 5, 6, and 7, where the final cost and error
are computed using a detailed simulation of the system
using the Aixlib library. Table 5 shows the results for all
mixed integer linear programming (MILP)models, Table 6
shows the results for allmixed integer nonlinear program-
ming (MINLP) models, and Table 7 shows the results for
all nonlinear programming (NLP) models. Each of these
problems are non-convex and generally classified as NP-
complete. The difference lies in the solvers which are
available for each, and the curvature of eachproblem. The
NLPs are solved with IPOPT (Wächter and Biegler 2005),
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Figure 5. The solid yellow line denotes the photovoltaic power generation and is taken from Dubey, Sarvaiya, and Seshadri (2013). The
dotted green line denotes household electricity demand data and is taken from Richardson et al. (2010).

Table 7. Model comparison part 3: MINLP models.

Model # Grid connection Heat pump dynamics TS dynamics γ Run-time (s) Final cost ($) DHW error SH error

22 Equation (2) Equation (4) Equation (8) 0 285.01 2.71 0.23 0.08
23 Equation (2) Equation (4) Equation (8) 0.1 266.85 2.68 0.35 0.07
24 Equation (2) Equation (4) Equation (8) 0.5 268.09 2.41 0.44 0.08
25 Equation (2) Equation (5) Equation (8) 0 4.58 1.91 0.10 0.08
26 Equation (2) Equation (5) Equation (8) 0.1 4.63 2.08 0.10 0.08
27 Equation (2) Equation (5) Equation (8) 0.5 4.64 1.78 0.25 0.09
28 Equation (3) Equation (4) Equation (8) 0 274.04 2.75 0.20 0.11
29 Equation (3) Equation (4) Equation (8) 0.1 268.44 2.77 0.23 0.07
30 Equation (3) Equation (4) Equation (8) 0.5 259.16 2.25 0.38 0.09
31 Equation (3) Equation (4) Equation (7) 0 237.73 2.14 0.11 0.11
32 Equation (3) Equation (4) Equation (7) 0.1 255.07 2.48 0.14 0.12
33 Equation (3) Equation (4) Equation (7) 0.5 197.81 2.54 0.06 0.12
34 Equation (3) Equation (4) Equation (6) 0 235.54 2.35 0.42 0.11
35 Equation (3) Equation (4) Equation (6) 0.1 199.13 1.87 0.47 0.08
36 Equation (3) Equation (4) Equation (6) 0.5 213.08 3.10 0.39 0.20

and the mixed-integer problems are solved with Bonmin
(Bonami et al. 2008), which itself uses IPOPT to solve its
continuous subproblems.

The final cost for each model is based on the actual
power usage as calculated in the Aixlib simulationmodel.
The DHW and SH errors are taken as a sum of squares of
the difference between the energy states of the thermal
storage model and the simulation model over the entire
time horizon H.

Error =
H∑
t=1

(X(t) − Xsim(t))2 (12)

where X(t) is what is predicted for the next time step
based on the relevant thermal storage model from
Section 2, and Xsim(t) is what actually occurred. This is
computed via Xsim(t) = Vusable(t)/V , where Vusable is the
volume of water above Tsh or Tdhw , depending on the
thermal storage tank in question.

The errors for the domestic how water tank are on
average 2.53 times higher than the errors for the space
heating storage tank. This finding is also supported by
Figure 4. In these figures, the dynamics of the space heat-
ing tank are more accurately modelled than the smaller

domestic hot water tank. However, both models are still
fairly accurate in the short term, and thus don’t result in
particularly large errors overall.

3.1. Sensitivity analysis

To assess the extent to which the results of Section 3
are dependent on the fixed parameters described in
Section 2, the following problem variants are tested:

• Battery capacity increased by 20%
• Battery capacity decreased by 20%
• Thermal storage capacity increased by 20%
• Thermal storage capacity decreased by 20%
• Heating and electrical loads increased by 20%
• Heating and electrical loads decreased by 20%

The maximum and minimum results from these tests are
shown in Tables 8, 9, and 10. The model numbers shown
in these tables correspond with those shown in Tables 5,
6, and 7.

The negative cost is due to the case where load is
decreased (but pv generation is unaffected) and excess
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Table 8. Model comparison part 1: MILP models.

Runtime(s) Final cost($) DHW error SH error

Model # Min. Max. Min. Max. Min. Max. Min. Max.

1 225.07 281.16 −0.40 4.87 0.06 0.20 0.09 0.15
2 210.70 301.81 −0.24 5.00 0.06 0.16 0.08 0.16
3 177.08 251.19 0.05 4.85 0.07 0.27 0.07 0.16
4 189.31 268.09 −0.42 4.31 0.34 0.58 0.07 0.18
5 172.77 285.01 −0.21 5.16 0.23 0.55 0.06 0.16
6 173.08 266.85 0.22 4.36 0.35 0.49 0.07 0.23
7 0.86 4.85 −0.60 2.58 0.01 0.21 0.04 0.10
8 0.87 4.69 −0.42 2.28 0.01 0.11 0.04 0.08
9 0.87 4.64 −0.68 2.42 0.01 0.21 0.04 0.10
10 2.17 4.73 −0.64 2.63 0.22 0.32 0.04 0.09
11 2.11 4.66 −0.27 2.30 0.10 0.31 0.04 0.08
12 2.07 4.63 −0.69 2.52 0.10 0.34 0.04 0.11

Table 9. Model comparison part 2: NLP models.

