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CONSERVED ENERGIES FOR THE ONE DIMENSIONAL

GROSS-PITAEVSKII EQUATION

HERBERT KOCH AND XIAN LIAO

Abstract. We prove the global-in-time well-posedness of the one dimensional
Gross-Pitaevskii equation in the energy space, which is a complete metric space
equipped with a newly introduced metric and with the energy norm describing
the Hs regularities of the solutions. We establish a family of conserved energies
for the one dimensional Gross-Pitaevskii equation, such that the energy norms
of the solutions are conserved globally in time. This family of energies is also

conserved by the complex modified Korteweg-de Vries flow.
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1. Introduction

We consider the one dimensional Gross-Pitaevskii equation

(1.1) i∂tq + ∂xxq = 2q(|q|2 − 1),

where (t, x) ∈ R
2 denote the time and space variables and q = q(t, x) : R×R 7→ C

denotes the unknown complex-valued wave function.
It was used by E.P. Gross [21] and L.P. Pitaevskii [35] to describe the oscillations

of a Bose gas at zero temperature. In nonlinear optics, the equation (1.1) models
the propagation of a monochromatic wave in a defocusing medium and in particular
the dark/black solitons with |q| = 1 at infinity arise as solutions of (1.1). See the
review paper [29] for more physical interpretations.

The Gross-Pitaevskii equation (1.1) can be viewed as the defocusing cubic non-
linear Schrödinger equation (NLS), but with a nonstandard boundary condition at
infinity: |q| → 1 as |x| → ∞. This nonzero boundary condition brings a substantial
difference between (1.1) and (NLS) (for which we assume zero boundary condition
at infinity): For example, the former equation has soliton solutions (e.g. the black
soliton solution q(t, x) = tanh (x)) while the latter equation possesses scattering
phenomenon. One will see below that the solution space for the Gross-Pitaevskii
equation (1.1) is much more delicate and we will derive a family of conserved ener-
gies which describe all the Hs, s > 1

2 regularities of the solutions in a nonstandard
way.

The equation (1.1) can be viewed as a Hamiltonian evolutionary equation asso-
ciated to the Ginzburg-Landau energy

(1.2) EGL(q) =
1

2

∫

R

(
(|q|2 − 1)2 + |∂xq|2

)
dx ,

with respect to the symplectic form ω(u, v) = Im
∫
R
uv̄ dx . P.E. Zhidkov [38] proved

the local-in-time well-posedness of the Gross-Pitaevskii equation (1.1) in the so-
called Zhidkov’s space Zk, k = 1, 2, · · · , which is the closure of the space {q ∈
Ck(R) ∩ L∞(R) | ∂xq ∈ Hk−1(R)} for the norm

(1.3) ‖q‖Zk = ‖q‖L∞ +
∑

1≤l≤k

‖∂l
xq‖L2 ,

and in particular when k = 1, under the initial finite-energy assumption EGL(q0) <
∞, the finite-energy solution exists globally in time. See also [3, 6, 15, 16, 38, 39]
for more results in the n-dimensional case, with Zk = Zk(R) above replaced by
Zk(Rn), k > n

2 . In dimension n = 2 or 3, P. Gérard [17] showed the global-in-

time well-posedness of (1.1) in the energy space Y 1 = {q ∈ H1
loc (R

n) : |q|2 − 1 ∈
L2(Rn), ∇q ∈ L2(Rn)}, endowed with the metric distance

dY 1(p, q) = ‖p− q‖Z1+H1 +
∥∥|p|2 − |q|2

∥∥
L2 ,

with ‖u‖A+B = inf{‖u1‖A + ‖u2‖B |u = u1 + u2, u1 ∈ A, u2 ∈ B},

and more topological properties of this complete metric space Y 1 can be found in
[18]. Particular attention has been paid to show the existence (or non-existence)
of the travelling wave solutions in [7, 10, 20, 34] and there is also rich literature
contributed to their stability or instability issues: See [4, 5, 32] and the references
therein. Most authors in the study of the stability issues adopt the following metric
distance in the energy space:

dE(p, q) = ‖p− q‖L2({x∈Rn:|x|≤1}) + ‖|p|2 − |q|2‖L2(Rn) + ‖∇p−∇q‖L2(Rn).
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In higher dimensional case n ≥ 4, [22] (see [23] for the results when n = 2, 3)
established the scattering theory for the Gross-Pitaevskii equation with the initial
data of form 1 + ϕ and ϕ ∈ Hs, s ≥ n

2 − 1 sufficiently small.
In this paper we take the general energy spaces as follows

(1.4) Xs =
{
q ∈ Hs

loc (R) : |q|2 − 1 ∈ Hs−1(R), ∂xq ∈ Hs−1(R)
}
/S1, s ≥ 0,

where S1 denotes the unit circle, i.e. we identify functions which differ by a mul-
tiplcative constant of modulus 1. Recall that for s ∈ R, the Sobolev space Hs(R)
consists of tempered distributions f with finite Hs(R)-norm which is defined as
follows:

‖f‖Hs(R) =
(∫

R

(1 + ξ2)s|f̂(ξ)|2 dξ
) 1

2

,

where f̂(ξ) denotes the Fourier transform of f(x). We endow the set of functions
Xs with the following metric ds(·, ·) 1:

ds(p, q) =
(∫

R

inf
|λ|=1

∥∥ sech (· − y)(λp− q)
∥∥2
Hs(R)

dy
) 1

2

,(1.5)

where sech (x) = 2
ex+e−x

2 and we will prove in Section 6 the following theorem:

Theorem 1.1. Let Xs, ds(·, ·), s ≥ 0 be defined in (1.4) and (1.5). Then the space
(Xs, ds(·, ·)) is a complete metric space, with the following topological properties:

• The subset {q | q − 1 ∈ C∞
0 (R)} is dense in Xs and hence (Xs, ds(·, ·)) is

separable.
• Any ball Bs

r(q) = {p ∈ Xs | ds(p, q) < r}, r ∈ R
+, q ∈ Xs, in Xs is

contractible.
• Any set {q ∈ Hs

loc (R) : ‖∂xq‖Hs−1 + ‖|q|2 − 1‖Hs−1 < C} is contained in
some ball Bs

r(1) with r depending on C.

• Any closed ball Bs
r(q) in X

s, s > 0 is weakly sequentially compact.
• There is an analytic structure on Xs (see Theorem 6.2 for details).

In the following we will define the solution of the Gross-Pitaevskii equation (1.1).
The initial data q0 ∈ Xs has a representative q̃0. A solution q(t, ·) ∈ Xs with t ∈ I
the time interval will be the projections of some function in t: q̃(t, ·) ∈ Xs. We
define the notion of a solution in terms of the representative.

Definition 1.1 (Solutions). We call q ∈ C(I;Xs), s ≥ 0 to be a solution of the
Gross-Pitaevskii equation (1.1) with the initial data q|t=0 = q0 ∈ Xs on the open
time interval I ∋ 0, if there is q̃ : I → Hs

loc which satisfies that

(1.6) I ∋ t→ q̃(t)− q̃(0) ∈ L2,

is weakly continuous and

(1.7) ‖q̃(·)− q̃0,ε‖L4([a,b]×R) ≤ C,

for some regularized initial data q̃0,ε of q̃(0) and all 0 ∈ [a, b] ⊂ I, such that the
equation (1.1) holds in the distributional sense on I × R and q̃(t) projects to q(t).

We have the following well-posedness results.

1If p, q ∈ Xs, then we indeed have
∥

∥|p|2 − |q|2
∥

∥

Hs−1(R)
≤ cds(p, q) by (6.10) below.

2We can take any other strictly positive smooth function which decays fast at infinity instead
of sech (x).
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Theorem 1.2. Let s ≥ 0. The Gross-Pitaevskii equation (1.1) is loally-in-time
well-posed in the metric space (Xs, ds) in the following sense: For any initial data
q0 ∈ Xs, there exists a positive time t̄ ∈ (0,∞) and a unique local-in-time solution
q ∈ C((−t̄, t̄);Xs) of (1.1) and for any t ∈ (0, t̄), the Gross-Pitaevskii flow map
Xs ∋ q0 7→ q ∈ C([−t, t];Xs) is continuous. Let s > 1

2 , then the above holds for all

t̄ ∈ R
+ and hence the Gross-Pitaevskii equation (1.1) is globally-in-time well-posed

in the metric space (Xs, ds).

Remark 1.1. Compared with the distance function ds introduced for the nonlinear
energy space Xs here, the Zhidkov’s norm ‖ · ‖Zk or the metric dY 1 is more rigid
and the subset {v | v − 1 ∈ S(R)} is not dense in Zk or Y 1. The known global
well-posedness result in Z1 does not cover the above global well-posedness result in
X1.

The equation (1.1) is completely integrable by means of the inverse scattering
method. According to the seminal paper by Zakharov-Shabat [37], the equation
(1.1) can be viewed as the compatibility condition for the two systems

ux =

(
−iλ q
q̄ iλ

)
u,

ut = i

(
−2λ2 − (|q|2 − 1) −2iλq + ∂xq

−2iλq − ∂xq 2λ2 + (|q|2 − 1)

)
u,

(1.8)

where u : R×R 7→ C
2 is the unknown vector and λ ∈ C can be viewed as parameter.

More precisely, if we fix λ ∈ C then the (1.1) is the compatibility condition. On
the other hand, if (1.1) holds then the compatibility condition is satisfied for all
complex numbers λ. The first system in (1.8) can be written in the form of a
spectral problem Lu = λu of the so-called Lax operator

(1.9) L =

(
i∂x −iq
iq −i∂x

)
,

and correspondingly the second system of (1.8) reads as a differential operator as
follows (by eliminating λ using the relation λu = Lu)

P = i

(
2∂2x − (|q|2 − 1) −q∂x − ∂xq
q̄∂x + ∂xq̄ −2∂2x + (|q|2 − 1)

)
.

A formal calculation shows that q(t, x) solves the equation (1.1) if and only if
there holds the operator evolution equation Lt = [P ;L] := PL − LP , i.e. the two
operators (L, P ) form the so-called Lax-pair, which formally implies the invariance
of the spectra of L by time evolution. Indeed, let the skewadjoint operator P
generate a unitary family of evolution operators U(t′, t), then

L(t) = U∗(t′, t)L(t′)U(t′, t)

and L(t) and L(t′) are similar. The inverse scattering transform relates the evolu-
tion of the Gross-Pitaevskii flow to the study of the spectral and scattering property
of the Lax operator L. In the classical framework where q− 1 is Schwartz function,
the self-adjoint operator L has essential spectrum (−∞,−1] ∪ [1,∞) and at most
countably many simple real eigenvalues {λm} on (−1, 1). See [1, 11, 12, 13, 14, 19,
37] for more discussions between the potential q and the spectral information of L.
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It is interesting to notice that the complex defocusing modified Korteweg-de
Vries equation

(1.10) ψt + ψxxx − 6|ψ|2ψx = 0, ψ : R×R → C,

possesses also a Lax-pair structure and shares the same Lax operator (1.9): LmKdV =(
i∂x −iψ
iψ −i∂x

)
as the Gross-Pitaevskii equation, although the corresponding ma-

trix/operator P reads differently as

PmKdV =




−4iλ3 − 2iλ|ψ|2 + (ψψx − ψψx) 4λ2ψ + 2iλψx − ψxx + 2|ψ|2ψ

4λ2ψ − 2iλψx − ψxx + 2|ψ|2ψ 4iλ3 + 2iλ|ψ|2 − (ψψx − ψψx)



 .(1.11)

In this paper we focus on the first system in (1.8), i.e. the spectral problem
Lu = λu for the Lax operator L. It is not hard to see that L is selfadjoint. We
study in particular the time-independent transmission coefficient T−1(λ) associated
to it. For the cubic nonlinear Schrödinger equation case, Koch-Tataru [31] (see also
[28]) made use of the corresponding invariant transmission coefficient to establish
a family of conserved energies which are equivalent to the Hs, s > − 1

2 -norms of
the solutions and hence all the Hs-regularities are preserved a priori for regular
initial data. We will adopt the idea in [31] to formulate the conserved energies for
the Gross-Pitaevskii equation (1.1) and the defocusing modified Korteweg-de Vries
equation (1.10).

The first obstacles on the way are the mass M and momentum P :

(1.12) M =

∫

R

(|q|2 − 1) dx , P = Im

∫

R

q∂xq̄ dx ,

which are only well-defined under more integrability assumptions on |q|2 − 1, ∂xq,
rather than the mere L2-type boundedness assumptions for q ∈ Xs. In the classical
setting where (q − 1) is a Schwartz function, we have the following expansion for
the logarithm of the transmission coefficient (see [14]): There exist countably many
real numbers {Hn}n≥0 such that for any k ≥ 1,

lnT−1(λ) = i

k−1∑

l=0

Hl(2z)−l−1 + (lnT−1(λ))≥k+1, Imλ > 0,

with |(ln T−1(λ))≥k+1| = O(|λ|−k−1) as |λ| → ∞,

(1.13)

where (λ, z) stays on the upper sheet of a Riemann surface {(λ, z) ∈ C
2 |λ2 − z2 =

1, Im z > 0} (see Subsection 3.1 for more details). We also have the correspond-
ing expansion for lnT−1(λ) as |λ| → ∞ for Imλ < 0, by use of the symmetry

lnT−1(λ) = lnT−1(λ). The first three coefficients H0,H1,H2 in (1.13) are the
conserved mass, momentum and energy (see (1.2)) for the Gross-Pitaevskii equa-
tion (1.1) (and hence also for the mKdV (1.10)) respectively:

H0 = M, H1 = P , H2 = 2EGL =

∫

R

(
(|q|2 − 1)2 + |∂xq|2

)
dx ,

and the fourth conserved Hamiltonian H3 reads (see also Remark 5.1)

H3 = Im

∫

R

(
∂xq ∂xxq̄ + 3(|q|2 − 1)q∂xq̄

)
dx − P .
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The momentum P is not defined onXs for any s ≥ 0 and hence in our L2-framework
q ∈ Xs we have to consider the renormalised transmission coefficient T−1

c (λ) which
will be T−1(λ) modulo the mass and momentum (see Theorem 3.1 below for more
details).

In constrast to the Nonlinear Schrödinger equation we cannot scale solutions of
the Gross-Pitaevskii equation because of the boundary condition at infinity. Hence
there is no scaling invariance property for the Gross-Pitaevskii equation and it
does not suffice to consider small data. In order to handle the large energy case we
introduce the frequence-rescaled Sobolev norm Hs

τ (R), τ ≥ 2 which is equivalent to
Hs(R)-norm as follows 3

(1.14) ‖f‖2Hs
τ(R)

=

∫

R

(τ2 + ξ2)s|f̂(ξ)|2 dξ .

For any q ∈ Xs, we introduce the following notation

(1.15) q := (|q|2 − 1, ∂xq), with ‖q ‖2Hs
τ (R)

= ‖|q|2 − 1‖2Hs
τ(R)

+ ‖∂xq‖2Hs
τ (R)

,

and we define the associated energy Es
τ (q) as

Es
τ (q) := ‖q ‖Hs−1

τ (R),(1.16)

which describes the Hs-regularity of q and in particular when τ = 2 we denote
simply

(1.17) Es(q) := Es
2(q).

We also introduce the Banach space l2τDU
2 = DU2 + τ

1
2L2 ⊃ Hs−1, s > 1

2 (which

can be viewed as a replacement of H− 1
2 and see Subsection 4.1 below for more

details) and the norm

‖q ‖l2τDU2 =
(∥∥|q|2 − 1

∥∥2
l2τDU2 +

∥∥∂xq
∥∥2
l2τDU2

) 1
2

.

It is straightforward to check that the Hs
τ (R)-norm and the l2τDU

2(R)-norm have
the following scaling invariance property:

‖f‖Hs
τ(R)

= τs+
1
2 ‖fτ‖Hs(R), ‖f‖l2τDU2(R) = ‖fτ‖l21DU2(R), fτ =

1

τ
f(

·
τ
).(1.18)

We establish a family of conserved energy functionals (Es
τ )τ≥2 as follows:

Theorem 1.3. Let s > 1
2 . There exist a constant C ≥ 2 (depending only on s)

and a family of analytic energy functionals (Es
τ )τ≥2 : Xs 7→ [0,∞), such that

• Es
τ (q) is equivalent to (Es

τ (q))
2 in the following sense:

|Es
τ (q)− (Es

τ (q))
2| ≤ C

τ
‖q ‖l2τDU2(Es

τ (q))
2,

if q ∈ Xs such that
1

τ
‖q ‖l2τDU2 <

1

2C
,

(1.19)

• Es
τ (·), τ ≥ 2 is conserved by the one-dimensional Gross-Pitaevskii flow

(1.1).

3τ−s‖f‖Hs
τ

is the semiclassical Sobolev norm
(∫

R
(1 + (~ξ)2)s|f̂(ξ)|2 dξ

)1/2
, ~ = τ−1. We

always take τ ≥ 2 in the frequency-rescaled Sobolev norms, in order to avoid the possible zeros
on (−1, 1) of the transmission coefficient in the formulation of the conserved energies (see (5.3)
below).
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Correspondingly, for any initial data q0 ∈ Xs, there exists τ0 ≥ C depending only
on Es(q0) such that the unique solution q ∈ C(R;Xs) (given in Theorem 1.2) of the
Gross-Pitaevskii equation (1.1) satisfies the following energy conservation law:

Es
τ0(q(t)) ≤ 2Es

τ0(q0),
1

τ0
‖q(t)‖l2τ0DU2 <

1

2C
, ∀t ∈ R .(1.20)

Remark 1.2. 1) One can find the precise definition and the trace formula of the
energies Es

τ (q) in Theorem 5.1.
For example, we have the following trace formula for the conserved energies

Es
τ (q) when s = n ≥ 1 is an integer (recalling Hl in (1.13))

En
τ (q) =

n−1∑

l=0

τ2(n−1−l)

(
n− 1
l

)
H2l+2,

H2l+2 =
1

π

∫

R

ξ2l+2 1

2

∑

±

ln |T−1
c

|(±
√
ξ2/4 + 1)dξ − 1

2l+ 3

∑

m

Im (2zm)2l+3,

where T−1
c

is the renormalised transmission coefficient defined for any q ∈ Xs

in Theorem 3.1 and zm = i
√
1− λ2m ∈ i(0, 1] with {λm}m ⊂ (−1, 1) being the

possible countably many zeros of the holomorphic function T−1
c

(λ) and hence the
possible eigenvalues of the Lax operator L.

In particular if q − 1 ∈ S(R), then by changing of variables ξ → λ with
λ2 = ξ2 + 1 and noticing the symmetry in Subsection 3.2.2: ln |T−1|(λ + i0) =
ln |T−1|(λ− i0) for λ ∈ Icut = (−∞, 1] ∪ [1,∞),

H2l+2 =
22l+3

π

∫

Icut

|λ|
√
λ2 − 1

2l+1
ln |T−1|(λ)dλ− 1

2l + 3

∑

m

Im (2zm)2l+3,

for l ≥ 0. This can be compared with 22l+3c2l+3,̺ on Pages 76 in [14].
2) For any ball Bs

r(q0) = {p0 ∈ Xs | ds(q0, p0) < r}, r > 0, in Xs such that (see
Lemma 6.1 below) for any p0 ∈ Bs

r(q0),

Es(p0) ≤ Es(q0) + c(1 + Es(q0))
1
2 ds(q0, p0) + c(ds(q0, p0))

2 ≤ C(Es(q0), r),

there exists τ0 (depending only on Es(q0), r) such that all the solutions p ∈
C(R;Xs) of the Gross-Pitaevskii equation (1.1) with the corresponding initial
data p0 ∈ Bs

r(q0) satisfy the energy conservation law (1.20).
3) The idea of the proof of Theorem 1.3 is similar as in [31], however due to the

nonzero background, the proof requires substantial new ideas and concepts and
the characterised quantities in the energy space are the nonlinear function of q:
|q|2 − 1 and its derivative q′ rather than the solution q itself.

4) In the proof showing the asymptotic approximation of the Gross-Pitaevskii equa-
tion by the Korteweg-de Vries equations in long-wave regime, [6] made use of
the uniform bounds of Ek(q), k = 1, 2, 3, 4 which were derived from a linear
(and not obvious at all) combination of the first nine energy conservation laws
H0, · · · ,H8. Theorem 1.3 here is a first existence result of infinitely many con-
served quantities which control Ek(q), k = 1, 2, · · · of the solutions of the Gross-
Pitaevskii equation (and mKdV with the same boundary condition at ∞).

We also have the following results for the modified KdV equation (1.10). We
recall that we define wellposedness in terms of the existence of a representative.
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Theorem 1.4. The complex modified KdV equation (1.10) is globally-in-time well-
posed in the metric space (Xs, ds), s > 3

4 in the following sense (as in Theorem
1.2): For any initial data ψ0 ∈ Xs, there exists a unique solution ψ ∈ C(R;Xs)
(by which we mean that the flow map on 1 + S extends continuously to Xs) and
the flow map Xs ∋ ψ0 7→ ψ ∈ C(R;Xs) is continuous. The energy functionals
(Es

τ (·))s> 1
2 ,τ≥2 established in Theorem 1.3 are also conserved by the modified KdV

flow (1.10).
For real data the flow map extends to a continuous map from Xs to C(R;Xs)

for s ≥ 0.

The following sections are organised as follows:

• In Section 2 we state and prove Theorem 2.1 (resp. Theorem 2.2), which
states the local-in-time well-posedness of the Gross-Pitaevskii equation (1.1)
(resp. the modified KdV equation (1.10)) in the energy space (Xs, ds),
s ≥ 0 (resp. s > 3

4 in the complex case and s ≥ 0 in the real case): For any
initial data q0 ∈ Xs, there exists a unique solution q ∈ C([−t0, t0];Xs) of
(1.1) (resp. (1.10)), such that the flow map is continuous and the existence
time t0 depends only on Es(q0).

• In Section 3 we state Theorem 3.1, where we introduce the renormalised
transmission coefficient T−1

c (λ) and show the conservation of T−1
c (λ; q(t))

by the Gross-Pitaevskii flow on the existence time interval I for any solution
q ∈ C(I;Xs), s > 1

2 .
• Section 4 is devoted to the proof of Theorem 3.1.
• In Section 5 we state and prove Theorem 5.1, where we establish a family
of energy functionals (Es

τ : Xs 7→ [0,∞))s> 1
2 ,τ≥2 in terms of lnT−1

c , which

satisfies the equivalence relation (1.19).
• Section 6 is devoted to the proof of Theorem 1.1.
• In the Appendix we calculate the quadratic term in the expansion of lnT−1

c (λ)
on the imaginary axis.

At the end of this introduction, we prove our main Theorems 1.2 and 1.3 con-
cerning the Gross-Pitaevskii equation (1.1) by use of the results from Theorems 2.1,
3.1 and 5.1. Since the modified KdV equation (1.10) shares the same Lax operator
as the Gross-Pitaevskii equation, Theorem 1.4 follows from Theorems 2.2, 3.1 and
5.1 exactly in the same way.

We first state the relations between Es
τ = ‖q ‖Hs−1

τ
, Es = Es

2 and 1
τ ‖q ‖l2τDU2 .

Lemma 1.1. There exists a family of constants (Cs)s> 1
2
with Cs ≥ 1 and Cs = C1,

s ≥ 1 such that whenever τ ≥ 2, for all s > 1
2 ,

1

τ
‖q ‖l2τDU2 ≤ Csτ

− 1
2
−sEs

τ , Es
τ ≤ Csτ

max{0,s−1}Es,

and hence
1

τ
‖q ‖l2τDU2 ≤ Csτ

− 1
2
−min{s,1}Es.

(1.21)

Proof. We derive from the scaling property (1.18) and the embedding Hs−1(R) →֒
l21DU

2(R), s > 1
2 that

1

τ
‖q ‖l2τDU2 =

1

τ

(∥∥(|q|2 − 1)τ
∥∥2

l21DU2 +
∥∥(∂xq)τ

∥∥2

l21DU2

) 1
2
, with fτ =

1

τ
f(

·
τ
)

≤ Cs
1

τ

(∥∥(|q|2 − 1)τ
∥∥2

Hs−1 +
∥∥(∂xq)τ

∥∥2

Hs−1

) 1
2
= Csτ

− 1
2
−sEs

τ (q).
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By virtue of the fact that τ 7→ Es
τ is decreasing if s ∈ (12 , 1] and E

s
τ ≤ (τ/2)s−1Es

if s ≥ 1, we have Es
τ ≤ Csτ

max{0,s−1}Es. �

We are going to prove the global-in-time wellposedness result (Theorem 1.2) and
the energy conservation law (1.20) (Theorem 1.3) simultaneously, for the initial
data q0 ∈ Xs, s > 1

2 by use of the following facts from Theorems 2.1, 3.1 and 5.1:

• There exists a unique solution q ∈ C([−t0, t0];Xs) of the Gross-Pitaevskii
equation with t0 > 0 depending only on Es(q0) (by Theorem 2.1);

• The renormalised transmission coefficient T−1
c (λ; q(t)) is conserved by the

Gross-Pitaevskii flow on [−t0, t0] (by Theorem 3.1);
• The energy functional Es

τ0 , which is constructed in terms of lnT−1
c , is also

conserved by the Gross-Pitaevskii flow, and furthermore, the equivalence
relation (1.19) holds (by Theorem 5.1).

