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Abstract: The complexity of most power grid simulation algorithms scales with the network size, which corresponds to the
number of buses and branches in the grid. Parallel and distributed computing is one approach that can be used to achieve
improved scalability. However, the efficiency of these algorithms requires an optimal grid partitioning strategy. To obtain the
requisite power grid partitionings, the authors first apply several graph theory based partitioning algorithms, such as the
Karlsruhe fast flow partitioner (KaFFPa), spectral clustering, and METIS. The goal of this study is an examination and evaluation
of the impact of grid partitioning on power system problems. To this end, the computational performance of AC optimal power
flow (OPF) and dynamic power grid simulation are tested. The partitioned OPF-problem is solved using the augmented
Lagrangian based alternating direction inexact Newton method, whose solution is the basis for the initialisation step in the
partitioned dynamic simulation problem. The computational performance of the partitioned systems in the implemented parallel
and distributed algorithms is tested using various IEEE standard benchmark test networks. KaFFPa not only outperforms other
partitioning algorithms for the AC OPF problem, but also for dynamic power grid simulation with respect to computational speed
and scalability.

1Introduction
Today, human life relies on power in almost every facet of life. To
ensure reliable supply of power and system stability, simulation
studies, such as optimal power flow (OPF) and transient stability
analysis can be used to derive system settings and operation limits.
OPF is typically cast as a numerical optimisation problem which
seeks to minimise the cost of power generation while ensuring
continuous grid operation. A survey of OPF is given in [1, 2].
Transient stability analysis studies the behaviour of the grid
following network disturbances to derive measures to mitigate the
effects of such an occurrence in real operation [3]. However, with
ongoing changes in power systems towards renewable energies and
microgrids, analysing and maintaining stability of the power grid
becomes more challenging [4]. From a control point of view, the
challenge lies within managing increasingly many distributed
power sources, which requires more data to be transferred to the
grid management centre in the context of smart grids. From a
power system simulation perspective, an increase in distributed
generation results in a considerable increase in computational
complexity. Therefore, it is necessary to devise improved measures
to cope with the introduced complexity in the analysis methods
applied for planning and operation of networks in the smart grids
context.

In recent studies, parallel and distributed computing approaches
are shown to offer great potential for computational speed up and
efficiency in grid simulations [5–8]. The approaches used to
parallelise and distribute the simulations mainly rely on spatial
decomposition as applied in [8, 9] for OPF problems and in [6, 10]
for transient stability analysis. Other approaches applied to
transient stability analysis are parallelisation in-time [11] and
waveform relaxation methods [12, 13]. However, in order to
develop efficient parallel and distributed solutions for grid
simulation algorithms, appropriate partitioning of the grid is
required. Power grids are often represented as graphs, where the
network nodes and branches are represented by the graph vertices
and edges, respectively. Most graph partitioning approaches are
hierarchical and split a graph into two partitions per recursion level
[14, 15]. Such an approach is called bi-partitioning, and recursive

bi-partitioning can create a k-partitioning, but it is not a
computationally efficient means of doing so [16] [While not
computationally efficient, recursive bi-partitioning has been shown
to make more efficient use of memory resources [17]]. Some
specialised partitioning methods have been developed for use in
distributed OPF, such as the spectral method of [15]. Such an
approach seeks to create partitions based on information gleaned
from the Hessian of the Lagrangrian of the OPF problem, however
this requires a priori knowledge of the optimal operating point.
Furthermore, both bi-partitioning and spectral clustering are known
to scale poorly, and other techniques – such as multilevel graph
partitioning – are required for large graphs [18].

In this paper, a variety of partitioning strategies are applied to
standard test networks of varying complexity. Two distinct power
system simulation algorithms are then tested on these partitioned
grids to observe the impact of proper spatial partitioning on
computational efficiency. The two algorithms are the augmented
Lagrangian based alternating direction inexact Newton (ALADIN)
algorithm [19] for AC OPF and a transient stability analysis
algorithm [20] for the simulation of power grid dynamics. The
transient stability analysis algorithm is reformulated using a block
bordered diagonal form (BBDF) [10] of the network equation,
which is used for the parallelisation of the analysis process. The
primary benefit of the presented concepts is the fact that they allow
for distributed computation, which allows for optimisation without
the full problem description being stored in any one place. Hence, a
distributed approach can reduce the amount of data transferred in a
future power grid, minimising expensive communication hardware
requirements in smart grids. The main contributions of this paper
are an examination of how grid partitioning strategies affect the
results of the OPF problem, and an evaluation of the same
partitions for the transient stability analysis. This paper provides a
proof of concept for the parallelisation of both the OPF
computation as well as the dynamic simulation. Furthermore, the
results presented in this paper offer some first steps towards
optimal power system partitioning strategies. It shall be shown that
one such partitioning strategy yields some very promising results
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despite the resulting partitions being used for two very different
applications.

