
Linking So�ware Architecture
Documentation and Models

Master Thesis of

Sophie Schulz

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Anne Koziolek
Second reviewer: Prof. Dr. Ralf Reussner
Advisor: M.Sc. Jan Keim
Second advisor: Dipl.-Inform. Angelika Kaplan

6. April 2020 – 5. October 2020

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 5. October 2020

. .
(Sophie Schulz)

Abstract

In software engineering, consistency between artifacts is an important topic. This thesis
proposes a structure for detecting mutual and missing elements between a documentation
and a formal model.

First, the approach identi�es and extracts model instances and relations described in
the text. Then, the approach connects these textual elements to their corresponding coun-
terparts in the model. These links are comparable to trace links. However, the approach
allows the graduation of these links. Moreover, the approach generates recommendations
for elements that could not be found in the model.

The approach identi�es model names and types with an F1-Score above 54%. 60% of the
recommended instances match the instances found in the user study. For the identi�cation
of relations and the creation of links the approach achieved promising results. The results
can be improved through future work. This can be realized because the design allows an
easy implementation of extensions.

i

Zusammenfassung

In der Softwareentwicklung ist die Konsistenz zwischen Artefakten ein wichtiges Thema.
Diese Arbeit schlägt eine Struktur zur Erkennung von korrespondierenden und fehlenden
Elementen zwischen einer Dokumentation und einem formalen Modell vor.

Zunächst identi�ziert und extrahiert der Ansatz die im Text beschriebenen Modell-
instanzen und -beziehungen. Dann verbindet der Ansatz diese Textelemente mit ihren
entsprechenden Gegenstücken im Modell. Diese Verknüpfungen sind mit TraceLinks
vergleichbar. Der Ansatz erlaubt jedoch die Abstufung dieser Links. Darüber hinaus
generiert der Ansatz Empfehlungen für Elemente, die nicht im Modell enthalten sind.

Der Ansatz identi�ziert Modellnamen und -typen mit einem F1-Score von über 54%.
60% der empfohlenen Instanzen stimmen mit den in der Benutzerstudie gefundenen
Instanzen überein. Bei der Identi�zierung von Beziehungen und dem Erstellen von Ver-
knüpfungen erzielte der Ansatz vielversprechende Ergebnisse. Die Ergebnisse können
durch zukünftige Arbeiten verbessert werden. Dies ist realisierbar da der Entwurf eine
einfache Erweiterung des Ansatzes erlaubt.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. RelatedWork 5
2.1. Information Retrieval . 5
2.2. Generating Artifacts . 7
2.3. Finding Trace Links . 9
2.4. Consistency Tests . 10

3. Fundamentals 11
3.1. Palladio Component Model . 11
3.2. PARSE And INDIRECT . 12

4. Approach 13
4.1. Overview . 13

4.1.1. Example 1: Introduction To Hint And Trace Links 14
4.2. Detailed Approach . 16

4.2.1. Text Extraction . 17
4.2.2. Model Extraction . 20
4.2.3. Recommendation Generation . 21
4.2.4. Link Generation . 23

5. Architecture 27
5.1. High-level Architecture . 27

5.1.1. Analyzers And Solvers . 28
5.2. Detailed Architecture . 29

5.2.1. Text Extractor . 29
5.2.2. Model Extractor . 32
5.2.3. Recommendation Generator . 33
5.2.4. Connection Generator . 34

6. Implementation 37
6.1. Text Extractor . 37

6.1.1. The Adding Of Basic NounMappings 38
6.1.2. The Adding Of NounMappings Containing Separators 41
6.1.3. Similarity . 42

v

Contents

6.1.4. Adding Term Mappings And Relation Mappings 42
6.1.5. Analyzers And Solvers . 42

6.2. Recommendation Generator . 46
6.2.1. Analyzers And Solvers . 48

6.3. Connection Generator . 53
6.3.1. Analyzers And Solvers . 54

6.4. Con�guration . 55

7. Evaluation 57
7.1. Representing Links . 57
7.2. Creation Of A Gold Standard For Evaluation 62

7.2.1. Preparation . 62
7.2.2. Concept Of The User Study . 64
7.2.3. Execution Of The User Study . 66
7.2.4. Creation Of The Gold Standard 66

7.3. Metrics . 68
7.4. Textual Element Recognition . 69
7.5. Model Element Recognition . 71
7.6. Creating Tracelinks . 73
7.7. Threats To Validity . 75

8. Conclusion And Future Work 77

Bibliography 81

A. Appendix 85
A.1. Implementation . 85
A.2. Evaluation . 89

vi

List of Figures

1.1. Model Extraction Overview: The model is represented as internal struc-
ture. Instances consist of names and types. Relations have participating
instances and a type. 2

1.2. Text Extraction: Names, types and relations are marked in the text. Then
instances and relations are built out of them. 3

1.3. Approach Overview: The extracted model and the textual model are joined
to a version that is recommended to the user. 4

3.1. An example of a composite component in PCM. The composite component
contains two basic components. 11

3.2. Graph structure of PARSE: The tokens of the input text are represented
by nodes and connected with next edges. The graph can be extended with
additional edges and tags. 12

4.1. Approach Overview . 14
4.2. The transformation of a model instance to a goal model instance. The

model instance is missing an element . 15
4.3. The approach in levels: The text extraction and the model extraction are

the base of the approach. The recommendations are built upon textual and
model information. The creation of links depends on the information of
recommendations and the model. 18

4.4. Example 2: The initial input text . 18
4.5. Example 3: The initial input model . 20

5.1. High-level Architecture: The arrows represent the requirements of each
level. 27

5.2. Analyzer Architecture . 29
5.3. Solver Architecture . 30
5.4. Text Extractor Architecture . 31
5.5. Model Extractor Architecture . 32
5.6. Recommendation Generator Architecture 33
5.7. Connection Generator Architecture . 34
5.8. Architectural relationships between all states 35

6.1. Overview of the Text Extraction State as UML class 37
6.2. NounMapping as UML class . 38
6.3. The analysis of a sentence with a dependency parser. 44
6.4. Recommendation Generator . 47
6.5. Connection State . 54

vii

List of Figures

7.1. Approach Overview . 58
7.2. Diagram of Teammates used for the evaluation [29]. 63
7.3. Model of a confusion matrix . 68

viii

List of Tables

4.1. Example 1: An example of trace links . 15
4.2. Example 1: The resulting hint links . 16
4.3. Example 2: The results of the noun classi�cation 19
4.4. Example 2: The extracted relations of the text 20
4.5. Example 3: The extracted instances of the model 21
4.6. Example 3: The extracted relations of the model 21
4.7. Example 4: The updated names, types and norts of the text extraction . . 22
4.8. Example 4: The updated relations of the text extraction 22
4.9. Example 4: The recommended instances 23
4.10. Example 4: The recommended relations 23
4.11. Example 5: The instance links . 24
4.12. Example 5: The relation links . 24

6.1. The mapping of incoming dependency tags to concluded noun mapping
kinds . 45

6.2. The mapping of outgoing dependency tags to concluded noun mapping
kinds . 45

7.1. The instances of the TEAMMATES diagram in the model extraction state. 62
7.2. The relations of the TEAMMATES diagram in the model extraction state. 62
7.3. The instance table of the �rst task of the user study. 65
7.4. The relation table of the second task of the user study. 65
7.5. The results of the evaluation of the marks of the �rst task in percent per

reference sets . 70
7.6. The results of the evaluation of the instances of the �rst task in percent

by matching decisions. Only references with more than four points were
considered. 71

7.7. The results of the evaluation of the tags of the third task in percent per
reference sets . 71

7.8. The results of the evaluation of the instances of the third task in percent
by matching decisions. 72

7.9. The results of the evaluation of the recommended relations compared to
the existing in relations of the model, in percent by matching decisions. . 73

7.10. The results of the evaluation of the instances of the third task in percent
per matching decisions. 74

7.11. The results of the evaluation of the recommended relations compared to
the existing in relations of the model, in percent per matching decisions. 74

A.1. The general con�gurations that can be set in the con�guration �le. . . . 85

ix

List of Tables

A.2. The con�gurations that can be set for the connection generator. 85
A.3. The con�gurations for helper classes, such as SimilarityUtils 86
A.4. The con�gurations of all parts of the text extraction level. 87
A.5. The con�gurations that can be set for the recommendation generator. . . 88

x

1. Introduction

In software development, communication is an important topic: If requirements are mis-
understood the client most often will not get the software as ordered; if the architecture
is not documented well, further development and maintenance can get complicated and
exhausting. With clear, describing, explaining documentations, software processes can
improve. However, this improvement comes at a cost. When describing software un-
der development in documents, these have to be adapted to every change on software
side. For this, similar to programming without an IDE (marking all faults), mistakes are
almost unavoidable: Formulations will be unclear, old references will be forgotten, or
new functions are not described. Thereby, it is di�cult for readers to connect textual
elements to instances of the described model. These connections are called trace links. In
general, the concept of traceability is based on the assumption that document and model
are consistent. Thus, a trace link always has two end points: One in the model and one in
the document. These trace links are created when reading a document with the model
in mind. If document and model can not be connected, the reader searches for a missing
detail in the model or claim the description of the document as faulty. In case of designing
a more e�cient procedure (than looking manually for faults) �rst steps have been made to
automate consistency checks between documents and underlying models. Thus, faults can
be marked and are corrected immediately (like in an IDE). This automation is not easy, as
I will show in Chapter 2, especially when the end points are ambiguous.

In this work, a consistency analysis between architecture documentation and model is
processed. Faults, like forgotten descriptions, are recognized. For this reason, I introduce
hint links, a graduation of trace links. Hint links can be seen as potential trace links.
Instead of having approved endpoints, they can mark a textual element which seems likely
to be a description of a model instance. In contrast to the common understanding of trace
links, the textual element has not to be connected to a model element. Therefore, hint
links can be used similar to loose trace links, for example if a textual element could be
identi�ed as ambiguous. With hint links the text element could be mapped to multiple
model elements. Thereby, neither the connection is discarded, nor are all proposed to
the user, but the best suggestions can be proposed to the user in order of their certainty.
Moreover, in contrast to trace links, hint links are able to mark textually described elements
that possibly should be contained in the model, even if they are not contained. Thus, with
the help of trace and hint links the reader is supported, faults can be found e�ciently, and
misunderstandings can be avoided.

This work �nds trace links and hint links between architecture documentations and
models. In this master thesis, I use INDIRECT (see Section 3.2) for the textual prepro-
cessing of the documentation. Thereby, the textual information is transmitted in a graph
and become machine-readable. In the graph, every node represents a token. During
preprocessing INDIRECT adds additional linguistic information as edges or annotations.

1

1. Introduction

This work divides model elements in instances and relations. Every instance is de�ned
by a name and a type. Every relation consists of at least two instances and a type. The
approach uses this de�nition to get �rst indications what parts of the text describe model
instances or relations.

Figure 1.1 shows a short application of the de�nition and its meaning. In this example,
a simple UML class diagram is given. The instances of the model are represented as a
name-type combination. The type is the type of the model element. In this case, both types
are Class. The model has only one relation. Relations are represented with their instances
and a type. Here, the instance are referenced with the name. The type is (similar to the
type of instances) the type of the chosen model element. In this case, the model element is
an association that is translated to has. Thereby, the model is represented textually in the
table.

Car WheelCar
4has1

Instance 1 Instance 2 Type

Car Car Wheel associa�on

Model

Internal Model
Representa�on

Name Type

Car Class

Car Wheel Class

Figure 1.1.: Model Extraction Overview: The model is represented as internal structure.
Instances consist of names and types. Relations have participating instances
and a type.

The idea of the approach is to extract information from the text that indicate instances
or relations. Figure 1.2 shows this procedure. The approach starts at the textual base and
searches for types and names. At �rst, this is done without knowledge of the model. This
generalized search allows �nding names and types of elements that are missed in the
model. In the example, the process is shown with the marks in the documentation text.
The process identi�es Car, Car Wheel, Driver, and Automobile Model as names. Moreover,
the approach recognizes Classes as type, and the relations from and owner of.

2

Instance 1 Instance 2 Type

Car Car Wheel has

Internal Model
Recommenda�on

Documenta�on
Car and car wheel are classes from the automobile model.

A car has four wheels. The owner of the car is a driver.

Name Type

Car Class

Car Wheel Class

Driver

Driver Car owner of

Automobile Model

Car Automobile Model from

Car Wheel Automobile Model from

Figure 1.2.: Text Extraction: Names, types and relations are marked in the text. Then
instances and relations are built out of them.

Based on these marks the approach tries to build possible instances and relations. For
this purpose, the model can be used as background knowledge. Hint links and trace links
are only created in the step after this. Thus, the approach currently uses the model only
as support for the search of instances and relations. With the help of the model, the
approach can use the occurring types for the identi�cation of instances. In the example,
the approach could thereby recognize the name-type combinations of car - class and car
wheel - class, but this can also be done without model knowledge. The increased certainty
by the veri�cation of the model is shown with the solid lines. Less con�dent elements
are marked with dotted lines. For the other found names the model does not contain a
hint. Neither driver nor automobile model have a connection to a type. Therefore, their
generated recommendations contain only a name. For the relation this process is done
in a similar manner. Instead of searching for the same type as stored in the model, the
approach searches for similar participating instances. Car and Car Wheel are identi�ed as
possible instances. Thus, relations with them should be in the model. All other relations
are also transmitted in the model.

Through the previous steps, the approach has two versions of a model. These versions
have to be joined to a recommended version. At this point, hint links and trace links are
created. Figure 1.3 shows a merged version of both models. Trace links are represented
with solid lines while the dotted lines represent hint links. In this example, the approach
decides that driver is a missing element of the model. Since the model type could not be
identi�ed, the relation type stays at its textual description. Thereby, the user can better
understand the meaning of the relationship.

3

1. Introduction

Car WheelCar
4has1

Instance 1 Instance 2 Type

Car Car Wheel associa�on

Model

Internal Model
Representa�on

Name Type

Car Class

Car Wheel Class

Instance 1 Instance 2 Type

Car Car Wheel has

Textual Iden�fied
Elements

Documenta�on
Car and car wheel are classes from the automobile model.

A car has four wheels. The owner of the car is a driver.

Name Type

Car Class

Car Wheel Class

Driver

Driver Car owner of

Automobile Model

Car Automobile Model from

Car Wheel Automobile Model from

Instance 1 Instance 2 Type

Car Car Wheel associa�on

Name Type

Car Class

Car Wheel Class

DriverResul�ng Model
Recommenda�ons

Driver Car owner of

Figure 1.3.: Approach Overview: The extracted model and the textual model are joined to
a version that is recommended to the user.

4

2. RelatedWork

This chapter presents work to related topics of this thesis. The �rst step of this thesis is
the extraction of textual information. This extracted information is used to generate hint
and trace links. In general, this subject is called information retrieval and is introduced
in Section 2.1. The next sections present di�erent view points of the problem. In this
thesis, text and model are present and should be connected. Both, the text and the model
can contain inconsistencies to the goal model. The goal model represents the current
state of a software that is described by the text and model. Instead of generating the
goal model, the trace links (representing consistencies), hint links (representing possible
consistencies), and inconsistencies are suggested to the user. In this thesis neither the
textual input nor the model input are assumed to be correct. In contrast to this assumption,
the related work presented in Section 2.2 and Section 2.3 require correct and therefore
consistent resources. While Section 2.2 focuses on the generation of artifacts to a given
meta model and textual description, Section 2.3 focuses more on the actual connection
between the artifacts. In these sections, the assumption that all artifacts are correct is
crucial. Thus, missing elements etc. can not be found. Finally, Section 2.4 presents work
that does not require consistent artifacts. This section focuses on di�erent consistency
testing approaches and includes thereby related concepts to hint links.

2.1. Information Retrieval

One of the �rst objectives of this work (see also Chapter 1), is to �nd and mark names
and types of potential goal elements in a document. For consistency analysis, this has to
work without any knowledge of the model. Thus, in a �rst step all potentially relevant
information of a text have to be identi�ed and extracted. This section introdurces di�erent
approaches for information retrieval.

In the 1990s, the interest in information retrieval started to grow. One of the �rst goals
was to �nd conceptual related terms. In 1992, Hearst [13] started to search for hyponymous
entities in corpora using prede�ned patterns. In these patterns, syntactical elements are
used as place holders for sub terms and generic terms. The connections between them are
natural formulations. By simple pattern matching with “NPx and other NPy” phrases like
“... temples and other civic buildings ...” con�rm the term NPx as a hyponym of NPy .