For the initial data q0 ∈ Xs, we take τ0 depending only on Es(q0) such that
(with the constant C given in (1.19))
(1.22)

C2
sτ

− 1
2
−min{s,1}

0

(
2Es(q0)

)
<

1

2C
and hence by Lemma 1.1,

1

τ0
‖q0 ‖l2τ0DU2 <

1

2C
.

The equivalence relation (1.19) implies initially Es
τ0(q0) ≤

√
2Es

τ0(q0) ≤ 2Es
τ0(q0).

By the equivalence relation (1.19) and the conservation of the energy Es
τ0(q(t)),

the solution q ∈ C([−t0, t0];Xs) satisfies the conservation law (1.20) on the existence
time interval t ∈ [−t0, t0] as follows (noticing also (1.21), (1.22)):

Es
τ0(q(t)) ≤

√
2Es

τ0(q(t)) =
√

2Es
τ0(q0) ≤ 2Es

τ0(q0),

1

τ0
‖q(t)‖l2τ0DU2 ≤ Csτ

− 1
2
−s

0 Es
τ0(q(t)) ≤ Csτ

− 1
2
−s

0 (2Es
τ0(q0))

≤ C2
sτ

− 1
2
−min{s,1}

0 (2Es(q0)) <
1

2C
.

By a continuity argument, the solution q exists globally in time and satisfies the
energy conservation law (1.20): Es

τ0(q(t)) ≤ 2Es
τ0(q0), ∀t ∈ R. Indeed, if not and

suppose I 6= R is the maximal existence time interval for the solution q, then by the
above argument we have Es

τ0(q(t)) ≤ 2Es
τ0(q0) for all t ∈ I. By Theorem 2.1 we can

extend the solution to a strictly larger time interval than I, which is a contradiction
of the maximality of I.

2. Local well-posedness

We prove the locally-in-time well-posedness for the Gross-Pitaevskii equation
(see Theorem 2.1) and for the modified Korteweg-de Vries equation (see Theorem
2.2) respectively in this section.

Theorem 2.1. The Gross-Pitaevskii equation (1.1) is locally-in-time well-posed in
the metric space (Xs, ds), s ≥ 0 in the following sense (as in Theorem 1.2):

• For any initial data q0 ∈ Xs, there exists t0 > 0 depending only on Es(q0) =
‖q0 ‖Hs−1

2
, q0 =

(
|q0|2 − 1, q′0

)
, and a unique solution q ∈ C((−t0, t0);Xs)

(defined in Definition 1.1) of the Gross-Pitaevskii equation;
• For the neighbourhood Bs

r(q0) = {p0 ∈ Xs | ds(q0, p0) < r}, r > 0, of the
initial data q0 ∈ Xs, there exists t1 > 0 depending only on Es(q0), r such
that the flow map Bs

r(q0) ∋ p0 7→ p ∈ C((−t1, t1);Xs) is continuous.
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We begin with a lemma. Let ε ∈ (0, 1], with ε = 1 being a legitimate and most
natural choice in what follows. We regularize a function f by taking its convolution
with the mollifier ρε = ε−1ρ(ε−1x), 0 ≤ ρ ∈ C∞

0 (R),
∫
R
ρ = 1 as fε := f ∗ ρε.

Lemma 2.1. Let q ∈ Xs, s ≥ 0 and let q̃ be a representative. Then

(1) q̃ε ∈ Xσ for all σ ≥ 0 and q̃ε → q̃ in Xs as ε → 0. The map Xs ∋ q̃ →
q̃ε ∈ Xσ is Lipschitz continuous.

(2) Let q ∈ Xs, and φ a Schwartz function such that for one (and hence for all)
representative q̃ there holds

∫
R
q̃φdx 6= 0. Then there is a neighborhood of

q such that this remains true. We fix the representatives with
∫
R
q̃φdx ∈

(0,∞), then the map

Xs ∋ q → q̃ − q̃ε ∈ Hs

is continuous.
(3) The map

Hs ∋ b→ q̃ + b ∈ Xs

is Lipschitz continuous.

Proof. We derive from

(f − fε)(x) =

∫

R

(f(x)− f(x− y))ρε(y) dy

=

∫

R

∫ y

0

f ′(x − a) da ρε(y) dy =

∫

R

f ′(x− a)

∫

A(a)

ρε(y) dy da

where

A(a) =

{
(a,∞) if a > 0

(−∞, a) if a < 0

that

(2.1) ‖f − fε‖L2 . ‖f ′‖H−1

with an absolute implicit constant.
We choose η ∈ C∞

0 . Then
∫
η|fε|2dx =

∫
η(|f |2 − 1)dx+

∫
ηdx −

∫
η|f − fε|2dx− 2Re

∫
ηf̄ε(f − fε)dx,

and hence∫
η|fε|2dx ≤ 2‖|f |2 − 1‖H−1‖η‖H1 + 2‖η‖L1 + 3‖f − fε‖2L2‖η‖sup.

Choosing η appropriately we see that there exists C > 0 so that for all x ∈ R

(2.2) ‖fε‖L2([x,x+1]) ≤ C(1 + ‖|f |2 − 1‖
1
2

H−1 + ‖f ′‖H−1).

We may choose ρ̃ = ρ ∗ ρ and obtain with a small abuse of notation

(2.3) ‖fε‖L∞ ≤ cε−1/2C(1 + ‖|f |2 − 1‖
1
2

H−1 + ‖f ′‖H−1).

Using the embedding L1 →֒ H−1 we estimate using a partition of unity

‖|fε|2 − 1‖H−1 ≤ ‖|f |2 − 1‖H−1 + c
∑

k∈Z

‖|fε|2 − |f |2‖L1((k−1,k+1))

≤ ‖|f |2 − 1‖H−1 + c sup k∈Z

(
‖fε‖L2((k−1,k+1)) + ‖f‖L2((k−1,k+1))

)
‖fε − f‖L2

≤ c
(
‖|f |2 − 1‖H−1 + (1 + ‖f ′‖H−1)‖f ′‖H−1

)
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Notice that for any σ ∈ R,

(2.4) ‖f ′
ε‖Hσ ≤ C(ε, σ)‖f ′‖H−1 ,

and hence

‖|fε|2 − 1‖Hσ+1 + ‖f ′
ε‖Hσ−1 . ‖|fε|2 − 1‖H−1 + ‖f̄εf ′

ε‖Hσ + ‖f ′‖H−1

≤ C(ε, σ, E0(f))E0(f).
(2.5)

Therefore q̃ε ∈ Xσ for all σ ≥ 0 and the convergence q̃ε → q̃ in Xs, i.e.
ds(q̃ε, q̃) → 0, as ε→ 0 follows immediately from these considerations. Indeed,

(ds(q̃ε, q̃))
2 =

∫

R

inf
|λ|=1

‖ sech (x− y)(q̃ − λq̃ε)‖2Hs dy ≤
∫

R

‖ sech (x− y)(q̃ − q̃ε)‖2Hs dy

≤ c1

∫

R

‖ sech (x− y)q̃′‖2Hs−1dy

≤ c2‖q̃′‖2Hs−1 <∞.

Given δ > 0 we can restrict the above y integration to a compact interval with an
error at most δ. The convergence on the compact y interval is immediate.

We turn to the proof of Lipschitz continuity of the map

∗ρε : Xs ∋ q̃ 7→ q̃ε ∈ Xσ.

Indeed, recalling the metric distance function ds in (1.5), we first calculate ds(q̃ε, p̃ε).
We have the following commutator formulae:

[ sech (· − y), ∗ρε](λq̃ − p̃) =

∫

R

∫ m

0

sech ′(· − y − a)(λq̃ − p̃)(· −m) da ρε(m) dm,

where [ sech (· − y), ∗ρε]f = sech (· − y)
(
f ∗ ρε

)
−
(
sech (· − y)f

)
∗ ρε. Hence we

derive the Lipschitz continuity of the map ∗ρǫ : Xs 7→ Xs as follows:

(
ds(q̃ ∗ ρǫ, p̃ ∗ ρǫ)

)2
=

∫

R

inf
|λ|=1

‖ sech (· − y)
(
(λq̃ − p̃) ∗ ρǫ

)
‖2Hs dy

.

∫

R

inf
|λ|=1

(
‖ sech (· − y)(λq̃ − p̃)‖2Hs + ‖ sech ′(· − y)(λq̃ − p̃)‖2Hs

)
dy ≤ C(ds(q̃, p̃))2.

We turn to the proof that

Xs ∋ q → q̃ − q̃ε ∈ Hs

is continuous. First, it is not hard to see that, if φ is a Schwartz function and
∫
q̃φdx 6= 0,

then there is a neighborhood so that this remains true. Now let ε0 > 0. There
exists a smaller neighborhood and a compact interval I so that

‖q̃ − q̃ε‖Hs(R \I) . ‖q̃′‖Hs−1(R \I) < ε0/2

for all representative of functions in this smaller neighborhood. Clearly there exists
δ > 0 so that

‖p− q̃‖Hs(I) < ε0/2, ∀p ∈ Bs
δ(q̃).

Now let q̃ be a representative and consider

Hs ∋ b→ q̃ + b ∈ Xs.
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It suffices to prove that there exists C so that

ds(q + b, q) ≤ C‖b‖Hs ,

which follows immediately from the definition of ds. �

Proof of Theorem 2.1 . If q solves the Gross-Pitaevskii equation (1.1) with the ini-
tial data q0 ∈ X0 and q̃, q̃0 are the corresponding representatives of q(t), q0, then
b = q̃ − q̃0,ε satisfies the following nonlinear Schrödinger-type equation

i∂tb+ ∂xxb = g(b), b|t=0 = b0 = q̃0 − q̃0,ε ∈ Hs,(2.6)

where

g(b) =2|b|2b+ 4q̃0,ε|b|2 + 2q̃0,εb
2 + (4|q̃0,ε|2 − 2)b+ 2(q̃0,ε)

2b̄+ 2q̃0,ε(|q̃0,ε|2 − 1)− q̃′′0,ε.

Vice versa: If b satisfies this equation then q̃ satisfies (1.1).
We claim that there exist a positive time t0 and a positive constant C0 depending

only on E0(q0), ε and a unique solution of (2.6): b ∈ C([−t0, t0];L2) such that

‖b‖t0 := ‖b(t)‖L∞([−t0,t0];L2
x)

+ ‖b‖L8([−t0,t0];L4(Rx)) + ‖b‖L6([−t0,t0]×R) ≤ C0E0(q0).

Indeed, recall the Strichartz estimates for the Schrödinger semigroup S(t) = eit∂xx :

‖S(t)b0‖T . ‖b0‖L2 ,
∥∥∥
∫ t

0

S(t− t′)g(t′)dt′
∥∥∥
T
. ‖g‖L1([−T,T ];L2

x)
.

Since we derive from the estimates (2.5) that

‖g(b)‖L1([−T,T ];L2
x)

. T
1
2 ‖b‖3T + T

3
4 ‖q̃0,ε‖L∞

x
‖b‖2T

+ T (‖q̃0,ε‖2L∞
x
+ 1)

(
‖b‖T + ‖|q̃0,ε|2 − 1‖L2

x
+ ‖q̃′′0,ε‖L2

x

)

≤ C(ε, E0(q0))
(
T

1
2 ‖b‖3T + T

3
4 ‖b‖2T + T (‖b‖T + 1)

)
,

there exist a small enough positive time t0 and a positive constant C0 (depending
only on ε, E0(q0)) such that the map

b 7→ S(t)b0 +

∫ t

0

S(t− t′)g(b(t′))dt′,

is a contraction map in the complete metric space {b ∈ C([−t0, t0];L2) | ‖b‖t0 ≤
C0Es(q0)}, and hence its fixed point is the unique solution of (2.6). It is easy
to see that the flow map b0 7→ b(t) is locally Lipschitz in L2. Correspondingly
there exists a solution (in Definition 1.1) with q̃ = q̃0,ε+b ∈ C((−t0, t0);Xs+L2) =
C((−t0, t0);X0) of the Gross-Pitaevskii equation (1.1) with the initial data q0 ∈ X0,
such that ‖q̃(t)− q̃0‖L2 ≤ ‖q̃0,ε − q̃0‖L2 + ‖b(t)‖L2 ≤ (C +C0)E0(q0), ∀t ∈ [−t0, t0]
and q̃(t)− q̃0,ε = b(t) ∈ L4([−t0, t0]× R).

Consider two solutions (in Definition 1.1) q1, q2 ∈ C((−t0, t0);X0) of the Gross-
Pitaevskii equation (1.1) with the initial data q0 ∈ X0. We may choose for both
solutions the same representative q̃0. Then on any compact time interval I ∋ 0 in
(−t0, t0) their difference b12 = q̃1 − q̃2 ∈ L∞(I;L2) ∩ L4(I × R) with zero initial
data satisfies in the distribution sense the following equation similar as (2.6):

i∂tb12 + ∂xxb12 = 2|b12|2b12 + 4q̃2|b12|2 + 2q̃2(b12)
2 + (4|q̃2|2 − 2)b12 + 2(q̃2)

2b̄12,



CONSERVED ENERGIES FOR THE GROSS-PITAEVSKII EQUATION 13

which has a unique solution 0 in L∞([a, b];L2), by virtue of the energy inequality
4.Hence q̃1 = q̃2 = q̃0,ε + b with b satisfying (2.6).

If s ∈ (0, 1), we decompose g = g(b) into

g = g2(b)+g1(b)+g0, g1(b) = (4|q̃0,ε|2−2)b+2(q̃0,ε)
2b̄, g0 = 2q̃0,ε(|q̃0,ε|2−1)−q̃′′0,ε.

Recall the definition of the Besov-norm for s ∈ (0, 1):

‖f‖Ḃs
α,r

=
∥∥∥
‖f(x− y)− f(x)‖Lα

x

|y|s
∥∥∥
Lr(R; dy

|y|
)
, ‖f‖Bs

α,r
= ‖f‖Lα + ‖f‖Ḃs

α,r
,

and in particular Ḃs
2,2 = Ḣs. We apply the previous construction to the finite

differences, and integrate the estimates for fixed y according to the Besov norm
above. It follows from these construction that the time of existence is the same for
all s ∈ [0, 1).

The case s ≥ 1 follows similarly.
Therefore the Gross-Pitaevskii flow map Xs ∋ q̃0 7→ q̃0∗ρε+b ∈ Xs is continuous

on the existence time interval [−t0, t0]. Indeed, by the Lipschitz continuity of the
flow (2.6), for any two solutions q̃1(t) = q̃1,ε + b1(t) and q̃2(t) = q̃2,ε + b2(t),

ds(q̃1(t), q̃2(t)) ≤ ds(q̃1,ε, q̃2,ε) + C‖b1(0)− b2(0)‖Hs ,

and the continuity of the GP flow follows from Lemma 2.1.
�

We complete this section by a discussion of the flow defined by modified Korteweg-
de Vries equation (1.10): qt + qxxx − 6|q|2qx = 0.

Theorem 2.2. The complex modified KdV equation (1.10) is locally-in-time well-
posed in the metric space (Xs, ds), s > 3

4 in the following sense (as in Theorem
1.2):

• For any initial data q0 ∈ Xs, there exists t0 > 0 depending only on Es(q0) =
‖q0 ‖Hs−1

2
, q0 =

(
|q0|2 − 1, q′0

)
, and a unique solution q ∈ C((−t0, t0);Xs),

by which we mean that the flow map on 1 + S extends continuously to Xs.
• For the neighbourhood Bs

r(q0) = {p0 ∈ Xs | ds(q0, p0) < r}, r > 0, of the
initial data q0 ∈ Xs, there exists t1 > 0 depending only on Es(q0), r such
that the flow map Bs

r(q0) ∋ p0 7→ p ∈ C((−t1, t1);Xs) is continuous.

For real data the flow map extends to a continuous map from Xs
R
to C((−t1, t1);Xs)

for s ≥ 0. Here Xs
R
denotes the subspace of real valued functions.

Proof. We proceed in the same fashion as for the Gross-Pitaevskii equation. Now
b = q̃ − q̃0,ε satisfies

(2.7) bt + bxxx = g(b)

where

g(b) = 6|b|2bx + 12Re (bq̃0,ε)bx + 6bx + 6(|q̃0,ε|2 − 1)bx + 6|b|2q̃′0,ε
+ 12Re (bq̃0,εx)q̃0,ε + 6|q̃0,ε|2∂xq̃0,ε − q̃

(3)
0,ε .

4We can follow the standard regularizing procedure to derive the energy inequality: We regular-
ize the b12-equation by convolution with ρδ, take the L2(R)-inner product between the regularized
equation and b12,δ = b12 ∗ ρδ, take the imaginary part and finally we use Gronwall’s inequality

and let δ → 0.
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Changing coordinates (t, x) → (t, y) with y = x+6t we remove the term 6bx. Notice
that

6|q̃0,ε|2∂xq̃0,ε − q̃
(3)
0,ε ∈ L2

and q̃0,ε is together with all its derivatives uniformly bounded. The most critical

terms are 6|b|2bx, 12Re (bq̃0,ε)bx and 6(|q̃0,ε|2 − 1)bx.
We claim that (2.7) is locally wellposed in Hs, s > 3

4 , and that the solution is
continuous with values in Hs. Indeed, this follows from a contraction argument as
for the Korteweg-de Vries equation

(2.8) ut + uxxx − 6uux = 0

by Kenig, Ponce and Vega [25, 26]. More precisely their arguments allow to deal
with |b|2bx and Re (bq̃0,ε)bx. Since |q̃0,ε|2 − 1 ∈ HN for all N the term

(|q̃0,ε|2 − 1)bx

is covered by the same estimates as the previous terms.
For real initial data we use a different argument. Let s ≥ 0. Then again |q0,ε|2−

1 ∈ HN for all N . Since it is also real we must have one of the following alternatives
for fixed N :

(1) q0,ε − 1 ∈ HN

(2) q0,ε − tanh (x) ∈ HN

(3) q0,ε + 1 ∈ HN

(4) q0,ε + tanh (x) ∈ HN .

Replacing q by −q if necessary it remains to consider two situations:

(i) q + 1 ∈ Hs

(ii) q + tanh (x) ∈ Hs.

It is easy to see that q ∈ Xs if one these situations holds. We recall the definition
of the Miura map

M(q) = qx + q2.

Then the following lemma holds.

Lemma 2.2. A) The map

Hs ∋ w →
(
M(w − 1)− 1

)
∈ Hs−1

is a diffeomorphism of Hs to its range

{u ∈ Hs−1 : −∂xx + u has no eigenvalue ≤ −1}.
B) The map

Hs × (0,∞) ∋ (w, λ) →
(
M(w − λ tanh (λx)) − λ2

)
∈ Hs−1

is a diffeomorphism to its range

{u ∈ Hs−1 : −∂xx + u has a negative eigenvalue}.
Moreover −λ2 is the lowest eigenvalue.

C) In both cases A) and B), let q = w − 1 resp. q = w − tanh (x), then
q : R×R 7→ R satisfies the real modified KdV (1.10) iff

u =M(q)− 1 = qx + q2 − 1

satisfies the KdV equation (2.8):

(2.9) ut − 6ux + uxxx − 6uux = 0.
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Since the KdV equation (2.8) is wellposed in H−1 [27] (in the sense that the
flow map extends continuously), if w = q + 1 ∈ Hs then it follows from A) and C)
that u =M(q)− 1 ∈ Hs−1 ⊂ H−1 and (1.10) is well-posed in Hs, s ≥ 0. Similarly
Theorem 2.2 follows in the case (ii): w = q + tanh (x) ∈ Hs.

It remains to prove Lemma 2.2. Part B) of the Lemma has been proven by
Buckmaster and the first author [8]. If q satisfies (1.10) then u = qx + q2 satisfies
(2.8). Now suppose that u satisfies KdV (2.9) (the term 6ux is inessential, and can
be removed by a Galilean transform). Since the preimage is unique it has to be a
solution to mKdV, at least if the initial data is sufficiently smooth. This can be
achieved by an approximation argument.

It remains to prove A). It is easy to see (compare [8]) that w ∈ Hs implies
M(w − 1) − 1 ∈ Hs−1 for s ≥ 0. Moreover this map is clearly analytic. The
derivative at w0 is

ẇ → ẇx + 2(w0 − 1)ẇ

which has the (right) inverse

(Tf)(x) = −
∫ ∞

x

e2
∫

y
x

w0dτ−2(y−x)f(y)dy.

It is easy to see that T maps Hs−1 to Hs for all s ≥ 0 and w0 ∈ Hs. Moreover the
linearization is injective. Indeed, suppose that ẇ ∈ L2 satisfies

ẇx + 2(w0 − 1)ẇ = 0.

Then ẇ is absolutely continuous and decays to 0 as x → ∞. The variation of
constants formula and a limit argument show that ẇ vanishes.

To verify injectivity of the nonlinear map we assume that w0 and w1 are mapped
to the same function. Then, with ẇ = w1 − w0

ẇx + (w0 + w1)ẇ − 2ẇ = 0

and hence ẇ = 0 by the same argument as for the injectivity of the linearization.
The argument for surjectivity is based on Kappeler et al [30]. Let u ∈ H−1 be

a function so that the spectrum of −∂2 + u is contained in (−1,∞). According to
[30] there exists a bounded positive function φ which satisfies

(2.10) − φ′′ + uφ+ φ = 0.

Let v = d
dx lnφ. A straightforward calculation shows that

v′ + v2 = u+ 1, i.e. M(v)− 1 = u.

Let ṽ = v ∗ ρ where ρ ∈ C∞
0 is supported in [−1, 1] with integral 1. It suffices to

find ṽ so that

lim
x→−∞

ṽ(x) = −1, lim
x→∞

ṽ(x) = −1.

Now we use [8] to see that ṽ has a limit in {±1} as x→ ±∞, possibly different on
both sides. If

lim
x→−∞

ṽ(x) = 1, lim
x→∞

ṽ(x) = −1,

then φ ∈ L2 and it were an eigenfunction of the eigenvalue −1, which contradicts
our assumption. Thus, if

lim
x→∞

ṽ(x) = −1,
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then limx→−∞ ṽ(x) = −1 and we found the preimage in case A). Hence suppose
that

lim
x→∞

ṽ(x) = 1.

Then

φ1 = φ(x)

∫ ∞

x

φ(y)−2dy

is a nonnegative solution of (2.10) and is bounded for positive x. Hence v1 =
d
dx lnφ1 satisfies (with ṽ1 = v1 ∗ ρ as above)

lim
x→∞

ṽ1(x) = −1

and, by the previous considerations of our assumption,

lim
x→−∞

ṽ1(x) = −1.

With this we have found the preimage v1 in case A). �

3. The transmission coefficient

We introduce the renormalised transmission coefficient T−1
c (λ) and state its prop-

erties in Theorem 3.1 in this section.
We will first recall the definition of the transmission coefficient T−1 associated

to the Lax operator (1.9), i.e. the Lax equation:

(3.1) ux =

(
−iλ q
q̄ iλ

)
u,

on the Riemann surface R (see Subsection 3.1 below for the definition), in the
classical functional setting where q − 1 is Schwartz function in Subsection 3.2.

With the notations introduced in Subsection 3.3, we will give an asymptotic
expansion of the transmission coefficient T−1 in Subsection 3.4, which will play a
key role in the analysis of T−1.

Finally in Subsection 3.5 we discuss the renormalisation of the transmission
coefficient and give Theorem 3.1 stating the well-definedness and the asymptotic
expansion of the renormalised transmission coefficient T−1

c in our finite energy
setting q ∈ Xs, s > 1

2 , whose proof will be postponed in Section 4.

3.1. A Riemann surface. We define a Riemann surface by

{(λ, z) ∈ C
2 |λ2 = 1 + z2}.

If infinity is added, its genus is 0 and it is indeed the Riemann sphere with respect
to the complex variable ζ := λ+ z.

We typically choose the upper sheet R of this Riemann surface:

R =
{
(λ, z) |λ ∈ V , z = z(λ) =

√
λ2 − 1 ∈ U

}
,

where V := C \Icut, Icut := (−∞,−1] ∪ [1,+∞), U := {z ∈ C | Im z > 0},
(3.2)

and we can take simply λ ∈ V as the coordinate on R. We notice the following
symmetry of R

(λ, z) ∈ R ⇔ (λ,−z) ∈ R.(3.3)
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In particular, the points (±
√
1− τ2/4, iτ/2), τ ∈ (0, 2] and the purely imaginary

points (±iσ, iτ/2), τ ∈ [2,∞) stay on R:

(±iσ, iτ/2) ∈ R whenever τ ≥ 2 and σ =
√
τ2/4− 1 ∈ R .(3.4)

We can define a conformal mapping from (λ, z) ∈ R to ζ ∈ U the upper half-plane
by ζ = ζ(λ) = λ + z. The mapping takes the cuts λ ∈ Icut to the real axis ζ ∈ R

and the neighbourhood of ∞ for Imλ < 0 to a neighbourhood of ζ = 0. The inverse
mapping is given by the so-called Zukowsky mapping ζ 7→ λ = λ(ζ) = 1

2 (ζ+
1
ζ ) and

hence 1 = (λ − z)ζ, z = z(ζ) = 1
2 (ζ − 1

ζ ),
1
ζ̄
= λ̄− z̄ ∈ U .