The rest of this paper is organised as follows: Section 2
describes the formulation of the OPF and dynamic simulation
problems. This is followed in Section 3 by a description of the
algorithms that are applied to the problems stated in Section 2, as
well as the parallel partitioning method that is used to create the
required subsystems for the two application cases. In Section 4,
results from the two application cases are described regarding the
speedup and efficiency. Section 5 concludes the paper, including a
discussion regarding the performance and proposition of how this
performance can be improved in future implementations.

2Problem formulation
The current section gives an overview of the general formulation of
the two power system simulation studies applied in this paper: the
AC OPF problem, and the power system dynamic simulation.

2.1 AC OPF problem

The AC OPF problem is a constrained non-convex optimisation
problem that involves some form of Kirchhoff's voltage and current
laws. While OPF is sometimes used to refer to any problem with
this particular structure, the AC OPF problems considered in the
following are those where the objective to be minimised is the
generator cost, whose form is given in (1). The box constraints for
the decision variables are given in (2), and the AC power flow
constraints are shown in (3) and (4).

f (x) = ∑
i ∈ G

f i(x) with f i(x) = aipi
2 + bipi + ci (1)

pi ≤ pi ≤ pi
¯ , qi ≤ qi ≤ qi

¯ , vi ≤ vi ≤ vi
¯ (2)

vi ∑
k ∈ Ni

vk(gikcosθik + biksinθik) + pdi
− pi = 0 (3)

vi ∑
k ∈ Ni

vk(giksinθik − bikcosθik) + qdi
− qi = 0 (4)

Thereby, x is the vector of the physical state variables of the
power system. This vector includes the voltage angle θi, the voltage
magnitude vi, active injected power pi and reactive injected power
qi for every bus i within the power system. The constants gik and bik

correspond to the conductance and susceptance of the branch
between bus i and its neighbour k. All generator buses are
combined in the set G and f i(x) is the cost function for a single
generator bus. It contains three cost parameters ai, bi and ci which
are defined for every generator. Finally, note that as voltage angle
and magnitude are relative, one of the buses needs to be defined as
the reference bus, or slack bus. The slack bus has the equality
constraints θr = 0 and vr = const.

2.2 Dynamic power grid simulation

Transient stability analysis in power systems is used to study
system response and its capabilities to regain a steady state after it
is exposed to disturbances like network faults, load variations and
line parameters. As a general description, the power system is
modelled using a set of differential and algebraic equations of the
form given in (5), where x are the state variables which include the
generator rotor speed, rotor angle, and generator internal voltage; y
are the algebraic variables including the injected node currents,
node voltages, and injected active and reactive power; and u are the
system parameters. The differential equations are used to model the
dynamic behaviour of generators and the connected controllers,
which include excitation control systems for regulating the
generator terminal voltage [21] and turbine-governor systems for
controlling the rotational speed and input mechanical power [22].
The algebraic equations are used to represent the generator-stator
and transmission network. Details of the component models that

comprise the differential and algebraic equations in (5) are given in
[20, 23]. The network equation constitutes the largest part of the
algebraic equations and is derived from the current injection Ii at
each node as given in (6). Combining the current injections at each
node results into the nodal current equation of the form given in (7)
which is used to describe the network equation, where I is a vector
of current injections (Ii), V is a vector of node voltages (Vi) and
YBus is the nodal admittance matrix.

ẋ = f (x, y, u); 0 = g(x, y, u) (5)

Ii = (gii + jbii)vi

+ ∑
k ∈ Ni, k ≠ i

vk(gik + jbik)(cosθk + jsinθk) (6)

I = YBusV (7)

It is important to note that the formulation of the dynamic
simulation problem in this paper does not include static var
compensators (SVCs), dynamic loads, HVDC, and FACTS
devices. In addition, the domain of analysis in this paper is limited
to electromechanical transient simulations that can be applied to
large networks, unlike the computationally complex
electromagnetic transient simulations limited to small network
sections.

3Methodology
Power grid simulations can benefit from advances in computational
technology if the algorithms are modified to run on parallel and
distributed computing hardware. This can be achieved by either
devising alternative algorithms which give similar results, but offer
more parallelisation potential, or decomposing the algorithms into
subsystems that can be parallelised. Either way, such algorithms
first need the problem to be reformulated such that its components
can easily be distributed to several computing nodes and
parallelised. The reformulation of the OPF problem and parallel
dynamic simulation are described in the following sections.