A related approach is DIPRE [5] using Bootstrapping. To �nd entities to given relations
(e.g. author - book) a database is searched for linguistic formulation between given start
terms. These connections are extracted and used as formulations in hearst patterns to �nd
more entities, similar to the given terms (in this example authors and books). On the one
hand, this approach improves the applicability of hearst patterns a lot by automatize the
generation of the patterns. On the other hand, the approach turned out as very dependent

5

2. Related Work

of the start terms. In the evaluation, author-book-pairs were searched, starting with �ve
pairs. After the evaluation, it was found out that only the �rst two pairs had generated
the search patterns. Therefore, and because both books were of the science �ction genre,
the new �nd instances mostly were of this genre, too. Even though this approach has its
weaknesses, the idea of automated relation extraction for �nding entities is kept.

KnowItAll [11, 10] was build upon this bootstrapping principle. As in the related
work above, the goal is to extract concepts and relationships. To �nd new instances of
conceptual classes of entities, hearst patterns are used. Then, a search similar to the one
in DIPRE is used, to �nd more formulations of relations. By this, with just two start values
(e.g. Karlsruhe and Germany), a capital_of -relation can be instantiated. After extracting
relations, these are combined with related entities and entered in a search engine. A score
(pointwise mutual index) is calculated with the count of results. Finally, a naive-bayes-
classi�er is trained with this score to verify candidates. Thereby, KnowItAll does not need
manual input and is classi�ed as an unsupervised learner.

TextRunner [2] optimizes the extraction of relations and entities, being an unsupervised
single pass extractor. Single pass extractors only need to run one time through the input
data. Especially when using larger data sets, as in entity and relation extraction, this is a
huge improvement of e�ciency. TextRunner extracts all relations of a small, unlabeled
training set. These are stored as triples like relation = (NPx , relationxy,NPy). The relation
is marked as a positive sample, if a short dependency path exists between both nominal
phrases, none of them is a pronoun, and no sentence limit is crossed. Otherwise, the relation
is marked as a negative sample. With these marked data a naive bayes classi�er is trained.
In a second step a corpus is passed through, tagging type of words, identifying nominal
phrases, and extracting them, as well as potential relations. After applying multiple
heuristics (e.g. removing adverbs and prepositions), triples of relations are generated from
the extracted data. Then, the classi�er rates the new triples. As KnowItAll, TextRunner
includes a step evaluating its results. In this case, this is done by the princile of the urn
model: For every relation its occurrences are counted and added to the urn model. The
probability that a relation is correct, is the probability of drawing a ball of this relation. A
disadvantage of this last step is that the account of relations sometimes is very independent
of its correctness. In this case, when using the internet as a corpus, curios relations, like
“Chuck Norris, invented, the internet” were marked as correct. Obviously this problem
is caused by using unrestricted input data. In general, the evaluation of this approach
included 60.5 million relations, extracted from 9 million websites and 133 million sentences.
By evaluating a sample of 400 of these, only 35 were well-formed (e.g. not (29, dropped,
instruments)) and explicit (e.g. not (Einstein, derived, theory)). However, of these explicit,
well-formed triples 88.1% were correct.

Distant Supervision [21] invented a new approach to avoid not well-formed relations
and entities. It is based on the paradigm: If two relation-connected entities occur in a
sentence, then this sentence represents the relation. Similar to Bootstrapping in this
approach prede�ned instances are necessary. To be less susceptible than Bootstrapping
more start values are used. As resource corpora like WordNet can be used, to extract
entity pairs of listed relations (e.g. (lion, animal) from the is-a relation). For these pairs
occurrences in another corpora (e.g. Wikipedia) are used to extract lexical, syntactical,
and naming properties for relations between them. Finally, these properties are used in

6

2.2. Generating Artifacts

a classi�er for this relation. Thereby, search patterns for e.g. (hyponym,hyperonym) -
relations can be found and help to extract more entities and relations representing their
relationship.

The information retrieval is related to one of the �rst tasks of this thesis: The identi�ca-
tion and extraction of model elements described in the documentation. Therefore, similar
pattern based approaches would be applicable. As Chapter 4 will describe, the approach
will search for names and types in the text. The classi�cation of them is done with simple
patterns. In contrast to the work presented in this section, the approach uses the identi�ed
textual information to combine and aggregate it to model elements.

2.2. Generating Artifacts

This section provides multiple approaches for extracting textual information and tran-
scribing them in a given meta model, like UML models. This goal is related to the creation
of hint links. An idea would be to propose a trace link or hint link, instead of creating an
element of a model.

Similar to the information extraction (Section 2.1) the approaches of this section are rule-
based. In contrast to the �rstly described approaches, the approaches of this section transfer
the found textual information in a meta model. After di�erent textual preprocessing steps,
clauses are checked and parts of the sentences are instantiated as model elements. Some
examples for these approaches are the approach by Deeptimahanti & Babar [9] and another
approach by Ibrahim & Ahmad [15]

In [9] requirement documentations are analyzed to derive UML models such as use case
or class diagrams. For this purpose, Deeptimahanti and Babar use a rule-based approach.
A linguistic analysis using the Stanford parser, WordNet, and JavaRAP extracts lexical and
syntactical properties. Based on these properties and pre-de�ned rules, the models are
generated. The rules do not seem to be very complex. When generating a design diagram,
structures such as “Who does what to whom?” are used. The subjects and objects are
derived from the nominal phrases and the predicate from the verb of the input sentence.

A similar approach is pursued in [15]. In this approach (as in [9]), a linguistic analysis
is �rst carried out and a class diagram is created from requirement texts. For this purpose,
Ibrahim and Ahmad use OpenNLP and WordNet. After applying the di�erent analysis
steps, the extracted concepts are examined. According to the concepts their approach
denotes rules. These are then compared using an ontology and classi�ed as elements of
the class diagram based on additional, more complex heuristic rules. In this way classes,
attributes, and various relations are recognized.

As described in Section 2.1, one of the problems of these rule based approaches is the
worse classi�cation when rules are manually created.

Instead of manually creating rules for classifying model elements, sometimes infor-
mation is �rst transferred in an intermediate storage. Therefore, when analysing text
information, these storages are used to make the extracted information accessible to other
processes. In computer linguistics, these storage structures are often termed as ontolo-
gies. The term ontology references to the philosophical term for doctrine of being [8].
In computer linguistics, the term indicates a storage structure providing as much shared

7

2. Related Work

explicit understanding as possible. If possible, not only facutal knowledge, like (“There
are ingredient on a pizza”), but also conceptual knowledge (e.g. in which order a pizza
is topped) is stored. In order not to get lost in unnecessary details, ontologies are often
restricted to the domain of the application system. In general, ontologies consist of con-
cepts, instances that inherits from concepts, and relations connecting concepts and classes.
Sometimes partitions are used to divide concepts into di�erent sub-concepts (e.g. animals
in mammals and other).

There are some approaches for the automatic generation of ontologies. Usually, the
creation of an ontology includes the identi�cation of problem-relevant elements, concepts
and instances, the determination of concept attributes, and insertion of relations between
the concepts.

Kof pursues a syntactic approach to this in his work [16], [17], [17], [18]. The approach
aims at the generation of an ontology from requirements documents or speci�cation. For
this purpose, the text predicates and their arguments are extracted. The result of the
extraction are terms, i.e., subjects and objects that are linked by their connecting verbs. For
the subsequent clustering process, the verbs are �rst brought into their basic form. In order
to arrange these clusters that consist of nouns connected by a predicate taxonomically,
manual e�ort is necessary. If the taxonomy exists, relations must be searched for. For this,
association rules are used. For Kof, these rules are formed using words within a sentence.
The resulting relations are suggested to the user. Thus, in this approach a manual correction
of suggestions and a comprehensible naming of the relations is included in the ontology.
After the development, the approach is tested in a case study. This is based on a six-page
speci�cation description of a steam boiler and the corresponding software. In this �rst
case study, Kof has major problems with the structure of the speci�cation: Sentences that
contain only incomplete information as well as enumerated sentences cause problems for
term extraction. The exact speci�cation of nouns also plays an important role: According
to this, states should get meaningful names and always be addressed via these names.
After the text is improved and an ontology has been created, the absence of two concepts
becomes apparent during the evaluation. These were not extracted above, since they are
only used once in the speci�cation text and are unconnected to the rest of the system. It is
therefore unclear whether this should be interpreted as a weakness of the system, as the
concepts (if relevant) should have been described more precisely. Since associations and
properties of the concepts are entered manually, a further completeness analysis is not
necessary. For Kof, however, the creation of an ontology is only an aid to derive a system
model manually. By combining the ontology with a meta-model for distributed systems,
components, their behavior and communication channels are extracted. However, the
problem arises that although superordinate concepts can be considered as components,
the taxonomy is much less helpful in identifying the communication channels. One reason
for this is that the ontology itself does not re�ect the meta model. In a second case
study the scalability of ontology creation is examined. For an 80 page speci�cation of
an instrument cluster for a car, a total of �ve working days of manual work is required.
First, the document is made readable on the �rst day, then 1.5 days of manual work are
spent correcting errors in the document. In particular, this correction includes lists and
tables, but also the completion of key sentences and grammatical improvements. This step
also promotes the speci�cation, which is controlled and improved in this way. After term

8

2.3. Finding Trace Links

extraction, 1.5 days are needed to arrange the cluster taxonomically. The remaining day is
used to insert found associations as relations in the ontology. Thus, with an acceptable
manual e�ort, the creation of a speci�cation re�ecting ontology, as well as an improvement
of the speci�cation, has taken place.

The approach of Kof shows the complexity and importance of a correct information
extraction. Moreover, it shows that creating a model out of textual information is not
a trivial goal. Textual based created models could be used to generate trace links and
hint links, by comparing the created and given artifact. This approach is treated in the
following Section 2.3.

The approaches of this section all create artifacts from a textual resource. This is
related to the derivation of model elements in this thesis. In contrast to the presented
approaches, this thesis compares the identi�ed model elements to an existing model. Then
consistencies and inconsistencies are found. Finally, the user gets suggestions for model
elements. Therefore, in this thesis no unambiguous model is derived by the text.

2.3. Finding Trace Links

In this section, multiple approaches for trace link identi�cation are introduced. The focus
lies on identi�cation and extraction of veri�ed connections between text and another
artifact. In this context, every trace link has two approved end points. Consistency
tests, including hints for missing model elements etc., are more special and presented in
Section 2.4.

The work of [28] is based on collecting links between requirements and architecture.
They de�ne an ontology in which speci�cations and architectural artifacts can be de�ned
manually. The latter are documented in a semantic wiki. This can be used to �nd and
point out architectural conclusions about given requirements.

An approach, which tries to determine these connections automatically, is presented
in [22]. Here, requirements are written in user stories and epic stories. With the tool
RE4SA these are assigned to their architectural counterparts. Two processes are presented:
At �rst, a top-down process “Architecture Discovery”, which creates an architecture based
on requirements and subsequently connects modules to epic stories and features within
the modules to user stories. At second, a complementary bottom-up process “Architecture
Recovery” is used to restore the architecture from an implemented system. This is done
using available documentation such as source code, a version of the system. The recovered
components are then assigned to the requirements.

Guo et al.provide an approach for the automatic insertion of trace links between re-
quirement texts and other artifacts using a Recurrent Neural Network (RNN) [12]. For this,
contexts of words by learning word vectors are considered. For each artifact (requirement
texts, source code �les, etc.) each word is replaced by the associated, already learned
vector. These vectors are then entered sequentially into the RNN. The output is a vector
representing the semantic information of the entire artifact. Finally, the tracing network
compares the semantic vectors of the di�erent artifacts and calculates a probability for the
connection. The approach is evaluated using a communication-based control system for
trains. This system ensures that trains stay on their scheduled routes to avoid accidents.

9

2. Related Work

To train the RNN, texts from Wikipedia, the domain, and software artifacts are used. The
resulting data set includes over 1500 software subsystem requirements (SSRS), as well as
about 500 Software Subsystem Design Descriptions (SSDDs). During training, the SSRSs
are used as source artifacts and the SSDDs as target artifacts. Unfortunately, such a large
amount of data is usually not available. Therefore, this work is only applicable in rare
cases.

2.4. Consistency Tests

In this section, the related work provides insights in current consistency test strategies.
In contrast to the work in Section 2.3, the work of this section is able to identify possible
failures between the compared artifacts. The �rst approach introduced presents an ap-
proach for consistency testing between di�erent models. Thereby, it gives an idea of how
to reach consistency between prede�ned models. The latter work in this section is much
more related to this work. It provides consistency tests by using a controlled language for
architecture description.

Vitruvius [7, 6, 19] is an approach for consistency assurance between di�erent meta-
models. The idea behind Vitruvius is that software can be viewed from di�erent perspec-
tives. These views contain the information of several underlying meta-models. Instead of
using a single underlying model (SUM), Vitruvius de�nes transformations between the
meta-models to achieve consistence between them.

In [25, 26, 27] Schröder et al. provide an approach for conformance checking between
source code, architecture, and architecture documentation. The architecture concepts are
formalized in a controlled language. It allows them to express and connect architecture
rules directly with project-speci�c concepts. Therefore, the architecture concept language
must re�ect the architecture concepts, relations and rules. The source code is used and
represented as an ontology, whereas an architecture-to-code-mapping already exists.
While the concept language and architecture-code mapping have to be provided by an
architect, the source code ontology can be automatically generated. Then, the architect has
to create a project-speci�c architecture ontology using the architecture documentation in
the controlled language. Then, the approach extracts architecture concepts from the code,
by using the architecture-code mapping to gain the architecture. Finally, the extracted
architecture is compared to the architecture rules, de�ned by the architect.

In contrast to the approaches presented in this section, this thesis will provide an
approach for consistency testing between natural language and a model. Unlike Schröder
et al. neither the language should be restricted, nor the rules prede�ned by a software
architect.

10

3. Fundamentals

This work is based on architecture models and documentations of software. In Section 3.1,
this chapter provides a short overview of architecture models and describes what kind of
models are used. Furthermore, the approach uses PARSE and INDIRECT as preprocessing
steps for the documentation. By the application of these, linguistic information is annotated
to the text. Both are described in Section 3.2.

3.1. Palladio Component Model

In general, the software architecture describes the fundamental concepts of a system and
its environment. It contains the elements and relations of the system and represents its
design. Nevertheless, the architecture model is a reduced variation of the reality. Thereby,
the architecture model is simpler to understand and overview than the architecture in all
its details. The model is often used for a better communication and analysis of the system.
Architecture models can be expressed in di�erent kind of models.

<<CompositeComponent>>
Logic

<<AssemblyContext>>
coreContext

core

storage api

<<AssemblyContext>>
apiContextapi

core

Logic

Storage

Figure 3.1.: An example of a composite component in PCM. The composite component
contains two basic components.

The approach of this thesis is independent of the kind of the underlying architecture
model. For the evaluation, the palladio component model is used. To create di�erent views,
the Palladio Component Model has been developed to represent a software architecture
(see [4]). It o�ers the possibility to re�ect the architecture of an existing software system [3].
With the help of the meta-model, components can be speci�ed, connected and their
behavior can be described. A software component can be described as a “contractually
speci�ed building block for software, which can be composed, deployed, and adapted
without understanding its internals” [24]. Thereby, components encapsulate parts of the

11

3. Fundamentals

system. Every component has an provided interface that describes the service provided by
the component, as well as a required interface that speci�es the needs of the component.
Palladio di�ers between two kinds of components: Basic components and composite
components that encapsulates multiple basic components.

3.2. PARSE And INDIRECT

PARSE (Programming Architecture for Spoken Explanations) is a toolkit for agent-based
processing of natural language [31]. For the processing within PARSE the textual input is
stored in a graph structure. Actually, PARSE is a tool for spoken language. To transform
the spoken input to text, an automatic speech recognition is used. Since this procedure
does not recognize punctuation marks PARSE o�ers only a shallow natural processing.
Each processing is done via an agent. Agents are graph editors with a speci�c task (e.g.
to add part of speech tags). Thereby, the PARSE graph becomes to a knowledge base of
linguistic information annotated to the textual input. Figure 3.2 gives an overview how
a PARSE graph could look like. PARSE transforms the given text in a graph. Each node
represents a token. The order of the tokens within the sentence is represented as next
edges. PARSE agents are able to extend the graph by additional edges, tags or new nodes.
In this case, part of speech tags and dependency edges were added. PARSE o�ers a lot
more agents that can be applied to the graph.

Instead of PARSE, this work uses INDIRECT (Intent-driven Requirements-to-Code
Tracability) [14]. It complements PARSE by processing textual input (including punctuation
marks). In this work, only this deviating property is used. However, in future work, the
advantage of opportunities o�ered by INDIRECT could be taken.

The quick brown fox jumped over the lazy dog

next next next next next next next next

DT JJ JJ NN VBD IN DT JJ NN

det amod amod nsubj obl detcase amodDependencies

POS-Tags

Input Text

„The quick brown fox jumped over the lazy dog“

Figure 3.2.: Graph structure of PARSE: The tokens of the input text are represented by nodes
and connected with next edges. The graph can be extended with additional
edges and tags.