3.2. Jost solutions and the transmission coefficient. In this subsection we
assume the classical functional setting (as in [14, 37])

(3.5) q = 1 + q0, q0 ∈ S(R) Schwartz function,

and we are going to introduce the Jost solution of the Lax equation (3.1) as well
as the associated transmission coefficient.

3.2.1. Real line case (λ, z) = (ξ̂, ξ) ∈ R
2. Let 0 6= z = ξ ∈ R and λ = ξ̂ ∈ R such

that ξ̂ = (1 + ξ2)
1
2 > 1. Then under the assumption (3.5) on the potential q, ±iξ

are the two eigenvalues of the matrix in (3.1) at infinity:

(
−iξ̂ 1

1 iξ̂

)
.

Let the Jost solution ul solve the Lax equation (3.1) (viewing λ = ξ̂ as parameter)
satisfying the following boundary conditions at −∞

ul(x) = e−iξx

(
1

i(ξ̂ − ξ)

)
+ o(1) as x→ −∞.

Then there exist two complex numbers T−1, R ∈ C such that ul takes the following
asymptotic at +∞:

ul(x) = e−iξxT−1

(
1

i(ξ̂ − ξ)

)
+ eiξxRT−1

(
1

i(ξ̂ + ξ)

)
+ o(1) as x→ +∞.

These two complex numbers T−1, R are called the transmission coefficient and the
right reflection coefficient respectively 5.

Observe that if u = (u1, u2)T is the solution of (3.1), then the quantity |u1|2 −
|u2|2 is constant. We compare the asymptotic behaviours of the Jost solution ul at
±∞ respectively to acquire

(3.6) |T |2 = 1− (ξ̂ + ξ)2|R|2 ≤ 1, if (λ, z) = (ξ̂, ξ) ∈ R
2 .

5In this paper we call T−1 the transmission coefficient while its reciprocal T is the physical rel-
evant transmission coefficient. We can define similarly the left reflection coefficient by considering

the asymptotic at −∞ of the Jost solution with the boundary condition eiξx
(

1

i(ξ̂ + ξ)

)

+ o(1) as

x → +∞.
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3.2.2. Upper Riemann sheet case (λ, z) ∈ R. The Jost solution ul(x;λ) defined

above on the “real axis” (λ, z) = (ξ̂, ξ) ∈ R
2 can be analytically continued to the

upper Riemann sheet (λ, z) ∈ R, taking the following asymptotics

ul(λ, x, t) = e−izx

(
1

i(λ− z)

)
+ o(1)e(Im z)x as x→ −∞,

ul(λ, x, t) = e−izxT−1(λ)

(
1

i(λ− z)

)
+ o(1)e(Im z)x as x→ +∞.

(3.7)

Under the potential assumption (3.5), T−1(λ) is a holomorphic function on R and
lim|λ|→∞ T−1(λ) = 1.

The possible zeros of T−1(λ) for λ ∈ C \(R \(−1, 1)) are located on the interval
(−1, 1) ⊂ R. Indeed, if T−1(λ) = 0, then λ ∈ V = C \Icut by (3.6). Thus

z =
√
λ2 − 1 ∈ U has strictly positive imaginary part such that λ, ul (with the

asymptotics (3.7) and with T−1(λ) = 0) are the eigenvalues and the corresponding
eigenfunctions of the self-adjoint Lax operator L given in (1.9), and thus λ ∈
(−1, 1) ⊂ R. Let λ ∈ (−1, 1) be an eigenvalue, then ±iz = ∓

√
1− λ2 are negative

and positive real numbers. By checking the characteristic exponents of the ODE
(3.1): Lu = λu near infinity, the geometric multiplicity of λ is 1. Since the Lax
operator L is self-adjoint, the algebraic multiplicity is also 1, and all eigenvalues in
(−1, 1) are simple. As a consequence, the root λ of T−1 has multiplicity 1.

We denote these at most countably many zeros on (−1, 1) by {λm}m and

(3.8) zm = i
√
1− (λm)2 ∈ i(0, 1], m ∈ N .

We have the following symmetry for T−1:

(3.9) T
−1

(λ) = T−1(λ), (λ, z), (λ,−z) ∈ R.
Indeed, the symmetry of the Lax equation (3.1) implies that ul

T := (u2l , u
1
l ) with

the asymptotics

ul
T = −i(λ− z)eizx

(
1

i(λ+ z)

)
+ o(1)eIm zx as x→ −∞,

ul
T = −i(λ− z)eizxT

−1
(λ)

(
1

i(λ+ z)

)
+ o(1)eIm zx as x→ +∞,

satisfies the Lax equation (3.1) with (λ, z) ∈ R replaced by (λ,−z) ∈ R, which
itself possesses a Jost solution with the following asymptotics:

ul(λ) = eizx
(

1

i(λ+ z)

)
+ o(1)eIm zx as x→ −∞,

ul(λ) = eizxT−1(λ)

(
1

i(λ+ z)

)
+ o(1)eIm zx as x→ +∞.

By uniqueness we deduce (3.9). Therefore

• For ξ̂ ∈ Icut, the limits limλ→ξ̂+i0 |T−1(λ)| and limλ→ξ̂−i0 |T−1(λ)| are the
same. Hence the subharmonic function ln |T−1(λ)| on V is continuous on

Icut and generally ln |T−1(λ)| = ln |T−1(λ)| for (λ, z) ∈ R;

• For (λ±, z) = (±iσ, iτ/2) ∈ R with τ ≥ 2 and σ =
√
τ2/4− 1 ∈ R,

1

2

∑

±

Re lnT−1(λ±) =
1

2
Re

(
lnT−1(λ+) + lnT−1(λ+)

)
= Re lnT−1(λ+).(3.10)
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Let us take the time variable into account. We multiply ul by e
−iz(2λ)t such that

the time evolutionary equation in (1.8) ensures

∂t(T
−1) = 0, ∂tR = 4izλR.

That is, the transmission coefficient T−1(λ) is conserved by the Gross-Pitaevskii
flow and we will make use of it to define the conserved energies for the Gross-
Pitaevskii equation (1.1).

Similarly, e−iz(4λ2+2)tul satisfies (1.8) with q = ψ and with the matrix in (1.8)2
replaced by PmKdV in (1.11). The same transmission coefficient T−1(λ) as for the
Gross-Pitaevskii equation is conserved by the modified KdV flow (1.10).

3.3. Notations. Let q ∈ Xs, s > 1
2 . Let (λ, z) ∈ R and ζ = λ + z ∈ U the upper

half-plane be as in Subsection 3.1. Then

(3.11) |q|2 − ζ2 6= 0, and
1∣∣|q|2 − ζ2

∣∣ ≤
1

(Im ζ)2
,

|ζ|∣∣|q|2 − ζ2
∣∣ ≤

1

Im ζ
.

Indeed, if |Re ζ| ≥ Im ζ, then

1∣∣|q|2 − ζ2
∣∣ ≤ 1

|Im ζ2| ≤
1

2(Im ζ)2
and

|ζ|∣∣|q|2 − ζ2
∣∣ ≤

√
2|Re ζ|

2|Re ζ|Im ζ
≤ 1

Im ζ
,

while if |Re ζ| ≤ Im ζ, then

1∣∣|q|2 − ζ2
∣∣ =

((
|q|2 + (Im ζ)2 − (Re ζ)2

)2
+ (2Re ζIm ζ)2

)− 1
2 ≤ 1

|ζ|2 .

We introduce the following functions which will play an essential role in the
analysis of the transmission coefficient:

q1 =
iζ(|q|2 − 1)− q̄q′

|q|2 − ζ2
, q2 =

iζq′ + (|q|2 − 1)q

|q|2 − ζ2
, q3 =

−iζq̄′ + (|q|2 − 1)q̄

|q|2 − ζ2
,

q4 =
2iζ(|q|2 − 1) + qq̄′ − q̄q′

|q|2 − ζ2
, ϕ(x) = 2izx+

∫ x

0

q4(x1) dx 1.

(∗)

As in [31], let the symbols , correspond to the ordered integrals with respect
to the functions e−ϕ(x)q3(x) and e

ϕ(y)q2(y) respectively in the following way

:=

∫

x1<y1

eϕ(y1)−ϕ(x1)q3(x1)q2(y1) dx 1 dy 1,

j :=

∫

x1<y1<···<xj<yj

j∏

n=1

eϕ(yn)−ϕ(xn)q3(xn)q2(yn) dx dy ,

:=

∫

t1<t2<t3<t4

eϕ(t4)+ϕ(t3)−ϕ(t2)−ϕ(t1)q3(t1)q3(t2)q2(t3)q2(t4)dt,

=

∫

t1<···<t6

eϕ(t6)+ϕ(t5)+ϕ(t4)−ϕ(t3)−ϕ(t2)−ϕ(t1)q3(t1)q3(t2)q3(t3)q2(t4)q2(t5)q2(t6)dt,

=

∫

t1<···<t6

eϕ(t6)+ϕ(t5)−ϕ(t4)+ϕ(t3)−ϕ(t2)−ϕ(t1)q3(t1)q3(t2)q2(t3)q3(t4)q2(t5)q2(t6)dt,

and so on. In particular, a symbol of form 2j , where under the arc consists of

(j − 1) non-interacting symbols , is said to be connected of degree 2j. We will

simply omit the subscript 2j in 2j when the degree is clear. For example, ,
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are connected symbols of degree 2, 4 respectively, and , are connected
symbols of degree 6, while is not a connected symbol.

We introduce the operator S as follows:

(3.12) (Sf)(t) =

∫

x<y<t

eϕ(y)−ϕ(x)q2(y)(q3f)(x) dx dy ,

such that we can express j = limt→∞(Sj1)(t).

3.4. Asymptotic expansion of the transmission coefficient T−1. Let q−1 ∈
S(R). Recall the definition of the transmission coefficient T−1(λ) = limx→∞ eizxu1(x)
in Subsection 3.2, where the Jost solution u satisfies the Lax equation (3.1) and
the asymptotics (3.7). We are going to solve the initial value problem (3.1)-(3.7)1
iteratively, to derive the asymptotic expansion of the transmission coefficient T−1.

More precisely, we are going to follow the following procedure: We will first
make change of variables u 7→ w (see (3.16) below) to renormalise the problem
(3.1)-(3.7)1 into the following ODE, where q1, q2, q3, q4 are given in (∗):

wx =

(
0 0
0 2iz

)
w +

(
0 q2
q3 q4

)
w, lim

x→−∞
w(x) =

(
1
0

)
,(ODE)

such that

e
∫ ∞
−∞

q1 dm T−1(λ) = lim
x→∞

w1(x) the asymptotic of the first component of w.

Then we formally solve (ODE) iteratively as follows

w =

∞∑

n=0

wn, w0 =

(
1
0

)
,

wn(x) =

∫ x

−∞

(
0 q2(x1)

e
2iz(x−x1)+

∫
x
x1

q4 dm
q3(x1) 0

)
wn−1(x1) dx 1,

(3.13)

to derive the following formal asymptotic expansion for T−1:

e
∫∞
−∞ q1 dm T−1(λ) = lim

x→∞
w1(x) =

∞∑

n=0

lim
x→∞

w1
n(x) = 1 +

∞∑

j=1

j ,

where we noticed limx→∞ w1
2j−1(x) = 0 and limx→∞ w1

2j(x) =
j , j ≥ 1, with j

given in Subsection 3.3.

Proposition 3.1. Let q−1 ∈ S. Let (λ, z) ∈ R with ζ = λ+z ∈ U as in Subsection
3.1. Recall the notations in Subsection 3.3. Then the transmission coefficient T−1

defined in Subsection 3.2 expands asymptotically as follows:

(3.14) e
∫

∞
−∞

q1 dx T−1(λ) = 1 +

∞∑

j=1

T2j(λ), T2j =
j ,

and its logarithm expands asymptotically as

(3.15)

∫ ∞

−∞

q1 dx + lnT−1(λ) = T2 +

∞∑

j=2

T̃2j ,

where T̃2j is linear combination of connected symbols 2j of degree 2j.
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Proof. It is convenient to rewrite the Lax equation (3.1) for the Jost solution ul
(we will omit the subscript l) in several steps.

A straightforward calculation shows that

1

|q|2 − ζ2

[(−iζ q
q̄ iζ

)(
−iλ q
q̄ iλ

)
−
(
|q|2 − 1 0

0 |q|2 − 1

)](−iζ q
q̄ iζ

)
=

(
−iz 0
0 iz

)
.

We define the renormalised Jost solution of u as

v =

(
−iζ q
q̄ iζ

)
u, such that u =

1

|q|2 − ζ2

(
−iζ q
q̄ iζ

)
v.

Hence v solves (with q1, q2, q3, q4 defined in (∗))

vx =
1

|q|2 − ζ2

[(−iζ q
q̄ iζ

)(
−iλ q
q̄ iλ

)(
−iζ q
q̄ iζ

)
+

(
0 qx
q̄x 0

)(
−iζ q
q̄ iζ

)]
v

=

(
−iz 0
0 iz

)
v +

(
−q1 q2
q3 q4 − q1

)
v.

We want to remove the upper left entries of the two matrices: Let

(3.16) w = − 1

2iz
eizx+

∫
x

−∞
q1 dm v = − 1

2iz
eizx+

∫
x

−∞
q1 dm

(
−iζ q
q̄ iζ

)
u,

then it satisfies the renormalised (ODE) above. In other words, the renormalized
Jost solution w satisfies the following integral equation

w(x) =

(
1
0

)
+

∫ x

−∞

(
0 q2(x1)

e
2iz(x−x1)+

∫
x
x1

q4 dm
q3(x1) 0

)
w(x1) dx1,

with the following asymptotics as x→ ±∞ (recalling u’s asymptotics (3.7)):

w(λ, x, t) =

(
1
0

)
+ o(1) as x→ −∞,

w(λ, x, t) =

(
e
∫

∞
−∞

q1 dm T−1(λ)
0

)
+ o(1) as x→ +∞.

Hence we use the iterative procedure in (3.13) to derive the formal asymptotic

expansion (3.14) of e
∫

∞
−∞

q1 dm T−1(λ) = limx→∞ w1(x) =
∑∞

n=0 limx→∞ w1
n(x).

Finally, it follows from Theorem 3.3 6 in [31] that whenever we have the formal
expansion as in (3.14): g = 1 +

∑∞
j=1 T2j, T2j = j , we will have the formal

expansion of its logarithm in (3.15): ln g = T2 +
∑∞

j=2 T̃2j .
�

3.5. The renormalised transmission coefficient T−1
c

. Let q ∈ Xs, s > 1
2 and

let (λ, z) ∈ R, ζ = λ+ z ∈ U .
Recall q1 = iζ(|q|2−1)−q̄q′

|q|2−ζ2 defined in (∗), then its integral
∫∞

−∞ q1 dx (which ap-

pears in the expansion of T−1) may not be well-defined for q ∈ Xs. More precisely,
by view of the following fact coming from λ2 − z2 = 1 and ζ = λ+ z:

1

1− ζ2
=

−1

2zζ
,

ζ

1− ζ2
=

−1

2z
,

1

|q|2 − ζ2
=

1

1− ζ2
− |q|2 − 1

(1− ζ2)(|q|2 − ζ2)
,(3.17)

6Indeed, we can endow the ring of the formal power series of the unknown symbols , with
a shuffle product and a coproduct, and we typically take a commutative subalgebra H where the

symbols , appear in non interacting pairs, such that g is a group-like element and ln g is a
primitive element in H. See also [31, 33, 36] for more shuffle algebra theory.
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we rewrite the integral of q1 when q − 1 ∈ S(R) as follows:
∫ ∞

−∞

q1 dx = − i

2z
M− i

2zζ
P +

i

2z

∫

R

(|q|2 − 1)2

|q|2 − ζ2
dx − 1

2zζ

∫

R

q̄q′(|q|2 − 1)

(|q|2 − ζ2)
dx ,(3.18)

where M =
∫
R
(|q|2 − 1) dx , P = Im

∫
R
qq̄′ dx are the mass and momentum (in

(1.12)), which can be well-defined only under further integrability assumptions on
|q|2 − 1, q′.

We hence introduce the renormalised transmission coefficient T−1
c which is the

transmission coefficient T−1 module the mass and momentum, such that it is well-
defined for q ∈ Xs. More precisely, we have

Theorem 3.1. Let q ∈ Xs, s > 1
2 . Then there exists a renormalised transmission

coefficient T−1
c

(λ) which is holomorphic on the Riemann surface R (defined in
(3.2)), such that

• If q = 1 + q0, q0 ∈ S(R), then

T−1
c

(λ) = e−iM(2z)−1−iP(2zζ)−1

T−1(λ),

i.e. − lnT
c
(λ) = − lnT (λ)− iM(2z)−1 − iP(2zζ)−1, ζ = λ+ z,

(3.19)

where T−1 is the transmission coefficient defined in Subsection 3.2 and
M =

∫
R
(|q|2 − 1) dx and P = Im

∫
R
qq̄′ dx are the conserved mass and

momentum associated to the Gross-Pitaevskii equation, such that

(3.20) |T−1
c

(λ)| ≥ 1 if λ ∈ Icut = (−∞,−1]∪ [1,∞), T−1
c

→ 1 as |λ| → ∞.

• For any fixed (λ, z) ∈ R, the renormalised transmission coefficient T−1
c

(λ; q)
is extended uniquely to an analytic function in q ∈ Xs (with respect to the
analytic structure in Theorem 6.2) and T−1

c
(λ; q(t)) is conserved by the

Gross-Pitaevskii flow on the existence time interval of the solution q(t)
(defined in (1.1)).

• T−1
c

(λ) has the following asymptotic expansion

(3.21) T−1
c

(λ) = eΦ(λ)
(
1 +

∞∑

j=1

T2j(λ)
)
, T2j =

j ,

and its logarithm expands asymptotically as

(3.22) lnT−1
c

(λ) = Φ(λ) + T2(λ) +
∞∑

j=2

T̃2j(λ),

where

(3.23) Φ(λ) := − i

2z

∫

R

(|q|2 − 1)2

|q|2 − ζ2
dx +

1

2zζ

∫

R

q̄q′(|q|2 − 1)

(|q|2 − ζ2)
dx ,

and T̃2j is linear combination of connected symbols 2j of degree 2j. Here
the symbols are defined in Subsection 3.3.

• T−1
c

satisfies the following properties:

ReTc

−1(λ) = ReT−1
c

(λ̄) if (λ, z) = (iσ,±i τ
2
) ∈ R, τ ≥ 2, σ =

√
τ 2

4
− 1,

T−1
c

has at most countably many simple zeros {λm} ⊂ (−1, 1).

(3.24)
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We can define a superharmonic function G(z) on the upper half plane U as
follows

(3.25) G(z) :=
1

2

∑

±

Re
(
4z2 lnT−1

c

(
±
√
z2 + 1

))
, Im z > 0, Im

√
z2 + 1 ≥ 0,

such that G ≥ 0 on the upper half plane U and −∆G ≥ 0 is a nonnegative measure
on the upper half plane U as follows

νG(z) = −∆zG(z) = −π
∑

m

(2z)2δz=zm ≥ 0, zm = i
√
1− λ2m ∈ i(0, 1],(3.26)

where {λm} are the simple zeros of T−1
c

(λ) in (3.24).

The proof of this theorem will be demonstrated in next section where the func-
tional spaces lpτU

2, lpτV
2, lpτDU

2 will come into play.

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1 concerning the well-definedness and the
property of the renormalised transmission coefficient T−1

c (λ) in the energy frame-
work q ∈ Xs, s > 1

2 in the following steps:

• In Subsection 4.1 we introduce the function spaces lpτU
2, lpτV

2, lpτDU
2.

• We derive some preliminary estimates in Subsection 4.2.1. Then we solve
the renormalised Lax equation (ODE) rigorously when q ∈ Xs and define
the renormalised transmission coefficient T−1

c (λ) in Subsection 4.2.2.
• We study the nonnegative superharmonic function G(z) and conclude the
proof of Theorem 3.1 in Subsection 4.3.

4.1. Function spaces. In this subsection we will briefly recall the function spaces
U2, V 2, DU2 and the inhomogeneous norms ‖ · ‖lpτV , V = U2, V 2, DU2. See [24, 31]
for more details of the U2, V 2 theory.

4.1.1. Spaces U2, V 2, DU2. We denote the bounded functions on R by B(R). We

use the spaces U2, V 2 ⊂ B(R) andDU2 to substitute the Sobolev spaces Ḣ
1
2 6 →֒ L∞

and Ḣ− 1
2 . The space V 2 is defined as follows

V 2 =
{
v
∣∣∣ ‖v‖V 2 = sup

−∞<t1<···<tN=∞

(N−1∑

j=1

|v(tj+1)− v(tj)|2
) 1

2

<∞
}
,

where we always set v(∞) = 0. In particular, the constant function 1 ∈ V 2 with

norm 1. For any finite sequence {φj}N−1
j=1 with

∑N−1
j=1 |φj |2 = 1, the step function

φ =
∑N−1

j=1 φj1[tj,tj+1) with −∞ < t1 < · · · < tN = ∞ is called U2 atom. We define

the space U2 by

U2 =
{
u =

∞∑

k=1

ckψk

∣∣∣ (ck)k ∈ ℓ1(N) and ψk is U2 atom
}
,

endowed with the U2-norm:

‖u‖U2 = inf
{ ∞∑

k=1

|ck|
∣∣∣u =

∞∑

k=1

ckψk, ck ∈ C, ψk is U2 atom
}
.
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We define the space DU2 via the distributional derivatives as

DU2 = {u′ |u ∈ U2},
with the norm ‖u′‖DU2 = ‖u‖U2 . Then DU2 function is a distribution function
with the following finite norm:

‖f‖DU2 = sup
{∫

R

fϕdt
∣∣∣ ‖ϕ‖V 2 ≤ 1, ϕ ∈ C∞

0 (R)
}
.

We have the following pleasant estimates which will be used frequently:

‖f‖L∞ ≤ ‖f‖V 2 ≤ ‖f‖L∞ + 2‖f ′‖DU2 , ‖f‖V 2 ≤ 2‖f‖U2,

‖fg‖V 2 ≤ ‖f‖L∞‖g‖V 2 + ‖f‖V 2‖g‖L∞, ‖fg‖DU2 ≤ 2‖f‖V 2‖g‖DU2 ,

‖f(u)‖V 2 ≤ C(f ′, ‖u‖L∞)‖u‖V 2 .

(4.1)

4.1.2. Space lpτDU
2. We take the localised version of U2, V 2, DU2-norms

‖u‖lpτU =
∥∥‖χτ,ku‖U

∥∥
ℓp
k
(Z)
, U = V 2, U2 or DU2,

where τ ≥ 2 is the frequency scale and χ is a smooth function compactly supported
on [− 2

3 ,
2
3 ] with value 1 on the interval [− 1

3 ,
1
3 ], such that χτ,k form a partition of

unity:

(4.2) 1 =
∑

k∈Z

χτ,k, χτ,k = χ
(
τ(· − k

τ
)
)
= χ(τ · −k).

For any fixed real positive number a > 0, ‖u‖lpτU is equivalent to
∥∥‖χ̃τ,ku‖U

∥∥
ℓp
k
(Z)

with χ̃ = χ(·/a).
Proposition 4.1 ([31]). We have the following properties of the norm ‖ · ‖lpτDU2 :

• The following inequality describes the effect of the phase shift

(4.3) ‖eiξxu‖l2τDU2 ≤ C
√
(τ + |ξ|)/τ‖u‖l2τDU2 .

• The following inequality describes the effect of taking the derivative

(4.4) ‖f‖lpτU2 . τ‖f‖lpτDU2 + ‖f ′‖lpτDU2 .

• The lpτDU
2, p ≥ 2-norm and Ḣ

1
2−

1
p -norm is related by

‖u‖lpτDU2 ≤ Cτ
1
p
−1‖u‖

Ḣ
1
2
− 1

p
.