3.1 Distributed AC OPF with ALADIN

While many algorithms have been developed for non-linear
programmes (NLPs), much less are available which fit a distributed
computing context. The ALADIN algorithm is one such method
that also guarantees convergence to local optimality for non-
convex NLPs details of which can be found in [19]. As the AC-
power flow manifold constitutes a highly non-convex constraint in
the AC OPF problems (1)–(4), ALADIN is a natural choice of
distributed optimisation algorithm. Furthermore, it should also be
noted that recent work has shown faster convergence of ALADIN
for the AC OPF compared to other methods, like ADMM [24].

The steps of the ALADIN algorithm are summarised as follows:
The algorithm is initialised with an initial guess of the primal
solution x0, an initial vector of the dual variable of the coupling
problem λ0. The penalty parameters ρ and μ as well as the
weighting matrix ∑i must also be given. The algorithm works
iteratively until the coupling constraint violation and the relative
change per iteration is smaller than a given ∈.

In the first step, the decoupled sub-problems are solved. Note
that the local sub-problems do not use their original objective
function but rather the so-called augmented Lagrangian; a crucial
requirement for ALADIN's convergence properties. Semantically
put, the updated objective function allows the algorithm to modify
the local sub-problems in a way that it can control the progress
towards a feasible solution of the original problem.

After solving the local subproblems in Step 1, a quadratic
approximation of the objective function at the current solution,
with linearised active sets C*, is constructed in Step 2. The
quadratic approximation with coupling constraints is then solved in
Step 3. Note the subproblem solved in Step 3 is an equality
constrained quadratic programme and thus is solvable, under
certain regularity conditions, as a linear system of equations via the
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linear-independence Karush–Kuhn–Tucker conditions [25]. In Step
4, a line search may be performed. Doing so is crucial for
guaranteeing convergence and can reduce the number of iterations
until convergence, but in practice this step is often ignored or
replaced with a heuristic approach. Finally, the primal and dual
variables are updated according to the solutions of Steps 1 and 3.
The algorithm then proceeds to the next iteration and continues
until the termination criteria are met. Algorithm 1 (see Fig. 1)
summarises the steps of the ALADIN algorithm. 

3.2 Parallel dynamic simulation based on BBDF

Dynamic simulations are used for studying relatively slow
responses as electromechanical transients and dynamics due to
control devices based on time-domain simulations. This kind of
analysis mainly focuses on the transient response of interconnected
systems to disturbances in the electrical network. The workflow in
the dynamic simulation starts with the calculation of the steady-
state operating conditions in terms of bus voltage and power. The
state variables of the dynamic models for generator, governor and
exciter are initialised from the solution of (5) based on the results
of the OPF in Section 3.1 and setting the time derivatives equal to
zero at the initialisation point. The initial variables are denoted as
y0 and x0. The augmented YBus matrix is created by adding the
generator internal transient reactance and loads represented by
constant admittances to the network admittance matrix. The main
algorithm loop solves the differential equations and algebraic
equations in (5) at every time step. In this algorithm, the numerical
integration is based on the fourth-order Runge-Kutta [26] method
while the network equation is solved using the direct LU
factorisation method [26]. The matrix is only updated in case of an
event. An example of an event is a short-circuit fault that is
simulated by inserting a high shunt admittance on the bus where
the fault is located. Thereby, the shunt admittances of the network
are modified during the fault period in the event handling process.

The solution of the network equation in (7) for the node
voltages is the most time consuming task in dynamic simulations.
An alternative formulation for the network equation, based on the
BBDF, is a faster solution [10], which is an in-space parallelisation
approach that can be used for the parallelisation of the network
solution step. The basic concept is to rearrange the network
admittance matrix such that the equation system given in (8) has a
preprocessing step and one step for every sub block of the matrix.

The sub blocks, which correspond to the subnetworks, are created
from partitioning of the power grid and can be solved in parallel.

Equation (8) shows the restructured YBus matrix in the block
bordered diagonal form. The Yi elements represent the elements of
the basic YBus matrix within partition i. Ys represents the properties
of the buses of the interconnect partition as well as all branches
that are connecting to interconnect buses. All Ȳ i elements consist of
data regarding the branches that connect a normal partition with the
interconnect partition. The voltage and current vectors must be
reordered accordingly.