12

4. Approach

The goal of this thesis is to connect architecture documentation and models while iden-
tifying missing or deviating elements. An element can be any representable item of the
model, like a component or a relation. Section 4.1 provides an oversight of the whole
approach. Thereby, the concepts of hint links and trace links are introduced. In Section 4.2,
the approach is explained in more detail, including the steps of extraction, hint link and
trace link creation.

4.1. Overview

Figure 4.1 presents this approach. First, all needed information from documentation
and the architecture model are extracted, to be independent of any architecture style
and underlying meta-models. Thus, any kind of models and texts could be used. Model
elements are currently de�ned as instances and relations. Instances are represented by
a name-type combination (e.g. Car-Class). Relations consist of a type and participating
instances (e.g. has-Car-Car Wheel). The goal is to connect similar text elements and model
elements and to identify missed ones.

Figure 4.2 shows that these connections can be di�erent. The solid connection between
text elements and model elements represents the certainty that both represent the same
instance. This connection represents trace links. Above the solid line is a dotted line. This
line represents hint links. Whenever the certainty for the similarity of both element is
too low for a trace link or the endpoints are ambiguous, the connection is called a hint
link. With the exclusion of possibilities or an increase of the certainty, this hint link could
become a trace link. The arrows to the goal model represent the suggestions that are
presented to the user. The goal model is the model that represents the current state of the
software. In this thesis, I assume that all in the text consistently described model elements
are part of the goal model. Therefore, all trace links that connect the model element and
their textual description are claimed to be in the model. Since these elements are described
in both, the model and the text are consistent. Hint links could also be suggested to a user.
By verifying a hint link, a trace link would be created and the described element would
be assumed to be in the model. Furthermore, model elements that are not contained by
links are suggested to be in the goal model. Since they are not described in the text, they
represent an inconsistency. Also, text elements can be suggested to be part of the goal
model. Both of these suggestions could be seen as further hint links. Since the approach
assumes that the model is correct and the text is not, in the following only the suggestion
at the left side of the �gure is also called hint link. The de�nitions for hint and trace links
can be summarized as:

13

4. Approach

Goal Model

Model Element

Instance

Name

Type

Rela�on

Instances

Type

Text Element

Text Instance

Name

Type

Text Rela�on

Instances

Type

suggests

could be equal

are equal

ModelDocumenta�on

containscontains

claims/
suggests

suggests

Figure 4.1.: Approach Overview

Hint Links
are hints for elements to be included in the correct model. A hint can be a single
element, or an element found in both the initial model and text. Every hint link has
a probability that represents the certainty that the endpoints are equal.

Trace Links
are hint links, with two end points and a high probability (that these endpoints
are equal). This means that the end points of the link are almost surely the same
instances.

4.1.1. Example 1: Introduction To Hint And Trace Links

This example highlights the problems that will occur, if neither the given text nor the
initial model is faultless.

Let an architecture documentation include the sentences:
“The common component consists of multiple parts. It includes the util, webapi and excep-
tion module.”

The left side of Figure 4.2 is the model of the architecture. The right side is the goal model.
Thus, the left initial model should be transferred into the right goal model. Compared to
the textual description it stands out that some components of the initial model have other

14

4.1. Overview

Common :: Composite Component

U�ls :: Basic Component

Datatransfer:: Basic Component

Common :: Composite Component

U�l :: Basic Component

Excep�on :: Basic Component

Datatransfer:: Basic Component

Figure 4.2.: The transformation of a model instance to a goal model instance. The model
instance is missing an element

names, others are missing or additional to the described parts. Moreover, they have other
types than described.

Thus, the target is to identify possible model elements in the text and connect the textual
and model elements. The approach recognizes the underlined parts of the text as textual
elements. They have a probability to be detected correctly. As mentioned in Chapter 1,
the documentation as well as the model can include faults. Therefore, nothing can be
connected with 100% certainty when searching for connections (without assumptions of
correctness). Most likely connections, like connection of elements with the same name and
type, or similar relations can be seen as trace links, as a (close to 100%) sure connection.

Model Text
Element Name Element Type Element Name Element Type

Common Composite Component common component
Utilis Basic Component util module
- - exception module
Datatransfer Basic Component - -
- - webapi module

Table 4.1.: Example 1: An example of trace links

In Table 4.1 the �rst two entries represent trace links. The described elements and the
model elements are obviously the same. The question arises what should be done with
the other possible elements that have no secure connection. For this reason hint links are
used. As described above, hint links can connect two elements to be the equal (with a
probability), or indicate whether a described element should be in the model.

Table 4.2 shows this. The already found trace links are hint links with a probability
of 90% or higher. This threshold is arbitrary and can be adjusted dependent on the size
and quality of the speci�c documentation. The next three entries indicate whether the
mentioned element should be in the model. The probabilities for this metric could be
calculated by the amount of references in the text or the correlations with elements already
included by trace links. In this scenario they are just assumed and sampled. The last
entries evaluate the connections between possibly similar elements between model and
text. While the webapi itself is unlikely to be contained by the model it is more unlikely
that it is similar to the datatransfer component. For the exception it is not that unlikely, as

15

4. Approach

it is described as a part of the common component, such as the datatransfer component in
the model.

Model Text %
Element Name Element Type Element Name Element Type
Common Composite Component common component 100
Utilis Basic Component util module 90
- - exception module 80
Datatransfer Basic Component - - 90
- - webapi module 50
Datatransfer Basic Component exception module 50
Datatransfer Basic Component webapi module 30

Table 4.2.: Example 1: The resulting hint links

After that evaluation, the trace and hint links should be proposed to the user. After
checking them, the user is able to see possible faults (like elements proposed as hint links,
but without a veri�ed connection) and repair the documentation and model. Thus, the
goal model of Figure 4.2 can be reached, while the documentation and the model can be
corrected e�ciently.

As described in the example, the use of hint links requires multiple thresholds. The
upper threshold (t-threshold) de�nes when a hint link becomes a trace link. Thereby, the
t-threshold de�nes the certainty of a hint link so that the user does not need to verify it.
The lower threshold (u-threshold) de�nes when a hint link would be proposed to the user.
Thus, the u-threshold is a lower bound for the correction of the documentation and model.
If the u-threshold is too high, some found faults are not proposed to the user and thus not
corrected. Otherwise, if the u-threshold is too low, every possible fault is proposed to the
user and the approach would not be helpful. Therefore, it is indispensable to adapt the
u-threshold to the examined documentation and model.

4.2. Detailed Approach

Section 4.1 gave an overview of the approach. In this section, the approach is presented
and discussed in more detail. For this reason, the following enumeration sums up the
processing order:

1. Extracting text information from architecture documentation

2. Extracting model information from the architecture model

3. Creation of hint links

4. Identi�cation of trace links
Each step can cause various di�erent challanges. In the �rst step, there is the problem of

multiple sources: Often, architecture documentation includes images, graphs, or models.
In this approach, these �gures are excluded. In future work, it should be examined how
this exclusion a�ects the results and how textual approaches could deal with �gures.

16

4.2. Detailed Approach

The costs of formulating a graphic (like a UML sequence diagram) would be high,
because it would have to be adapted to the writing style of the rest of the documentation.
Beyond that, the description should not fall into a pattern. A pattern would be easy to
use for the extraction of model elements, but not expressive for the approach. Another
possibility would be to include the graphics as additional models to the approach. This
can be done very easily, while the approach is not restricted to one model. However, in
this thesis this is not done. If someone would use the approach for his (already existing)
documentation, he would have to transfer every graphic into a model to get comparable
results. By this he probably would get better results, because more information can be used.
In this work, the focus is more directed on how to connect, and whether the approach
can aid with corrections. Therefore, the results of the worst case (without any additional
e�ort) are more interesting.

Natural language has very complex structure and needs many, di�erent syntactic and
semantic analyses, to be broken down for machines. Therefore, many related works use
restricted or formal languages. The disadvantage of formal languages is that they have to
be learned by the human writers of the input texts. The results are often sti� formulations,
translatable into other models. In my opinion, the work with these structured languages
is not expedient to approximate natural (free formulated) language. In this thesis only
architecture documentations in natural language are used.

For preprocessing the textual input INDIRECT (and therefore also PARSE) is used. As
described in Chapter 3, the PARSE based approach generates a graph of the input text and
annotates it with di�erent syntactical and semantical information. With this preprocessing,
common used linguistic information is accessible for this approach.

4.2.1. Text Extraction

After preprocessing, the approach uses the linguistic information included in the PARSE
graph to recognize and extract possible elements. In this work, this step is done with mul-
tiple analyzers. Every analyzer observes di�erent types of information. For example: The
POS analyzer is looking for part of speeches, while another one is looking for dependencies.

As mentioned in the introduction of this Chapter 4, elements can be every instance or
relation from the model. Names and types of such elements do not always appear together
in the text, as the example of Section 4.1 shows. Moreover, the example shows that the
terms for the same element type can vary. For these reasons, the approach does not search
for whole elements at the text extraction level. The approach searches for single names
and types of elements. The analyzers of the text extraction level classify nouns as names
and types. For all remaining nouns, the category name or types (nort) is created. Thus, this
�rst level creates a base for the next levels to build upon (as can be seen in Figure 4.3). For
further levels, the probability of each stored information is relevant. The probability in
the text extraction corresponds to the certainty of the correct classi�cation. An example
for the text extraction is given in Section 4.2.1.1.

17

4. Approach

Links
Trace Links
Hint Links

Recommenda�ons
Recommended Instances
Recommended Rela�ons

Model Extrac�on
Instances
Rela�ons

Text Extrac�on
Names
Types

NORTs (Name Or Type)

D
e
p
e
n
d
e
n
c
y

Figure 4.3.: The approach in levels: The text extraction and the model extraction are the
base of the approach. The recommendations are built upon textual and model
information. The creation of links depends on the information of recommen-
dations and the model.

4.2.1.1. Example 2: Text Extraction

This example shows how the textual extraction works. In the �rst step of this approach,
the text is searched for nouns. Then these nouns are classi�ed as names, types, and norts.
In this example multiple analyzers (simulated by di�erent rules) run over the text and
classify the nouns. After that, the classi�cation results are stored with their occurrences,
as well as their certainty for the classi�cation result.

„The Common component containscommon u�li�es.
Package overview containscommon .excep�ons, common.datatransfer.
common.excep�ons containscustom excep�ons.
common.datatransfer containsdata transfer objects.
common.datatrnsfer package containslightweight data transfer object classes
for transferring data among components.
They can be combined in various ways to transferstructured data between
components.“

Figure 4.4.: Example 2: The initial input text

Let Figure 4.4 be the input text of our approach, where all nouns are already marked by
an analyzer. Adjectives that could be nouns or could be included by a term are dashed
underlined. Then, the analyzers will have to classify these as names or types. For this
example it is assumed that typos or di�erent word forms are recognized as similar. More-
over, potential relations could be marked. For simplicity within this example only relations
are recognized that are identi�ed by a point-wise separation of two terms.

18

4.2. Detailed Approach

To simulate the analyzers, the following rules are applied to the text:
1. A noun is a type, if it occurs in plural.

2. A point-wise separated term represents an separated relation between both parts.
Both parts are classi�ed as names.

3. A noun is a name, if it is part of a relation and its not a type.

4. A noun is a name, if it occurs after a de�nite article.

5. A noun is a name, if it occurs before or after a type.

6. A noun is a type, if it occurs before or after a name.
Table 4.3 shows the results of the analyzers. The percentages for the classi�cation results

are based on the amount of rules and occurrences that con�rm the classi�cation result.
At the beginning of the text the words common and component can be classi�ed with

rules 1,2,4,5, and 6. Because of the classi�cation of common as a name, the �rst two
occurrings of common are added to the classi�cation result. Additionally, the next two
terms, package and overview this can be done. Package occurs as type after a point-wise
separated term, which makes overview to a name. Therefore, they are classi�ed as norts.
Norts are nouns that can not be unambiguous classi�ed as name or type and thus they
can be used as both.

Term Occurrences Name Type Nort Rules %
common Common, common,

common.exceptions,
common.datatransfer

x 2, 4, 5 90

component component, components x 1, 6 80
utilities utilities x 1, 6 60
package Package, package x 6 50
overview overview x 5 10
exceptions common.exceptions,

exceptions
x 2 50

datatransfer common.datatransfer,
data transfer,
common.datatrnsfer

x 2, 5 70

objects objects, object classes x 1, 6 60
classes classes x 1, 6 10
data data x -
ways ways x 1 10

Table 4.3.: Example 2: The results of the noun classi�cation

With exceptions the problem gets more di�cult. The problem is that exceptions occur
as both: Type (because of the plural) and name (because of the point-wise separations).
In this case, the name always outvotes the type. The reason for this is that the selection

19

4. Approach

for names is a lot more restricting than the classi�cation of types. The next new term
datatransfer occurs in a lot of di�erent notations. Again, rule 2 classi�es it as a name.
According to rule 6 objects is a type. For classes no explicit rule is given. This noun follows
a name and a type. Objects could be a shorter term for object classes. Thereby, the term
object classes is added to the occurrences of objects. The term classes itself is classi�ed as
type (because of rule 1). For the term data, it is ambiguous if it is in singular or in plural.
Therefore, the term is classi�ed as a nort. The last term ways is classi�ed as nort. Table 4.4
shows the results of the relation extraction. The entries of the Term columns are identi�ers
for the according rows in Table 4.3.

Type 1. Term 2. Term %
separated common exceptions 70
in common datatransfer 70

Table 4.4.: Example 2: The extracted relations of the text

4.2.2. Model Extraction

The model extraction is (like the text extraction) on the �rst (bottom) level of Figure 4.3.
The extracted information is classi�ed as instances and relations. Instances are de�ned
by a name and a type. Relations are constructs of at least two instances and a type
that identi�es the kind of the relation. In this approach, for the sake of simplicity, the
directions of relations are not respected. An example for the model extraction is given
in Section 4.2.2.1.

4.2.2.1. Example 3: Model Extraction

Let the intial model be given as in Figure 4.5.

Common :: Composite Component

U�l :: Basic Component

Excep�on :: Basic Component

Datatransfer:: Basic Component

Figure 4.5.: Example 3: The initial input model

The initial model elements are transferred to an internal representations: Instances are
stored as a name and a type (as in Table 4.5). Relations are represented by at least two
instances and a type that describes the meaning of the relations (like in Table 4.6). In case
of this model only one relation is included: in de�nes the containing of the �rst included
instance in the rest of the included instances.

20

4.2. Detailed Approach

Name Type
Common Composite Component
Util Basic Component
Exception Basic Component
Datatransfer Basic Component

Table 4.5.: Example 3: The extracted instances of the model

Type Instances
in Util, Common
in Exception, Common
in Datatransfer, Common

Table 4.6.: Example 3: The extracted relations of the model

4.2.3. Recommendation Generation

Based on the textual and model information recommendations for instances and rela-
tions can be created. This second level (mid layer of Figure 4.3) enables the approach to
combine element parts of the text extraction and encapsulate them as instance. After the
recommended instances are de�ned, the approach searches for recommended relations
between them. All recommendations have probabilities. The probability of a recommenda-
tion corresponds to the probability of the existence of a recommendation with the speci�ed
name/nort and type/nort. This probability can be increased or decreased by analyzers
using the extracted model information. If some recommended instances have the same
type as some model instances the probability increases that they occur in the goal model.
Another idea would be to increase the probability with the amount of occurrences in the
text as measurement for relevance.

4.2.3.1. Example 4: Generating Recommendations

In this example the creation of recommendation is shown. For this the extraction results
of the examples 2 and 3 are used (see Section 4.2.1.1 and Section 4.2.2.1). The names and
types from the text extraction are compared to the names and types found in the model. If
a name of an instance and a name are similar, their probability of being a name increases
(in the classi�cation results from the text). If a type or nort is found as a name, or a name
or nort is found as a type of a model element its classi�cation is changed. This leads to the
updated text classi�cation results in Table 4.7.

21

4. Approach

Term Occurrences Name Type Nort %
common Common, common,

common.exceptions,
common.datatransfer

x 100

component component, components x 100
utilities utilities x 80
package Package, package x 50
overview overview x 10
exceptions common.exceptions,

exceptions
x 70

datatransfer common.datatransfer,
data transfer,
common.datatrnsfer

x 90

objects objects, object classes x 60
classes classes x 10
data data x -
ways ways x 10

Table 4.7.: Example 4: The updated names, types and norts of the text extraction

For comparison additionally partial terms are used. Thus, component is recognized as a
type of the model. In this example the utilities are identi�ed as Util. Thus, the classi�cation
result changes the kind, but in contrast to common or component the probability is not
increased to 100%. For relations this is done equally. In contrast to instances, the describing
term of the relation is not crucial, but the involved instances.