Runtime (s) Final cost ($) DHW error SH error

Model # Min. Max. Min. Max. Min. Max. Min. Max.

13 0.77 4.14 −0.25 2.81 0.01 0.30 0.04 0.08
14 0.78 4.17 −0.92 2.53 0.01 0.27 0.04 0.08
15 0.78 4.20 −0.52 2.74 0.01 0.29 0.04 0.20
16 0.75 4.20 −0.60 2.50 0.01 0.14 0.04 0.09
17 0.76 4.12 −0.23 2.07 0.01 0.11 0.04 0.09
18 0.76 4.16 −0.31 2.70 0.01 0.19 0.04 0.09
19 1.87 4.15 −0.51 2.52 0.19 0.31 0.04 0.08
20 1.87 4.04 −0.28 2.27 0.10 0.31 0.04 0.08
21 1.94 4.08 −0.44 3.05 0.10 0.35 0.04 0.08

generated power is sold to the grid. Interestingly, the run-
time for models which include a continuous heat pump
seems tobe largely unaffectedby theparameter changes,
while there is significant deviation amongst the models

Table 10. Model comparison part 3: MINLP models.

Runtime(s) Final cost($) DHW error SH error

Model # Min. Max. Min. Max. Min. Max. Min. Max.

22 223.35 292.55 −0.01 5.21 0.11 0.37 0.07 0.20
23 225.02 266.63 0.27 5.24 0.08 0.50 0.07 0.23
24 222.56 284.92 −0.38 4.82 0.08 0.55 0.06 0.13
25 0.88 4.85 −1.02 2.52 0.01 0.34 0.04 0.08
26 0.86 4.71 −0.12 2.31 0.01 0.29 0.04 0.08
27 0.88 4.75 −0.50 2.27 0.01 0.27 0.04 0.09
28 212.02 280.12 0.16 4.87 0.09 0.39 0.07 0.20
29 205.81 278.12 0.16 5.55 0.08 0.42 0.07 0.26
30 199.13 280.61 0.21 5.14 0.17 0.49 0.05 0.16
31 197.81 270.91 −0.50 4.82 0.06 0.17 0.08 0.12
32 215.73 255.82 −0.10 5.38 0.11 0.21 0.08 0.12
33 173.74 288.46 0.35 4.93 0.06 0.19 0.09 0.17
34 161.15 259.16 −0.26 5.21 0.36 0.52 0.04 0.21
35 184.55 274.04 0.22 4.66 0.20 0.56 0.05 0.11
36 170.71 268.44 −0.05 4.93 0.23 0.49 0.07 0.20

which include discrete heat pump dynamics. The model
error varies consistently amongst all models. Further-
more, none of the tests result in a consistent increase or
decrease in model error. For example, the minimum SH
tank error for Model 18 occurs in the case of increased
load, while the SH tank error for Model 1 is highest in this
case. Overall, there is a slight increase in DHW error in the
case of increased loads, and a slight decrease for both TS
tank errors in the case of decreased loads.

4. Analysis of results

The results from Section 3 are grouped into three cate-
gories: MILP, NLP andMINLPmodels. There are a number

Figure 6. Thermal storage trajectories for themost and least expensivemodels of Section 4. Xdhw denotes the proportion of usablewater
in the domestic hot water tank and Xsh is the proportion of usable water in the space heating tank.
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of interesting insights to be gleaned from Tables 5, 6,
and 7. The first of which is that using a discrete heat
pump model leads to runtimes that are 2 orders of mag-
nitude longer than the same model with a continuous
heat pumpmodel. As the error for the space heating and
domestic hot water tanks indicate, the continuousmodel
does not have a sizable impact on accuracy. As shown in
Section 3.1, the runtime ofmodels which include discrete
heat pump dynamics has some sensitivity with respect
to the input parameters and load profiles, however, even
in the best case the problem is not solved nearly as

quickly as an equivalent model with continuous heat
pump dynamics.

Second, penalizing the emptiness of the battery in the
final time step of the optimization subproblems gener-
ally has an unpredictable effect on the overall cost of
system operation. For example, both the most and least
expensive models have γ = 0.5. On average, a penalty
term of 0 or 0.1 seemed to result in the lowest costs.
This could be due in part to the specific electricity and
heating demands, as this penalty can sometimes help
mitigate the costs of unexpected peaks in electricity or

Figure 7. Solution trajectories for the most and least expensive models of Section 4.
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heating demand, while leading to some suboptimality
otherwise.

Third, whether or not the grid connection is modelled
using mixed-integer or continuous, nonlinear dynamics
did not seem to significantly affect the runtime, cost or
accuracy of themodelled system. This is particularly inter-
esting given the huge impact caused by the choice of
continuous vs. discrete heat pump activation.