Y1 Ȳ1

Y2 Ȳ2

⋱ ⋮

Yp Ȳ p

Ȳ1
T

Ȳ2
T

… Ȳ p
T

Ys

⋅

V1

V2

⋮

Vp

Vs

=

I1

I2

⋮

Ip

Is

(8)

Y
^

sVs = I
^

s (9)

Y
^

s = Ys − ∑
i = 1

p

Y¯ i
T
Yi

−1
Ȳ i (10)

I
^

s = Is − ∑
i = 1

p

Ȳ i
T
Yi

−1
Ii (11)

YiVi = Ii − Ȳ iVs (12)

Equations (9)–(11) describe the preprocessing steps that enable
(8) to be solved in blocks of the form seen in (12). Equation (9)
shows how the interconnect partition voltage vector can be pre-
calculated. This requires the matrix Y

^

s and the vector I
^

s, which can
be calculated with (10) and (11). To speed up the simulation, (10)
can be completely calculated at the beginning of the simulation.
Equation (11) needs to be calculated every iteration of the
simulation since it depends on the current vector Is, which changes
throughout the simulation. However, the Ȳ i

T
⋅ Yi

−1 part can be pre-
computed as well. In addition, the two matrices Yi and Y

^

s can be
factorised by LU decomposition beforehand to speed up the
calculation during the simulation loop. The speedup for this
approach depends on the runtime growth from larger YBus matrices
for solving the original equation system with the LU factorised
YBus matrix. The parallel solution process is summarised in
Algorithm 2 (see Fig. 2). Further details of the algorithm and the

Fig. 1 Algorithm 1: Mixed-integer extension of ALADIN [19]
 

Fig. 2 Algorithm 2: Parallel computation procedure
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communication aspects during the parallel simulation process are
described in [27].

3.3 Power grid partitioning

In both algorithms of Sections 3.1 and 3.2, the main criterion for
the speed is the number of branches that connect partitions, where
fewer connections typically result in better performance. A
secondary criterion is the equality of partition sizes, as the result
gathering takes as long as the slowest parallel processor. These two
criteria perfectly fit the common partitioning problem in graph
theory described by Buluç et al. [18]. Since graph partitioning
takes different forms throughout the literature, the following
definition is adopted in this paper:
 

Definition 1: For a weighted graph G = (V , E, w), where V is
the vertex set, E is the edge set, and w:E → ℝ represents the edge
weights, a k-partitioning of G is formally defined as the set

{G1(V1, E1, w1), …, Gk(Vk, Ek, wk)}

such that

• V1 ∪ ⋯ ∪ Vk = V

• Vi ≠ V j, ∀i ≠ j

• Vi ≤ (1 + ε)⌈ V /k⌉, for some parameter ε > 0.

In the definition above, if E is the set of edges in
∑ E − {E1 ∪ ⋯ ∪ Ek} , the partitioning is considered to be optimal
if ∑e ∈ E w(e) is minimised. The third condition defines the balance
constraint for balancing the number of vertices in each partition.

In the same way, the problem of graph clustering is defined as
follows:

 
Definition 2: For a weighted graph G = (V , E, w), a clustering

of G given k > 1 is defined as the set

{G1(V1, E1, w1), …, Gk(Vk, Ek, wk)}

such that

• V1 ∪ ⋯ ∪ Vk = V

• Vi ≠ V j, ∀i ≠ j

In the above definition, the clustering is considered to be
optimal if ∑i = 1

k ∑e ∈ Ei
wi(e) is maximised.

It is important to note that the edge weights w in graph
clustering correspond to the affinity between pairs of graph
vertices. The pairwise affinity between vertices in G is then defined
within an affinity matrix. Thereby, if an affinity matrix is defined,
graph clustering can be applied to the partitioning problem.

From the above definitions, it is worth noting that graph
partitioning aims to minimise the number of edges between
partitions, whereas graph clustering seeks to maximise the affinity
of elements within each cluster. With this in mind, the following
partitioning algorithms are compared for the AC OPF in Section
3.1 and dynamic simulation problems in Section 3.2:

3.3.1 Karlsruhe Fast Flow Partitioner: The KaFFPa from the
‘Karlsruhe High Quality Partitioning’ (KaHIP) project is a multi-
level graph partitioning algorithm that generates equally sized
partitions that have a minimal number of cut branches. KaFFPa
consists of three main steps: contraction, initial partitioning, and
refinement [28, 29]. In the first step, the algorithm contracts the
input graph to create a smaller representation until it is small
enough to be partitioned with a global algorithm. To find edges to
contract, the algorithm creates a maximum matching using the
global paths algorithm (GPA) which was presented in [30]. A
matching is a set of edges where no two edges in the set have a
common endpoint (vertex). Different weight functions influencing
the construction of these matchings are evaluated by Holtgrewe et

al. [31]. A matching is then contracted by combining the start and
endpoint of every edge in the set. This contraction process quickly
decreases the size of the input graph. As soon as the graph is small
enough, a global partitioning algorithm is applied. Once the global
partitioning algorithm has finished, the contraction is then undone
step by step, applying local refinement strategies. Essentially, this
involves checking whether moving some vertices that lie at the
partition boundary to the neighbouring partition would improve the
partition balance or the minimum number of edges cut. A detailed
description of the KaFFPa algorithm is given in [29, 32]. The result
is a partitioning with evenly sized partitions and a minimal number
of edges that are cut in between the partitions.