Type 1. Term 2. Term %
separated common exceptions 90
separated common datatransfer 90

Table 4.8.: Example 4: The updated relations of the text extraction

Like in the examples before, the analyzers for the creation of recommendations are
simulated with rules:

1. If the text contains a name type, name nort, type nort or type name combination
this connection is encapsulated in an instance of that name/nort and type/nort.

2. If a name is contained by the instance names of the model, it is added to the
recommendations.

3. If a name has a probability higher than 50% it is added to the recommendations.

22

4.2. Detailed Approach

The application of these rules leads to Table 4.9. In this table the textual information is
formatted into instances. Therefore, name and types from the results of the text extraction
are combined. The entries of the columns Name Term and Type Term are used as identi�er
for the corresponding row in Table 4.7. The �rst rule leads to the �rst two results. The
second one leads to the last three. Therefore, the deployment of the third rule is not needed.
However, it represents the possibility that the probability of a name from the extraction
level can be su�cient to create a recommendation of it. As usual, the probabilities of this
example are roughly estimated. It represents the urgency of the element to appear in the
goal model. For relations this is done vice versa (as can be seen in Table 4.10).

Name Term Type Term %
common component 99
overview package 30
datatransfer objects 70
common 97
utilities 90
exceptions 80
datatransfer 95

Table 4.9.: Example 4: The recommended instances

Type 1. Term 2. Term %
separated common exceptions 90
separated common datatransfer 90

Table 4.10.: Example 4: The recommended relations

4.2.4. Link Generation

Up to this point, hint links and trace links were always created in one step. As described in
Section 4.1, hint links and trace links are treated as two di�erent kind of links. Trace links
were described as hint links, with a probability above a threshold (t-threshold). In further
sections of this work they will be de�ned like this. Especially, hint links were de�ned as
a single element, or a connection between an element found in both the model and the
text. I split that hint link de�nition from above in two parts: First, a hint link with a single
element is represented by recommendations. Recommendations specify a speci�c element
(name and type combination) extracted from the text. Its probability is the probability of
occurring in the goal model. Therefore, all recommendations with a probability over a
speci�ed threshold are hint links. The second part, the hint links between model and text
are represented by instance and relation links. These are connections between extracted
model instances/ relations and recommended instances/ relations. These connections have
a probability for their connection. The probability measures the similarity of both, the
model and the textual element. Whether the connection is treated as a hint or trace link
depends on that probability.

23

4. Approach

4.2.4.1. Example 5: Creation Of Hint Links

For this example the knowledge of the examples Section 4.1.1, Section 4.2.1.1, and Sec-
tion 4.2.2.1 is needed. In this last, and highest level of the approach the hint links are
chosen. Therefore, similar to the recommendation creation it is searched for connections
between the recommendations (textual information) and the extracted information from
the model. Here, the task is to evaluate the similarity between two instances/ relations.
For instances this is done, as usual, by the similarity of the identifying terms. For relations,
it is done by the involved instances.

With the application of this rule in Table 4.11 and Table 4.12 could be the results:

Model Text %
Element Name Element Type Element Name Element Type
Common Composite Component common component 99
Util basic component utilities 80
Exceptions basic component exceptions 90
Datatransfer basic component datatransfer objects 85

Table 4.11.: Example 5: The instance links

Model Text %
Type Instances Type Instances
in Exceptions, Common separated common. exceptions 99
in Datatransfer, Common separated common, datatransfer 99

Table 4.12.: Example 5: The relation links

The results of this step include a probability, representing the matching of both instances/
relations. With these results and a threshold, hint links can be proposed to the user. If
the threshold was set below 80% this would include all relation and instance links of this
example. Moreover, for missing artifacts the recommendations can be proposed to the
user. In this case, the suggestions would not change. If the user rejects a similarity, for
example the equality of datatransfer basic component and datatransfer objects, another
recommendation could slide up and be proposed. In this case, this would be just the name
datatransfer as an equal element to datatransfer basic component. Thereby, objects would
not be found as potential type of the model. If some model instances or relations are
missed, like the in: Utils, Common relation, they can be proposed as failure-prone. Thus,
the user is able to add more documentation to it or update the model.

24

4.2. Detailed Approach

As a result of this approach, all possible recommendations, hint links, and trace links
are proposed to the user. In future work, he could verify or reject them. Thereby, new
knowledge would be available and the process would have to evaluate its data again. Thus,
other recommendations, hint links, and trace links based on the veri�ed elements would
have an increased probability, while rejected elements would have a decreased probability.

In the introduction of Section 4.1.1 the process was described as an approach without
the assumption of correctness. The procedure might not seem to work like this. However,
the approach works from the textual side against the model side. Nevertheless, the model
is not seen as 100% correct. If no textual element would match to a model element, it can
be seen as failure or (at least) as insu�ciently described. Thus, inconsistencies can be
found not only in the documentation, but also in models.

However, it is an open question how many inconsistencies can be contained so that the
approach is still helpful. If most of the documentation and the model di�er, it would be
hard to �nd any connections between them. Thus, mostly all elements would be marked
as possible failure prone. If only the model consists of mostly failures, the classi�cation of
recommendation based on model information could be faulty too. Thereby, the quality of
the approach could decrease. If only the text would be very failure prone, this would lead
to similar results. However, in future work, the e�ciency of the approach, when model
and text di�ers a lot has to be examined. Nevertheless, the approach will fail completely,
if both, model and documentation consist of mostly failures. Thus, connections between
model and text would be found, but would not be purposefully. Therefore, the precondition
of this approach is that at least one of the inputs is claimed as mostly correct.

25

5. Architecture

This chapter describes the architecture of the approach. Section 5.1 gives an overview
about the approach and its modular structure. After that, Section 5.2 provides more detailed
information about the design of the speci�c parts.

5.1. High-level Architecture

The presented approach generates hint and trace links between an architecture and a
documentation. This is done via multiple levels building upon each other. The four
conceptual levels are already introduced in Chapter 4. Figure 5.1 shows the dependencies
of each part by arrows pointing downwards to the part they are dependent of. In the
implementation, each level (except the Model Extractor) is represented by an agent, holding
a state. Thus, the agents are: Text Extractor, Recommendation Generator, and Connection
Generator.

Architecture
Documenta�on

Textmodel
(PARSE)

Text Extractor

Text Extrac�on State

Model Extractor

Model Extrac�on State

Connec�on Generator

Connec�on State

PCM Code

Recommenda�on Generator

Recommenda�on State

Analyzers Solvers

Analyzers Solvers

Analyzers Solvers

Figure 5.1.: High-level Architecture: The arrows represent the requirements of each level.

Agents inherit from the abstract PARSE agent. Therefore, the approach can be applied
as a usual PARSE agent. Moreover, every agent has access to a PARSE graph. This is
necessary for ensuring the possibility of a quick look up on the actual textual source.

27

5. Architecture

PARSE agents are designed with the single responsibility principle. Therefore, each
agent has is speci�c purpose. Furthermore, each PARSE agent has the opportunity to read
and edit the PARSE graph. Usually, the graph is used as input and output of the PARSE
agents. By inheriting from the PARSE agent, the possibility to edit the PARSE graph is kept
in the implementation. In contrast to the usual agents, this feature is currently not used in
this approach. The reason for this is the very speci�c purpose of this work. The goal of
this approach leads away from the PARSE graph and its linguistic information. Thus, in
this approach every agent has a state. Each state operates as a collection of knowledge for
its agent. Especially for higher-level agents (like the connection generator) that do not
need to run on graph this makes a big di�erent. Instead of running through a large graph,
they request a state downward to get a compact view on the current information. The
information in the state of an agent is gained from analyzers and solvers of that agent.
Each analyzer and solver can be seen as a speci�c search pattern. The modular design
of them allows the anylzer/ solver to experiment di�erent combinations to get the best
results. Since analyzers are executed on a node of the PARSE graph, solvers only use the
already extracted or generated knowledge of the states. In contrast to the agents, the Model
Extractor is independent of the PARSE graph. Therefore, it does not implement the abstract
agent from PARSE. Its goal is to preprocess models and bring them to a machine-readable
form.

5.1.1. Analyzers And Solvers

As introduced, each agent (except of the Model Extractor) has analyzers and solvers.
Analyzers work on PARSE graph nodes, whereas solvers only need the already gathered
information in the states of the agents. For each level di�erent analyzers and solvers
inherit from abstract classes. In Figure 5.2 analyzers are divided in three subclasses: Text
Extraction Analyzer, Recommendation Analyzer, and Connection Analyzer.

The analyzers of each agent have the possibility to use any information of the analyzers
and solvers that ran before it. These references need to be initialized within the speci�c
analyzer. Therefore, the subclasses o�er a structure to specify all available resources for
a class of analyzers (and solvers respectively). The DependencyType introduces a �ner
classi�cation between the analyzers and solvers. The enum DependencyType speci�es the
actual dependencies of a concrete analyzer (or solver). Therefore, the enum encapsulates
all combinations of possible requirements. This can be very helpful in further work, e.g.
when parallelizing the analyzers. Moreover, it provides more structure and can help
to understand all dependencies between multiple agents. The architecture of solvers is
similar to the design of analyzers, as Figure 5.3 shows. Concrete instances of both can
be created with a factory method, provided by every subclass. To improve the �exibility
of the approach a con�guration �le speci�es the analyzers and solvers that should be
executed. Therefore, users can easily add, exchange, and leave out analyzers and solvers.

28

5.2. Detailed Architecture

1

Analyzer

exec(INode n) : void

TextExtractionAnalyzer

graph : IGraph
tState : TextExtractionState

RecommendationAnalyzer

graph : IGraph
tState : TextExtractionState
mState : ModelExtractionState
rState : RecommendationState

ConnectionAnalyzer

graph : IGraph
tState : TextExtractionState
mState : ModelExtractionState
rState : RecommendationState
cState : ConnectionState

�enum�
DependencyType

TEXT
TEXT_MODEL
RECOMMENDATION
TEXT_MODEL_RECOMMENDATION
MODEL_RECOMMENDATION
...

Figure 5.2.: Analyzer Architecture

5.2. Detailed Architecture

This section describes the architecture of the agents in detail. As described above, the
approach consists of four core structures: The Text Extractor (Section 5.2.1) extracts
textual information from the graph. The Model Extractor (Section 5.2.2) extracts instances
and relations from the models. The Recommendation Generator (Section 5.2.3) generates
suggestions for the goal model. The Model Connector (Section 5.2.4) creates the links
between recommendation and model elements. As described in Section 5.1 every agent
has exactly one state. Since the agents are PARSE agents and the analyzers and solvers are
just editors of the states, the focus lies on the data stored in that states.

5.2.1. Text Extractor

The goal of the text extractor is to extract relevant information from the text. The text is
contained by a PARSE graph. Relations can be extracted, too. The structure of the Text
Extraction is represented by di�erent classes.

As shown in Figure 5.4, extracted words are stored as NounMappings. A NounMapping
consists of a list of PARSE nodes. The nodes link to the textual source and therefore to
the occurrences. In a NounMapping the occurrences are all di�erent appearances of the
encapsulated word as it occurs in the input text. These occurrences are covered by a
uni�ed form: The reference of the mapping. The choice of the reference is important since

29

5. Architecture

1

Solver

exec() : void

TextExtractionSolver

graph : IGraph
tState : TextExtractionState

RecommendationSolver

graph : IGraph
tState : TextExtractionState
mState : ModelExtractionState
rState : RecommendationState

ConnectionSolver

graph : IGraph
tState : TextExtractionState
mState : ModelExtractionState
rState : RecommendationState
cState : ConnectionState

�enum�
DependencyType

TEXT
TEXT_MODEL
RECOMMENDATION
TEXT_MODEL_RECOMMENDATION
MODEL_RECOMMENDATION
...

Figure 5.3.: Solver Architecture

it is used for the selection and association of new occurrences. Moreover, it is used for
comparison in further levels. Therefore, it serves the further processes like a key of a
dictionary to �nd and access NounMappings. Each NounMapping has a MappingKind. This
MappingKind identi�es the type or the mapping. Thus, the mappings can be de�ned as
NAME, TYPE, or the possibility of both NAME_OR_TYPE (short nort). The probability of a
mapping represents the probability of that mapping to have the given MappingKind. The
MappingKind can be changed. If the MappingKind is changed, the probability should be
changed, too.

An example of a NounMapping would be the representation of the terms car and cars:
An analyzer identi�es both as di�erent forms of the base term car. Moreover, the analyzer
classi�es car as a name. The analyzer transmits this information to the state. The state
creates a NounMapping. It sets the reference of the NounMapping to the transmitted base
term (car). Then the state adds car and cars to the occurrences and the related PARSE
nodes to the nodes �eld. Since the analyzer classi�ed car as name, the MappingKind of the
NounMapping is set to NAME. Finally, the state sets the probability of the NounMapping to
the certainty transmitted from the classi�er.

30

5.2. Detailed Architecture

1

*

1

2..*2..*

TextExtractionAgent

analyzers : TextExtractionAnalyzer
solvers : TextExtractionSolver

exec() : void

TextExtractionState

NounMapping

nodes : List<INodes>
probability : double
reference : String
occurrences : List<String>

RelationMapping

probability : double
preposition : INode

TermMapping

probability : double
reference : String

�enum�
MappingKind

NAME
NAME_OR_TYPE
TYPE

**

*

Figure 5.4.: Text Extractor Architecture

Textually identi�ed relations are represented by the RelationMapping. A RelationMapping
needs at least two NounMappings. Additionally, it can have a preposition, given as a PARSE
node. This preposition could be helpful, when working with directed relations. Up to
this point, the approach considers only non directional relations. The probability of a
RelationMapping is the probability that the NounMappings have a connection in this
constellation.

For terms that consists of more than one word (e.g. car wheel), TermMappings are intro-
duced. TermMappings consists of at least two NounMappings and a reference, to represent
that term. Terms have a MappingKind. The MappingKind of each part (NounMapping) of
the term should not counter the MappingKind of the TermMapping. Thereby, a name term
could contain a name or nort, but no type mapping.

31

5. Architecture

5.2.2. Model Extractor

The ModelExtractor is an interface for di�erent model extractors. Therefore, di�erent types
of models should be representable by the ModelExtractionState. Because the approach
works on text, only the terms of the names and types of model elements are important.
The structure should enable backtracking to allow accurate links between textual elements
and speci�c model elements.

1

2..*

ModelExtractor

ModelExtractionState

instanceTypes : Set<String>
relationTypes : Set<String>
names : Set<String>

Instance

longName : String
longType : String
names : List<String>
types : List<String>
uid : int

Relation

type : String
uid : int

*
*

Figure 5.5.: Model Extractor Architecture

As can be seen in Figure 5.5, the ModelExtractionState consists of Instances and Relations.
For better performance during the matching in further steps, their types and names are
collected as sets and stored separately. An Instance is able to represent every model
element, except for relations. It has a longName and a longType. These contain the fully
classi�ed name of the instances name or type. The longest name should be unique in the
model. All parts of the name are stored in names (analogous for types). This enables to
search for connections to textual elements by partial mentions.

For example: The given model is a UML class diagram that contains the class car wheel.
This class is represented by an instance. The longName of the instance is the term car
wheel. As longType the term class has been inserted. The names consist of the parts of the
longName. Thereby, the terms car and wheel are written to the names �eld. The content
of the types attribute is equal to the longType, since the long version of the type only
consists of one term. If the model would have a type term of multiple words, like composite
component (in PCM), the types were �lled with the parts of the longType.

Like in the RelationMappings of Section 5.2.1, each represented Relation has at least
two Instances as participants. Like the Instance, a relation is linked to the speci�c model
element by a uid. Moreover, a Relation has a type. This type de�nes the kind and meaning
of the relation. An example for that would be “in” for a relation between a contained
element and its container.

32

5.2. Detailed Architecture

5.2.3. Recommendation Generator

The RecommendationAgent generates recommendations and suggestions of instances and
relations to be contained by the goal model. Like every agent, it consists of multiple
analyzers and solvers. The results of them are stored in the RecommendationState.

1

2..*

RecommendationAgent

analyzers : RecommendationAnalyzer
solvers : RecommendationSolver

exec() : void

RecommendationState

RecommendedInstance

name : String
type : String
nameMappings : List<NounMapping>
typeMappings : List<NounMapping>
probability : double

RecommendedRelation

type : String
nodes : List<INode>
probability : double

*
*

Figure 5.6.: Recommendation Generator Architecture

As shown in Figure 5.6, the RecommendationState consists of RecommendedInstances
and RecommendedRelations. A RecommendedInstance has a name that works like the
reference at the NounMappings of Section 5.2.1; It can be used as the uni�ed identi�er of
the encapsulated nameMappings. These nameMappings should contain only one element,
but there are two exceptions. On the one hand, the name could be a term and therefore
consist of multiple NounMappings. On the other hand, multiple NounMappings could
be the same recommended instance. For the type of the RecommendedInstance this is
built analogously. Moreover, a RecommendedInstance has a probability that measures the
likelihood of the appearance in the goal model.