4.2. The renormalised transmission coefficient. Let q ∈ Xs, s > 1
2 and

(λ, z) ∈ R with ζ = λ + z ∈ U . Recall the renormalised Lax equation (ODE)
in the proof of Proposition 3.1:

wx =

(
0 0
0 2iz

)
w +

(
0 q2
q3 q4

)
w, lim

x→−∞
w(x) =

(
1
0

)
,(ODE)

and its formally equivalent iterative version (3.13):

w =

∞∑

n=0

wn, w0 =

(
1
0

)
, wn(t) =

( ∫ t

−∞ q2(x)w
2
n−1(x) dx∫ t

−∞
eϕ(t)−ϕ(x)q3(x)w

1
n−1(x) dx

)
,(4.5)

n ≥ 1, such that if q − 1 ∈ S then

e
∫∞
−∞

q1 dm T−1(λ) = lim
t→∞

w1(t) =

∞∑

n=0

lim
t→∞

w1
n(t),
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where q1, q2, q3, q4, ϕ are given in (∗). In particular, noticing w1
2j+1 = w2

2j = 0, we

can rewrite (4.5) as

w1(t) =

∞∑

j=0

w1
2j(t) =

∞∑

j=0

(Sj1)(t), w2(t) =

∞∑

j=0

w2
2j+1(t) =

∞∑

j=0

(S1S
j1)(t),(4.6)

where we recall the definition of the operator S in (3.12):

(Sf)(t) =

∫

x<y<t

eϕ(y)−ϕ(x)q2(y)(q3f)(x) dx dy ,

and we define the operator S1:

(S1f)(t) =

∫ t

−∞

eϕ(t)−ϕ(x)(q3f)(x) dx .

We are going to solve (ODE) rigorously and define the renormalised transmission
coefficient T−1

c in Subsection 4.2.2. Before that we give some preliminary estimates
for q, q2, q3, q4 and wn.

4.2.1. Preliminary estimates. We first claim the following L∞-estimate:

‖q‖L∞ . 1 + τ
1
2 ‖|q|2 − 1‖

1
2

l∞τ DU2 + ‖q′‖l∞τ DU2 , ∀τ > 0,

and in particular, ‖q‖L∞ . 1 + ‖q ‖l∞2 DU2 . 1 + Es(q).
(4.7)

Indeed, we notice that by the partition of unit (4.2), for any τ > 0, at each point
x ∈ R, there exists k ∈ Z such that the function χτ,k or χ̄τ,k with χ̄ = χ(·/2)
taking value 1 at point x, and thus ‖q‖L∞ ≤ sup k‖χτ,kq‖L∞ +sup k‖χ̄τ,kq‖L∞ . By
fundamental theorem of calculus: (χτ,kq)(x) =

∫ x
k−1
τ

χ′
τ,k(y)q(y) dy+

∫ x
k−1
τ

χτ,kq
′ dy ,

we derive (4.7) from Hölder’s inequality and (4.1) as follows:

|(χτ,kq)(x)| ≤
(∫ x

k−1
τ

|χ′
τ,k||q|2 dy

) 1
2
(∫ x

k−1
τ

|χ′
τ,k|dy

) 1
2
+

∣∣
∫ x

k−1
τ

χτ,kq
′ dy

∣∣

.
(∫ x

k−1
τ

|χ′
τ,k| (|q|2 − 1) dy +

∫ x

k−1
τ

|χ′
τ,k|dy

) 1
2
+ ‖q′‖l∞τ DU2

. (τ‖|q|2 − 1‖l∞τ DU2 + 1)
1
2 + ‖q′‖l∞τ DU2 .

By use of the fact (3.11) and (4.7) above, we derive immediately from the esti-
mates in (4.1) the following estimates for q and q2, q3, q4 defined in (∗):

Lemma 4.1. Let (λ, z) ∈ R, ζ = λ + z ∈ U , with τ = 2Im z > 0, ω = Im ζ > 0.
Let q ∈ Xs, s > 1

2 , q = (|q|2 − 1, q′) ∈ Hs−1 →֒ l21DU
2 and q2, q3, q4 be defined in

(∗). Then there exists a constant C0, depending only on (for any fixed τ1 > 0)

(4.8) ω−1, τ1‖|q|2 − 1‖l∞τ1DU2 , ‖q′‖l∞τ1DU2 , ‖q′‖l∞τ DU2

such that

‖q‖l∞τ V 2 ≤ C0, ‖qκ‖lpτDU2 ≤ C0‖q ‖lpτDU2 , κ = 2, 3, 4.

We are going to study the functions w1
2j(t), w

2
2j+1(t) in (4.6). For notational

simplicity we first introduce the function

ϕ̃ = ϕ− 2iRe zx = −τx+
∫ x

0

q4, τ = 2Im z > 0.
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If q ∈ l∞τ DU
2, then by Lemma 4.1 (with a possibly larger C0):

∥∥∥χτ,ke

∫ y
k
τ

q4 dx ∥∥∥
V 2

. e
C0‖ q ‖

l∞τ DU2 ,
∣∣∣e

∫ k
τ
k′
τ

q4 ∣∣∣ . e
C0‖ q ‖

l∞τ DU2 (k−k′)
.(4.9)

Therefore we have the following properties for the functions w2j(t), w2j+1(t):

Lemma 4.2. Assume the same hypothesis as in Lemma 4.1 and (with a possibly larger
C0 which depends only on (4.8))

(4.10) ‖q ‖l∞τ DU2 ≤ 1

2C0
.

Then the functions w2j , w2j+1 given in (4.6) are well-defined, depending analytically
on q ∈ l2τDU

2 and satisfying the following estimates (with an universal constant C):

‖w2j‖U2 ≤
(
C
|Re z|+ τ

τ

)j(‖q2‖l2τDU2‖q3‖l2τDU2

)j
,

‖w2j+1‖L∞ ≤
(
C
|Re z|+ τ

τ

)j+3/2(‖q2‖l2τDU2‖q3‖l2τDU2

)j‖q3‖l∞τ DU2 .

Proof. As w1
2j(t) = (Sj1)(t), we consider

‖Sf‖U2 =
∥∥∥
∫

x<y<t

(
e2iRe zyq2(y)

)
eϕ̃(y)−ϕ̃(x)

(
e−2iRe zx(q3f)(x)

)
dx dy

∥∥∥
U2

t

=
∥∥∥
(
e2iRe zyq2(y)

) ∫ y

−∞

eϕ̃(y)−ϕ̃(x)
(
e−2iRe zx(q3f)(x)

)
dx

∥∥∥
DU2

y

≤
∑

k

∥∥∥
(
e2iRe zyχτ,k(y)q2(y)

) ∫ y

y− 3
τ

eϕ̃(y)−ϕ̃(x)
(
e−2iRe zxχ̃τ,k(x)(q3f)(x)

)
dx

∥∥∥
DU2

y

+
∑

k

∥∥∥
(
e2iRe zyχτ,k(y)q2(y)

) ∫ y− 3
τ

−∞

∑

k′≤k−1

eϕ̃(y)−ϕ̃(x)
(
e−2iRe zxχτ,k′(x)(q3f)(x)

)
dx

∥∥∥
DU2

y

.

In the above, the first part on the righthand side can be bounded by (recalling (4.1))

∑

k

∥∥∥e2iRe zyχτ,k(y)q2(y)e
ϕ̃(y)−ϕ̃( k

τ
)
∥∥∥
DU2

y

∥∥∥
∫ y

y− 3
τ

eϕ̃( k
τ
)−ϕ̃(x)

(
e−2iRe zxχ̃τ,k(x)(q3f)(x)

)
dx

∥∥∥
V 2
y

.
∑

k

∥∥e2iRe z·χτ,kq2
∥∥
DU2

∥∥χ̃τ,ke
ϕ̃(y)−ϕ̃( k

τ
)
∥∥
V 2

∥∥χ̃τ,ke
ϕ̃( k

τ
)−ϕ̃(x)

∥∥
V 2

∥∥e−2iRe z·χ̃τ,k(q3f)
∥∥
DU2

.
( |Re z|+ τ

τ

)
‖χτ,kq2‖ℓ2

k
DU2‖χ̃τ,k(q3f)‖ℓ2

k
DU2

∥∥∥χ̃τ,ke
±

∫
x
k
τ

q4
∥∥∥
2

ℓ∞
k

V 2
,

where we have used (4.3) and ‖χ̃τ,ke
−τ(·−k

τ
)‖V 2 . 1, and the second part on the righthand

side can be bounded by
∑

k

∥∥∥e2iRe zyχτ,k(y)q2(y)e
ϕ̃(y)−ϕ̃( k

τ
)
∥∥∥
DU2

y

×
∑

k′≤k−1

eϕ̃( k
τ
)−ϕ̃( k′

τ
)
∥∥∥
∫ y− 3

τ

−∞

eϕ̃( k′

τ
)−ϕ̃(x)(e−2iRe zx(χτ,k′q3f)(x)

)
dx

∥∥∥
V 2
y

.
∑

k

∑

k′≤k−1

∥∥e2iRe z·χτ,kq2
∥∥
DU2

∥∥e−2iRe z·χτ,k′q3f
∥∥
DU2

∥∥∥χ̃τ,ke
±

∫ x
k
τ

q4
∥∥∥
2

V 2
e−(k−k′)

∣∣∣e
∫ k

τ
k′
τ

q4 ∣∣∣.

Under the smallness condition (4.10), by use of the inequality (4.9), we derive

‖S‖V 2 7→U2 .
|Re z|+ τ

τ
‖q2‖l2τDU2‖q3‖l2τDU2e

C0‖q ‖
l∞τ DU2 ≤ 2(|Re z|+ τ )

τ
‖q2‖l2τDU2‖q3‖l2τDU2 ,

and hence Lemma 4.2 holds for w2j = Sj1.
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Similarly we consider the operator S1 (noticing
∥∥χτ,ke

2iRe zt
∥∥
V 2 . 1 + |Re z|/τ ):

‖S1f‖L∞ . sup k

∥∥χτ,ke
2iRe zt

∥∥
V 2

∥∥χ̃τ,ke
−2iRe zxq3f

∥∥
DU2

∥∥∥χ̃τ,ke
±

∫ x
k
τ

q4
∥∥∥
2

V 2

+ sup k

∑

k′≤k−1

∥∥χτ,ke
2iRe zt

∥∥
V 2

∥∥χτ,ke
−2iRe zxq3f

∥∥
DU2

∥∥∥χ̃τ,ke
±

∫ x
k
τ

q4
∥∥∥
2

V 2
e−(k−k′)

∣∣∣e
∫ k

τ
k′
τ

q4 ∣∣∣

. (
|Re z|+ τ

τ
)
3
2 ‖q3‖l∞τ DU2‖f‖V 2e

C0‖ q ‖
l∞τ DU2 ,

and hence Lemma 4.2 holds for w2j+1 = S1S
j1. �

4.2.2. The renormalised transmission coefficient T−1
c

for q ∈ Xs. In order to emphasize
the dependence of the renormalised transmission coefficient T−1

c on q, we will denote
T−1
c (λ) = T−1

c (λ; q) in this subsection.

Proposition 4.2. Let q ∈ Xs, s > 1
2
, then the renormalised Lax equation (ODE) has a

unique solution w ∈ L∞.
We define the renormalised transmission coefficient as

T−1
c

(λ) = eΦ lim
x→∞

w1(x),

where Φ = − i
2z

∫
R

(|q|2−1)2

|q|2−ζ2
dx + 1

2zζ

∫
R

q̄q′(|q|2−1)

(|q|2−ζ2)
dx is given in (3.23). Then

• T−1
c

(λ; q) is a well-defined holomorphic function in (λ, z) ∈ R and depends an-
alytically on q ∈ Xs with respect to the analytic structure given in Theorem 6.2
below;

• When q − 1 ∈ S, the relation (3.19): T−1
c

(λ) = e−iM(2z)−1−iP(2zζ)−1

T−1(λ),
the properties (3.20): |T−1

c
(λ)| ≥ 1 if λ ∈ Icut = (−∞,−1] ∪ [1,∞), T−1

c
→

1 as |λ| → ∞, and the asymptotic expansions (3.21), (3.22) all hold true;
• Let q(t, x) ∈ C(I ;Xs) be a solution of the Gross-Pitaevskii equation (in Definition

1.1), then T−1
c

(λ; q(t)) is conserved on the existence time interval I.

• ReTc

−1(λ) = ReT−1
c

(λ̄) if (λ, z) = (iσ,±i τ
2
) ∈ R, τ ≥ 2, σ =

√
τ2

4
− 1.

Proof. Step 1. Resolution of (ODE).
If q ∈ Xs, s > 1

2
and there are the points (λ, z) ∈ R such that τ = 2Im z ≥ 2 and the

following smallness condition holds (with a possibly larger C0 than the ones in Lemmas
4.1 and 4.2)

(4.11) C0

( |Re z|+ τ

τ

) 1
2 ‖q ‖l2τDU2 ≤ 1

2
,

we have by Lemmas 4.1 and 4.2 that

‖wn‖L∞ ≤ |Re z|+ τ

τ

(
C0

( |Re z|+ τ

τ

) 1
2 ‖q ‖l2τDU2

)n
.

Hence (ODE) (or equivalently (4.6)) has a unique solution w =
∑

n≥0 wn ∈ L∞, depending

analytically on q ∈ l2τDU
2.

For general q ∈ Xs, s > 1
2
with Es(q) <∞, for any fixed point (λ, z) ∈ R, we can take

two points a0, a1 ∈ R such that the smallness condition (4.11) holds for q|(−∞,a0]∪[a1,∞),

by virtue of the embedding Hs−1 →֒ l21DU
2, s > 1

2
. We solve (ODE) as follows:

• The above analysis implies that we can solve (ODE) until the point a0: w(a0) =
b0;

• Recalling the change of variables u 7→ w in (3.16) which renormalises the Lax
equation (3.1) to (ODE), we do the change of variables w 7→ u to solve the Lax
equation (3.1) with the following initial data at a0

u(a0) = e
iz(a1−a0)+

∫ a1
a0

q1 dx 1

|q(a0)|2 − ζ2

(
−iζ q(a0)
q̄(a0) iζ

)
b0
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until the point a1: u(a1). This is possible since q ∈ Hs([a0, a1]), s >
1
2
;

• We finally solve again (ODE) with the initial data b1 =

(
−iζ q(a1)
q̄(a1) iζ

)
u(a1)

on the semiline [a1,∞). More precisely, we take w̃ =

(
0

e2iz(x−a1)b21

) ∣∣∣
[a1,∞)

such

that ẇ = w − w̃ satisfies

ẇx =

(
0 q2
q3 q4 + 2iz

)
ẇ + b21e

2iz(x−a1)

(
q2|[a1,∞)

q4|[a1,∞)

)
, ẇ|a1 =

(
b11
0

)
.

Then under the smallness condition (4.11) for q|[a1,∞), we follow exactly Lemma
4.2 7 to derive the unique solution ẇ. Hence the solution w = ẇ + w̃ ∈ L∞ with
w1 ∈ V 2 exists.

Step 2. Well-definedness of T−1
c .

When q ∈ Xs, s > 1
2
, then Φ < ∞ by Lemma 4.1. We can define the renormalised

transmission coefficient T−1
c (λ) = eΦ limx→∞ w1(x), which is holomorphic on the Riemann

surface (λ, z) ∈ R.

If q − 1 ∈ S , then by virtue of e
∫∞
−∞ q1T−1(λ) = limx→∞w1(x) in Subsection 3.4 and

the equality (3.18):
∫∞

−∞
q1 = − i

2z
M− i

2zζ
P − Φ, we have the relation (3.19): T−1

c (λ) =

e−iM(2z)−1−iP(2zζ)−1

T−1(λ) and hence the asymptotic expansions (3.21) and (3.22) follow
from Proposition 3.1. The properties (3.20): |T−1

c (λ)| ≥ 1 if λ ∈ Icut = (−∞,−1]∪[1,∞),
T−1
c → 1 as |λ| → ∞, and the symmetry ReTc

−1(λ) = ReT−1
c (λ̄) for (λ, z) = (iσ,±i τ

2
) ∈

R follow from the results in Subsection 3.2.
Fix (λ, z) ∈ R. Provided with the analytic structure of Xs in Theorem 6.2 below,

for any neighbourhood Bs
r(q) of q, we can choose a0, a1 (depending on Es(q), r) such

that the smallness condition (4.11) holds for p|(−∞,a0]∪[a1,∞) for all p ∈ Bs
r(q). There-

fore the corresponding solution wp for (ODE) depends analytically on
(
p|(−∞,a0],p|[a0,a1],

p|[a1,∞)

)
∈ l2τDU

2 ×Hs([a0, a1])× l2τDU
2 in Bs

r(q) and hence T−1
c (λ; ·) depends analyti-

cally on q ∈ Xs.

Step 3. Conservation of T−1
c by the Gross-Pitaevskii flow.

If initially q0−1 ∈ S , then the Gross-Pitaevskii equation (1.1) has a unique global-in-time
solution q ∈ C(R;Z1) (see (1.3) for the definition of Zhidkov’s space Z1) by Zhidkov’s well-
posedness result. By Faddeev-Takhtajan [14], (q − 1)(t, ·) ∈ S and M,P , T−1(λ) are all

conserved by the Gross-Pitaevskii flow, and hence T−1
c (λ) = e−iM(2z)−1−iP(2zζ)−1

T−1(λ)
is also conserved.

Now let q ∈ C(I ;Xs), s > 1
2
be the solution of the Gross-Pitaevskii equation (1.1) with

the initial data q0 ∈ Xs on the time interval I . Then by the density result in Theorem
1.1, we take {q0,n} ⊂ 1 + S such that ds(q0,n, q0) → 0 as n → ∞. By the continuity of
the Gross-Pitaevskii flow in Theorem 2.1, for all t ∈ I , the corresponding solutions qn, q
satisfy ds(qn(t), q(t)) → 0 and hence T−1

c (qn(t)) → T−1
c (q(t)) as n→ ∞ by the analyticity

7 We can solve the ODE for ẇ by the following iterative procedure:

ẇ =
∞
∑

n=0

ẇn, ẇn+1 =

(

∫ t
a1

q2ẇ2
n dx

∫ t
a1

eϕ(t)−ϕ(x)q3ẇ1
n dx

)

, ẇ0 =

(

b11 + b21
∫ t
a1

e2iz(x−a1)q2 dx

b21
∫ t
a1

eϕ(t)−ϕ(x)+2iz(x−a1)q4 dx

)

.

Although ẇ2
0 6= 0, there is an exponential decay in the integrand and the same estimates as in

Lemma 4.2 imply the well-definedness of ẇn and ẇ. For example, we can control straightforward

ẇ0 =

(

b11 + b21
∫

a1<x1<t
e2iz(x1−a1)q2dx1

b21
∫

a1<x1<t e
2iz(t−a1)+

∫ t
x1

q4q4dx1

)

,

ẇ1 =

(

b21
∫

a1<x1<y1<t
e
2iz(y1−a1)+

∫ y1
x1

q4q2(y1)q4(x1)dx1dy1

b11
∫

a1<x1<t e
ϕ(t)−ϕ(x1)q3 + b21

∫

a1<x1<y1<t e
ϕ(t)−ϕ(y1)+2iz(x1−a1)q2(x1)q3(y1)dx1dy1

)

in terms of ‖q ‖l2τDU2 .
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of T−1
c (λ; ·) above. The conservation of T−1

c (qn) along the Gross-Pitaevskii flow implies
the conservation of T−1

c (q(t)) on the existence time interval I . �

4.3. Superharmonic function G on the upper half-plane. If q − 1 ∈ S , then G(z)
defined in (3.25) is a well-defined nonnegative superharmonic function on the z-upper
half-plane. Indeed, as |T−1

c (λ)| ≥ 1 if λ ∈ Icut = (−∞,−1] ∪ [1,∞), the trace of G(z) on
the real line is non negative:

µ(ξ) =
1

2

∑

±

(2ξ)2 ln
∣∣T−1

c

∣∣(±
√
ξ2 + 1

)
≥ 0, ξ ∈ R .

On the other hand, since the meromorphic function Tc has only simple poles λm ∈
(−1, 1), we can take a small enough neighborhood Vm of λm such that Tc(λ) = A0(λ) +
A1(λ)
λ−λm

on Vm, with A1 6= 0, A0 holomorphic functions on V. For λm 6= 0, λ ∈ Vm and

correspondingly for z ∈ Um = {z ∈ U : (λ, z) ∈ R, λ ∈ Vm}, we can write (noticing
λ2 − λ2

m = z2 − z2m, zm = i
√
1− λ2

m ∈ i(0, 1])

lnTc(λ) + lnTc(−λ) = ln
(
A0(λ) (λ− λm) + A1(λ)

)
+ ln

λ+ λm

z + zm
+ ln

1

z − zm
+ lnTc(−λ).

For λm = 0, zm = i, we can still write lnTc(λ) + lnTc(−λ) in V0 as

ln
(
A0(λ)λ+ A1(λ)

)
+ ln

1

z + zm
+ ln

1

z − zm
+ ln

(
A0(−λ)λ− A1(−λ)

)
.

Hence −∆zG = ∆zRe 1
2

∑
λ=±

√
1+z2

(
4z2 lnTc(λ)

)
is a nonnegative measure (3.26) on U .

As T−1
c → 1 as |λ| → ∞, we derive G ≥ 0 on the whole upper half plane by maximum

principle.
Let q ∈ Xs, then by the density argument as in the last part of last subsection, we

deduce that G defined in (3.25) still satisfies G ≥ 0, −∆G ≥ 0 on the upper half plane.
Since the meromorphic function Tc(q) has countably many simple poles {λm} ⊂ C \Icut,
the fact −∆G = −π∑

(2z)2δz=zm ≥ 0 implies zm ∈ i(0, 1] and hence λm ∈ (−1, 1). This
completes the proof of (3.24) for general q ∈ Xs. Theorem 3.1 follows from Proposition
4.2.

5. The energies

In this section we will formulate the energies Es
τ (q), τ ≥ 2 for q ∈ Xs, s > 1

2
in terms

of the renormalised transmission coefficient T−1
c (λ) defined in Theorem 3.1:

Theorem 5.1. Let q ∈ Xs, s > 1
2
. Let T−1

c
(λ) be the renormalised transmission

coefficient which is a holomorphic function on the Riemann surface R ∋ (λ, z) and
has countably many simple zeros {λm} ⊂ (−1, 1) given in Theorem 3.1. Let G(z) =
1
2

∑
± Re

(
4z2 lnT−1

c
(±

√
z2 + 1)

)
be the nonnegative superharmonic function on the up-

per half plane U, with −∆zG = −π∑m(2z)2δz=zm ≥ 0, zm = i
√
1− λ2

m ∈ i(0, 1], given
by Theorem 3.1.

Then for N = [s − 1], G(iτ/2) has the following finite expansion as τ → ∞ (recalling
the notations Hl in the asymptotic expansion (1.13)):

(5.1) G(
iτ

2
) =

N∑

l=0

(−1)lH2l+2τ−2l−1 +H>2N+2(
iτ

2
), H>2N+2 = o(τ−2s+1),

such that the trace of G on the real line µ exists, the measure (1+ ξ2)Nµ is finite and the

following trace formula for H2l+2, 0 ≤ l ≤ N holds:

(5.2) H2l+2 =
1

π

∫

R

ξ2l+2 1

2

∑

±

ln |T−1
c

(±
√
ξ2/4 + 1)|dξ − 1

2l + 3

∑

m

Im (2zm)2l+3.
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We define a family of energy functionals (Es
τ ′)τ ′≥2 : Xs 7→ [0,∞) as follows:

Es
τ ′(q) =− 2

π
sin(π(s− 1))

∫ ∞

τ ′

(τ 2 − τ ′2)s−1
(
G(i

τ

2
)−

N∑

l=0

(−1)lH2l+2τ−2l−1
)
dτ

+
N∑

l=0

τ ′2(s−1−l)

(
s− 1
l

)
H2l+2, with N ≤ s− 1 < N + 1,(5.3)

such that Es
τ ′ is analytic in q ∈ Xs and we have the following trace formula for Es

τ ′ :

Es
τ ′ =

1

π

∫

R

(ξ2 + τ ′2)s−1dµG( ·
2
) −

∑

m

Im

∫ 2zm

0

w2(w2 + τ ′2)s−1dw.(5.4)

Then there exists a universal constant C ≥ 2 (depending only on s) such that whenever
(q, τ0) ∈ Xs × [C,∞) satisfying

1

τ0
‖q ‖l2τ0DU2 <

1

2C
, with ‖q ‖2l2τ0DU2 = ‖|q|2 − 1‖2l2τ0DU2 + ‖q′‖2l2τ0DU2 ,(5.5)

Es
τ0(q) is equivalent to the square of the energy norm (Es

τ0(q))
2 in the sense of (1.19):

(5.6) |Es
τ0 − (Es

τ0)
2| ≤ C

τ0
‖q ‖l2τ0DU2(Es

τ0)
2.

5.1. The framework. We are going to introduce the assumptions and the notations
which will be used throughout this section.

5.1.1. Assumption. We restrict ourselves on the imaginary axis in this section:

(λ, z) = (iσ, iτ/2) ∈ R, τ ≥ τ0 ≥ 2, σ =
√
τ 2/4− 1 ∈ [τ/2− 1, τ/2),

ζ = λ+ z = iω, ω = σ + τ/2 ∈ [τ/2, τ ).
(5.7)

Here τ0 ≥ 2 is a constant (to be chosen sufficiently large later), such that the following
assumption holds:

(5.8)
∣∣|q|2 − 1

∣∣ ≤ 1

64
τ0

2, q ∈ Xs, s >
1

2
.