3.3.2 METIS: METIS is another example of a multi-level graph
partitioning algorithm that is used for partitioning large
unstructured graphs. The approach uses undirected graphs as
inputs, which are then split into the required number of subsystems
[33]. Like KaFFPa, it is a multi-level partitioning method where
the main requirement is an equal number of nodes in each
subsystem and a minimum number of interconnections between the
partitions. However, METIS uses a Kernigan-Lin approach in the
uncoarsening phase as opposed to the local search method used by
KaFFPa. This algorithmic difference can lead to more edges
between partitions despite the overall runtime still being
comparable to KaFFPa.

3.3.3 Spectral clustering: Spectral clustreing is another method
for partitioning graphs designed for the related problem of graph
clustreing. The partitions are formed based on the consideration of
the affinity between elements in the system. In other words, if
many elements are more similar to each other than the rest of the
data set, they are grouped together. In the power system
applications considered in this paper, this corresponds to the
connectedness between the system nodes. The partitioning is
therefore performed based on the definition of an affinity matrix A
and groups the nodes according to their corresponding levels of
connectedness using a clustering algorithm. The spectral clustering
algorithm can be summarised according to Algorithm 3 (see Fig. 3)
as described in [15]. 

Two spectral clustering algorithms are applied in this paper to
produce additional partitions. In the rest of the paper, the
approaches are referred to as ‘Spectral-Hessian’ and ‘Spectral-
Ybus’. The difference between the two algorithms is how the
affinity matrix is defined. The Spectral-Hessian approach combines
the Hessian matrix of the optimisation problem and the admittance
matrix to form the affinity matrix as proposed in [15]. Thereby, the
(i, j)th entry of the affinity matrix is given by

Ai, j = (1 − w
~) ⋅ ∑

k = 1

m

∑
l = 1

n

Hk, l + w
~ ⋅ Yi, j (13)

where Yi, j is the (i, j)th element in the admittance matrix and
0 ≤ w

~ ≤ 1 is its weight in the affinity matrix. The variables
k = 1, …, m and l = 1, …, n denote the indices of entries Hk, l in the

Fig. 3 Algorithm 3: Spectral clustering algorithm
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Hessian matrix Hsys*  associated with the two buses i and j. A
detailed description of the approach is given in [15].

On the other hand, the affinity matrix in the Spectral-Ybus
approach is formed using the admittance matrix according to the
algorithm described in [14]. The first term on the right hand side in
(13) is eliminated in the formulation of the affinity matrix. Further
details of the algorithm are given in [14].

4Application case studies
This section presents two application cases to evaluate the
partitioning modes in power grid analysis problems. The first
application is the solution of the OPF problem given in Section 2.1
and is implemented in the Matlab environment. In the second
application case, the partitioning modes are evaluated in a dynamic
simulation problem context given in Section 2.2 and implemented
in the Julia programming environment [34]. In both application
cases, the partitioning strategies are applied to varying network
sizes to analyse the variation of simulation runtime with partition
sizes.

4.1 Simulation setup

The input network case files used in this work are standard IEEE
test networks [35] and larger networks representing the structure of
the European grid from the Pegase project [36]. These network
case files are part of the MATPOWER package [37]. Table 1 gives
a summarised description of the considered networks in terms of
number of generators, buses, branches and load data. In this paper,
the networks are considered to be unweighted. Thereby, all
branches are defined with an equal weight function of one.

4.2 Application case 1: distributed AC OPF

Recall from Section 3.1 that the ALADIN algorithm requires a
problem to be given in a separable, but linearly coupled form.
Thus, to apply this algorithm to the OPF problem, the original
problem definition needs to be partitioned into subproblems.
Therefore, the partitionings described in Section 3.3 are used and
in between every cut-branch a so-called auxiliary bus is created.
Fig. 4 demonstrates this process. 

The cut-branch between buses J and K gets split and an
auxiliary bus L is inserted in both partitions (separated by the
dashed line). The coloured arrows represent power flowing in the
given direction and their width represents the amount of power.
Loads are coloured orange, injection is coloured green and power
transferred on a branch is coloured blue. The appropriate coupling
constraints for all four of the physical state variables mentioned in
Section 3.1 are created. This can be seen in Fig. 4 with the green
and orange arrows, which indicate power inflow and outflow,
respectively. These constraints are then included in the coupling
QP step of the ALADIN algorithm. Afterwards, the objective
functions as well as the constraints (including the power flow
equations) are created for every partition separately (they are
uncoupled). Each partition uses the modified objective function as
described in the previous subsection. The algorithm then
progresses as described in the previous section until the termination
criteria are met. Further details on this process are provided in [38].