In Section 5.2.1 it was described how the NounMapping of the term car could look like.
The same could have happened with class. In contrast to car, an analyzer classi�ed the
term class as a type. On the recommendation level an analyzer �nds a textual connection
between car and class. The analyzer classi�es this connection as a recommendation.
Thereby, a RecommendedInstance is created. The nameof the recommended instance is
given by the name of the name-mapping (car). As type the analyzer enters the name of
the type-mapping (class). The mappings theirselfs are added to their respective collection
(nameMappings and typeMappings). The probability of the recommended instance is set to
the certainty transmitted from the analyzer.

33

5. Architecture

Analogue to the other representations of relations in this approach, the Recommended-
Relations consist of at least two instance representations of its level (Recommended-
Instances). For representing the semantic of the relation, a type can be stored. For ref-
erencing the type, PARSE nodes can be referenced. Similar to RecommendedInstances,
the probability represents the likelihood of this relation in the goal model. Currently
this probability is only used for the occurrence of a connection between all participating
instances. The semantic meaning of it can be used for direct proposings to the user or
developed in future works.

5.2.4. Connection Generator

The ConnectionAgent represents the last step of the approach. Its analyzers and solvers
create links between model and textual elements. Since the RecommendationGenerator
creates recommendations for the goal model, its suggestions are used as representation of
the textual information.

1

ConnectionAgent

analyzers : ModelConnectionAnalyzer
solvers : ModelConnectionSolver

exec() : void

ConnectionState

InstanceLink

textualInstance : RecommendedInstance
modelInstance : Instance
probability : double

RelationLink

textualRelation : RecommendedRelation
modelRelation : Relation
probability : double

**

Figure 5.7.: Connection Generator Architecture

Figure 5.7 shows the structure of the ConnectionState. The ConnectionState consists of
InstanceLinks and RelationLinks. InstanceLinks consist of a textualInstance represented by
a RecommendedInstance, and a modelInstance represented by an Instance from the model.
The probability of it measures the similarity of both instances. Two instances are similar
if the names as well the types are similar. Chapter 6 will introduce the term similarity in
more detail. If the approach had found the RecommendedInstance car of type class and an
instance with car as longName and class as longType would exist, they would be connected
within a InstanceLink. The RelationLinks consists of a textualRelation represented by a
RecommendedRelation of the previous step, and a modelRelation represented by a Relation
of the model. The probability of it measures the similarity of both relations.

34

5.2. Detailed Architecture

* *

* *

2..*

* *

*
**

2..*

1..*
1..*

* *

ConnectionStateInstanceLink RelationLink

RecommendationState

RecommendedInstance

name : String
type : String
probability : double

RecommendedRelation

name : String
nodes : List<INode>
probability : double

ModelExtractionState

instanceTypes : set<String>
relationTypes : Set<String>
names : Set<String>

Instance

longName : String
longType : String
names : List<String>
types : List<String>
uid : int

Relation

type : String
uid : int

*

TextExtractionState

NounMapping

kind : MappingKind
nodes : List<INodes>
probability : double
reference : String
occurrences : List<String>

RelationMapping

probability : double
preposition : INode

TermMapping

kind : MappingKind
probability : double
reference : String

*

* *

Figure 5.8.: Architectural relationships between all states

35

6. Implementation

In this chapter the implementation of the approach is presented. Therefore, the four parts
of this approach (introduced in Chapter 5) will be presented in more detail, as well as the
processes between them. Following from bottom to top, Section 6.1 describes the processes
of the text extractor. Since only the structure of the model extractor is implemented yet, it
will be skipped in this chapter. Then, Section 6.2 presents the logic behind the creation of
recommendations. Section 6.3 gives an overview how links are created and evaluated. At
last, Section 6.4 will describe the con�guration of the process.

6.1. Text Extractor

The TextExtractionAgent is the most underlying agent in this approach. Its goal is to �nd
and extract usable information of the text. This information includes names, types, other
nouns, terms, as well as relations.

TextExtractionState

nounMappings : List<NounMapping>
terms : List<TermMapping>
relationMappings : List<RelationMapping>

addNounMapping(INode, String, MappingKind, double, List<String>) : void
AddWithSeparatorsAdd(INode, String, List<String>, double, MappingKind) : void
updateMapping(NounMapping, MappingKind, double, List<String>) : void
...

Figure 6.1.: Overview of the Text Extraction State as UML class

As shown in Figure 6.1, the state contains NounMappings, TermMappings, and Relation-
Mappings. As already described in Section 5.2.1, NounMappings provide the structure to
encapsulate multiple words of the same meaning. Thus, further processes do not have to
run through the whole input graph, but can use the information provided by the TextEx-
tractionState. TermMappings de�ne a term of multiple words (for example car wheel). The
included words are represented by NounMappings. Both, NounMappings and TermMap-
pings, are speci�ed by the enum MappingKind. It classi�es the mapping as name, type, or
nort. Norts (name_or_type) is the class for not closer classi�ed nouns. They can potentially
used as both: name or type. RelationMappings store relations. A RelationMapping consists
of at least two NounMappings and can have a preposition, linked to a PARSE node.

37

6. Implementation

The state is edited by analyzers and solvers. To ease the interaction with the state, the
analyzers or solvers request the adding of their potentially found mapping. The logic for
the comparison to the existing mappings is done by the state itself. The next sections show
how NounMappings are built and how their attributes are used.

6.1.1. The Adding Of Basic NounMappings

In Section 5.2.1, NounMappings were explained as a representation of words (actually
nouns), mapped to their textual source. Figure 6.2 gives a short overview of the attributes
stored by these mappings. To understand the next functions, it is necessary to understand
the meanings of each attribute.

NounMapping

reference : String
nodes : List<INodes>
occurrences : List<String>
kind : MappingKind{name, type, nort}
probability : double

Figure 6.2.: NounMapping as UML class

The nodes are the PARSE nodes that represent the reference to the textual source. They
contain the position, the actually token (word), and linguistic information. The words,
as they appear in the nodes (or some equal modi�cations) are stored in the occurrences.
Modi�cations can be done to ease the processing (for example by replacing separators),
but should never change the similarity or the overall look of the word. The occurrences
are uni�ed in one string: the reference. The reference is important as it is used for the
comparison between multiple NounMappings. The textual similarity between a new word
and the reference decides, whether both are similar and the word should be added to the
existing mapping or not. Since the approach is based on a modular design, analyzers
and solvers are creating noun mappings, and thereby determine these references. In this
work, as reference often the occurrence itself is used. In the future it can be tested, if
the results could be improved by using a base form or normalization of the occurrence.
Moreover, each NounMapping has a MappingKind. This enum de�nes, the kind of the
mapping and thereby the classi�cation. The kind separates nouns in names, types or norts.
It is important to classify the NounMappings as correct as possible, since further steps
are built upon this information. As described, the state controls every interaction with
NounMappings, while the analyzers and solvers just invoke the adding of mappings with
a kind. Thus, the TextExtractionState has to weigh up between di�erent statements of
di�erent analyzers if the kinds di�er. For this evaluation the probability is important, since
it contains the information of how certain the analyzers or solvers are that the mapping is
of the given kind.

38

6.1. Text Extractor

Algorithm 1 The add functionality of NounMappings to the Text Extraction State
function addNounMapping(node, reference, kind, probability, occurrences)

separators← set by con�guration
if reference contains any separators then

partialRefs← split(reference, separators)
for all partialRef : partialRefs do

AddWithSeparators(node, partialRef, probability, kind)
end for

end if

nounMappingsWithNode← all existing nounMappings with node
nounMappingsWithRef ← all nounMappings with most similar references

if nounMappingsWithNode is empty && nounMappingsWithRef is empty then
createdMapping← create new mapping with the parameters

else if nounMappingsWithNode is empty then
if #nounMappingsWithRef == 1 then

currentMapping← nounMappingsWithRef[0]
addNodeToMapping(currentMapping, node)
updateMapping(currentMapping, kind, probability, occurrences)

end if

else
for all currentMapping : nounMappingsWithNode do

updateMapping(currentMapping, kind, probability, occurrences)
end for

end if
end function

For the adding of a NounMapping, the state o�ers various interfaces. All requests of
them are forwarded to the private method addNounMapping(...), presented in Algorithm 1.
The method addNounMapping needs multiple parameters: The node is the PARSE node
that links to the textual resource and serves as a base for the new mapping. The reference
is a word that uni�es all words in this noun mapping and is similar to them. The kind is
the kind of the future mapping. The likelihood for this kind is given by the probability.
The occurrences contain all word forms, how they occurred in the text.

39

6. Implementation

At �rst, the method checks, if the given reference contains any separators. Separators
are characters de�ned in the con�guration �le. Since INDIRECT does not split at every
separator like e.g. punctuations, colons, or spaces, it is not guaranteed, that the content is
just a single word. . However, the approach is based on single words that are later combined
and compared. Therefore, a reference should only consist of a single word. In this �rst
part of the method, references with more than one word are handled. The reference is split
along the separators into single words. For every single word in the reference, the method
AddWithSeparators is invoked. This method will be explained in Section 6.1.2 later.

After that, all existing NounMappings with the given node are collected. These map-
pings represent all mappings that refer to the same textual brick. Moreover, all existing
NounMappings with most similar references (compared to the given one) are collected. The
term of similarity will be discussed later in Section 6.1.3. Thereby the collection contains
all mappings that could represent the mapping-to-add. In case of equal similarity distances,
nounMappingsWithRef can contain more than one result. The next steps of the algorithm
depend on the entries of these collections.

If neither mappings with the node nor mappings with a similar reference have been
found, the mapping-to-add is created. Thereby, it is added to the existing mappings of
the state. If no mapping with the node can be found, it is searched for a mapping with
a similar reference. The mapping with the most similar reference is taken and the given
parameters (like occurrences and node) are added to the found mapping. Then, the method
updateMapping(...) is invoked.

The updateMapping(...) method enables the updating of probabilities and the change of
MappingKinds. The behavior of updating a mapping depends on the kind and probability
of the stored mapping, as well as the kind and probability of the same mapping that is
supposed to be added. A simple rule followed in this method is to specify only and not
to generalize. This means that every mapping of kind nort can be changed to types or
names, but no name or type can be set back to nort. This behavior is important to note
when adding more analyzers or solvers, since they classify the instances. If a type should
be updated to a name or vice versa, the probability for the “new” mapping has to be higher
than the already stored one. For future work, a more granular probability consideration
could be helpful. If the already existing mapping is updated, the MappingKind is changed
and the probability is recalculated. In any case, the occurrences of the mapping-to-add are
added and the probability is updated. At last, if mappings containing the node have been
found, all of them are updated. Thereby, the occurrences are extended and the kind of the
existing mapping is evaluated with the new statement.

In contrast to the previous case, all mappings are updated this time. If in the previous
case more than one mapping with a most similar reference are found, the matching
mapping can not be identi�ed unambiguously. By doing nothing, the implementation
improves the precision of the text extraction, but decreases its recall. It is an open question
for the future work, whether it is more recommended to extend mappings only when they
are assigned clearly, or simply all. On the other hand, if the node is already contained, the
edit of the state is related to exactly all mappings that contain this node (as it represents
the origin). Therefore, if multiple mappings contain the node and no separator is contained
in the reference, the new information refers to all mappings that node is in.

40

6.1. Text Extractor

6.1.2. The Adding Of NounMappings Containing Separators

In this section the method AddWithSeparators(...), shown in Algorithm 2 is described.
This method is invoked by addNounMapping(...), described in Section 6.1.1. It is called if
the reference of the new mapping contains a seperator. For every part of the reference
split at the separators, the AddWithSeparators(...) method is invoked. Since nodes can be
contained by multiple mappings, and references are not provably reliable for comparison,
the addition of mappings with multiple references per one node has to be di�erentiated
from the common one.

The AddWithSeparators(...) provides the functionality for adding mappings that should
be added more insisting than on the common way. At �rst, the probability for adding
a mapping with this function is calculated. This is done because this method works a
bit di�erent that the common one and is therefore more or less reliable (depends on the
calculation function). Currently, the probability is decreased because the method provides
a functionality to skip the adding function with the higher requirements. The percentage
of the given probability that should be set as AddWithSeparatorsProbability can be set in
a con�guration �le. After that, as in Section 6.1.1 all mappings with the node and those
with the most similar references are collected.

If no existing mapping with the node can be found the method addOrUpdate(...) will
be invoked. This method checks, if the given list of mappings that contain the reference
(mappings) is empty. If this is the case, a mapping is created. After that, the approach
searches for mappings with similar occurrences. The created mapping is then extended
by the similar occurrences and their nodes. This step is done to adopt already classi�ed
occurrences to the possibly correct mapping. The approach is conservative and does not
remove already existing mappings. Alternative: If the occurrences (per source) only should
appear on time, they would have to be newly classi�ed. This would lead to laborious
circumstances and further classi�cations that have to run newly, if some data is already
based on the mapping. In this thesis, I decided to focus on the results of the total possibilities,
to secure at �rst that all mappings are found that should be found. If mappings contains
mappings, addMappingDependentFromReference(...) adds the node to them and updates
their kind with the given probability.

If no mapping with the node but at least one with a reference have been found the
node is added to all of them. After that, the existing mappings are extended by the
new occurrences and updated by kind and probability. The last case of this method
is reached, if the node is already contained by a mapping. In this case, the method
addMappingDependentFromReference(...) is invoked.

41

6. Implementation

6.1.3. Similarity

As described in Section 6.1.1 and Section 6.1.2 the implementation is dependent from the
de�nition of similarity. Especially, when extracting textual information and synchronize
them to already stored information the similarity de�nition between two words (strings)
is important. To vary between di�erent graduations of similarity multiple thresholds
can be set in a con�guration �le. These thresholds are used in the referenced methods.
The methods for similarity are encapsulated in a static helper class, called SimilarityUtils.
This class o�ers multiple ways for comparison. For the comparison of textual elements
(and thereby, for the compare of two references) the Levenshtein distance and the longest
common substring are used. It is important to notice that the comparison is not symmetric,
since the Levenshtein distance is not.

The Levenshtein distance is an edit distance between two strings. If two characters of
the same position are di�erent, the distance is increased by one. This is done equally for
insertions or deletions. The longest common substring and the Levenshtein distance are
measured and evaluated separately. Upper and lower cases are ignored by the implemen-
tation. The accept of faults increases with the length of the original word.

Currently the metrics for similarity are relatively simple. There are much more metrics
that can be used for word similarity (e.g. semantic metrics). By its modular design,
functionalities and metrics can be exchanged or added easily.

6.1.4. Adding TermMappings And Relation Mappings

The adding of term mappings and relations mappings is not that complicated compared
to the adding of noun mappings. As described in the overview of this section, terms are
connections of multiple noun mappings that represent a term of multiple words (like car
wheel or composite component). Terms have a mapping kind that declares whether the
term is a name or a type. Currently, the approach does not create terms of kind nort, even
if it is possible. If an analyzer or solver adds a term to the state, it is secured that it is not
yet included. To check that, the state searches for already stored terms that consists of
the same mappings and have the same mapping kind. If some are found, their probability
is updated. Otherwise, a new term is created and added to the state. Note that by this
process mappings with the same content and di�erent kinds can exist simultaneously.

The adding of relations currently only consist of a comparison of the lists of participating
noun mappings. The order of them is considered. If does not occur in the stored relation
mappings of the state it is created and added to it. Otherwise, it is discarded.

6.1.5. Analyzers And Solvers

All mappings are created by analyzers or solvers of the TextExtractionAgent. As explained
in Section 5.1, analyzers run through the graph, while solvers only use the already stored
and from their level available resources. All analyzers/ solvers of this agent are Text-
ExtractionAnalyzer/ Solvers.

42

6.1. Text Extractor

Algorithm 2 The add functionality Of NounMappings that contain a separator in their
reference

function AddWithSeparators(node, reference, probability, kind, occurrences)

AddWithSeparatorsProbability← calculateProbability(probability)
mappingsWithNode← all existing nounMappings with node
mappingsWithRef ← existing nounMappings with the most similar reference

if mappingsWithNode is empty then
addMappigDependentFromReference(mappingsWithRef, ...)

else
for all currentMapping : mappingsWithNode do

if any occurrence contains any separators &&
currentMapping.reference not similar to reference then
addMappigDependentFromReference(mappingsWithRef, ...)

else
addOrUpdate(mappingsWithRef, ..., AddWithSeparatorsProbability, ...)

end if
end for

end if
end function

function addOrUpdate(mappings, node, reference, probability, kind, occurrences)

if mappings is empty then
createdMapping← create new mapping with the parameters
mappingsWithOccs← existing nounMappings with similar occurrences
extendWithOccurrences(mappingsWithOccs, reference, createdMapping)

else
for all mapping : mappings do

addNode(nounMapping, node)
updateMapping(mapping, kind, node, probability, occurrences)

end for
end if

end function

43

6. Implementation

The TextExtractionAgent has the following analyzers and solvers:
1. Noun Analyzer

2. Incoming Dependency Arcs Analyzer

3. Outgoing Dependency Arcs Analyzer

4. Separated Names Analyzer

5. Article-Type-Name Analyzer

6. Multiple Part Solver

Since the state manages all mappings, the analyzers and solvers just add their new
information to it. How the information of the analyzers and solvers is used depends on
the behavior of the speci�c state (in this case the text extraction state).