5.1.2. Functions q2, q3, q4. We evaluate the functions q2, q3, q4 defined in (∗) on the imag-
inary axis to arrive at

q2 = − 1

ω−2|q|2 + 1
(
1

ω
q′) +

1

ω

q

ω−2|q|2 + 1

( 1
ω
(|q|2 − 1)

)
,

q3 =
1

ω−2|q|2 + 1
(
1

ω
q̄′) +

1

ω

q̄

ω−2|q|2 + 1

( 1
ω
(|q|2 − 1)

)
,

q4 =
−2

ω−2|q|2 + 1

( 1
ω
(|q|2 − 1)

)
+

( 1
ω
q

ω−2|q|2 + 1
(
1

ω
q̄′)−

1
ω
q̄

ω−2|q|2 + 1
(
1

ω
q′)

)
.

Notice that q2, q3, q4 are all linear combinations of the components in

(5.9) Q =
1

τ
(|q|2 − 1, q′, q̄′),

up to coefficients being some polynomials of the following form

(5.10) P = P
( 1

ω−2|q|2 + 1
,
1

τ
q,

1

τ
q̄,

1

τ 2
(|q|2 − 1)

)
,

and for notational simplicity, we denote O to be the following set:

(5.11) O :=
{
P · 1

τ
(|q|2 − 1), P · 1

τ
q′, P · 1

τ
q̄′
∣∣∣P is any polynomial of form (5.10)

}
.
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Under the assumption (5.8), we are going to estimate ‖qκ‖l2τDU2 as follows (similar but

more accurate as the estimates in Lemma 4.1):

‖qκ‖l2τDU2 . Cτ cτ , κ = 2, 3, 4, with Cτ = 1 +
1

τ
‖q′‖l∞τ DU2 ,

cτ (q) =
1

τ
‖q ‖l2τDU2(R) =

1

τ

(∥∥|q|2 − 1
∥∥2

l2τDU2 +
∥∥∂xq

∥∥2

l2τDU2

) 1
2 := ‖Q‖l2τDU2 .

(5.12)

5.1.3. Asymptotic expansion of lnT−1
c

on the imaginary axis. Recall the aymptotic ex-
pansions of T−1

c (λ) and lnT−1
c in Theorem 3.1:

T−1
c (λ) = eΦ

(
1 +

∞∑

j=1

T2j

)
, T2j = j ,

lnT−1
c (λ) = Φ + T2 +

∞∑

j=2

T̃2j , Φ(λ) := − i

2z

∫

R

(|q|2 − 1)2

|q|2 − ζ2
dx +

1

2zζ

∫

R

q̄q′(|q|2 − 1)

(|q|2 − ζ2)
dx ,

where T̃2j is linear combination of connected symbols 2j of degree 2j. Recall the symbols
in Subsection 3.3:

(5.13) j =

∫

x1<y1<···<xj<yj

j∏

n=1

eϕ(yn)−ϕ(xn)q3(xn)q2(yn) dx dy , ϕ(x) = −τx+
∫ x

0

q4,

2j =

∫

t1<···<t2j

2j−1∏

n=1

eδn(ϕ(tn+1)−ϕ(tn))qκ1(t1) · · · qκ2j (t2j)dt,(5.14)

for some δn ∈ {1, · · · , j} with δ1 = δ2j−1 = 1 and κn ∈ {2, 3} with κ1 = 3, κ2j = 2. For
notational simplicity, we also introduce the following symbol

=

∫

x<y

(eϕ(y)−ϕ(x) − e−τ(y−x))q2(y)q3(x) dx dy .(5.15)

We will rewrite (Φ + T2) in the asymptotic expansion of lnT−1
c (λ) above in Appendix

A as:

Φ + T2 = T̃2 + T̃3,

where T̃2, T̃3 identify the quadratic and cubic terms (in terms of elements in the set O) in
the expansion of lnT−1

c respectively. More precisely we will prove in Appendix A that

Lemma 5.1. The asymptotic expansion (3.22) for the logarithm of the transmission co-
efficient lnT−1

c
reads on the imaginary axis (5.7) as follows

(5.16) lnT−1
c

(iσ) = T̃2(iσ) + T̃3(iσ) +
∑

j≥2

T̃2j(iσ),

where T̃2 identifies the quadratic part in the expansion of lnT−1
c

(iσ):

T̃2(iσ) =
−1

τ 2

∫

x<y

e−τ(y−x)
(
(|q|2 − 1)(y)(|q|2 − 1)(x) + q′(y)q̄′(x)

)
dx dy

− i
τ + 2ω

τ 3ω2

∫

R

Im (q′q̄)(|q|2 − 1) dx

+
1

τ 3ω

∫

x<y

e−τ(y−x)
(
q′(y)q̄′(x)− q̄′(y)q′(x)

)
dx dy ,

(5.17)
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T̃3(iσ) identifies the cubic part and reads as linear combination of finite integrals of the
following type

∫

R

( |q|2 − 1

τ 2
)2
h1 dx , ,

∫

x<y or x>y

e−τ |y−x|
( |q|2 − 1

τ 2
h1

)
(y)h2(x) dx dy ,

∫

x<y

e−τ(y−x)h1(y)

∫ y

x

(q′ or q̄′

τ

)
(m) dmh2(x) dx dy , h1, h2 ∈ O,

(5.18)

and T̃2j , j ≥ 2 remains the same linear combination of integrals 2j .

Remark 5.1. If q − 1 ∈ S, then by integration by parts
∫
x<y

e−τ(y−x)f(y)g(x) dx dy =
1
τ

∫
R
fg − 1

τ

∫
x<y

e−τ(y−x)f(y)g′(x) dx dy we can expand T̃2(iσ) as

T̃2(iσ) = − 1

τ 3

∫

R

(
(|q|2 − 1)2 + |q′|2

)
dx +

1

τ 4

∫

R

(
q′q̄′′ − 3iIm (q′q̄)(|q|2 − 1)

)
dx +O(

1

τ 5
),

while T̃3(iσ) = O( 1
τ5 ), T2j(iσ) = O( 1

τ3j ), T̃2j(iσ) = O( 1
τ4j−1 ), as τ → ∞. Recalling

lnT−1(λ) = iM(2z)−1 + iP(2zζ)−1 + lnT−1
c

(λ), we derive the finite expansion until the
fourth-order for lnT−1(iσ) = 1

τ
M − i 1

τ2P − 1
τ3 H2 + i 1

τ4H3 + O( 1
τ5 ), as τ → ∞, which

can be compared with (1.13).

5.2. Trace formula and the organisation of the section. In this section we will recall
the trace formula (from e.g. [2, 31]) for the nonnegative superharmonic functions G on the
upper half-plane U given in Theorem 3.1. As a consequence we derive the formulation of
the energy norm Es

τ0(q) in terms of the quadratic term T̃2(iσ), as well as the equivalence
relation (5.6) between Es

τ0(q) and the energy Es
τ0(q) (defined in (5.3)).

5.2.1. Trace formula. Recall the superharmonic function

G(z) =
1

2

∑

±

Re
(
4z2 lnT−1

c (±
√
z2 + 1)

)

defined on the upper half-plane U in Theorem 3.1, with the nonnegative Radon measure
µ as the trace of G on the real line R and the nonnegative Radon measure ν = −∆zG =
−π∑m(2z)2δz=zm on the upper half-plane U , zm ∈ i(0, 1]. We define

Ξs(z) = Im

∫ z

0

w2(w2 + τ0)
sdw

for z in the upper half plane.

Lemma 5.2. The followings hold true:

• Representation of G through µ, ν.
The function G can be represented in terms of the Poisson kernel and the funda-
mental solution of the Laplace equation as follows:

(5.19) G(z) =
1

π

∫

R

Im z

|z − ξ|2 dµ(ξ) +
1

2π

∫

U

ln
∣∣∣
z − ζ̄

z − ζ

∣∣∣dν(ζ).

• Expansion of G at +i∞.
If two measures (1+|ξ|2)Nµ, Im z(1+|z|2)Nν are finite, then we have the following
precise expansion of G at +i∞:

(5.20) G(
iτ

2
) =

N∑

l=0

(−1)lH2l+2τ−2l−1 +H>2N+2, H>2N+2 = o(τ−2N−1),

where H2l+2 is given in (5.2) and

H>2N+2 = (−1)N+1
( 1

π

∫

R

ξ2N+2

τ 2 + ξ2
dµG( ·

2
) −

∑

m

Im

∫ 2zm

0

w2N+4

τ 2 +w2
dw

)
τ−2N−1.
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• Trace formula of G.
Let N = [s− 1]. Then the following trace formula holds

− 2 sin(π(s− 1))

π

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

(
G(
iτ

2
)−

N∑

l=0

(−1)lH2l+2τ−2l−1
)
dτ

+
N∑

l=0

τ
2(s−1−l)
0

(
s− 1
l

)
H2l+2 =

1

π

∫

R

(ξ2 + τ 20 )
s−1dµG(·/2) −

∑

m

Ξs−1(2zm),

(5.21)

whenever either side is finite.

We have the following description of the energy norm by the trace formula:

Lemma 5.3. Let q ∈ Xs, s > 1
2
, then the energy norm defined in (1.16):

(Es
τ0(q))

2 =
∥∥q

∥∥2

Hs−1
τ0

=

∫

R

(ξ2 + τ 20 )
s−1(| ̂|q|2 − 1|2 + |q̂′|2

)
(ξ) dξ

can be identified as the integral of the quadratic term T̃2(iσ) in (5.17) as

(Es
τ0(q))

2 =− 2

π
sin(π(s− 1))

∫ ∞

τ0

(τ 2 − τ 20 )
s−1H>2N+2

2 (iσ) dτ

+
N∑

l=0

(
s− 1
l

)
τ
2(s−1−l)
0 H2l+2

2 , N = [s− 1],

(5.22)

where H2l+2
2 =

∫
R
ξ2l

(∣∣ ̂|q|2 − 1
∣∣2 + |q̂′|2

)
(ξ) dξ . τ

−2(s−1−l)
0 (Es

τ0(q))
2 and

H>2N+2
2 (iσ) = Re (4z2T̃2)(iσ)−

N∑

l=0

(−1)lH2l+2
2 τ−2l−1 = o(τ 1−2s), τ → ∞.

Proof. The proof (with τ0 = 1) in [31] works here and we give here the proof for readers’
convenience. We make use of the unitary Fourier transform and inverse Fourier transform

f̂(ξ) =
1√
2π

∫

R

e−ixξf(x) dx , f(x) =
1√
2π

∫

R

eixξf̂(ξ) dξ,

to write for any function f ∈ Hs,

Re

∫

x<y

e−τ(y−x)f̄(x)f(y) dx dy =
1

2π
Re

∫

R3

1

τ − iξ
eiyη−iyξf̂(η)f̂(ξ) dy dξ dη

= Re

∫

R

1

τ − iξ
f̂(ξ)f̂(ξ) dξ =

∫

R

τ

τ 2 + ξ2
|f̂(ξ)|2 dξ,

where the righthand side is the value at the point iτ of the harmonic function on the upper

half plane with the trace π|f̂(ξ)|2 on the real axis. Therefore noticing from the definition
(5.17) that

Re (4z2T̃2)(iσ) =

∫

x<y

e−τ(y−x)
(
(|q|2 − 1)(y)(|q|2 − 1)(x) + q′(y)q̄′(x)

)
dx dy ,

let f = |q|2 − 1 or q′ above, then (5.22) follows from the trace formula (5.21). �

5.2.2. Ideas and the organisation of the rest of this section. Recall the notations on the
imaginary axis (5.7) and the expansion (5.16):

lnT−1
c (iσ) = T̃2(iσ) + T̃3(iσ) +

∑

j≥2

T̃2j(iσ).
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Recall the energy Es
τ0 defined in (5.3) (noticing the symmetry Re lnT−1

c (iσ) = Re lnT−1
c (−iσ)

in (3.24) and hence G(i τ
2
) = Re

(
4z2 lnT−1

c

)
(iσ)):

Es
τ0 =− 2

π
sin(π(s− 1))

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

(
Re

(
4z2 lnT−1

c

)
(iσ)−

N∑

l=0

(−1)lH2l+2τ−2l−1
)
dτ

+
N∑

l=0

τ
2(s−1−l)
0

(
s− 1
l

)
H2l+2.

Recall the formulation of the energy norm (Es
τ0)

2 in (5.22).

In order to show the equivalence (5.6) between Es
τ0 and (Es

τ0)
2, it suffices to estimate,

if s ∈ ( 1
2
, 3
2
) such that [s − 1] < 1, their difference |Es

τ0 − (Es
τ0)

2| which concerns cubic or

higher order terms in the expansion of lnT−1
c (iσ):

(5.23) |Es
τ0 − (Es

τ0)
2| =

∣∣∣
2

π
sin(π(s− 1))

∫ ∞

τ0

(τ 2 − τ 20 )
s−1Re

(
4z2

(
T̃3 +

∑

j≥2

T̃2j

))
(iσ) dτ

∣∣∣

by Ccτ (E
s
τ0)

2 whenever cτ <
1
2C

.

If s ≥ 3
2
is large enough 8, then we also have to do finite expansions for T̃3(iσ) and

T̃2j(iσ), 2 ≤ j ≤ s until k-th order, k = [2s]:

τ 2T̃3(iσ) =

k∑

l=3

Hl
3τ

−l+1 +H>k
3 (iσ), τ 2T̃2j(iσ) =

k∑

l=2j

Hl
2jτ

−l+1 +H>k
2j (iσ) as σ → ∞,

such that the difference above (5.23) is replaced by

|Es
τ0 − (Es

τ0)
2| =

∣∣∣
2

π
sin(π(s− 1))

∫ ∞

τ0

(τ 2 − τ 20 )
s−1Re

(
H>k

3 +
∑

2≤j≤s

H>k
2j

+ τ 2
∑

j>s

T̃2j

)
(iσ) dτ −

[s−1]∑

l=1

τ
2(s−1−l)
0

(
s− 1
l

)
Re

(
H2l+2

3 +
∑

2≤j≤s

H2l+2
2j

)∣∣∣.(5.24)

We are going to follow the strategy and make use of the estimates in Section 6, [31] to
control the differences (5.23) and (5.24). The rest of this section is organised as follows:

• We establish the estimates for high order terms T̃2j , j > s (and T̃3 if s ∈ ( 1
2
, 3
2
))

and low order terms T̃3, T̃2j , 2 ≤ j < s for s > 3
2
in Subsections 5.3 and 5.4

respectively;
• We complete the proof of Theorem 5.1 in Subsection 5.5.

5.3. High order terms. We are going to derive the estimates for high order terms in
this section, which can be viewed as a more accurate version of the estimates in Section
4.2 on the imaginary axis setting:

• We derive first some preliminary estimates for q2, q3, q4, P and then the estimates

for the integrals j ,2j , in Subsection 5.3.1;
• We make use of these estimates to control the high order terms in Subsection

5.3.2, which can control the difference (5.23) when s ∈ ( 1
2
, 3
2
).

We will use the estimates (4.1) and (4.4) freely through this section.

8 Recalling Remark 5.1: H2
3 = 0, we indeed have to do finite expansions only when s ≥ 2.
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5.3.1. Preliminary estimates. Recall the notations in Subsection 5.1 and we are going to

estimate q2, q3, q4, P , j , 2j , , in terms of

Cτ = 1 +
1

τ
‖q′‖l∞τ DU2 and ‖q ‖lpτDU2 =

∥∥(‖|q|2 − 1‖lpτDU2 , ‖q′‖lpτDU2

)∥∥
ℓp
.

Lemma 5.4. Assume (5.7) and (5.8): (λ, z) = (iσ, iτ/2) ∈ R, τ ≥ τ0 ≥ 2, ζ = λ+z = iω,
ω ∈ [ τ

2
, τ ) and q ∈ Xs, s > 1

2
such that

∣∣|q|2 − 1
∣∣ ≤ 1

64
τ0

2.
Then the following estimates hold for P defined in (5.10) and for p ∈ [1,∞]:

‖P‖l∞τ V 2 . Cτ , ‖qκ‖lpτDU2 + ‖ 1

τ 2
(|q|2 − 1)‖lpτU2 .

Cτ

τ
‖q ‖lpτDU2 , κ = 2, 3, 4.

Proof. We firstly derive straightforward from the assumption (5.8) that

‖q‖l∞τ V 2 . ‖q‖L∞ + ‖q′‖l∞τ DU2 . τ (1 + τ−1‖q′‖l∞τ DU2) = τCτ .

Recalling the partition of unity (4.2), we have
∥∥∥

1

ω−2|q|2 + 1

∥∥∥
l∞τ V 2

≤ 1 + sup
k

∥∥∥
χτ,k

ω−2|q|2 + 1

∥∥∥
V 2

≤ 1 + 2 sup
k

sup
k−1
τ

=t0<t1<···<tN= k+1
τ

(N−1∑

j=0

(
(χτ,k(tj+1)− χτ,k(tj)

)2

+
(
ω−2(|q(tj+1)|2 − |q(tj)|2)

)2) 1
2
. 1 + τ−1‖q′‖l∞τ DU2 = Cτ ,

where we used
∣∣|q|2 − 1

∣∣ ≤ 1
64
τ0

2 and |q(tj+1)− q(tj)| . ‖q′‖l∞τ DU2 . Similarly we have the

same estimate for 1
τ2 (|q|2 − 1) and hence for the polynomial P . Therefore the estimates

for qκ, κ = 2, 3, 4 and ‖ 1
τ2 (|q|2 − 1)‖lpτU2 follow from (4.1) and (4.4). �

We claim the following estimates similar as (4.9) (recalling χτ,k in the partition of unity
(4.2) and the assumption (5.8)):

∥∥∥χτ,k

(
e

∫ x
k
τ

q4dx
′

− 1
)∥∥∥

V 2
. Cτ c̃τ,k,

∥∥∥χτ,ke

∫ x
k
τ

q4dx
′∥∥∥

V 2
. 1,

∣∣∣e
∫ k

τ
k′
τ

q4dx

− 1
∣∣∣ . e

1
2
(k−k′)Cτ

k∑

k′′=k′

c̃τ,k′′ ,
∣∣∣e

∫ k
τ
k′
τ

q4dx∣∣∣ . e
1
4
(k−k′), k′ ≤ k − 1,

(5.25)

with c̃τ,k = 1
τ

(
‖χ̃τ,k(|q|2 − 1)‖DU2 + ‖χ̃τ,kq

′‖DU2

)
, χ̃ = χ( 1

12
·). Indeed, we write

q4 = a+ ib, a = Re q4 =
−2(|q|2 − 1)/ω

ω−2|q|2 + 1
, b = Im q4 =

2Im (qq̄′)/(ω2)

ω−2|q|2 + 1
.

Since we derive from (5.8) that
∥∥χ̄τ,k(x)

∫ x
k
τ
adx ′

∥∥
V 2 ≤ 8

τ
‖a‖L∞ ≤ 1

2
with χ̄ = χ( 1

2
·)

supported on [− 8
3
, 8
3
] such that χ̄χ = χ, we have the following estimate from Lemma 5.4:

∥∥χτ,k(x)
(
e

∫ x
k
τ

a dx ′

− 1
)∥∥

V 2 .
∥∥∥χ̄τ,k(x)

∫ x

k
τ

a dx ′
∥∥∥
V 2

.
Cτ

τ

∥∥χ̃τ,k(|q|2 − 1)
∥∥
DU2 .

On the other hand, since |eic| ≤ 1, c ∈ R, we have

∥∥∥χτ,k(x)
(
e
i
∫
x
k
τ

b dx ′

− 1
)∥∥∥

V 2
.

∥∥∥χ̄τ,k(x)

∫ x

k
τ

bdx ′
∥∥∥
V 2

.
Cτ

τ

∥∥χ̃τ,kq
′
∥∥
DU2 .

Then the first line of the estimate (5.25) follows. Similarly we have the second line of

(5.25) for k′ ≤ k−1: We derive straightforward from (5.8) that
∣∣e

∫ k
τ
k′
τ

q4 dx ∣∣ ≤
∣∣e

∫ k
τ
k′
τ

a dx ∣∣ ≤
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e
1
4
(k−k′), and hence by Lemma 5.4

∣∣∣e
∫ k

τ
k′
τ

q4 dx

− 1
∣∣∣ ≤ e

1
4
(k−k′)

∣∣∣
∫ k

τ

k′

τ

q4 dx
∣∣∣ .

(
e

1
4
(k−k′)(k − k′)

)
Cτ

k∑

k′′=k′

c̃τ,k′′ .

Therefore we have the following estimates for j ,2j ,:

Lemma 5.5. Assume the same hypothesis as in Lemma 5.4. Then we have the following
estimates:

| j | . (‖q2‖l2τDU2‖q3‖l2τDU2)j , |2j | . max{‖q2‖l2jτ DU2 , ‖q3‖l2jτ DU2}2j ,

|| . Cτ

τ
‖q ‖l3τDU2‖q2‖l3τDU2‖q3‖l3τDU2 .

(5.26)

Proof. We follow the decomposition idea in the proof of Lemma 4.2 to derive that
∥∥∥
∫

x<y<t

(eϕ(y)−ϕ(x) − e−τ(y−x))g(y)h(x) dx dy
∥∥∥
U2

t

.
∑

k

∥∥∥
∫ y

y− 3
τ

(χτ,kg)(y)e
−τ(y−x)

(
e

∫ y
k
τ

q4
− 1 + e

∫ y
k
τ

q4
(e

∫ k
τ

x q4 − 1)
)
(χ̃τ,kh)(x) dx

∥∥∥
DU2

y

+
∑

k′≤k−1

e−(k−k′)
∥∥∥
∫ y− 3

τ

−∞

(χτ,kg)(y)
(
e

∫ y
k
τ

q4
− 1 + e

∫ y
k
τ

q4
(e

∫ k
τ
k′
τ

q4

− 1)

+ e

∫ y
k
τ

q4
e

∫ k
τ
k′
τ

q4

(e
∫ k′

τ
x q4 − 1)

)
(χτ,k′h)(x) dx

∥∥∥
DU2

y

,

and hence we take g = q2 and h = q3 to arrive at the estimate for || in (5.26) by virtue
of the claim (5.25).

Similarly, since eϕ(y)−ϕ(x) = e−τ(y−x)e

∫ y
k
τ

q4
e

∫ k
τ
k′
τ

q4

e
∫ k′

τ
x q4 , we have the following esti-

mate for the operator S (defined in (3.12)) from the claim (5.25):

‖S‖V 2 7→U2 . ‖q2‖l2τDU2‖q3‖l2τDU2 , S(f)(t) =

∫

x<y<t

eϕ(y)−ϕ(x)q2(y)(q3f)(x) dx dy ,

and hence the estimate for j in (5.26) follows:

| j | = | lim
t→∞

(Sj1)(t)| ≤ ‖Sj1‖V 2 ≤ (C‖q2‖l2τDU2‖q3‖l2τDU2)j .

We apply the above estimate for the operator S iteratively to arrive at

‖S2j‖V 2 7→U2 . max{‖q2‖l2jτ DU2 , ‖q3‖l2jτ DU2}2j , for the operator

S2j(f)(t) =

∫

t1<···<t2j<t

2j−1∏

n=1

eδn(ϕ(tn+1)−ϕ(tn))qκ1(t2j) · · · (qκ2j f)(t1)dt1 · · · dt2j ,

where κn ∈ {2, 3}, δn ∈ {1, · · · , j}, and hence the estimate for 2j in (5.26) follows. �

5.3.2. Estimates for high order terms. Recall (1.15), (1.16), (5.9) and (5.12):

q = (|q|2 − 1, q′), Es
τ = ‖q ‖

Hs−1
τ

, Cτ = 1 +
1

τ
‖q′‖l∞τ DU2 ,

Q =
1

τ
(|q|2 − 1, q′, q̄′), cτ =

1

τ
‖q ‖l2τDU2 = ‖Q‖l2τDU2 ,

and the scaling invariance property (1.18):

Es
τ0 = τ

s− 1
2

0 ‖qτ0
‖Hs−1 , ‖f‖lpτDU2 = ‖fτ0‖lp

τ̃
DU2 , fτ =

1

τ
f(

·
τ
), τ̃ :=

τ

τ0
.(5.27)
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We are going to give the estimates for high order terms in the expansion of lnT−1
c in

Lemma 5.1: T̃2j , j > s if s > 3
2
or T̃3 and T̃2j , j > s if s ∈ ( 1

2
, 3
2
), which will be used to

control the energy difference |Es
τ0 − (Es

τ0)
2| in (5.23) and (5.24). Indeed, after rescaling,

the estimates in Sections 5, 6 in [31] work well here and we simply make use of them to
derive the estimates. We refer the interested readers there for more detailed analysis.

Proposition 5.1. Assume (5.7) and (5.8). For j ≥ 1, T2j = j and for j ≥ 2, T̃2j is

finite linear combination of integrals 2j . T̃3 is finite linear combination of cubic terms in
(5.18).