In both versions, a smaller number of interconnecting branches
results in a smaller coupling subproblem for ALADIN. This also
means less auxiliary buses and therefore less runtime for the local
NLPs per iteration. In the parallel implementation, this effect is
even stronger, because the QP step is computed sequentially and
according to Amdahl's law, a smaller sequential runtime increases
the upper bound of the speedup. Additionally, the parallel version
benefits from equally sized partitions since this reduces waiting
times. Some recent research has shown that the coupling QP of
ALADIN can be solved efficiently in a decentralised manner [39],
however, such results are preliminary and such an implementation
of ALADIN has been left to future work. Interestingly, the relative
sizes of the partitions did not play a large role. The effect of
equally sized partitions can only be seen using parallelisation.

Table 2 shows the number of iterations required by ALADIN to
converge to a locally optimal solution when applied to each of the
partitioned OPF problems. Each of the local subproblems are
solved with IPOPT [40] and the equality constrained QPs are
solved as a linear system via the KKT conditions. In all cases, the
termination threshold is 10−3. An iteration limit of 500 is set for
Algorithm 1 (see Fig. 1), which is reached in the 300-bus case for
several partitionings.

ALADIN requires certain parameters to be given, which not
only can be difficult to choose a priori, but also have a large effect
on the convergence rate. A number of different combinations of
parameters are tested for each of the partitionings and only the best
results are shown in Table 2. Interestingly, the best parameters
seem to vary from partitioning to partitioning. Table 3 shows the
parameters used to generate the results of Table 2. All parameters
are given in the form (ρ, μ, ρ̇, μ̇), where ρ and μ are the initial
values of the parameters described in Section 3.1, and, where ρ̇ and
μ̇ are the factors by which ρ and μ are updated at every iteration. It
should be noted that this updating method is a heuristic means of
replacing the line search step as discussed in Section 3.1.

While there is some variability, the results shown in Table 2 are
relatively good if one considers a worst-case partitioning strategy.
For a worst-case partitioning, we use the singleton partitioning,

Table 1 Size of test networks
Case Number of components Load data

Gens Nodes Branches Loads P, MW Q, MVar
case9 3 9 9 3 315.0 115.0
case14 5 14 20 11 259.0 73.5
case30 6 30 41 20 189.2 107.2
case39 10 39 46 21 6254.2 1387.1
case57 7 57 80 42 1250.8 336.4
case118 54 118 186 99 4242.0 1438.0
case300 69 300 411 201 23525.8 7788.0
case1354 260 1354 1991 673 73059.7 13401.4
case9241 1445 9241 16049 4895 312354.1 73581.6
case13659 4092 13659 20467 5544 381431.9 98523.4
 

Fig. 4 Construction of an auxiliary bus for a cut-branch
(a) Branch cutting, (b) Formation of an auxiliary bus in each subsystem

 
Table 2 ALADIN iterations for partitioned IEEE test cases
Case – partitions KAFFPa Spectral-

Hessian
Spectral-

Ybus
METIS

case 9 – 2 3 3 3 3
case 14 – 2 17 29 29 17
case 30 – 2 20 15 15 23
case 39 – 2 4 8 8 4
case 57 – 2 16 14 20 41
case 57 – 3 22 24 29 71
case 118 – 2 20 23 23 22
case 118 – 3 28 34 40 37
case 118 – 4 28 29 25 22
case 118 – 5 23 42 44 44
case 300 – 3 51 28 > 500 102
case 300 – 5 97 > 500 54 103
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where every bus is in its own partition. While it may seem like
there is a lot of potential for parallelisation with such an approach,
it actually leads to a significantly larger problem due to the
introduction of so many auxiliary buses and a very large QP to
solve in Step 3 of ALADIN. The results of this partitioning are
shown in Table 4 to converge within 500 iterations. 

The IEEE 57 bus case is the smallest example examined such
that all of the partitioning algorithms provided different
partitionings. Fig. 5 shows the partitionings of each algorithm. 
Observe that although the partitions generated by KaFFPa and
METIS are quite similar, there is nonetheless a large difference in
the convergence rate of ALADIN. As shown in Fig. 5, METIS
generates many more branches between partitions than KaFFPa,
which is likely the reason for its relatively poor performance in the
results of Table 2. Also of note is the fact that spectral clustreing
applied to the YBus matrix consistently yields almost the exact same
partitions as spectral clustreing of the Hessian of the Lagrangian at
the optimal operating point. This seems to imply that the
resistances and susceptances of the lines are dominant when
considering a partitioning and that very little is gained by the a
priori knowledge of the optimal operating point. However, as noted
in [15], this may change when line limits are reached.