Noun Analyzer The goal of the Noun Analyzer is to �nd and extract the nouns. For this,
it uses the POS (Part Of Speech) tags of the PARSE graph. PARSE uses the nltk tagset [23]
with four variants for nouns: NN stands for common nouns, NNP stands for proper nouns,
NNS, and NNPS are their plurals. If the current node is a common noun in plural, it is
classi�ed as type. Otherwise, it is classi�ed as nort, and can be classi�ed more speci�cally
by other analyzers and solvers.

Incoming Dependency Arcs Analyzer The Incoming Dependency Arcs Analyzer checks the
incoming dependency edges of the PARSE graph, created with the Dependency Parser
agent of INDIRECT. Figure 6.3 shows an example, how the results of such a dependency
parser could look like [1]. Table 6.1 gives an overview of the used dependency tags and
explains them brie�y. If the tags occurs at an incoming dependency edge of the current
node n, the additional requirements are checked. If they are satis�ed a noun mapping
with the node and the concluded type is created. If the additional requirements are not
ful�lled, a nort is created. The idea behind that additional requirements is the following:
For a secure classi�cation as type, the previous node is usually required to be an indirect
determiner. Thereby, the noun loses its uniqueness. Thus, it can be seen more as a type of
an object than a unique, speci�c object. For more information about the tags have a look
on [20] or [30].

Figure 6.3.: The analysis of a sentence with a dependency parser.

44

6.1. Text Extractor

Tag Meaning Additional
Requirements

Conclusion

appos n is a modi�ed noun phrase nort
dobj n is a direct object of a verb

(accusative)
previous node is indirect de-
terminer

type

nort
iobj n is an indirect object of a

verb (dative)
previous node is indirect de-
terminer

type

nort
nmod n is modi�ed by a noun or

noun phrase
previous node is indirect de-
terminer

type

nort
nsubj n is the syntactic subject of

the phrase
nort

nsubjpass n is the syntactic subject of
a passive clause

previous node is indirect de-
terminer

type

nort
pobj n is the object of a preposi-

tion
previous node is indirect de-
terminer

type

nort
poss n is the head of a noun

phrase of a possessive rela-
tionship

name

Table 6.1.: The mapping of incoming dependency tags to concluded noun mapping kinds

OutgoingDependencyArcs Analyzer This analyzer checks the outgoing dependency edges
of a node. For this, the edges have to be created �rst by the Dependency Parser of INDIRECT.
In contrast to incoming dependency edges, there are less dependency tags that can be used
for identifying and specifying nouns. Table 6.2 shows the used tags and explains them for
a current node n. If a current node has an outgoing dependency edge of that type, a noun
mapping of the concluded mapping kind is created. The reason for the conclusion as type,
in case of num and predet is: If a noun has a predeterminer or is enumerable, it can not be
unique. Therefore, it can be seen as type of something and is no unique identi�er for an
instance. For more information about the dependency tag set see [20] or [30].

Tag Meaning Conclusion
agent n is the agent of a passive verb nort
num n is target of a numeric modi�er type
predet n has a predeterminer (for example “all”) type
rcmod n is modi�ed by a relative clause nort

Table 6.2.: The mapping of outgoing dependency tags to concluded noun mapping kinds

45

6. Implementation

Separated Names Analyzer The separated names analyzer identi�es nodes containing
separators. Then it adds it as noun mapping of kind name to the extraction state. In Sec-
tion 6.1.2 the node value (word) is split at the separators. Examples for this would be:
intelligence::ai or car.wheel. Then, the method adds each part is separately to the text
extraction state. The separators for that process are stored in a con�guration �le. For this
thesis, they contain ., ::, and :. Note that INDIRECT (see Section 3.2) should be used, such
that usual punctuation marks can be handled.

Article-Type-Name Analyzer This analyzer checks the current node and its surrounding
for two speci�ed patterns. In both cases the current node has to be previously classi�ed as
a nort (or more speci�c kind). After the classi�cation, a noun mapping of the concluded
mapping kind is created.

Article Type Name:
If the previous node of the input is a type and the predecessor of that one is an
article, the current node is classi�ed as a name. For example “The component a is ...”

Article Name Type:
If the previous node is a name and the predecessor of that is an article, the current
node is classi�ed as a type. For example “The ai component is ...”

Multiple Part Solver Currently, the multiple part solver is the only solver of the text
extractor. It identi�es terms in the current extraction state. At �rst, it runs through all
noun mappings that are names and checks if the previous nodes are also nouns. If the
previous node is a nort or a name, the solver creates a term mapping of both nodes. When
searching for type terms this is done analogously: if the previous node of the type declared
node is a nort or type, a term mapping of both nodes is created. The term mapping
always gets the most speci�c mapping kind (type/ name). Term mappings of combinations
between name and type are not admitted. Since the text extractor just identi�es names and
type, combined later in the recommendation generator, this would disagree the design.

6.2. Recommendation Generator

The recommendation generator was introduced as the �rst instance that connects types
and names found by the text extractor. Furthermore, it is the �rst layer that is able to use
information from the model, although its goal is not the connection between text and
model. As introduced in Section 5.2.3, the goal of the recommendation generator is to
connect names and types found by the text extractor. Thereby, instances can be suggested
to the user that are missed in the input model. In general, these recommendations are
independent of the model. This independence allows the approach the identi�cation of
missing elements. However, the information of the model can be used to identify common
types of the model. The identi�cation of model types helps the approach to separate
between multiple possibilities. For example, a recommendation with a model type is more
probable to occur in a model of that style than the same recommendation with a type

46

6.2. Recommendation Generator

that is not contained in the model. Additionally, the recommendation agent can search
for names in the model elements. If recommendations with the names are build or found,
the recommendation agent rates them higher. The reason for this is that model names
that occur in the text indicate consistencies. Therefore, they should be used to build
recommendations. Otherwise, they would not be considered for the link building. Note
that, the recommendation agent does not create links; the agent just uses the information
of the underlying model. Moreover, the approach should be able to suggest possible (goal)
model elements to the user that does not have a unambiguous type. Therefore, it is needed
that RecommendedInstances can be created without the speci�cation of a type.

2..*

RecommendationState

RecommendedInstance

name : String
type : String
nameMappings : List<NounMapping>
typeMappings : List<NounMapping>
probability : double

RecommendedRelation

type : String
nodes : List<INode>
probability : double

*
*

Figure 6.4.: Recommendation Generator

The recommendation generator consists of an agent, holding a state. The Recommenda-
tionState, as shown in Figure 6.4, stores RecommendedInstances and RecommendedRelations.
RecommendedInstances are connections between multiple names and type mappings. The
likelihood of that connection is stored in the probability. The name type combination
should be picked as representative of the recommended instance. It should be unique. Rec-
ommendedRelations consist of at least two RecommendedInstances. For the representation
of the semantics of that relation the type �eld has to be set. Moreover, the PARSE nodes
that contain the relation (not the end points) are stored.

As usual, the RecommendationState holds the logic of the adding and comparison of its
elements, while analyzers and solvers invoke the add functionality. Since RecommendedIn-
stances are de�ned by their unique combination of name and type, the logic behind the
adding of recommended instances or relations, is much more easier as at the NounMap-
pings. Moreover, it is not important to have a little set of possibly best recommendations.
At �rst, it is important to store all possibilities in the state, instead of having only the best
few recommendations. The stored recommendations can be �ltered by their probability
or �t to user decisions. Furthermore, a big set of possibilities is good for further steps.
Especially the connection generator that searches for recommendations that are similar to
model elements, pro�ts from a big set of recommendations.

47

6. Implementation

Algorithm 3 shows the add functionality for RecommendedInstances in the Recommenda-
tionState. If a RecommendedInstance should be added, the state checks if the corresponding
recommended instance is already contained. If the instance is not contained, the state
tests whether a previously stored recommended instance has the same name and type. If
an existing recommended instance is found, the name and type mappings are extended by
the new ones. Since recommended instances are unique by their combination of name
and type, the extension is only applied to the identi�ed recommended instance. If neither
recommended instance with the same name and type is contained nor a recommended
instance with only the same name, the new recommended instance can be added to the
state. If the given name appears in the existing recommended instances, it gets more
complicated: At �rst, a loop iterates over all found recommended instances with the same
name. If one of them has a similar type, the existing recommended instance is extended
by the new mappings. This also occurs, if the existing type is empty, but the new type
contains something. As described in the introduction of this chapter, recommended in-
stances do not necessarily need types. Therefore, recommended instances can be stored in
the state without types. The reason for their replacement (when adding a same named
recommended instance with a type) is that types can be removed afterwards without any
disadvantages. If the user rejects a recommendation because of its type, the recommended
instance can be suggested with other types. If the user does not accept any name-type
combination, it will always be possible to remove the type and the type mappings and
recommend the instance without speci�ed type. Therefore, it is a waste of space to store
a variation without type. After that, the method checks if there are no mappings that
corresponds to the one that should be added. However, the method takes the known
name into account. Therefore, no recommended instance with the same name but without
type should be added. This is secured by the last if query. If this is passed, the desired
recommended instance is stored in the state.

When a RecommendedRelation should be added, the state only checks if the combination
of participating recommended instances is already contained in any relation. As described
above, RecommendedRelations are unique in this combination. If an already stored recom-
mended relation with the same set of participants can be found, it is updated. This adds
the new occurrences and recalculates its probability. With a recalculation of a reappearing
relation, the probability should increase. If no existing recommended relation can be
identi�ed, the new one is added to the state.

6.2.1. Analyzers And Solvers

All suggestions are created by analyzers or solvers of the RecommendationAgent. Since
analyzers run through the graph (as explained in Section 5.1), solvers only use the ex-
isting, available resources. In the context of the recommendation generator level, the
analyzers and solvers have access to the PARSE graph, the textual information stored in
the TextExtractionState, as well as model information stored in the ModelExtractionState.
All analyzers/ solvers of this agent are RecommendationAnalyzers/ Solvers. Based on this
information, the recommendation analyzers and solvers build RecommendedInstances and
RecommendedRelations.

48

6.2. Recommendation Generator

Algorithm 3 The add functionality of Recommended Instances
function addRecommendedInstance(name, type, probability, nameMappings,
typeMappings)

recInstance← new recommended instance of the input parameters

risWithSameName← all stored recommended instances with the same name
risWithSameNameAndType← all stored recommended instances with

the same name and type

if state contains recInstance then
return

end if

if risWithSameNameAndType is empty then
if risWithSameName is empty then

addToState(recInstance)

else

for riWithSameName : risWithSameName do
if riWithSameName.type is similar to recInstance.type ||

riWithSameName.type == "" && recInstance.type != "" then

extend the mappings of riWithSameName by the new input mappings
return

end if
end for
if recInstance.type != "" then

addToState(recInstance)
end if

end if
else

extend the mappings of the one and only element of risWithSameNameAndType
by the new input mappings

end if
end function

49

6. Implementation

Currently, the RecommendationAgent has the following analyzers and solvers:
1. Extraction Dependent Occurrence Analyzer

2. Name Type Analyzer

3. Extracted Terms Analyzer

4. Reference Solver

5. Separated Relations Solver
As described, the recommendation generator is the �rst layer that is able to use both,

textual and model information. For that reason, there can possibly be analyzers that use
the model information to extend the textual knowledge base. Therefore, the origin of the
knowledge is not traceable to only textual resources, but only related to them.

Extraction Dependent Occurrence Analyzer This analyzer uses model information to �nd
referenced model instances. For every node is checked, whether it could be a name or a
type of a model instance. If similar model instance names (or types) are found, they are
added as noun mappings of their kind to the text extraction state. This analyzer should
run before any other analyzers or solvers are processed, since it extends the underlying
knowledge base.

Name Type Analyzer The NameTypeAnalyzer searches for patterns of name and types.
If these patterns occur, it creates recommendations out of the combination. In general,
the analyzer should not question the results of the text extractor. For that reason, only
combinations between names and types (and no types and types, or names and names)
are built up to RecommendedInstances. However, the analyzers are able to use norts in
exchange for names. The use of norts does not doubt the classi�cation of the text extraction
state, since it could not inambigously classify the nort as name or type. The patterns are:

Name Type | Nort Type
A type follows a name: An example is: “For this, the ai component is used”. In this
case, component is stored as type by the text extractor, while ai has been classi�ed
as a name. The combination of them (ai component) would be created and stored in
the recommendation state. In case of a combination of a nort and type, this is done
analogously.

Type Name | Type Nort
A name follows a type: For example: “The layer contains the component ai ”. Since
component is identi�ed as a type, and ai as a name, the combination of them will
indicate an instance. Therefore, a RecommendedInstance with the name ai and the
type component will be created. This case can be transferred analogous to a type
nort combination.

50

6.2. Recommendation Generator

Extracted Terms Analyzer This analyzer uses terms of the text extraction state to create
recommendation names and types of multiple words, like car wheel of type common
component. Algorithm 4 shows the search function of the analyzer. If the current node is
not included by a term mapping, it is irrelevant for this analyzer. If it is part of a term,
the term has to be identi�ed. Since noun mappings have references on nodes (and nodes
can be part of multiple, di�erent noun mappings), the search for terms (starting from the
node) can result in multiple, di�erent terms. Therefore, the search iterates over every
term, to create all possibly referred recommended instances. With the knowledge of
the current term, the kind is set. Since terms are only set by analyzers that de�ne them
as name or type, they can not be norts. Therefore, the corresponding name/ type �eld
of the creating recommended instance is reserved. To �nd a possible other part for the
recommended instance (type or name), the function looks at the adjacent nodes of the term.
If any noun mapppings contain the nodes, they are used to create recommended instances.
Furthermore, the analyzer checks if any terms contain the mappings and if these terms
are adjacent to the current term. It is secured that the whole term (or similar parts) occur
in the text in correct order, directly before or after the current term. If this is the case, a
recommended instance is created for every term combination. The algorithm secures that
sentences limits are not crossed for �nding adjacent noun mappings, nor for identifying
adjacent term mappings. In the case that no adjacent noun mappings can be found, the
algorithm checks if the term is of kind name. If this is the case, a new recommended
instance can be created with just that term as name.

Example: Let “The common component car wheel is part of ...” be a sentence in our
given documentation. Let car wheel and common component be term mappings. Then the
Extracted Terms Analyzer would recognize the word car as part of the term car wheel. It
would check if the whole term occurs at that place. The adjacent words at this term are
component and is, but only the �rst is contained as noun mapping by the text extraction
state. The analyzer creates its �rst recommended instance. Since the term car wheel is
a name, and component is a type it creates the recommended instance car wheel of type
component. The name mappings are taken from the term. As type mapping, only the
component mapping is entered. Then, the analyzer checks if the adjacent nodes (in this
case component) are part of a term mapping. Thereby, the common component is found.
The search function checks whether the term occurs complete and in correct order before
car wheel. Since it does and the term common component is of kind type, a recommended
instance of both terms is created: car wheel as name and common component as type. The
mappings are taken from the corresponding terms. Thereby, the process generated two
recommended instances. If the user would reject the more speci�c one, the approach is
still able to suggest the instance car wheel with a more general type.

Reference Solver The ReferenceSolver combines information from textual and model
resources. As textual resources the noun mappings of the text extraction state are used.
Their reference represents a uni�ed term for all words stored in the mapping. As model
equivalent, instances from the model extraction state are used. An instance includes
a longest name that should be most descriptive and unique in the model. For better
identi�cation, parts of this longest name are stored in a list.

51

6. Implementation

Algorithm 4 The functionality of the extracted terms analyzer
function searchRecommendedInstancesForTerm(node)

termsWithNode← all stored terms of the text extraction state with that node

if termsWithNode is empty then
return

end if

for term : termsWithNode do
adjNounMappings← Noun Mappings before and after the term
if adjNounMappings is empty && term has kind NAME then

create a new recommended instance with just a name
else

create a new recommended instance for every adjNounMapping
adjTerms← Term Mappings before and after the current term
create a new recommended instance for every adjTerm

end if
end for

end function

The solver searches for mentions of model instances in the text. For this purpose,
it iterates through the instances of the model extraction state and searches in the text
extraction state for name noun mappings with similar references. For this reason, the list
of names of the instance is compared to the reference of the noun mapping. When the
number of names exceed the prede�ned threshold, a noun maping is seen as a match to
the instance and a RecommendedInstance is created. The idea behind this is to generate all
possibilities. This enables their usage for further steps or even as recommendation to the
user. Di�erences concerning the correctness of these can be done via the variation of the
RecommendedInstances probability. If no similar name noun mapping is found, the solver
searches for a name noun mapping, whose reference is similar to the longest name of the
instance. If a name noun mapping is similar to the longest name, it is used for the creation
of a RecommendedInstance (without a speci�ed type). Otherwise, the search continues. In
this case, it is searched for names of the instance (parts of the longest name respectively).
If this search is successful, the probability is spread over the matches. Thus, all have the
same probability. The more matchings are found, the lower is the probability of each
resulting RecommendedInstance.