Then there exist a constant C and a constant Cj depending on j ≥ 2 such that

|1j≥1T2j(iσ)|+ |1j≥2T̃2j(iσ)| ≤ (CCτ‖Q‖l2τDU2)2j ,

|1j≥2T̃2j(iσ)| ≤ Cj

(
Cτ‖Q‖

l
2j
τ DU2

)2j
,

|T̃3(iσ)| ≤
(
CCτ‖Q‖l3τDU2

)3
.

(5.28)

If we assume furthermore (with a possibly larger C depending on s)

(5.29) cτ0 =
1

τ0
‖q ‖l2τ0DU2 ≤ 1

C
,

we have for non-half integer s > 1
2
that

∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2

∑

j≥2s−1

(∣∣T2j(iσ)
∣∣+ 1j≥2

∣∣T̃2j(iσ)
∣∣
)
dτ ≤ Cc

2[2s]−2
τ0

[2s] + 1− 2s
(Es

τ0)
2,(5.30)

∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2

∑

s≤j<2s−1

∣∣1j≥2T̃2j(iσ)
∣∣dτ ≤ Cc

2[s]
τ0

[s] + 1− s
(Es

τ0)
2,(5.31)

and in particular when s ∈ ( 1
2
, 3
2
), we have

∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2

(∣∣T̃3(iσ)
∣∣+

∑

j≥2

∣∣T̃2j(iσ)
∣∣
)
dτ ≤ Ccτ0

(s− 1
2
)( 3

2
− s)

(Es
τ0)

2.(5.32)

Proof. The estimates for T2j(iσ), T̃2j(iσ) in (5.28) follow directly from Lemma 5.4 and
Lemma 5.5 9. By virtue of the integrals in (5.18), we derive from Lemmas 5.4 and 5.5 that

|T̃3(iσ)| . Cτ

∥∥∥
|q|2 − 1

τ 2

∥∥∥
2

l3τU2

∥∥∥
|q|2 − 1

τ

∥∥∥
l3τDU2

+ ||

+
(∥∥∥

|q|2 − 1

τ 2

∥∥∥
l3τU2

+
∥∥q

′

τ

∥∥
l3τDU2

) ∑

h∈O

‖h‖2l3τDU2 ≤
(
CCτ‖Q‖l3τDU2

)3
.

If Cτ ≤ 2, by change of variables τ → τ̃ = τ
τ0

we bound the integral in terms of |T2j(iσ)|
in (5.30) as follows:
∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2

(∣∣T2j(iσ)
∣∣+ 1j≥2

∣∣T̃2j(iσ)
∣∣) dτ ≤ (2C)2j

∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2‖Q‖2j

l2τDU2 dτ

= (2C)2jτ 2s−1
0

∫ ∞

1

(τ̃ 2 − 1)s−1‖Qτ0‖2j−2

l2
τ̃
DU2‖qτ0

‖2l2
τ̃
DU2dτ̃ ,

9 If |T2j | ≤ A then |T̃2j | ≤ (2A)j , j ≥ 2. Indeed, following the proof of Proposition 5.10
in [31], by multiplying q2, q3 by η, we arrive from the expansions (3.21) and (3.22) at ln(1 +
∑

j≥1 η
2jT2j) = η2T2 +

∑

j≥2 η
2j T̃2j . We introduce a partial order � in the set of holomorphic

functions near zero, where g � h means that the absolute value of each coefficient in the Taylor
series of g at zero is bounded by the corresponding coefficient in the Taylor series of h. In

particular, ln(1 + ζ) � ζ
1−ζ

:= f(ζ) and hence
∑∞

j=2 T̃2jη2j � f ◦ f(Aη) �
∑∞

j=1 2
j−1Ajηj ,

|T2j | ≤ A = CCτ cτ such that |T̃2j | ≤ (2A)j , j ≥ 2.
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with the equality ensured by (5.27). Proposition 5.13 in [31] implies that in the regime
− 1

2
< s− 1 ≤ j−1

2
≤ j − 1, the above integral is bounded by

1

j + 1− 2s
(2C)2jτ 2s−1

0 ‖ 1

τ0
qτ0

‖2j−2

l21DU2‖qτ0
‖2Hs−1 =

1

j + 1− 2s
(2C)2jc2j−2

τ0 (Es
τ0)

2,

with the equality ensured by (5.27).
Therefore under the smallness assumption (5.29) such that Cτ ≤ 1 + cτ ≤ 1 + cτ0 ≤ 2,

(5.30) holds.

Similarly, if Cτ ≤ 2, we bound the integral in terms of |T̃2j(iσ)| in (5.31) as
∫ ∞

τ0

(τ 2 − τ 20 )
s−1τ 2

∣∣T̃2j(iσ)
∣∣dτ ≤ Cj2

2jτ 2s−1
0

∫ ∞

1

(τ̃ 2 − 1)s−1‖Qτ0‖2j−2

l
2j
τ̃

DU2
‖qτ0

‖2
l
2j
τ̃

DU2dτ̃ .

Proposition 6.2 in [31] and (5.27) implies (5.31).

Finally we can do the same as for T̃2j above to T̃3 (with 2j replaced by 3 in the above)
for s ∈ ( 1

2
, 3
2
). Hence (5.32) follows from (5.30) and (5.31). �

5.4. Low order terms. Let s > 3
2
and we aim to get the estimates for the low order

terms T̃3, T̃2j , 2 ≤ j < s in this section, which will be used to control the energy difference
|Es

τ0 − (Es
τ0)

2| in (5.24). Indeed, as in Section 6 [31], we have to do integration by parts
to expand low order terms until k-th order, k = [2s]− 1.

We will first derive the general formula for finite expansions in Subsection 5.4.1 and
then apply it to the low order terms in Subsection 5.4.2.

5.4.1. Finite expansion. Let us do integration by parts in the following integral:
∫

x<y

eϕ(y)−ϕ(x)g(y)h(x) dx dy =

∫

x<y

e−τ(y−x)e
∫ y
x

q4g(y)h(x) dx dy

=
1

τ

∫

R

ghdx +
1

τ

∫

x<y

eϕ(y)−ϕ(x)(g(y)(q4h)(x)− g(y)h′(x)
)
dx dy

=
1

τ

∫

R

ghdx +
1

τ

∫

x<y

eϕ(y)−ϕ(x)((q4g)(y)h(x) + g′(y)h(x)
)
dx dy ,

which leads us to define the two operators D±:

(5.33) D±(g) = (q4 ± ∂x)g.

Then we have

Lemma 5.6. For any k ∈ N, we have the following formal finite-order expansion:

∫

x<y

eϕ(y)−ϕ(x)g(y)h(x) dx dy =

k∑

ℓ=1

bℓ + b≥k+1,

where

bℓ =
1

τ ℓ

∫

R

(D
mℓ
+ g)(D

nℓ
− h) dy =

∫

R

(
(
D+

τ
)mℓ

g

τ

)(
(
D−

τ
)nℓh

)
dy , mℓ + nℓ + 1 = ℓ,

b≥k+1(z) =
1

τk

∫

x<y

eϕ(y)−ϕ(x)(Dm
+ g)(y)(D

n
−h)(x) dx dy

=

∫

x<y

eϕ(y)−ϕ(x)
(
(
D+

τ
)mg

)
(y)

(
(
D−

τ
)nh

)
(x) dx dy , m+ n = k.

In order to study the applications of the operators D± on q2, q3, we make use of the
structures and the preliminary estimates for q2, q3, q4, P derived in Lemma 5.4. Recall
q = (|q|2 − 1, q′) and Q = 1

τ
(|q|2 − 1, q′, q̄′). In the following we will be flexible in the

notations concerning Q in the sense that the notation Q · · ·Q will be understood as one
element in the set {Qα1 · · ·Qαn |αβ = 1, 2, 3}.
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Notice that q2, q3, q4 are, up to the multiplication by 1
ω
q, 1

ω
q̄, 1

ω−2|q|2+1
, ω ∈ [ τ

2
, τ ),

linear combinations of components of Q, and the applications (perhaps several times) of
the operators D+, ∂x or of the multiplication operators Mqκ on qκ′ , κ, κ′ = 2, 3, 4 are, up
to the multiplication by the polynomials in 1

ω
q, 1

ω
q̄, 1

ω−2|q|2+1
,

applications of the derivative ∂x on Q,Q′, Q′′, · · · or the multiplication of Q.

For notational simplicity, we introduce the set OM , M ≥ 1, which concerns (M − 1)-
times applications of the operators 1

τ
D± or 1

τ
∂x or M 1

τ
Q on Q, as follows (noticing that

O1 = O defined in (5.11)):

OM =
{
h(M,α) = P ·

(α−1∏

γ=1

Q(ℓγ)

τ 1+ℓγ

)Q(ℓα)

τ ℓα

∣∣∣P is any polynomial of form (5.10),

α = 1, · · · ,M, ℓ1 + · · ·+ ℓα + α =M
}
.

(5.34)

In the following h(M,α) will always denote an element in OM which is homogeneous of
degree α in Q and sometimes we will denote simply h(M) ∈ OM without pointing out

the precise homogeneity. Then the operators 1
τ
D±,

1
τ
∂x,M 1

τ
Q map OM to OM+1 and

M
Q(m)

τ1+m

maps OM to OM+m.

We can rewrite the finite expansion in Lemma 5.6 with ḡ = h = q′ by use of the
notations h(m) ∈ Om as follows:

1

τ 2

∫

x<y

eϕ(y)−ϕ(x)q̄′(y)q′(x) dx dy =
k∑

ℓ=1

aℓ + a≥k+1,where

aℓ =

∫

R

h(ℓ+1,α) dx , α ≥ 2,

a≥k+1 =

∫

x<y

eϕ(y)−ϕ(x)h(m)(y)h(n)(x) dx dy , m+ n = k + 2.

Motivated by this finite expansion formula, we derive the following estimates.

Lemma 5.7. Assume the same hypothesis in Lemma 5.4. Recall cτ , Cτ , E
s
τ defined in

(5.12), (1.16). Let Om be the set defined in (5.34).
Then for any M ≥ 1, there exists a constant C(M) such that the following holds for

any h(M,α) ∈ OM homogeneous of degree α, α ∈ [1,M ] in Q:

(5.35) ‖h(M,α)‖lpτDU2 ≤ C(M)Cτ

M−1∑

ℓ1+···+ℓα=M−α, sup βℓβ≤[M/2]

α∏

γ=1

∥∥Q
(ℓγ)

τ ℓγ

∥∥
l
pα
τ DU2 .

Furthermore, the following estimates hold when k = [2s] ≤ 2s, α ≥ 2:

τ ℓ+2
∣∣∣
∫

R

h(ℓ+1,α) dx
∣∣∣ . τ ℓ−2s+1

0 Cτ0c
α−2
τ0 (Es

τ0)
2, τ ≥ τ0, 1 ≤ ℓ ≤ k − 1,(5.36)

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

∣∣∣τ 2
∫

x<y

(
eϕ(y)−ϕ(x) − e−τ(y−x)

)
h(m,α1)(y)h(n,α2)(x) dx dy

∣∣∣dτ

.
1

| sin(2πs)|C
2
τ0

k−1∑

α=α1+α2−1

cατ0(E
s
τ0)

2, m+ n = k,

(5.37)
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∫ ∞

τ0

(τ 2 − τ 20 )
s−1

∣∣∣τ 2
∫

t1<···<tn

n−1∏

i=1

eδi(ϕ(ti+1)−ϕ(ti))h(m1 ,α1)(t1) · · ·h(mn,αn)(tn)dt
∣∣∣dτ

.
1

| sin(2πs)|C
n
τ0

k+n−3∑

α=α1+···+αn−2

cατ0(E
s
τ0)

2, 1 ≤ δi ≤ n/2, m1 + · · ·+mn = k + 1.

(5.38)

Proof. The estimate (5.35) comes from the estimates in (4.1), (4.4) and the estimate for
P in Lemma 5.4:

‖h(M,α)‖lpτDU2 . Cτ

α−1∏

γ=1

∥∥∥
Q(ℓγ)

τ 1+ℓγ

∥∥∥
l

pα
α−1
τ U2

∥∥∥
Q(ℓα)

τ ℓα

∥∥∥
l
pα
τ DU2

, ℓ1 + · · ·+ ℓα =M − α

. Cτ

∑

M−α≤ℓ1+···+ℓα≤M−1

α∏

γ=1

∥∥∥
Q(ℓγ)

τ ℓγ

∥∥∥
l
pα
τ DU2

by use of (4.4).

In the above, by integration by parts we can always choose sup 1≤β≤αℓβ ≤ [M/2].

We now turn to the proof of (5.36). We first bound τ ℓ+2
∣∣∣
∫
R
h(ℓ+1,α) dx

∣∣∣, τ ≥ τ0, α ≥ 2

by

τ ℓ+2−α
0

∣∣∣
∫

R

P ·
(α−1∏

γ=1

q(ℓγ)

τ
1+ℓγ
0

)
q(ℓα)

τ ℓα0
dx

∣∣∣ = τ ℓ+2−α
0

∣∣∣
∫

R

P (
·
τ0

) ·
α∏

γ=1

q
(ℓγ)
τ0

dx
∣∣∣, fτ =

1

τ
f(

·
τ
),

for some ℓ1 + · · ·+ ℓα = ℓ+ 1− α. We can do as above for h(M,α) to derive that

τ ℓ+2
∣∣∣
∫

R

h(ℓ+1,α) dx
∣∣∣ . Cτ0τ

ℓ+2−α
0

∑

ℓ+1−α≤ℓ′1+···+ℓ′α≤ℓ, ℓ′
β
≤[(ℓ+1)/2]

α∏

γ=1

∥∥q
(ℓ′γ)
τ0

∥∥
lα1 DU2 .

By the proof of Proposition 6.5 [31], the pointwise bound (5.36) holds:

τ ℓ+2
∣∣∣
∫

R

h(ℓ+1,α) dx
∣∣∣ . Cτ0τ

ℓ+2−α
0 ‖qτ0

‖α−2

l21DU2‖qτ0
‖2Hs−1 , 1 ≤ ℓ ≤ 2s − 1

∼ τ ℓ−2s+1
0 Cτ0c

α−2
τ0 (Es

τ0)
2, by the scaling property (5.27).

We now consider the following integral

τ 2
∫

x<y

eϕ(y)−ϕ(x)h(m)(y)h(n)(x) dx dy , m+ n = k + 1,

which, by the estimate for in Lemma 5.5 and Lemma 5.7, is bounded by

τ 2C2
τ

k+1∑

α=2

k−1∑

ℓ1+···+ℓα=k+1−α

α∏

γ=1

∥∥Q
(ℓγ)

τ ℓγ

∥∥
lατ DU2 .

Therefore, exactly as in the proof of Proposition 5.1, we do change of variable τ → τ̃ = τ
τ0

and make use of the scaling property (5.27), such that
∫ ∞

τ0

(τ 2 − τ 20 )
s−1

∣∣∣τ 2
∫

x<y

eϕ(y)−ϕ(x)h(m)(y)h(n)(x) dx dy
∣∣∣dτ . τ 2s−1

0

∫ ∞

1

(τ̃ 2 − 1)s−1

· C2
τ0

k+1∑

α=2

k−1∑

ℓ1+···+ℓα=k+1−α, ℓβ≤[k/2]

(α−2∏

γ=1

∥∥∥
Q

(ℓγ)
τ0

τ̃ ℓγ

∥∥∥
lα
τ̃
DU2

)∥∥∥
q
(ℓα−1)
τ0

τ̃ ℓα−1

∥∥∥
lα
τ̃
DU2

∥∥∥
q(ℓα)
τ0

τ̃ ℓα

∥∥∥
lα
τ̃
DU2

dτ̃ ,

which, by Propositions 6.4 and 6.5 in [31], is bounded by

τ 2s−1
0 C2

τ0

| sin(2πs)|

k+1∑

α=2

‖ 1

τ0
qτ0

‖α−2
lα1 DU2‖qτ0

‖2Hs−1 =
C2

τ0

∑k
α=0 c

α
τ0

2s− [2s]
(Es

τ0)
2, if

k

2
< s <

k + 1

2
.
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Similarly, by use of the estimates for ,2j in Lemma 5.5 and Lemma 5.7 we derive the
estimates (5.37) and (5.38) respectively. �

5.4.2. Estimates for low order terms T̃3, T̃2j . In this section we are going to do finite

expansions in Lemma 5.6 to the low order terms T̃3, T̃2j , 2 ≤ j < s, s > 3
2
, keeping in

mind the estimates in Lemma 5.7.

Proposition 5.2. Assume (5.7) and (5.8) and let s > 3
2
be away from half integers such

that k := [2s] ≥ 3. Then

• we can expand τ 2T̃3(iσ) until kth-order:

τ 2T̃3(iσ) =
k∑

ℓ=3

Hℓ
3τ

−ℓ+1 +H>k
3 (iσ), Hℓ

3 independent of τ, σ → ∞,

such that τ 2s−ℓ
0 |Hℓ

3| ≤ CCτ0

k−2∑

α=1

cατ0(E
s
τ0)

2,

and

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

∣∣H>k
3 (iσ)

∣∣dτ ≤ CC3
τ0

∑k−1
α=1 c

α
τ0

| sin(2πs)| (Es
τ0)

2;

(5.39)

• for 2 ≤ j < s, we can expand τ 2T̃2j(iσ) until kth-order:

τ 2T̃2j(iσ) =
k∑

ℓ=2j

Hℓ
2jτ

−ℓ+1 +H>k
2j (iσ), Hℓ

2j independent of τ, as σ → ∞,

such that τ 2s−ℓ
0 |Hℓ

2j | ≤ CCτ0

k−2∑

α=2j−2

cατ0(E
s
τ0)

2,

and

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

∣∣H>k
2j (iσ)

∣∣dτ ≤
CC2j

τ0

∑k−1
α=2j−2 c

α
τ0

| sin(2πs)| (Es
τ0)

2.

(5.40)

Proof. We will follow exactly the procedure in Section 6 [31] and hence be sketchy.

Recall that T̃3 is linear combinations of integrals of type in (5.18). We do integration by
parts as in Lemma 5.6 to the integrals in (5.18) from the left and right sides alternatively

to expand τ 2T̃3(iσ) until (k− 1)th-order: We do integration by parts (k− 1)-times to the
integral while (k − 2)-times to the last two integrals in (5.18), and we also notice the
expansion Im ζ = ω = τ +O(τ−1) as τ → ∞, to arrive at the expansion in (5.39).

Here, Hℓ
3, 3 ≤ ℓ ≤ k is the leading order (in terms of τ−1) of a linear combination of

integrals of the following forms with bounded coefficients:

τ 2
∫

R

(
(D

mℓ
+ q2)(D

nℓ
− q3)− (∂mℓ

x q2)
(
(−∂x)nℓq3

))
dx , mℓ + nℓ ≤ ℓ− 2,

τ 3
∫

R

( (|q|2 − 1) or q′ or q̄′

τ 2
h1

)(mℓ−1)
h
(nℓ)
2 dx , h1, h2 ∈ O defined in (5.11).

Then Hℓ
3 is linear combination of integrals of type τm+1

∫
R
h(m,α) dx , 3 ≤ m ≤ ℓ with

h(m,α) ∈ Om homogeneous of degree α ≥ 3 in Q. Hence the estimate for Hℓ
3 in (5.39)

follows from (5.36) in Lemma 5.7.
Here H>k

3 is linear combination of integrals such as τ
∫
R
h(k,α) dx , α ≥ 3 (which appears

still because of the expansion of ω in terms of τ ) and the following integrals with bounded
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coefficients, m+ n = k − 1, m1 +m2 +m3 = k + 1 and h(m), h(m,α) ∈ Om:

τ 2
∫

x<y

(
(eϕ(y)−ϕ(x) − e−τ(y−x))(

1

τm
Dm

+ q2)(y)(
1

τn
Dn

−q3)(x) dx dy ,

τ 2
∫

x<y

e−τ(y−x)
(
(
1

τm
Dm

+ q2)(y)(
1

τn
Dn

−q3)(x)− (
1

τm
∂m
y q2)(y)

( 1

τn
(−∂x)nq3

)
(x)

)
dx dy ,

τ 2
∫

x<y

e−τ(y−x)h(m+1,αm)(y)h(n+1,αn)(x) dx dy , αm + αn ≥ 3,

τ 2
∫

x<t<y

e−τ(y−x)h(m1)(y)h(m2)(t)h(m3)(x) dx dt dy .

The estimate for H>k
3 in (5.39) then follows from Lemma 5.7.

Similarly, since T̃2j is a linear combination of integrals 2j reading as (5.14), (5.40)
follows from Lemmas 5.6 and 5.7. �

5.5. The energies. We restrict ourselves on the imaginary axis (5.7): (λ, z) = (iσ, iτ/2) ∈
R. For any q ∈ Xs, s > 1

2
, by (1.21), there exists τ0 ≥ C such that the smallness as-

sumption (5.5): cτ0 = 1
τ0
‖q ‖l2τ0DU2 < 1

2C
holds. Consequently the condition (5.8):

||q|2 − 1| ≤ 1
64
τ0

2 holds if τ0, C above have been chosen large enough. Indeed, by view of

(4.7) such that ‖q‖L∞ . 1 + τ0c
1/2
τ0 + τ0cτ0 , (5.8) follows from (5.5) for large C and τ0.

From now on we fix τ0.

5.5.1. The expansion of G(iτ/2). Let us first consider rigorously the expansion of the real
part of the expansion of lnT−1

c (iσ) in Lemma 5.1:

Re (4z2 lnT−1
c )|λ=iσ = Re (4z2T̃2)|λ=iσ +Re (4z2T̃f )|λ=iσ

+
∑

j>s

1j≥2Re (4z2T̃2j)|λ=iσ, T̃f := T̃3 +

[s]∑

j=2

T̃2j .
(5.41)

Recall the expansion for Re (4z2T̃2)|λ=iσ in (5.22) with N = [s− 1]:

Re (4z2T̃2)(iσ) =
N∑

l=0

(−1)lH2l+2
2 τ−2l−1 +H>2N+2

2 (iσ), as τ → ∞,

with τ
2(s−1−l)
0 H2l+2

2 ≤ (Es
τ0)

2, H>2N+2
2 (iσ) = o(τ 1−2s).

If s > 3
2
is away from half integers, then by Proposition 5.1 and Proposition 5.2 with

k = [2s] under the smallness assumption (5.5),

• We can expand T̃f = T̃3 +
∑[s]

j=2 T̃2j as

(5.42) Re (4z2T̃f )(iσ) =

k∑

ℓ=3

Hℓ
fτ

−ℓ+1 +H>k
f (iσ) as σ → ∞.

Here Hℓ
f = −Re (Hℓ

3 +
∑[s]

j=2 Hℓ
2j) with H2l+1

f = 0 and τ
2(s−1−l)
0 |H2l+2

f | ≤
Ccτ0(E

s
τ0)

2, and |H>k
f (iσ)| ≤ |H>k

3 (iσ)|+∑[s]
j=2 |H>k

2j (iσ)| = o(τ 1−2s);

• ∑
j>s

∣∣4z2T̃2j(iσ)
∣∣ = o(τ 1−2s).

To conclude, noticing that k ≥ 2N + 2 and k > 2N + 2 only if k ∈ 2Z+1, by (5.41)
and (5.42) above, we have the following expansion for G(i τ

2
) = Re (4z2 lnT−1

c )(iσ) when

s > 1
2
away from half integers:

(5.43) G(i
τ

2
) = Re (4z2 lnT−1

c )(iσ) =
N∑

l=0

(−1)lH2l+2τ−2l−1 +H>2N+2(i
τ

2
), as τ → ∞,
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where (noticing that Hk = 0 if k > 2N + 2 such that k ∈ 2Z+1) 10

H2l+1 = H2l+1
2 + (−1)lH2l+1

f with |τ 2(s−1−l)
0 H2l+1| ≤ C(Es

τ0)
2,

H>2N+1(i
τ

2
) = H>2N+1

2 +H>k
f +

∑

j>s

Re (4z2T̃2j)(iσ) = o(τ 1−2s).
(5.45)

By Proposition 5.2 and the above expansion (5.43) for the non negative superharmonic
function G on the upper half plane, the trace of G on the real line exists as a finite
Radon measure µ such that the measure (1 + ξ2)Nµ is finite. Furthermore, by view of
G = Re (z2 ln 1

z−zm
)+ harmonic function in a small enough neighborhood of zm (with λm

the zeros of T−1
c (λ)), H2l+1 indeed reads as in (5.2).

5.5.2. The energies. If s ∈ ( 1
2
, 3
2
), by view of the difference (5.23) for

∣∣Es
τ0 − (Es

τ0)
2
∣∣, under

the smallness condition (5.5), we derive the equivalence relation (5.6) from Proposition
5.1.