4.3 Application case 2: parallel dynamic simulation

The solution in the parallel dynamic simulation as described in
Section 3.2 requires restructuring of the admittance matrix in the
form such that no bus in a partition has a direct connection to a bus
in another partition. For this, the basic partitions formed by the
different partitioning modes are extended to create an interconnect
partition under the condition that all branches leaving a partition
must connect to a node in the interconnect partition. This is in
contrast to ALADIN, where auxiliary buses with corresponding
coupling constraints between their decision variables are added on
the boundaries of each partitioned problem. Fig. 6 shows the
required interconnection between subnetworks through an
interconnect partition for an example system divided into three
partitions. 

The data exchanged between partitions during the parallel
computation can be summarised as follows: According to the
formulation in Section 3.2, the individual partitions compute their
internal node current injections Ii and transfer them to the
interconnect partition. The interconnect partition sequentially
computes boundary node voltages Vs, which are transferred to the
separate partitions to complete the parallel solution of the internal
node voltages in each partition. Therefore, exchanged variables are
node voltages and current injections in terms of magnitude and
angle.

Table 3 Best ALADIN parameters for each partitioning
Case – partitions KAFFPa Spectral-Hessian Spectral-Ybus METIS
case 9 – 2 500, 500, 1.05, 2 500, 500, 1.05, 2 500, 500, 1.05, 2 500, 500, 1.05, 2
case 14 – 2 500, 500, 1.05, 2 500, 500, 1.05, 2 500, 500, 1.05, 2 500, 500, 1.05, 2
case 30 – 2 500, 1000, 1.05, 2 500, 500, 1.05, 2 500, 500, 1.05, 2 500, 1000, 1.05, 2
case 39 – 2 20, 2000, 1.15, 1.15 500, 2000, 1.15, 2 500, 2000, 1.15, 2 500, 2000, 1.15, 2
case 57 – 2 1000, 2000, 1.05, 2 1000, 2000, 1.05, 2 1000, 2000, 1.05, 2 100, 100, 1.2, 2
case 57 – 3 100, 2000, 1.2, 2 100, 100, 1.2, 2 100, 2000, 1.2, 2 500, 2500, 1.05, 1.15
case 118 – 2 100, 100, 1.2, 2 100, 100, 1.2, 2 100, 100, 1.2, 2 100, 100, 1.2, 2
case 118 – 3 100, 1000, 1.05, 1.5 100, 1000, 1.05, 1.5 100, 1000, 1.05, 1.5 100, 1000, 1.05, 1.5
case 118 – 4 500, 1000, 1.05, 1.5 500, 1000, 1.2, 1.5 500, 1000, 1.1, 1.5 500, 1000, 1.1, 2
case 118 – 5 500, 2000, 1.1, 2 500, 2000, 1.1, 1.2 500, 2000, 1.1, 1.2 500, 2000, 1.1, 1.2
case 300 – 3 100, 100, 1.1, 2 100, 100, 1.1, 2 N/A 100, 100, 1.05, 1.1
case 300 – 5 100, 100, 1.1, 2 N/A 100, 100, 1.1, 2 500, 500, 1.05, 2

 

Table 4 Results for the singleton partitioning
Case Iterations ALADIN parameters
case 9 3 (500, 500, 1.05, 2)
case 14 42 (500, 500, 1.05, 2)
case 30 162 (50, 250, 1.05, 1.05)
case 39 4 (20, 2000, 1.15, 1.15)
case 57 > 500 N/A
case 118 > 500 N/A
case 300 > 500 N/A

 

Fig. 5 Partitions generated for the IEEE 57 bus case. Red lines indicate branches between partitions
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The evaluation of the parallel dynamic simulation is performed
using the standard test networks shown in Table 1. Each network is
partitioned using KaFFPa, METIS, Spectral-Hessian, and Spectral-

Ybus partitioning modes and adapted to the interconnect format. In
each test case, the dynamic simulation is run for 10 s, with a step
size of 1 ms. The simulations are run in the Julia environment on a
single thin node of the ForHLR II computing cluster [https://
www.scc.kit.edu/dienste/forhlr2.php] with two Intel Xeon E5-2660
v3 Deca-Core processors and 64 GByte of RAM per node.