Separated Relations Solver The SeparatedRelationsSolver is a solver that creates Recom-
mendedRelations. Sometimes, punctuation marks occur in architecture documentations
to specify the location of an element. For example: “The component c is contained by
layer.ai”. In this case, the component c is part of ai that lies in layer. In context of this
work, these speci�c punctuation marks are called separators. They can be de�ned in a
con�guration �le. Currently, it contains the punctuation marks ., ::, or :. To represent this
implicit relation between the separated elements, this solver runs through the already

52

6.3. Connection Generator

found RecommendedInstances. For each, the solver checks if an included name noun
mapping contains an occurrence with a separator. If some occurrences are found that
contain a separator, they are split into di�erent partial strings. Then the solvers tries
to identify the part that is similar to the name of the examined recommended instance.
Since the noun mappings are added to the recommended instance by similar naming,
and occurrences are added to noun mappings by similar mentions, at least one part of a
separated occurrence has to be similar to the name of the recommended instance. For the
other parts, corresponding noun mappings are searched. This search can result in multiple
possibilities. To provide every possible combination the cartesian product from the found
matchings is built. The solver maintains the order of the parts.

Example: The recommended instance ai has to be checked. Its list of name mappings
contains just a single noun mapping, also called ai. In this noun mapping an occurrence
layer.ai is contained. The solver divides the occurrence into two parts: layer and ai. The
solver checks which of both is similar to the name of the recommended instance. This
is ai. Then, the solver searches in the text extraction state for noun mappings with the
reference layer. The solver �nds three of them: lair, laser, and layers. For every possibility,
the solver creates a recommended relation. Therefore, the relations (lair, ai), (laser, ai), and
(layers, ai) are results of that occurrence.

As the example shows, misspellings and di�erent namings can be balanced with a
wider de�nition of similarity. Of course, more possibilities will occur the more loose the
similarity is treated. In future work, the similarity could in�uence the probability of the
recommended relations, such that more correct relations are proposed to the user, but
every possibility is still available.

6.3. Connection Generator

The goal of the connection generator is to connect (where possible) recommended instances
and relations to model instances and relations. As Figure 6.5 shows, these connections
are stored in InstanceLinks and RelationLinks in the connection state. Every link connects
exactly two instances or relations. Thus, every link represents a trace link, but in contrast
to them, here, the links have additional probabilities.

Currently, links are used as trace links with an additional probability. The probability
contains the likelihood of the connection. To be able to o�er multiple suggestions to the
user, multiple connections of one model element can be stored in the state.

the reason behind the choice that multiple trace link related connections of one model
element can exist to the same time lies in the meaning of trace link. A trace link is an
unambiguous connection between a textual and a model element. Therefore, there canno
be multiple trace links per model element according to the proper meaning of the word
trace link. I see the term trace link as just a view point that only sees one possibility of
many: The one that is most likely so that someone would assure that connection. If or
when this assurance takes e�ect is dependent from the similarity. Since this similarity is
represented by the probability, the decision whether a connection is a trace link or not
depends on the probability. This decision can be broken down to a threshold.

53

6. Implementation

ConnectionState

InstanceLink

textualInstance : RecommendedInstance
modelInstance : Instance
probability : double

RelationLink

textualRelation : RecommendedRelation
modelRelation : Relation
probability : double

**

Figure 6.5.: Connection State

Therefore, links of the connection state can be seen as the whole view. For suggestions
the view can be reduced to a view point: A single connection per model element. Since
links are unique by their combination of textual and model elements, the comparison and
addition of links is very simple.

If a new instance link should be added, it is checked if the combination of recommended
instance and (model) instance is already contained by any connection of the state. If this
is the case, the already stored recommended instance is extended. This work is done by
adding the new name and type mappings to the existing mappings of the recommended
instance. If the model instance is not already used, a new instance link is created.

The addition of relation links works analogously.

6.3.1. Analyzers And Solvers

The analyzers and solvers of the connection generator have access to all previous states
and information. Since analyzers run through the textual graph, they are less common
than solvers that look up the states. Even if currently no analyzers are implemented on
this level, the abstract analyzer is provided. Thus, future work can simply add on.

1. Instance Connection Solver

2. Relation Connection Solver

Instance Connection Solver This solver connects recommended instances and model
instances. For this, it runs through the model instances of the model extraction state. Then,
it runs over the recommended instances of the recommendation state to �nd suggested
instances with a similar name. For the recommended instances with the most similar
name, an instance link is added to the connection state. If there are multiple, most similar
recommended instances, links are created for all of them. For recommended instances
without a speci�ed type the probability is decreased. Thus, instance links that include a
type speci�cation are preferred.

54

6.4. Con�guration

Relation Connection Solver The relation connection solver works similar to the instance
connection solver. Instead of connecting instances it connects relations. Therefore, it
searches for every model relation a corresponding recommended relation. If both relations
have di�erent amounts of participating instances, the search is continued with another
recommended instance. If the amount is the same, the instance references have to be com-
pared. For the recommended relation under examination all instances of its participants
are collected that are most similar to the instances of the model relation. Thereby, multiple
combinations of relations with the most similar participants are created. If for every
(model) instance participant exactly one corresponding recommended instance exists, the
relation link between both is added to the connection state. The order of the participants is
matched to the model relation. If no match can be found, it is tried to �nd a recommended
relation that has the participants in the wrong way round.

6.4. Configuration

This thesis provides a �rst step in the direction of suggesting missing elements and
trace links to the user. To support future experiments and gain insights on how the
collaboration of di�erent analyzers and solvers works, the run con�gurations can be set
in a con�guration �le. The tables (Table A.1 to Table A.5 in the appendix) provide an
overview about the con�gurations that can be set per class. The de�ned con�gurations are
loaded automatically as parameters to a �nal class (ModelConnectorCon�guration). From
there, every other class can access and load the con�gured settings. The type columns of
the tables specify the type that is available internally.

55

7. Evaluation

In this chapter, I will present the evaluation of the approach. The structure is oriented to
the goals of this thesis and their questions. The goals are:

1. Represent the concept of di�erent graduations of links between model elements and
textually described elements,

2. Recognition of textually described model elements without knowledge of the model,

3. Recognition of model elements explicitly named in the textual resource,

4. Identi�cation of links.

The �rst goal refers to the structure and representation of the links in the approach
and is discussed in the �rst section of this chapter (Section 7.1). The next goals require
a data base to evaluate against. Therefore, Section 7.2 describes the creation of a gold
standard. Section 7.3 introduces multiple metrics to measure the data. In Section 7.4
the gold standard and metrics are used to evaluate the recognition of model elements
without knowledge. The recognition of explicitly mentioned model elements is discussed
in Section 7.5. In the last section (Section 7.6), the connections between model and textual
elements are examined.

7.1. Representing Links

The �rst goal of this thesis is to propose a structure that is able to represent a linkage
between model elements and textually described model elements. The main question is: Is
the chosen representation of links suitable for the problem. To answer this question and
discuss the implementation of links, I will summarize what links are and how they are
represented in this thesis. A more detailed description can be found in Chapter 4, Chapter 5,
and Chapter 6. An overview of the types and their relations is given in Figure 5.8.

As Figure 7.1 shows, the approach is based on elements extracted from the documen-
tation and model. The approach tries to connect them with links, depending on their
similarity. In Chapter 4 I divided links in two subgroups: Hint links and trace links.

Trace links are links that connect exactly one textual element with one model element.
The connection represents the equality of both elements. The connection is very probable,
thus it can be seen as a secure link. In Figure 7.1 they are represented as the lower
connection between text elements and model elements. In contrast to trace links, hint
links do not have to be as probable. They are subdivided in two more subgroups. The
�rst subgroup are hint links that connect text elements and model elements. They only

57

7. Evaluation

Goal Model

Model Element

Instance

Name

Type

Rela�on

Instances

Type

Text Element

Text Instance

Name

Type

Text Rela�on

Instances

Type

suggests

could be equal

are equal

ModelDocumenta�on

containscontains

claims/
suggests

suggests

Figure 7.1.: Approach Overview

indicate similarity between text and model elements. They can be transformed to trace
links, depending on the trace link requirements (e.g. a threshold for the probability). This
kind of hint links are represented as instance links and relation links in the implementation.
The second subgroup of hint links are text elements that can not be connected to any model
element, but are probable to be in the goal model. Thereby, they suggest additional (to
the base set of the model elements) goal model elements. In the implementation they are
represented by recommended instances and recommended relations. Both are preliminary
steps of links, but if no corresponding model element can be identi�ed, they can be seen as
recommendations that should occur in the model. However, some recommendations with
too low probability or number of occurrences should be sorted out. With this underlying
the construction, it is possible to de�ne hint links and trace links.

The question “Is the chosen representation of links suitable for the given problem?” is
subdivided in multiple more speci�c questions:

1. Does the representation contain at least one textually described element and at least
one model element?

2. Can the connected elements be tracked back to their respective occurrences?

3. Does the representation contain unnecessary information?

4. Does the representation enable di�erent graduations of links?

5. Is there a way to suggest textual elements that have no corresponding model ele-
ments?

58

7.1. Representing Links

Does the representation contain at least one textually described element and at least one
model element?

Since the approach divides links in multiple subgroups to represent them, the speci�c
questions about the structure of links target di�erent representations. The �rst question
is directed to the concept of instance links and relation links. It scrutinizes the ability to
represent trace links and hint links. Both kind of links are constructed to connect one
recommended element and a model element. A recommended element is a collection of
textual names and types (as text instance or text relation shown in Figure 7.1). Therefore,
by construction, links always contain one textually described element and one model
element. Since hint links represent possibilities, the approach can represent multiple
options for one model element. Instead of creating a new kind of links, the approach
represents these opportunities by storing multiple possible links to the same element.

Can the connected elements be tracked back to their respective occurrences?
This aspect is important, since the approach should support the user. By backtracking, the
user is able to understand recommendations or verify/ reject parts of them. Moreover, the
indications what should be in the goal model or what is missing could be tagged in the text.
The approach enables this by construction. As described above, links consist of model
elements and recommended elements. Model elements have a unique identi�er (uid) and
can thereby be back tracked to the speci�ed element in the model. The recommendation
element, consists of names and types that are implemented as noun mappings. Noun
mappings unify multiple words of the same meaning. The occurrences of every word, as
well as the PARSE nodes are stored in it. With the PARSE graph, the position in the input
text can therefore be restored. With this construction, the question can be a�rmed.

Does the representation contain unnecessary information?
For me, unnecessary means that no information is stored that is neither needed for creating
links, nor helpful for the decision of the user to reject or verify the connection, nor usable
to back track the links to the source. With this de�nition of necessity, I will discuss the
representation presented in Figure 5.8. To ful�ll the requirement, every part of the link has
to be necessary. Since links are based on textual and model resources, I will start there.

Themodel extraction state contains instances and relations. Instances represent the objects
of the model that are connected with relations. They own a longName and a longType that
should be unique. The approach uses the long versions for the textual identi�cation of an
instance. Beyond that the longName can be useful for the user to see which instance was
meant with a suggestion. The uid enables the backtracking to the speci�c model instance.
The list of names and types gives the possibility to de�ne alternative names. Currently,
the longName is split (since it usually consists of multiple parts) and stored in these �elds.
In contrast to the longName or longType, the shorter names and types are more practical
when searching for references in the textual source. Therefore, I summarize that every
stored information in instances has its use. Moreover, the model extraction state is able
to store relations that can be used for relations links. A relation consists of at least two
instances. These are linked directly. Additionally, they have a type. The type is represented
as a string, since di�erent models can be used with the approach. The type declares the

59

7. Evaluation

kind of connection and can further be used as semantic name. Like instances, relations
own an uid that enables the back tracking to the source. Therefore, also relations do not
store unnecessary information.

Links consist of a model and textual element. The textual element is represented by
recommended elements consisting of mappings. These mappings are directly extracted
from the text. The extracted information can be represented in three di�erent structures:
Noun mappings, term mappings, and relation mappings. Each noun mapping is a collection
of PARSE nodes with the same meaning. The collected nodes are stored to refer to the
source. The approach uses the nodes to examine the context of the mapping. The di�erent
occurrences of the uni�ed meaning that is stored as reference can be found in occurrences.
The occurrences can be helpful to get an overview what the mapping contains and what
has been classi�ed to be the same. Moreover, the approach uses the occurrences for some
matching algorithms, since the reference is not always representative. Additionally, noun
mappings have a mapping kind. This kind speci�es whether the mapping is a name, a type,
or a nort (name_or_type). The kind preselects the data for further steps and helps them to
use the noun mappings uniformly and correctly (in context of their textual environment).
The probability encapsulates the certainty that the mapping has that kind. The probability
enables the challenging of an already classi�ed mapping and o�ers the possibility to
evaluate comprehensively a probability for the eventually resulting link. In contrast to
noun mappings, term mappings are not directly used in recommended instances, but for the
identi�cation and connection of terms that consist of multiple words. If a term mapping
should be used in a recommendation instance, its noun mappings are extracted and used
instead of the term mapping itself. Thereby, only relation mappings remain on this level as
representation of textually described relations. A relation mapping consists of at least two
noun mappings. Additionally, a preposition can be set as a node. The preposition o�ers the
possibility to refer to a semantic or direct the relation. If the �eld is not needed, it can be
left empty. Moreover, every relation mapping has a probability that represents the certainty
that the contained noun mappings are participants of this relation. As already mentioned,
this can be used for the calculation of the certainty of links based on this relation mapping
or just as graduation.

The next level, built on textual elements, is the recommendation state. The state has
two structures for the representation of recommendations: Recommended instances and
recommended relations. Both contain elements that could be in the goal model. Therefore,
the recommended instances usually combine noun mappings as names and types, but
recommended instances can also consist of only a name. The names and types are not
only stored as noun mappings, but also as strings for better comparison. Therefore, the
name and type �elds contain a (hopefully) representative term. The approach uses them to
connect similar recommended instances and instances (respectively recommended relations
and relations). The probability of a recommended instance encapsulates the probability of
the textual instance to occur in the goal model. This information is necessary to select
recommendations that can not be connected to a model instance. Like every relation
representing structure in this approach, the recommended relation refers to at least two
instances of its level. The name of a recommeded relation is a semantic name for the
underlying relation and can help the user to understand what relation is meant. The
textual source of the recommended relation is stored as at least one relation mapping. This

60

7.1. Representing Links

enables to back track the source and the certainty of the recommended relation. Like for
recommended instances, the probability of recommended relations values the likelihood
of that relation to occur in the goal model. Additionally, the recommended relation has a
list of PARSE nodes. These nodes refer to the occurrences of the relation. They contain
the nodes, mentioned in the underlying relation mapping. Via copying them into another
list on the recommendation level, they can be extended without falsifying the textual
information. Furthermore, in contrast to the stored node in the relation mapping (that are
extracted without knowledge of the model), they represent the set of found occurrences
with the knowledge of the model.

Since instance links and relation links only consist of connections between a recommended
instance and an instance or a recommended relation and a relation, as well as a probability
that contains the certainty of this connection, I conclude the question: No unnecessary
information is stored in links.

Does the representation enable di�erent graduations of links?
As described before (e.g. in Chapter 5), the links can be represented as recommended
instances/ relations or instance/ relation links. Instance or relation links have a probability
that enables a graduation between multiple possibilities. Since recommended elements are
not connected to model elements, they can also be seen as a graduation of links. Therefore,
the question can be answered with yes.

Is there a way to suggest textual elements that have no correspondingmodel elements?
Yes. To suggest textual elements to the user that have no corresponding model element,
recommended instances or recommended relations can be used. Their probability is their
certainty to appear in the goal model.

As a result, I conclude that this approach o�ers a structure that is suitable for the
problem of identifying missing and common elements between a given textual document
and a model.

61

7. Evaluation

7.2. Creation Of A Gold Standard For Evaluation

Since the target of the approach is to support a user with identifying missing or common
elements between a textual architecture documentation and an architecture model, the
gold standard was created in a user study. Thereby, the aid in sense of common answers
can be measured in comparison to humans.