Similarly for s ≥ 3
2
, by the above finite expansion (5.43) for G(iτ/2) and Propositions

5.1 and 5.2, we also have the inequality (5.6) since we derive from (5.24) that

|Es
τ0 − (Es

τ0)
2| ≤

N∑

l=0

τ
2(s−1−l)
0

(
s− 1
l

) ∣∣H2l+2
f

∣∣

+
∣∣∣
2

π
sin(π(s− 1))

∫ ∞

τ0

(τ 2 − τ 20 )
s−1

(
H>k

f +
∑

j>s

Re (4z2T̃2j)
)
(iσ) dτ

∣∣∣ ≤ Ccτ0(E
s
τ0)

2.

Here we noticed that for the estimates in Propositions 5.1 and 5.2, if s = m is an integer
then the singularity (2s− [2s])−1 is compensated by the coefficient sin(π(s− 1)), while if
s = m+ 1

2
we can do the frequency decomposition as in (5.44). Therefore for any q ∈ Xs,

s > 1
2
there exists τ0 ≥ C ≥ 2 such that the energy Es

τ0 is well-defined in (5.3) satisfying
(5.6).

Furthermore we derive the trace formula (5.4) by Proposition 5.2. For general τ ′ ≥ 2, we
can still define our energy Es

τ ′ as in (5.3) since T−1
c (λ) is holomorphic on R = {(λ, z) |λ2 =

z2 + 1, λ 6∈ Icut, Im z > 0} and G(i τ
2
) is integrable on the finite interval τ ∈ [τ ′, τ0] if

τ ′ ≤ τ0. The analyticity of Es
τ ′(q) in q ∈ Xs follows from the analyticity of the renormalised

transmission coefficient T−1
c (λ; q) in Theorem 3.1.

6. The metric space

In this section we study the metric space Xs defined in (1.4):

Xs = {q ∈ Hs
loc (R) : |q|2 − 1 ∈ Hs−1(R), q′ ∈ Hs−1(R)}/S1, s ≥ 0,

and its endowed metric defined in (1.5):

ds(q, p) =
(∫

R

inf
|λ|=1

‖ sech (· − y)(λq − p)‖2Hs(R) dy
) 1

2
.

10If s = m an integer then (5.45) follows from the proof of Proposition 5.2; if s = m+ 1
2
, then

we can replace H>k
f (iσ) in H>2N+2(iτ/2) by (noticing H>k

f = H>k−1
f , Hk

f = 0 when k ∈ 2Z+1)

(5.44)
(
(H>k

f )(iσ;Q)− (H>k
f )(iσ;Q<τ )

)
+

(
H>k−1

f (iσ;Q<τ )
)

such that H>2N+2(iτ/2) = o(τ1−2s) holds: Here Q<τ = 1
τ
((|q|2 − 1)<τ , q′<τ , q̄

′
<τ ) denotes the

low frequency part of Q = 1
τ
(|q|2 − 1, q′, q̄′) and hence there exists at least one high frequency

Q≥τ in the first part of the decomposition (5.44) while there is only low frequency part Q<τ in

the second part of (5.44), from which we derive H>2N+2(iτ/2) = o(τ1−2s) from the proof of
Proposition 5.2 (see also Section 6 [31]).
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Recall the energy Es(q) associated to q ∈ Xs given by (1.17) and (1.14):

Es(q) =
(
‖q′‖2

H
s−1
2 (R)

+ ‖|q|2 − 1‖2
H

s−1
2 (R)

)1/2

.

This section is devoted to the proof of Theorem 1.1 and will be divided into two
subsections, with the first subsection devoted to the study of the metric structure (see
Theorem 6.1 below), and the second one to the analytic structure (see Theorem 6.2 below).

6.1. The metric structure. We study in this subsection the metric structure of the
metric space (Xs, ds).

Theorem 6.1. Suppose that s ≥ 0. Then (Xs, ds) is a separable complete metric space.
Moreover, there exists a constant c depending on Λ > 0 such that for any q, p ∈ Xs with
Es(q), Es(p) ≤ Λ,

|Es(q)−Es(p)| ≤ cds(q, p).

1 +C∞
0 (R) is a dense subset. Every metric ball is contractible. If s > 0 then every closed

metric ball is weakly sequentially compact.

By weakly sequentially compact we mean that if (qj) is a sequence in B = Bs
r(q)

with Bs
r(q) = {p ∈ Xs | ds(p, q) < r}, then there is a subsequence and p ∈ B so that

qjk → p and |qjk |2 − 1 → |p|2 − 1 as distributions. If s > 0 then the boundedness and
the convergence qjk → p as a distribution imply that qjk → p in L2(K) for every compact
interval K and hence |qjk |2 − 1 → |p|2 − 1 in L1(K) for every compact interval K, and
hence as distribution. Thus only the convergence of qj,k → p as a distribution and the
weakly compactness of closed balls has to be proven.

Before proving Theorem 6.1, we claim the following lemma stating the relation between
the energy and the metric, whose proof is postponed to the end of this subsection.

Lemma 6.1. If q ∈ Xs then with an absolute constant c we have

(6.1) ds(1, q) ≤ cEs(q).

If p ∈ Xs and q ∈ Hs
loc so that ds(p, q) < ∞, then q ∈ Xs and

(6.2) Es(q) ≤ Es(p) + c(1 + Es(p))
1
2 ds(p, q) + c(ds(p, q))2.

Proof of Theorem 6.1. We organize the proof into a series of steps. The cutoff functions
η and ρ will be chosen appropriately in each step and may vary from step to step.
Step 1. Suppose that q, p ∈ Xs with Es(q), Es(p) <∞. Then ds(q, p) = 0 iff there exists
λ ∈ C with |λ| = 1 such that p = λq. Since p = λq implies ds(q, p) = 0 trivially, we assume
that ds(q, p) = 0. Then as ‖ sech (· − y)f‖Hs ≥ C(y, a, b)‖f‖Hs(I) for any y ∈ R and any
interval I = [a, b], there exists λ ∈ C with |λ| = 1 so that

‖λq − p‖Hs(I) = 0.

Hence p = λq.
Step 2. Triangle inequality. If q, p, r ∈ Hs

loc with ds(q, p) <∞ and ds(p, r) <∞, then
we simply integrate the square of the following triangle inequality

inf
|µ|=1

‖ sech (·−y)(q−µr)‖Hs ≤ inf
|λ1|=1

‖ sech (·−y)(q−λ1p)‖Hs+ inf
|λ2|=1

‖ sech (·−y)(p−λ2r)‖Hs ,

to derive the triangle inequality

ds(q, r) ≤ ds(q, p) + ds(p, r).

Step 3. (Xs, ds) is a metric space.

We deduce from the triangle inequality in Step 2 and (6.1) that whenever p, q ∈ Xs

then ds(p, q) <∞ and (Xs, ds) is a metric space.
Step 4. (Xs, ds) is a complete metric space.
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Let (qn) be representatives of a Cauchy sequence in (Xs, ds) and let y ∈ R. There
exists q ∈ Hs

loc and a sequence (λn(y)) with |λn(y)| = 1 such that

sech (· − y)λn(y)qn → sech (· − y)q in Hs.

Clearly q does not depend on y. This implies pointwise convergence of the integrant with
respect to y in the definition of the distance function and

ds(qn, q) ≤ supm≥nd
s(qn, qm) → 0 with n→ ∞.

Lemma 6.1 implies q ∈ Xs.
Step 5. A dense subset.

We claim that 1 +C∞
0 (R) ⊂ Xs is dense. Let q satisfy Es(q) <∞. We fix a monoton

function η ∈ C∞ with η(x) = 1 for x > 1
2
and η(x) = 0 for x ≤ − 1

2
. Since

‖(1− η(R ± x))(|u|2 − 1)‖Hs−1 + ‖(1− η(R± x))ux‖Hs−1 → 0

as R → ∞, given ε > 0 there exists R0 so that all these quantities above are at most of
size ε for R > R0.

Let û± =
∫
R
η′(x ∓ R)u dx with R > R0. We claim that there exists an absolute

constant c such that

||û±| − 1| ≤ cε.

This estimate follows from Lemma 6.3 below. Multiplying by a complex constant of
modulus 1 we may assume that û− ∈ [ 1

2
, 2]. We choose ω ∈ [−π, π) so that û+ = eiω|û+|.

We define

uR = η(R− x)η(R+ x)u(x) + (1− η(R− x))eiω(ln(3)/ ln(2+|x/R|2)) + (1− η(R + x)).

It is not hard to see that

lim
R→∞

ds(uR, u) = 0.

Clearly uR−1 vanishes for x < −2R and it decays as x→ ∞. After convolving uR−1 with
a Dirac sequence we may assume that (without changing the notation) that in addition
uR ∈ C∞. By a standard cutoff argument we may assume uR − 1 ∈ C∞

0 (R).
Step 6. Weak compactness.

Let s ≥ 0, q ∈ Xs, r < ∞ and qn ∈ Xs so that ds(q, qn) ≤ r. We claim that there
exists a weakly convergent subsequence with a limit p in the same closed ball. This follows
by an easy modification of Step 5. Lemma 6.1 implies that the weak limit is in Xs. If
s > 0 we obtain

(6.3) Es(p) ≤ lim inf
n→∞

Es(qn).

Indeed, if qn converges weakly to p then up to choosing λn

η(|qn|2 − 1) → η(|p|2 − 1)

in Hs−1 by compactness. We easily deduce (6.3). �

In the remainder of this subsection we will give two technical lemmas (Lemma 6.2 and
Lemma 6.3) and their proofs, as well as the proof of Lemma 6.1.

Lemma 6.2. Let 0 < δ < 1
4
and suppose that η(k) ≤ Cη for all k ≥ 0, |η′| ≤ δη. Let

s ∈ R, then

‖η〈D〉sf‖L2 ≤ c‖〈D〉s(ηf)‖L2 ,

where the operator 〈D〉s is defined by the Fourier multiplier 〈ξ〉s = (1 + |ξ|2)s/2.

Proof. The operator 〈D〉s is defined by convolution with (up to a multiplication by a
power of 2π)

g(x) =

∫

R

eiξx〈ξ〉sdξ,
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which is understood as inverse Fourier transform resp. as oscillatory integral if x 6= 0. To
be more specific, let us assume x > 0. Then we move the contour of the integration to
{ξ + iτ | ξ ∈ R, −1 < τ < 1} in the complex space:

g(x) =

∫

R

ei(ξ+iτ)x(1 + (ξ + iτ )2)s/2dξ = e−τx

∫

R

eiξx(ξ2 + 2iτξ + 1− τ 2)s/2dξ.

We take τ = 1. We take the smooth cutoff function ρ with ρ = 1 around 0 to decompose
the integration into the part close to 0 and the part away from 0:

exg(x) =

∫

R

eiξxξs/2[ρ(ξ + 2i)s/2]dξ +

∫

R

eiξxξs[(1− ρ)(1 + 2i/ξ)s/2]dξ.

Similarly for x < 0 we take τ = −1. Then by the theory of oscillatory integrals,

|g(x)| ≤ Ce−|x|
(
(1 + |x|)−1−s/2 +

(
1 + χ{|x|≤1}|x|−1−s)),

and the exponential decay holds:

|∂k
xg(x)| ≤ Ce−|x|(1 + |x|−1−s/2), ∀|x| ≥ 1.

We denote g = gs to emphasize the dependence of the above function g(x) on s and
we decompose gs(x) into

gs(x) = gs1(x) + gs2(x), gs1(x) = ρ(x)gs(x),

such that

|gs1| ≤ Cχ{|x|≤1}(1 + |x|−1−s),

|∂k
xg

s
2(x)| ≤ Cke

−
|x|
2 , and hence ‖gs2 ∗ f‖HN ≤ CN‖f‖−N , ∀N ∈ N .

(6.4)

The claimed inequality is equivalent to

‖η〈D〉sη−1〈D〉−sf‖L2 ≤ c‖f‖L2 , i.e. ‖ηgs ∗ (η−1g−s ∗ f)‖L2 ≤ c‖f‖L2 ,

and by duality it suffices to consider the case s ≥ 0. We do the above decomposition for
gs and it remains to show

‖ηgsj ∗ (η−1g−s
l ∗ f)‖L2 ≤ c‖f‖L2 , j, l = 1, 2.

When j = l = 2, then the integral kernel of the operator on the LHS reads as

ks2(x, y) = η(x)

∫

R

gs2(x− z)η−1(z)g−s
2 (z − y)dz.

By |∂k
xη(x)| ≤ cke

δ|x−z|η(z), the estimate follows from (6.4):
∫

R

e−
1
2
|x−z|eδ|x−z|e−

1
2
|z−y|dz ≤ Ce−

1
4
|x−y|.

It is also straightforward to check the other cases by use of (6.4):

‖ηgs1 ∗ (η−1g−s
2 ∗ f)‖L2 ≤ c‖g−s

2 ∗ f‖Hs ≤ c‖f‖L2 ,

‖ηgs2 ∗ (η−1g−s
1 ∗ f)‖L2 ≤ c‖g−s

1 ∗ f‖Hs ≤ c‖f‖L2 ,

‖ηgs1 ∗ (η−1g−s
1 ∗ f)‖L2 ≤ c‖g−s

1 ∗ f‖Hs ≤ c‖f‖L2 .

�

We turn to another technical lemma. Let η(x) = (1 + x2)−1. Then

(6.5)

∣∣∣∣

∫

R

sech 2(x− y)(|q|2 − 1)(x) dx

∣∣∣∣ ≤ C‖η(· − y)〈D〉−1(|q|2 − 1)‖L2 ,

since

η−1(· − y) sech 2(· − y) ∈ S(R) ⊂ H1(R).
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Lemma 6.3. Let η0 be a nonnegative Schwartz function. Then

(6.6)

∫

R×R

η0(x)η0(y)|q(x)− q(y)|2 dx dy ≤ c‖η〈D〉−1qx‖2L2 ,

and with κ =
∫
R
sech 2(x) dx ,

(6.7)∣∣∣
∣∣∣
1

κ

∫

R

sech 2(x−y)q(x) dx
∣∣∣−1

∣∣∣ ≤ c
(
‖η(· − y)〈D〉−1qx‖L2 + ‖η(· − y)〈D〉−1(|q|2 − 1)‖L2

)
.

Proof. Straightforward calculation yields
∫

R×R

η0(x)η0(y)|q(x)− q(y)|2dxdy = 2Re

∫

x<y

η0(x)η0(y)

∫

x<z1,z2<y

q′(z1)q̄
′(z2)dz1dz2dxdy

= 2Re

∫

R×R

∫ min{z1,z2}

−∞

η0(x)dx

∫ ∞

max{z1,z2}

η0(y)dyq
′(z1)q̄

′(z2)dz1dz2.

Let

ρ(z1, z2) = 2

∫ min{z1,z2}

−∞

η0(x)dx

∫ ∞

max{z1,z2}

η0(y)dy.

The assertion (6.6) follows once we prove with κ0 = 2
∫
R
η0,

‖ρ(., .)‖L2 + ‖∂z1ρ‖L2 + ‖∂z2ρ‖L2 + ‖∂2
z1z2ρ− κ0δz1−z2η0(z1)‖L2 ≤ c.

Indeed,

∂z1ρ(z1, z2) =






2η0(z1)

∫ ∞

z2

η0(y)dy if z1 < z2

−2

∫ z2

−∞

η0(x)dxη0(z1) if z2 < z1

and

∂2
z1z2ρ(z1, z2) = −2η0(z1)η0(z2) if z1 6= z2.

At the diagonal {(z1, z2) | z1 = z2} we have

∂z1ρ(z, z+)− ∂z1ρ(z, z−) = 2η0(z)

∫ ∞

z+

η0 + 2η0(z)

∫ z−

−∞

η0 = 2η0(z)

∫

R

η0

and hence

∂2
z1z2ρ(z1, z2) = −2η0(z1)η0(z2) + 2δz1−z2η0(z1)

∫

R

η0.

We turn to the proof of (6.7). Let κ =
∫
R
sech 2(x) dx . Then

∣∣∣∣

∫

R

sech 2(x− y)q(x) dx

∣∣∣∣ ≤
∫

R

sech 2(x− y)|q(x)|dx

≤κ1/2

(∫

R

sech 2(x− y)|q|2(x) dx
) 1

2

≤κ
(
1 + κ−1

∫

R

sech 2(x− y)(|q|2 − 1)(x) dx
)

≤κ+ C‖η(x− y)〈D〉−1(|q|2 − 1)‖
1
2

L2 ,

where in the last step we used (6.5). This implies the desired estimate (6.7) if for some
ε > 0,

∣∣ 1
κ

∫
R
sech 2(x− y)q(x)dx

∣∣ ≥ 1 + ε.

We hence fix ε (ε = 1
2
being legitimate) and consider the case

(6.8)

∣∣∣∣
1

κ

∫

R

sech 2(x− y)q(x) dx

∣∣∣∣ ≤ (1 + ε).
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Using Fubini and (6.6) we have
∥∥∥∥
1

κ

∫

R

sech 2(x− y)q dx − q

∥∥∥∥
2

L2( sech 2(.−y))

=

∫

R

sech 2(x′ − y)
∣∣∣
1

κ

∫

R

sech 2(x− y)q(x) dx − q(x′)
∣∣∣
2

dx ′

≤ 1

κ

∫

R2

sech 2(x′ − y) sech 2(x− y)|q(x)− q(x′)|2 dx dx ′

≤ c‖η(· − y)〈D〉−1qx‖2L2 ,

(6.9)

and hence by triangle inequality,
∣∣∣∣∣

∣∣∣∣
1

κ

∫

R

sech 2(x− y)q(x) dx

∣∣∣∣
2

− 1

∣∣∣∣∣ ≤
∣∣∣∣
1

κ

∫

R

sech 2(x− y)(|q|2 − 1)(x) dx

∣∣∣∣

+

∣∣∣∣∣
1

κ

∫

R

sech 2(x− y)|q|2(x) dx −
∣∣∣∣
1

κ

∫

R

sech 2(x− y)q(x) dx

∣∣∣∣
2
∣∣∣∣∣ ,

where the last term is estimated using (6.9) and by writing it as |A2−B2| = |A+B||A−B|.
In this last step we made use of (6.8). �

We complete this subsection with verifying the relation between metric and energy
stated in Lemma 6.1.

Proof of Lemma 6.1. We claim that there exists a constant c > 0 so that

ds(q, 1) ≤ cEs(q).

This is the first claim of the lemma. We begin with the most difficult case s = 0 and fix
y ∈ R. Then, with κ =

∫
R
sech 2(x) dx ,

inf
|λ|=1

∫

R

sech 2(x− y)|q − λ|2(x) dx

=

∫

R

sech 2(x− y)(|q|2 + 1) dx − 2sup |λ|=1Reλ

∫

R

sech 2(x− y)q(x) dx

=

∫

R

sech 2(x− y)(|q|2 − 1) dx − 2
(∣∣∣

∫

R

sech 2(x− y)q(x) dx
∣∣∣− κ

)

≤ c
(
‖η(x− y)〈D〉−1(|q|2 − 1)‖L2 + ‖η(x− y)〈D〉−1qx‖L2

)
,

where the bound on the first term follows by (6.5), and the second term by (6.7). Let
δ ∈ (0, 1) be a small constant to be determined later and we define the set

Yδ = {y ∈ R | ‖η(· − y)〈D〉−1(|q|2 − 1)‖L2 + ‖η(· − y)〈D〉−1qx‖L2 ≥ δ > 0}.
Then

d0(q, 1) =
(∫

R

inf
|λ|=1

∫

R

sech 2(x− y)|q − λ|2(x) dx dy
) 1

2

≤
(∫

Y C
δ

inf
|λ|=1

∫

R

sech 2(x− y)|q(x)− λ|2 dx dy
) 1

2

+ c
(∫

Yδ

(
‖η(x− y)〈D〉−1(|q|2 − 1)‖L2 + ‖η(x− y)〈D〉−1qx‖L2

)
dy

) 1
2
,

where the last term is bounded by cδE
0(q) for some constant cδ depending on δ.

It remains to consider those y ∈ Y C
δ . We regularize q by taking the convolution with

the Schwartz function 1
κ
sech 2(x), and we can always decompose (as in Section 2)

q = b+ q1, with b ∈ L2, q1 = q ∗ ( 1
κ
sech 2) ∈ Xσ, ∀σ ≥ 0,
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such that

‖ sech 2(x− y) b‖L2 + ‖ sech 2(x− y) (q1)x‖L2 ≤ c‖η(x− y)〈D〉−1qx‖L2 .

Fix y ∈ Y C
δ and in the following we will simply denote η(x− y) by η. We use Lemma 6.3

and then choose δ small enough such that

||q1(y)| − 1| ≤ c
(
‖η〈D〉−1(|q|2 − 1)‖L2 + ‖η〈D〉−1qx‖L2

)
≤ cδ <

1

2
,

and thus |q1(y)| 6= 0. Moreover (as in (2.3)),

‖q1‖L∞([y−R,y+R]) ≤ c(1 + ‖η〈D〉−1(|q|2 − 1)‖L2 + ‖η〈D〉−1qx‖L2) ≤ c,

and ∣∣∣
∫

R

η(|q1|2 − 1) dx
∣∣∣ ≤

∣∣∣∣

∫
η(|q|2 − 1) dx

∣∣∣∣+
∫
η(|q|2 − |q1|2) dx ,

where the second term on the righthand side above is bounded by
(
‖η1/2q‖L2 + ‖η1/2q1‖L2

)
‖η1/2b‖L2 ≤ c‖η1/2b‖L2 .

Since
∥∥∥ sech 2(x− y)

(
q(x)− q1(y)

|q1(y)|
)∥∥∥

L2
x

≤ ‖ sech 2(x− y)(q − q1)(x)‖L2
x

+ ‖ sech 2(x− y)(q1(x)− q1(y))‖L2
x
+ ‖ sech 2(x− y)(|q1(y)| − 1)‖L2

x
,

we take the square and then integrate with respect to y in the set Y C
δ , to complete the

proof of d0(q, 1) ≤ cE0(q). To deal with general s > 0 we slightly modify the steps.
To prove the second claim (6.2) we consider the case when the right hand side is finite.

By the triangle inequality,

‖|q|2 − 1‖Hs−1 ≤ ‖|p|2 − 1‖Hs−1 + ‖|q|2 − |p|2‖Hs−1 .

We now verify

(6.10) ‖|q|2 − |p|2‖Hs−1 ≤ c
√

1 + Es(p) + Es(q)ds(p, q).

Since for any |λ| = 1,

|q|2 − |p|2 = Re
(
(λq + p)(λq − p)

)
= Re

((
λ(bq + q1) + (bp + p1)

)
(λq − p)

)
,

where q = bq + q1 and p = bp + p1 are decompositions above, we have for s ≥ 0

‖|q|2 − |p|2‖Hs−1 . (‖(bq , bp)‖Hs + ‖((q1)x, (p1)x)‖Hs−1 + ‖(q1, p1)‖L∞)‖λq − p‖Hs ,

and hence (6.10) follows:

‖|q|2 − |p|2‖2Hs−1 ≤ c

∫

R

‖ sech (x− y)(|q|2 − |p|2)(x)‖2
Hs−1

x
dy

≤ c(1 +Es(p) + Es(q))

∫

R

inf
|λ|=1

‖ sech (x− y)(λq − p)‖2Hsdy

= c(1 +Es(p) + Es(q))(ds(q, p))2.

Then for any ǫ > 0 small enough, there exists cǫ > 0 such that

‖|q|2 − 1‖Hs−1 ≤ Es(p) + c(1 + Es(p) +Es(q))
1
2 ds(p, q)

≤ ǫEs(q) +Es(p) + c(1 + Es(p))
1
2 ds(p, q) + cǫ(d

s(p, q))2.
(6.11)

Let η ∈ S(R). We calculate
∫

R

‖η(x− y)f(x)‖2L2
x
dy =

∫

R

∫

R

|η(x− y)f(x)|2dx dy = ‖η‖2L2‖f‖2L2 .
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We take ‖η‖L2 = 1, such that

‖q′‖Hs−1 =
(∫

R

‖η(x− y)〈D〉s−1q′(x)‖2L2
x
dy

)1/2

≤
(∫

R

‖η(x− y)〈D〉s−1p′‖2L2dy
)1/2

+
(∫

R

inf
λ

‖η(x− y)〈D〉s−1(q′ − λp′)‖2L2dy
)1/2

= ‖p′‖Hs−1 +
(∫

R

inf
λ

‖η(x− y)〈D〉s−1(q′ − λp′)‖2L2dy
)1/2

.

Then by choosing ǫ sufficiently small in (6.11), (6.2) follows from Lemma 6.2 (taking
η = C sech (δx) with C > 0 such that ‖η‖L2 = 1). �

6.2. The analytic structure. In this subsection we focus on the analytic structure of
the metric space (Xs, ds).

Theorem 6.2. Let η ∈ C∞
0 ([−1, 1]) with η = 1 on [−1/2, 1/2]. Let Es(q) < ∞. There

exist r and L depending only on Es(q) such that the map

Bs
r(q) ∋ p 7→ ((an)n, b) ∈ l2d × H̃s, with(6.12)

‖(an)n‖l2
d
=

(∑

n

|an − an−1|2
) 1

2 ,

H̃s = {b ∈ Hs | 〈η((x− 4Ln)/L)b, η((x− 4Ln)/L)q〉Hs ∈ R, ∀n ∈ Z}
is a biLipschitz map to its image. If ds(q, q1) < r then the coordinate change in the
intersection is an analytic diffeomorphism with uniformly bounded derivatives.