Initialisation of the system to the steady-state operating
conditions is based on the results of the AC OPF solution as
presented in Section 4.2. In each test case, an event – in form of a
short-circuit fault – is triggered during the simulation. The fault is
applied by inserting a high shunt value on a bus for a duration of
50 ms, and cleared by resetting the bus shunt to the original value.
This results in two events in the process, which implies that the
network topology changes twice during the simulation. As an
illustration of the transient behaviour following a change in
network topology, Figs. 7 and 8 show the response of the generator
rotational speed and bus voltage magnitude, respectively, for the
nine-bus system (case 9) partitioned into two subsystems. It is
important to note that the results obtained using the partitioned
system are similar to those with the original network as described
in [27]. However, the variables in this case are positive sequence

variables, since the analysis is based on a symmetrical transients'
analysis algorithm. The algorithm will be extended to include
analysis of unsymmetrical transients as part of future
implementations according to the analysis approach presented in
[41].

Fig. 9 shows the simulation runtime of the network structures
partitioned using the different partitioning modes. Each test case is
shown with a selected partition count as summarised in Table 5. 
For example, case 9 – 2 is the IEEE case 9 network with two
partitions. From the results shown in Fig. 9, the simulation
runtimes of the test cases partitioned using the KaFFPa partitioning
mode are observed to be better than the runtimes with the other
partitioning modes.

To explain the performance difference of the simulations using
the different partitioning modes, Table 5 shows a summary of the
partitioning information for the considered test cases. In Table 5,
the first n digits are the sizes of the n main partitions, while the last
digit is the size of the interconnect partition. For example, case 9 –
2 with the KaFFPa partitioning mode results in partitioning
4, 3 ∼ 2, which is interpreted as four buses in the first partition,
three buses in the second partition, and interconnected by two
buses. The good performance of the KaFFPa partitioning mode can
be attributed to the optimised network partitioning resulting into a
relatively balanced number of buses in each partition and a small
size of the interconnect partition.

In a further step, the KaFFPa partitioning mode is tested with
larger test cases. For this, standard test networks with the size and
complexity of the European network – case 1354, 9241, 13,659 –
as described in [36] are used. Fig. 10 shows the computational
speedup for the large test cases for different number of partitions
using KaFFPa.

The reference speedup of 1.0 is the point at which the
computational runtime of the parallel algorithm is equal to that of
the sequential algorithm. Important to observe is that there exists
an optimal partitioning for each network according to the attained
speedup. At the optimal partitioning, there is a balance between the
main partition sizes – which creates balanced parallelisable tasks –
and minimises the size of the interconnect partition in order to
reduce the sequential simulation runtime. Therefore, the optimal
partitioning of the network for dynamic simulations depends on the
size of the interconnect partition and the relative size of the main
partitions to the interconnect partition. In addition, it can be
observed that the computational speedup increases with the
network size. This implies that optimal network partitioning is
potentially beneficial for dynamic simulations of large networks.

5Discussion
In Section 4, an AC OPF problem and a dynamic power grid
simulation are partitioned and their respective parallelised

Fig. 6 Formation of the interconnect partitioning format for parallel
dynamic simulation
(a) Initial partitioning output, (b) Connection between partitions via an interconnect
partition

 

Fig. 7 Response of generator rotational speed following a topology
change due to a bus fault in the partitioned network

 

Fig. 8 Response of bus voltage following a topology change due to a fault
on bus 5 in the partitioned network

 

Fig. 9 Comparison of runtime for dynamic simulations with networks
partitioned using different partitioning strategies

 
IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 25, pp. 6133-6141
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

6139



algorithms are applied. The computational speed up of the
implemented parallel and distributed algorithms are tested using
various IEEE standard benchmark test networks. Overall, each
partitioning algorithm showed fairly similar performance.
However, for the larger grids KaFFPa is better in terms of number
of iterations in the OPF problem and computation runtime in
dynamic simulations.

Both ALADIN and the dynamic simulation are currently
limited to execution on a single shared memory computer. This
limits further scaling for larger input cases and more partitions. The
results from both the dynamic simulation and ALADIN show that a
proper partitioning improves the runtime and that there is potential
for finding a partitioning that is tailored better for a given
algorithm. This implies more focus on minimisation of the
interconnect partition for the dynamic simulation and on having the
amount of generation and loads balanced in each partition for the
OPF algorithm.

Future implementations will consider other partitioning
strategies, such as a means of performing dynamic problem
partitioning within each ALADIN iteration. As the spectral
clustering method requires almost the exact information that is
computed in Step 2 of ALADIN, it may be possible to develop a
variant of ALADIN that maintains its convergence and optimality
guarantees but has the ability to dynamically adjust a given
partitioning in order to improve performance. Such an algorithm
would have the advantage of not having to rely on an optimally
partitioned system to be given as input. The dynamically generated
partitions will also be applied to the dynamic simulation problem
to further compare their applicability to the two power system
problems. Furthermore, new developments in ALADIN could be
implemented to improve the efficiency of the coupling QP step.
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