Overall, using thermal storagesmodelledwith (6) or (8)
lead to the slightly faster runtime and also slightly higher
cost. The lowest operational cost ($1.73) is achieved
by using (2) as the grid connection, (5) for the heat
pump and (7) for the thermal storage model. Doing
so also results in one of the slowest runtime amongst
the models with continuous heat pumps (4.51 s). How-
ever, as the scale of the problem is in the order of
hours and days, the difference between runtimes is
quite trivial but the difference in cost is much more
significant.

The solution trajectories output by the models can
also offer some insight into the effects of each modelling
choice. To this end, the results for the most and least
expensive models from Section 3 are shown in Figures 6
and 7.

Despite the fact that bothmodels use γ = 0.5, the final
state of charge for the batteries is quite different. The
more expensive model has a last minute charging of the
battery, which increases costs, while the least expensive
ends with the battery completely depleted. Another sig-
nificant factor in the cost difference is the fact that the
more expensive case uses a discrete heat pump model
and thus must rely on the electric heater at times. As
can be observed in Figure 7, the heat pump usage is
the biggest difference between both models. The least
expensive case has a continuous heat pump model and
thus can charge the thermal storage tanks without ever
relying on the inefficient electric heater. An implementa-
tion of the continuous heat pump solution could lead to
chattering behaviour as it is rapidly switched on and off
to only provide limited heating. This could lead to hidden
costs in maintenance which are not accounted for in the
presented results.

5. Conclusion

In this paper, multiple linear and nonlinearmixed-integer
problem formulations for the cost-optimal control of a
multi-model home energy system are compared. Several
models for each component of the combined battery,
heat pump and thermal storage system are given and
compared within an MPC framework.

Overall, for the given inputs, the continuous heat
pump model leads to faster computing times without

significantly affecting the model accuracy. The contin-
uous heat pump is also shown to be better able to
handle increased loads compared to the discrete case.
However, as mentioned, there may be additional difficul-
ties involved with implementing and using the solution
to such a model. The linear thermocline-based thermal
storage model yields the most cost-effective model on
average while staying within reasonable runtime limits.
The grid connection can be freely modelled as either a
mixed-integer linear or continuous, non-convex equal-
ity constraint without loss of accuracy or speed. This
choice will likely depend more on the algorithmic lim-
itations of the user. Finally, some small penalty for the
emptiness of the battery at the end of the scheduling
horizon can be beneficial, although not in every case.
The lowest-cost model includes a mixed-integer grid
connection, continuous heat pump dynamics, a linear
thermocline-based thermal storage model and a large
penalty on battery emptiness at the end of the time
horizon.

Future works will be conducted in multiple facets.
From an optimization point of view, future studies will
seek to quantify and develop heuristics for choosing the
penalty for storage emptiness at the end of the schedul-
ing horizon depending on forecast data. Regarding appli-
cation, future works will also include an examination of
other scenarios, such as industrial settings or atypical
weather. Furthermore, future work will attempt to solve
the stochastic version of the BATSS problem with chance
constraints and/or flexible loads.

Furthermore, while the focus of the paper is on the
modellingofheatpumps, thermal storages, andbatteries,
it would also be interesting to take temperature varia-
tions and room comfort into account. This could take the
form of specific building topology or additional objective
function terms.

6. Nomenclature

6.1. Control variables

P+
G (t) power fed to main grid at time t.

P−
G (t) power drawn frommain grid at time t.

z(t) indicator variable for power flow direction
at the grid connection at time t.

ydhw(t) indicator variable for heat pump to warm
the domestic hot water tank at time t.

ysh(t) indicator variable for heat pump to warm
the space heating tank at time t.

P+
bat(t) power sent to battery at time t.

P−
bat(t) power drawn from battery at time t.

zbat(t) indicator variable for power flow direction
at the battery at time t.
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Peh→dhw(t) power used by electric heater in domestic
hot water tank at time t.

Peh→sh(t) power used by electric heater in space heat-
ing tank at time t.

6.2. State variables

Php(t) power used by heat pump at time t.
Qhp(t) heat output of heat pump at time t.
X(t) thermal storage tank thermocline at time t.
T1(t) temperature at the bottom of the thermal stor-

age tank at time t.
T2(t) temperature in the middle of the thermal stor-

age tank at time t.
T3(t) temperature at the top of the thermal storage

tank at time t.
E(t) state of charge of the battery at time t.

Notes

1. Regulations typically require domestic hot water to be
heated to around 60 ◦C for health reasonswhile space heat-
ing requires much less heat, at around 35 ◦C for modern
underfloor heating systems.

2. Future work will attempt to solve the stochastic version of
the BATSS problem with chance constraints and/or flexible
loads.

3. The exact data for eachof the components of thismodel can
be found at https://github.com/RWTH-EBC/AixLib/blob/de
velopment/AixLib/ThermalZones/HighOrder/Examples/OF
DHeatLoad.mo

4. For the full report inGerman: https://www.stromspiegel.de/
fileadmin/ssi/stromspiegel/Broschuere/Stromspiegel_
2017_web.pdf.
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