Proof. We define

‖f‖H−1(I) = sup
{∫

R

fg dx
∣∣∣ g ∈ C∞

0 (I), ‖g‖H1 = 1
}
.

We denote

fa(x) =

∫ 1
2

− 1
2

f(x+ y) dy , ∀f ∈ L1
loc (R).

Proposition 6.1. There exists ε > 0 such that

1

2
≤ |qa(x)| ≤ 2 and ‖q‖L2([x− 1

2
,x+ 1

2
]) ≥

1

2
,

if

‖qx‖H−1([x− 1
2
,x+ 1

2
]) + ‖|q|2 − 1‖H−1([x−1,x+1]) ≤ ε.

In particular, if the interval I satisfies

|I | ≥ 6((Es(q))2/ε2 + 1),

then

‖q‖Hs(I) ≥ Es(q)ε−1.

Proof. Without loss of generality we take x = 0 and we consider

‖q − qa(0)‖2L2([− 1
2
, 1
2
]) =

∫ 1
2

− 1
2

|q(y)− qa(0)|2 dy =

∫ 1
2

− 1
2

∣∣∣q(y)−
∫ 1

2

− 1
2

q(x) dx
∣∣∣
2

dy ,

which reads as
∫ 1

2

− 1
2

(∫ 1
2

− 1
2

∫ y

x

qx(z) dz dx
)(∫ 1

2

− 1
2

∫ y

x′

q̄x(z
′) dz ′ dx ′

)
dy

:=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

k(z, z′)qx(z)q̄x(z
′) dz dz ′.
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In the above,

k(z, z′) =

∫

A(z,z′)

sign(y − x)sign(y − x′) dy dx dx ′,

A(z, z′) =
({

−1

2
< x < z < y <

1

2

}
∩
{
−1

2
< x′ < z′ < y <

1

2

})

∪
{
−1

2
< x < z < y < z′ < x′ <

1

2

}
∪
{
−1

2
< x′ < z′ < y < z < x <

1

2

}

∪
({

−1

2
< y < z < x <

1

2

}
∩
{
−1

2
< y < z′ < x′ <

1

2

})
,

such that

k(z, z′) = 1z<z′(z +
1

2
)(
1

2
− z′) + 1z′<z(z

′ +
1

2
)(
1

2
− z)

=
1

4
− zz′ − 1

2
|z − z′|, ∀(z, z′) ∈ [−1

2
,
1

2
]× [−1

2
,
1

2
],

which is symmetric and Lipschitz continuous with

k(±1

2
, z′) = k(z,±1

2
) = 0,

and smooth away from the diagonal with uniformly bounded derivatives of all orders.
We claim that

(6.13) ‖q − qa(0)‖L2([− 1
2
, 1
2
]) ≤ c‖qx‖H−1([− 1

2
, 1
2
]),

and it is equivalent to say that the integral operator with the integral kernel k(z, z′) maps
from H−1 to H1

0 . That is, the integral operator with the integral kernel

∂zk(z, z
′) = −z′ + 1

2
(1z<z′ − 1z′<z)

maps from H−1 to L2. This is equivalent to the adjoint operator mapping from L2 to H1
0 ,

which, by ∂zk(z,± 1
2
) = 0, is equivalent to the fact that

∂zz′k(z, z
′) = −1 + δz−z′

is the integral kernel of an operator mapping from L2 to L2: This is obvious.
Let η ∈ C∞

0 ([−1, 1]) such that 0 ≤ η ≤ 1, η = 1
2
on [− 1

2
, 1
2
] and

∫
η = 1. Then

∣∣∣
∫

R

η(y)
(
|q(x+ y)|2 − 1

)
dy

∣∣∣ ≤ c‖|q|2 − 1‖H−1([x−1,x+1]),

and hence by 1
2

∫ 1
2

− 1
2

|q(x+ y)|2 dy ≤
∫
η|q(x+ ·)|2 =

∫
η(|q(x+ ·)|2 − 1) +

∫
η,

|qa(x)|+ ‖q‖L2([x− 1
2
,x+ 1

2
]) ≤ c

(
1 + ‖|q|2 − 1‖H−1([x−1,x+1])

) 1
2 .

Thus with a different test function, still denoted by η, with η ∈ C∞
0 ([− 1

2
, 1
2
]) and η = 1

on [− 1
4
, 1
4
],
∫
η = 1, 0 ≤ η ≤ 1, we have for any x ∈ R,

∣∣|qa(x)|2 − 1
∣∣ ≤

∣∣∣
∫

R

η(y)
(
|q(x+ y)|2 − 1

)
dy

∣∣∣+
∫

R

η(y)
∣∣qa(x) + q(x+ y)

∣∣∣∣qa(x)− q(x+ y)
∣∣dy

≤ c‖|q|2 − 1‖H−1([x− 1
2
,x+ 1

2
]) + c

(
1 + ‖|q|2 − 1‖H−1([x−1,x+1])

)
‖qx‖H−1([x− 1

2
,x+ 1

2
]),

where we used (6.13) to control ‖qa(x)− q(x+ ·)‖L2([− 1
2
, 1
2
]). Therefore there exists ε < 0

such that if ‖qx‖H−1([x− 1
2
,x+ 1

2
]) + ‖|q|2 − 1‖H−1([x−1,x+1]) ≤ ε then

1

2
≤ |qa(x)| ≤ 2 and ‖q‖L2([x− 1

2
,x+ 1

2
]) ≥

1

2
.

By Tschebycheff’s inequality we have

#{n : ‖qx‖H−1([2n−1,2n+1]) + ‖|q|2 − 1‖H−1([2n−1,2n+1]) ≥ ε} ≤ ε−2(Es(q))2,
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and hence if |I | ≥ 6(ε−2(Es(q))2 + 1) then for all s ≥ 0,

‖q‖2Hs(I) ≥ ‖q‖2L2(I) ≥
1

4
· 2
3
|I | ≥ ε−2(Es(q))2 + 1.

�

After these preparation we turn to the crucial construction. Let

L = 6(ε−2(Es(q)2 + 1))

in the sequel. We replace sech (x) by sech L(x) = eL

2
ϕ ∗ ( sech (max{L, |x|})) for some

fixed smooth compactly supported function ϕ. This function is close to 1 on an interval
of length 2L. For q ∈ Xs, by Proposition 6.1, we have

(6.14) ‖ sech L(x− y)q(x)‖Hs
x
(y) ≥ 1

2
Es(q)/ε, ∀y ∈ R .

We replace sech by sech L in the definition of the distance. This leads to an equivalent
metric with constants of size eL/2. Expand the quantity in the integrand in the definition
of ds(q, p) as

‖ sech L(x− y)(λq − p)‖2Hs
x
= ‖ sech L(x− y)q‖2Hs

x
+ ‖ sech L(x− y)p‖2Hs

x

− 2Re
[
λ̄〈 sech L(x− y)p, sech L(x− y)q〉Hs

x

]
.

Let

µ = µ(y) := 〈 sech L(x− y)p, sech L(x− y)q〉Hs
x
.

If µ 6= 0, we take λ = λ(y) = µ(y)
|µ(y)|

such that

inf
|λ|=1

‖ sech L(x− y)(λq − p)‖2Hs
x
= ‖ sech L(x− y)q‖2Hs

x
+ ‖ sech L(x− y)p‖2Hs

x
− 2|µ(y)|.

Suppose that ds(q, p) ≤ 1
32
Es(q)/ε. Then for any y0 ∈ R and the interval I0 =

[y0 − 1
2
, y0 +

1
2
], we have

e−
1
2 inf

|λ|=1
‖ sech L(x− y0)(λq(x)− p(x))‖2Hs

x

≤
∫

I0

inf
|λ|=1

e−|y−y0|‖ sech L(x− y0)(λq(x)− p(x))‖2Hs
x
dy

≤
∫

I0

inf
|λ|=1

‖ sech L(x− y)(λq(x)− p(x))‖2Hs
x
dy ≤ ds(q, p) ≤ 1

32
Es(q)/ε.

This together with (6.14) implies that given y there exists λ with modulus 1 so that

(6.15) ‖ sech L(λq − p)‖Hs ≤ 1

4
Es(q)/ε ≤ 1

2
‖ sech L(x− y)q‖Hs ,

and hence

|µ| = |〈 sech L(x− y)p, sech L(x− y)q〉Hs
x
|

≥ ‖ sech L(x− y)q‖2Hs −
∣∣〈 sech L(x− y)(p− λq), sech L(x− y)q〉Hs

x

∣∣

≥ ‖ sech L(x− y)q‖2Hs − 1

2
‖ sech L(x− y)q‖2Hs

x
=

1

2
‖ sech L(x− y)q‖2Hs .

(6.16)

We are going to study the map

p(x) 7→ λ(y) =
µ(y)

|µ(y)| ,

in a small ball around q with the radius depending only on Es(q).

Lemma 6.4. If ds(q, p) < 1
32
Es(q)/ε, then

‖λy‖HN ≤ cNd
s(q, p), ∀N ∈ N .
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Proof. We calculate

λy =
µy

|µ| −
1

2

|µ|2µy + µ2µ̄y

|µ|3 =
1

2

µ(µ̄µy − µµ̄y)

|µ|3 .

If p = λq, then λy = 0.
We differentiate µ to get

µ′ =
d

dy
〈 sech L(x− y)p, sech L(x− y)q〉

= −〈 sech ′
L(x− y)p, sech L(x− y)q〉 − 〈 sech L(x− y)p, sech ′

L(x− y)q〉,
and for notational simplicity we denote sech L(x − y) = ρ and sech ′

L(x − y) = ρ′ such
that µ = 〈ρp, ρq〉 and µ′ = −〈ρ′p, ρq〉 − 〈ρp, ρ′q〉 in the following of the proof. We expand
p = λq+(p− λq) with |λ(y)| = 1 to see that the difference µ̄µ′ − µµ̄′ is the summation of

〈ρ(p− λq), ρq̄〉µ′ − λ̄〈ρq̄, ρq̄〉
(
〈ρ′(p− λq), ρq〉+ 〈ρ(p− λq), ρ′q〉

)

− 〈ρ(p− λq), ρq〉µ̄′ + λ〈ρq, ρq〉
(
〈ρ′(p− λq), ρq̄〉+ 〈ρ(p− λq), ρ′q̄〉

)

and

− λ̄〈ρq̄, ρq̄〉
(
λ〈ρ′q, ρq〉+ λ〈ρ′q, ρq〉

)
+ λ〈ρq, ρq〉

(
λ̄〈ρ′q̄, ρq̄〉+ 〈ρq̄, ρ′q̄〉

)

= −‖ρq‖2Hs2Re 〈ρ′q, ρq〉+ ‖ρq‖2Hs2Re 〈ρ′q, ρq〉 = 0.

Therefore

|λy| ≤ 1

2

∑

ρ1,ρ2,ρ3,ρ4∈{ρ,ρ′}

‖ρ1(p− λq)‖Hs‖ρ2q‖Hs

(
|〈ρ3p, ρ4q〉|+ |〈ρq, ρq〉|

)

|µ|2 ,

and by (6.15), (6.16),

|λy | ≤ c‖ρ(p− λq)‖Hs , and hence ‖λy‖L2 ≤ cds(q, p).

We easily obtain the claimed estimates for higher order derivatives. �

Next we study what happens when we modify the weight. Let η ∈ C∞
0 ([−1, 1]) with

η = 1 on [−1/2, 1/2] and we define

µ̃ = µ̃(y) = 〈η((· − y)/L)p, η((· − y)/L)q〉Hs , λ̃ = λ̃(y) =
µ̃(y)

|µ̃(y)| .

Lemma 6.5. Assume the same hypotheses as in Lemma 6.4, then

‖λ̃− λ‖HN ≤ cNd
0(q, p), ∀N ∈ N,

if the righthand side is bounded by a constant depending on the energy.

Proof. Since

|λ̃− λ| =
∣∣∣∣
|µ̃(y)|µ(y)− |µ(y)|µ̃(y)

|µ(y)||µ̃(y)|

∣∣∣∣ ,

this amount to bounding the difference

A = |µ̃(y)|µ(y)− |µ(y)|µ̃(y).
This vanishes again for λq and we can continue as in the proof of Lemma 6.4 since

|A| ≤ A1 + A2

where

A1 =
∣∣∣
∣∣〈η(x− y)p, η(x− y)q〉

∣∣〈 sech L(x− y)p, sech L(x− y)q〉

−
∣∣〈η(x− y)λq, η(x− y)q〉

∣∣〈 sechL(x− y)λq, sech L(x− y)q〉
∣∣∣

≤
∣∣〈η(x− y)(p− λq), η(x− y)q〉

∣∣∣∣〈 sech L(x− y)q, sech L(x− y)q〉
∣∣

+
∣∣〈η(x− y)q, η(x− y)q〉

∣∣∣∣〈 sech L(x− y)(p− λq), sech L(x− y)q〉
∣∣
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A2 =
∣∣∣|〈 sechL(x− y)p, sech L(x− y)q〉|〈η(x− y)p, η(x− y)q〉

− |〈 sech L(x− y)λq, sech L(x− y)q〉|〈η(x− y)λq, η(x− y)q〉
∣∣∣.

Bounding the derivatives is done in the same fashion as for λ.
�

There exists r < 1
32
Es(q)/ε small enough such that for any p ∈ Bs

r(q), we can construct

a function θ = θ(x) using the function λ̃ = λ̃(y) as follows:

(1) We choose a sequence (an)n∈Z so that

eian = λ̃(4nL)

and ∑

n

|an−1 − an|2 < CLds(q, p) <
1

2

where the latter is satisfied for small enough r. The sequence is unique up to the
addition of a multiple of 2π.

(2) We fix a smooth partition of unity
∑

n

ρ((x− 4Ln)/L) = 1 with ρ = 1 on [−1, 1] = Supp (η)

and define

θ(x) =
∑

anρ((x− 4Ln)/L).

(3) We define the map

p→ e−iθp− q =: b.

This defines the map (6.12) in Theorem 6.2:

Bs
r(q) ∋ p 7→ ((an)n, b) ∈ l2d × H̃s.

Indeed, it suffices to show b ∈ H̃s. Since

‖ sech L(x− y)b(x)‖Hs
x
≤ ‖ sech L(x− y)((χ(y))−1p(x)− q(x))‖Hs

x

+ ‖ sech L(x− y)((χ(y))−1 − (χ̃(x))−1)p(x)‖Hs
x

+ ‖ sech L(x− y)((χ̃(x))−1 − e−iθ(x))p(x)‖Hs
x
,

by Lemma 6.2, Lemma 6.4 and Lemma 6.5, we derive that

‖b‖2Hs .

∫
‖ sech L(x− y)b‖2Hs

x
dy . ds(q, p).

Furthermore, it is straightforward to calculate

〈η((x− 4nL)/L)b, η((x− 4nL)/L)q〉
=e−ian〈η((x− 4nL)/L)p, η((x− 4nL)/L)q〉 − 〈η((x− 4nL)/L)q, η((x− 4nL)/L)q〉
=|µ̃(4nL)| − ‖η((· − 4nL)/L)q‖2Hs ∈ R .

Let us consider the map

l2d × H̃s ∋ ((an)n, b) 7→ eiθ(q + b),

where the function θ is constructed as above from θ(4nL) = an. Since

|eiθ(q + b)|2 − |eiθ̃(q + b̃)|2 = |b|2 − |̃b|2 + 2Re
[
q̄(b− b̃)],

we derive that
∥∥|eiθ(q + b)|2 − |eiθ̃(q + b̃)|2

∥∥
Hs−1 ≤ c‖b− b̃‖Hs .
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Furthermore, we also derive (expanding the norm)
∫

R

∥∥∥ sech (x− y)
(
eiθ̃(y)−iθ(y)eiθ(x)(q + b)− eiθ̃(x)(q + b̃)

)∥∥∥
2

Hs
x

dy

≤ c
(
‖b− b̃‖2Hs + ‖

(
(an)− (ãn)

)
n
‖2l2

d

)
.

On the other side, the map

Bs
r (q) ∋ p 7→ λ̃(y) =

〈η((x− y)/L)p, η((x− y)/L)q〉Hs
x

| · | ∈ |D|−1HN

and the map

p 7→ b = e−iθp− q

are Lipschitz continuous. This proves the biLipschitz continuity.
Finally, the following two maps describing the coordinate changes are smooth:

((an)n, b) 7→ λ̃1(y) =
〈η((x− y)/L)(eiθ(x)(q + b)), η((x− y)/L)q1〉Hs

x

| · | ∈ |D|−1HN ,

((an)n, b) 7→ b1 = eiθ−iθ1(q + b)− q1.

�

Appendix A. Calculation of the quadratic term

We prove Lemma 5.1 here: We derive the expansion (5.16) of lnT−1
c from the expansion

(3.22) on the imaginary axis (5.7). It suffices to show

(A.1) Φ + T2 = T̃2 + T̃3, when (λ, z) = (i
√
τ 2/4− 1, iτ/2), ζ = λ+ z, τ ≥ 2,

where Φ, T2 = , T̃2 are given in (3.23), (5.13), (5.17) respectively:

Φ := − i

2z

∫

R

(|q|2 − 1)2

|q|2 − ζ2
dx +

1

2zζ

∫

R

q′q̄(|q|2 − 1)

(|q|2 − ζ2)
dx ,

=

∫

x<y

eϕ(y)−ϕ(x)q3(x)q2(y) dx dy ,

T̃2(iσ) =
1

4z2

∫

x<y

e2iz(y−x)
(
(|q|2 − 1)(y)(|q|2 − 1)(x) + q′(y)q̄′(x)

)
dx dy

− i
z + ζ

4z3ζ2

∫

R

Im (q′q̄)(|q|2 − 1) dx +
1

8z3ζ

∫

x<y

e2iz(y−x)
(
q′(y)q̄′(x)− q̄′(y)q′(x)

)
dxdy.

Here, T̃3 identifies the summation of the cubic terms in lnT−1
c and reads as the finite

linear combination of the integrals of type (5.18), that is, of the cubic terms from the
following set:

{∫

R

( |q|2 − 1

τ 2

)2

hdx , ,

∫

x<y

e2iz(y−x)h1(y)
( |q|2 − 1

τ 2
h2

)
(x) dx dy ,

∫

x<y

e2iz(y−x)
( |q|2 − 1

τ 2
h1

)
(y)h2(x) dx dy ,

∫

x<y

e2iz(y−x)h1(y)

∫ y

x

q′ or q̄′

τ
dmh2(x) dx dy

∣∣∣h, h1, h2 ∈ O
}
.

(H)

Here =
∫
x<y

(eϕ(y)−ϕ(x) − e2iz(y−x))q2(y)q3(x) dx dy is defined in (5.15) and the set

O =
{
P · 1

τ
(|q|2 − 1), P · 1

τ
q′, P · 1

τ
q̄′
}
(defined in (5.11)) where P is polynomial of form

(5.10): P = P ( 1
ω−2|q|2+1

, 1
τ
q, 1

τ
q̄, 1

τ2 (|q|2 − 1)).
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For notational simplicity, we will always denote H to be the finite summation of some
cubic terms from the above set (H), which may change from line to line. Thus the goal
equality (A.1) reads as

(A.2) Φ +

∫

x<y

e2iz(y−x)q2(y)q3(x) dx dy = T̃2 +H,

and we are going to decompose the quantity Φ +
∫
x<y

e2iz(y−x)q2(y)q3(x) dx dy into the

quadratic and cubic terms in the following. We will use freely the equality in (3.17):
1

|q|2−ζ2
= − 1

2zζ
+ |q|2−1

2zζ(|q|2−ζ2)
.

We can first rewrite Φ as the finite summation of quadratic and cubic terms:

Φ =
i

4z2ζ

∫

R

(|q|2 − 1)2 dx − i

4z2ζ

∫

R

(|q|2 − 1)3

|q|2 − ζ2
dx

− 1

4z2ζ2

∫

R

q′q̄(|q|2 − 1) dx +
1

4z2ζ2

∫

R

q′q̄(|q|2 − 1)2

|q|2 − ζ2
dx

=
i

4z2ζ

∫

R

(|q|2 − 1)2 dx − 1

4z2ζ2

∫

R

q′q̄(|q|2 − 1) dx +H.

(A.3)

Recall q2, q3 defined in (∗) such that the product q2(y)q3(x) reads as

q2(y)q3(x) =
q′(y)q̄′(x)

4z2
− q′(y)

4z2
(|q|2 − 1)q̄′

|q|2 − ζ2
(x) +

ζ

2z

(|q|2 − 1)q′

|q|2 − ζ2
(y)

q̄′

|q|2 − ζ2
(x)

+ iζ
( q′

|q|2 − ζ2
(y)

(|q|2 − 1)q̄

|q|2 − ζ2
(x)− (|q|2 − 1)q

|q|2 − ζ2
(y)

q̄′

|q|2 − ζ2
(x)

)

+
(|q|2 − 1)q

|q|2 − ζ2
(y)

(|q|2 − 1)q̄

|q|2 − ζ2
(x).

We decompose
∫
x<y

e2iz(y−x)q2(y)q3(x) dx dy into

∫

x<y

e2iz(y−x)q2(y)q3(x) dx dy =
1

4z2

∫

x<y

e2iz(y−x)q′(y)q̄′(x) dx dy +G+H,(A.4)

with G =
i

4z2ζ

∫

x<y

e2iz(y−x)
(
q′(y)

(
(|q|2 − 1)q̄

)
(x)−

(
(|q|2 − 1)q

)
(y)q̄′(x)

)
dx dy

+
1

4z2ζ2

∫

x<y

e2iz(y−x)((|q|2 − 1)q
)
(y)

(
(|q|2 − 1)q̄

)
(x) dx dy .

By virtue of q(y)− q(x) =
∫ y

x
q′(m)dm,

G =
i

4z2ζ

∫

x<y

e2iz(y−x)
(
(q′q̄)(y)(|q|2 − 1)(x)− (|q|2 − 1)(y)(qq̄′)(x)

)
dx dy

+
1

4z2ζ2

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)
(
(|q|2 − 1)|q|2

)
(x) dx dy +H,

and hence

G =
i

4z2ζ

∫

x<y

e2iz(y−x)
(
Re (q′q̄)(y)(|q|2 − 1)(x)− (|q|2 − 1)(y)Re (q′q̄)(x)

)
dx dy

− 1

4z2ζ

∫

x<y

e2iz(y−x)
(
Im (q′q̄)(y)(|q|2 − 1)(x) + (|q|2 − 1)(y)Im (q′q̄)(x)

)
dx dy

+
1

4z2ζ2

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)(|q|2 − 1)(x) dx dy +H.
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Noticing 2Re (q′q̄) = (|q|2 − 1)′ and the integration by parts
∫

x<y

e2iz(y−x)g(y)h(x) dx dy =
i

2z

(∫

R

ghdx −
∫

x<y

e2iz(y−x)g(y)h′(x) dx dy
)

=
i

2z

(∫

R

ghdx +

∫

x<y

e2iz(y−x)g′(y)h(x) dx dy
)
,

we derive that

G =
1

2zζ

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)(|q|2 − 1)(x) dx dy − i

4z2ζ

∫

R

(|q|2 − 1)2 dx

+
i

4z3ζ

∫

x<y

e2iz(y−x)
(
Im (q′q̄)(y)Re (q′q̄)(x)−Re (q′q̄)(y)Im (q′q̄)(x)

)
dx dy

− i

4z3ζ

∫

R

Im (q′q̄)(|q|2 − 1) dx +
1

4z2ζ2

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)(|q|2 − 1)(x) dx dy +H.

Hence by 1
2zζ

+ 1
4z2ζ2

= 1
4z2

G =
1

4z2

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)(|q|2 − 1)(x) dx dy − i

4z2ζ

∫

R

(|q|2 − 1)2 dx

+
1

8z3ζ

∫

x<y

e2iz(y−x)
(
(q′q̄)(y)(qq̄′)(x)− (qq̄′)(y)(q′q̄)(x)

)
dx dy

− i

4z3ζ

∫

R

Im (q′q̄)(|q|2 − 1) dx +H,

which, by virtue of q(y)− q(x) =
∫ y

x
q′(m)dm and |q|2 = (|q|2 − 1) + 1 again, reads as

G =
1

4z2

∫

x<y

e2iz(y−x)(|q|2 − 1)(y)(|q|2 − 1)(x) dx dy − i

4z2ζ

∫

R

(|q|2 − 1)2 dx

+
1

8z3ζ

∫

x<y

e2iz(y−x)
(
q′(y)q̄′(x)− q̄′(y)q′(x)

)
dx dy − i

4z3ζ

∫

R

Im (q′q̄)(|q|2 − 1) dx +H.

To conclude, we arrive at (A.2) and hence (A.1) by summing up (A.3) and (A.4) (noticing
again

∫
R
Re (q′q̄)(|q|2 − 1) dx = 0).
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