7.2.1. Preparation

The study is based on the architecture documentation of the open source project TEAM-
MATES [29]. TEAMMATES is a cloud based service for managing peer reviews. As usual
for open source projects, the documentation sometimes describes not the architecture
itself, but packages and processes that are used in the software. In comparison to other
open source projects, the documentation of TEAMMATES is comprehensive and in a
good shape. As model, I used a �gure from the documentation. This model shown in
Figure 7.2 contains the main components with their sub packages. The plotted relations
represent dependencies between the elements. Since the model extractor is currently not
implemented, I manually transmitted the �gure in the model extraction state as it could
be represented in a PCM. Table 7.1 and Table 7.2 give an overview how model elements
are represented in the model extraction state. Every main component is represented with
a composite component. Every composite component has at least one interface. The
packages are represented by basic components. For the naming of packages, I decided
to use only the second part of the name (e.g. exception instead of common::exception) as
the longest name. The lists of partial names and types are generated automatically when
creating new instances. For the user study, I numerated the instances and relations. The
relations include three types. The relation in speci�es that a package is in a component.
The relation provide represents the relation of a component/ package and its interface.
Finally, the relation uses represents the dependency of an element to another. Thereby,
the relation is not connected to the target itself but to its interface.

Long Name Long Type uid
Common composite component 0
Common Interface interface 1
util basic component 3
exception basic component 4
...
Storage entity Interface interface 19
...

Table 7.1.: The instances of the TEAMMATES diagram in the model extraction state.

Instance 1 Instance 2 type uid
0 1 provide 10
2 0 in 11
4 19 use 12
...

62

7.2. Creation Of A Gold Standard For Evaluation

I1
I2 I3 I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

I25

I26

R1 R2 R3 R4

R5 R6

R7

R8 R9
R10

↓R12

R13

↑R11

R14

R15

R16

R17 R18
R19

Figure 7.2.: Diagram of Teammates used for the evaluation [29].

Table 7.2.: The relations of the TEAMMATES diagram in the model extraction state.

Since the documentation contained multiple �gures, enumerations, subtitles, and marked
terms that could disturb the preprocessing, I cleaned the documentation. For this reason,
I formulated rules and applied them to the documentation. The resulting text was used
to create the gold standard, as well as to run the approach on it. For the user study, I
numbered the sentences. The rules that were applied are:

1. Remove headlines
a) If this is not possible, since the enumeration gets completely unclear: Include

the headline in the next sentence.
b) If possible remove also headlines that are not done with markdown.

2. Remove enumerations
a) Replace enumerations that consist of a single term with a phrase separating

the enumeration items with commas.
b) Continue introducing sentences for that enumerations if they end with a colon.
c) Remove “Notes:” headlines

3. Remove tables.

4. Remove links.

63

7. Evaluation

5. Remove imports e.g. images.

6. Remove styles like bold type or marks.

7. Remove not functional punctuation marks.

8. If possible remove brackets.

9. Replace explanations that include a colon with a sentence, if necessary.

a) If a reference or keyword occurs in an explanation replace the �rst occurrence
with the keyword before the colon.

b) If the colon occurs in a sentence, the sentence can be changed minimally.

c) Otherwise, add another sentence to the documentation.

10. Replace previous enumerations with a sentence if necessary.

a) Or extend the text with a chronological sequence, if this is more intuitive.

11. Check the meaningfulness of the text and extend them or add sentences if necessary.

a) Change headlines to “To [headline] the following information is presented.”

12. Replace references to images with a explicit mention.
For example: “As in the image ...” instead of “as follows”.

7.2.2. Concept Of The User Study

The user study includes two parts. The �rst part contains tasks that are done without
knowing the model. The tasks of the second part are done with it. At the beginning, I
collected general information about the participants, such as age, study course, grade, and
experience. For the answers the questionnaire o�ered free text �elds and yes, no, or no
statement boxes for checking.

Part 1
After �lling the general questionnaire, the participants got a couple of documents for the
�rst part: The �rst �le introduce the tasks and explains them with examples. The part is
partitioned in two tasks: One for the elicitation of instances and the other for relations.

The �rst part of the �rst task is to mark all name and types in the text about TEAMMATES.
The participants should mark items that they would include in an architecture model. To
express their certainty, they were able to mark in three di�erent colors:

1. blue-green: neither agreement nor disagreement that this name/ type appears in the
model.

2. dark-green: agreement that this name/ type appears in the model.

3. light-green: fully agreement that this name/ type appears in the model.

64

7.2. Creation Of A Gold Standard For Evaluation

The scale is based on the Likert scale. I omitted the negative part of the Likert scale.
After marking all names and types in the text, the participants were instructed to insert

all found names in a table (as shown in Table 7.3). Names that belong to the same instance
should be collected in one row. Otherwise, they should write them in di�erent rows. The
task description explicitly allows multiple mentions of a name in multiple rows if the same
name belongs to di�erent instances.

The third part of task one is to extend the table entries by associated types. If no
type could be found, the participants should leave the cell empty. If multiple associated
types could be found and they semantically mean the same, the participants should list
them in one cell of the table. The participants should copy the row if multiple associated
(semantically di�erent) types could be found. Thus, one row for each semantically di�erent
type would exist.

The last step of the �rst task is to check the agreement columns for each name-type
combination. The con�dence should be indicated the agreement for the name-type com-
bination. If a type �eld would be empty no con�dence should be entered. For a clearer
delimitation to the marking step, I added a note that the con�dence is independent of the
decision whether the instance should be in the model or not.

Names Types Neither agreement nor dis-
agreement

agreement fully agreement

...

Table 7.3.: The instance table of the �rst task of the user study.

Moreover, a comprehensive example was given to the subjects. It includes all partial
tasks and explanations about decisions imaginary participants have made. Moreover, the
example shows that multiple possibilities exist to ful�ll the task.

The second task of the �rst part is to �ll a table (as shown in Table 7.4) with relations
between the found instances. For every relation a semantic name and the participating
instances should be entered. If a relation occurs with di�erent instances, it should be
inserted additionally in a new row for every constellation. Moreover, sentence numbers
should be added, where the relation occurs in the text. The con�dence speci�cation is
similar to the previous task. For this task only a short example is o�ered. Since the task is
similar to the �rst task the example consists of an example phrase and a possible solution
table.

Semantic
name

Occurrences
(in
sentence
numbers)

Neither
agreement
nor
disagreement

agreement fully
agreement

Rel. 1

Table 7.4.: The relation table of the second task of the user study.

65

7. Evaluation

Part 2
Like the �rst part the second part includes two tasks. The �rst task is to mark all names
and types in the text about TEAMMATES that are contained by the model. The further
proceeding is referenced to the procedure of the �rst task. Like in the �rst task, a table of
instances should be �lled. In contrast to the �rst table, additional columns should be �lled:
A column with the number of the instance (given by the model as in Figure 7.2) and one
with the sentence numbers where this instance occurs. The second task of this part is to
write all relations that are contained by the model in another table (like in Table 7.4). The
only additional column to �ll is the number of the relation that is provided by the model
�le.

7.2.3. Execution Of The User Study

The user study was executed from home. Since the Corona virus cause a closing of all
student working places at the university, a local evaluation was not possible. Therefore, I
invited every participant to a Discord channel, to be available for questions and lower the
bar for inhibition for them. Since all participants were German, the study instructions were
in German. Three participants participated in the user study. All of them were studying
computer science: Two in a master’s degree programme and one bachelor candidate. The
master candidates were in the fourth and sixth semester, while the bachelor candidate was
in its eighth. All of them stated that they had heard and passed the software engineering
module (Softwaretechnik 1) at the KIT. Moreover, two of them speci�ed that they have
experience with models in software engineering, while the other checked the no statement
box. After the participants �lled the general survey, they got the �les of the �rst part.
It turned out that some participants overlooked the example on the second page of the
instructions or the separate solution work �les. Luckily these confusions could be clari�ed
at the beginning of the study during the �rst task. Beyond that, no questions were asked
about the tasks. After the participants ended the �rst part, they got the second part of the
evaluation documents. The time for the �rst part varied from 1:45h up to 2:35h. Since the
user study was planned from 10:00am to 12:00 one participant took a pause during the
second part. In general, the time for the second part varied from 0:40h up to 2:35h. Some
oral feedback indicated that the participants could have been faster, if the study had been
on paper.

7.2.4. Creation Of The Gold Standard

The last step of the creation of a gold standard was to aggregate the answers of the user
study. Therefore, I collected the statements of the participants. For the marks in the
documentation �les, I rated the certainty with points: One point for neither agreement
nor disagreement, two points for agreement, and three points for fully agreement. Hereby,
it stands out that one participant had a tendency to fully agree, while another never
used it. For every word in every sentence I summed up the points of the participants.
Furthermore, I accumulated the amount of participants that marked the word. Therefore, I
got an overview for every word consisting of the points of each participant, the sum of
points for the word, and the amount of participants that marked it. The text has a scope of
about 200 sentences.

66

7.2. Creation Of A Gold Standard For Evaluation

For the instance table of task one, I aggregated the multiple tables of the participants.
Then I summarized rows, if they have a similar name and the same type. Since some
participants got the task wrong and inserted German terms, I decided to treat them similar
to the English translation. For every row, I summed up the points and the amount of
participants that mentioned that name-type combination. Since rows with only a name
does not represent a fully instance, I rated those instances with one point. This represents
the procedure of the approach. The suggestion without a type should always be the last
opportunity presented to the user. Moreover, the task seems less clear than anticipated.
Some participants understood associated types as types they would use when modeling
the instances, instead of types that are given by the text. In this table multiple agreements
between the di�erent participants exists.

In contrast to the instance table, the aggregated relation table for the second task was
mostly a composition of the single tables. Only one agreement between participants exists.
The other relations all have di�erent terms of the participating instances. Therefore, I
could not summarize multiple rows, since the participating instances are unique feature of
the relations. Moreover, this shows that �nding relations without the knowledge of an
underlying model is highly disambigious, even if the participants have general knowledge
of models. Thus, this table was not used in the further evaluation.

Since the instance table of the third task contains references to the speci�c instances
of the model, the aggregation of the di�erent entries were much easier. Only if the type
di�ered, multiple rows were created. In case of one participant the names of the instances
were not inserted in the table. I compensated this fault by entering the name of the instance
given by the model. Since the gold standard should only contain one solution per instance,
for each instance the row with the highest points were taken. As a result, all instances,
except of one had more than four points and at least two participants that speci�ed it and
assigned it to the same instance.

The table of the relations of the fourth task could be summarized as well as the instances
of the third task. In contrast to the instance table, I aggregated all relations of one speci�ed
model relation. This was possible, because the names of the instances always were similar.
Therefore, the aggregated table did not contain multiple variations for a model relation and
was unambiguous. A failure in the user study was to not explicitly name the in relations in
the model, since these are the only relations that are currently identi�ed by the approach.
Thus, the gold standard is only an indicator what could be found additionally. The table
contains 19 relations. This is about 10% of the sentences in the text. Therefore, more
analyzers for relations should be added in future work.

Since the probabilities in the approach are not balanced yet, all results are unambiguous
and not rated. Moreover, for this �rst approach it is more important whether the results
of the approach contain the correct solution instead of whether it has a high probability.
Therefore, the approach (the classi�er) just decides between a true or negative value. Since
only selections (positive results) are presented by the approach, negative values include
all not selected values.

In contrast to the results of the approach, the gold standard o�ers the possibilities
to select values depending on the agreement of the participants. In the user study the
agreement was expressed by a scale from one to three points. In the evaluation, multiple
sets will be considered. The �rst section contains all marked elements. That means that

67

7. Evaluation

this set contains all elements that someone has been seen as a possibility to be correct. The
second section contains all values of the reference that have more than two points. This
is the case, if someone fully agreed or at least one participant agreed with the value and
another was ok with it. The last set contains all values that have more than four points.
This represents values, where at least one person of two persons fully agreed with it and
the other agreed, or two of three agreed and the third one was ok with it. In any case the
two participants agreeing would outvote the third one. Therefore, the goal is to include all
of these values.

7.3. Metrics

In this section, the metrics that are used in the further evaluation are described. The
following paragraphs describe the metrics precision, recall, F1-Score, miss rate, and fall-
out. For their calculation the classi�cation results are compared to reference values.

True
posi�ves

False
nega�ves

True
nega�ves

False
posi�ves

Values that should
be posi�ve

Values that should
be nega�ve

Figure 7.3.: Model of a confusion matrix

Figure 7.3 shows the model of a confusion matrix relating the results of a classi�cation.
The columns represent the classi�cation in the reference. In this case these values are
the results of the gold standard. The values of the circle are the results that the approach
classi�es as positive. The surrounding of the circle are the negative results of the classi�er.
In case of this approach, these are all values that are not selected. In the evaluation of the
text extraction this would include all words that are not recognized as names, types or
norts. True positives are correctly classi�ed values. In contrast, false positives (fp) are
results of the classi�er that are classi�ed as true, but not marked as true in the reference.
Thus, these are faults in the classi�cation. Another fault group is called fn (false negatives).
The false negatives include values that should have been classi�ed as true (since they are
true in the reference), but are marked as false. The remaining group that is needed for the
rating of classi�cations are true negatives (tn). These are values that are negative in both,
the reference and the classi�cation result.

68

7.4. Textual Element Recognition

Precision Precision describes the share of correct suggestions of all suggestions the
approach presented. As I will describe in Chapter 8 there will be many possibilities to
improve this metric in the future work. It is de�ned as correctly positive classi�ed results
in relative to all positive classi�ed results.

Precision =
tp

tp + fp
(7.1)

Recall The recall of a classi�cation represents the proportion of the correct values in
the classi�cation result. Especially in approaches that sort out possibilities (like this one),
the recall is more important than the precision. If some relevant information can not be
found in the �rst steps, the information is not accessible for the next steps. The recall is
de�ned as all correctly positive classi�ed results in proportion to all positive results of the
reference.

Recall =
tp

tp + fn
(7.2)

F1-Score The F1-Score is the harmonic mean of precision and recall. It symbolizes the
proportion of correct classi�ed results versus the proportion of found positive values.
Thus, it measures a trade o� between recall and precision.

F1-Score = 2 ∗
precision ∗ recall
precision + recall

(7.3)

Miss Rate The miss rate, also known as false negative rate, measures the proportion of
missed positive values. In context of this thesis, this value is interesting since it represents
the loss of information after a classi�cation. Here, it indicates how much more information
should be found and classi�ed correctly and symbolizes the potential of future work.

Miss Rate =
fn

fn + tp
= 1 − recall (7.4)

7.4. Textual Element Recognition

In this section, the results for the goal Recognition of textual described model elements
without knowledge of the model are discussed. Therefore, the goal is split in multiple
questions:

1. Does the approach recognize textual described elements without any model infor-
mation?

a) Does the approach recognize the names and types of elements that are included
in the text, without knowledge of the model?

b) Does the approach suggest instances and relations that are included in the text,
without knowledge of the model?

69

7. Evaluation

To measure the recognition of the textual elements without knowledge of the model, the
implementation ran with an empty model. As corresponding reference the gold standard
of the �rst part was taken.

The �rst question (question a)) asks for the recognition of names and type of elements
in the text. The marking of these were the �rst part of the �rst task in the user study.
Therefore, the results are compared to these. As described in Section 7.2.4, the results of
the gold standard can be divided in multiple sets, dependent of the certainty of correctness.
Since the probability functionality is not balanced yet in the approach, the results of the
approach are counted as one.

Reference set Precision Recall F1 Miss rate
>4 points 7.18 68.63 13.00 31.37
>2 points 18.46 77.92 29.85 22.08
all 31.39 81.82 45.37 18.18

Table 7.5.: The results of the evaluation of the marks of the �rst task in percent per
reference sets

Table 7.5 shows the results of the evaluation. If all marks are considered, the recall is
at about 81% while the precision is about 31%. For the �rst step of a �rst approach that
is based on a sort out process, this is ok. Only 18% of the reference marks are missed in
the results of the approach. More problematic is the small precision if the reference set
is chosen by more secure values. However, the question is whether the problem without
knowledge of anything of the model is comparable to the task that the approach should
do. In contrast to the approach, the participants of the user study had an idea of how an
architecture model is structured or how it could look like. The approach has none of this
information. Therefore, for future work the measurement of the quality of the approach
with knowledge of a meta-model or other schematic information could be interesting.

The second question of this section asks for the comparison of the resulting recom-
mended instances with the de�ned instances of the �rst part of the gold standard. The
result represents the problem of the previous question combined with the missing knowl-
edge of the model. For the evaluation of the instance table, I decided to calculate only the
results for the set with more than four points. Almost all of the values of the user study
that were inserted by at least two participants are in this set. This reduces the number of
112 elements to 44 elements and the reference seems to be more realistic. To match these
elements three di�erent stages were evaluated. The �rst state is true, if the name the cur-
rent instance of the reference is contained by the occurrences of a recommended instance.
The second state is true, if the recommendation state contains an instance with one of
the names given by the reference as name. The third state is true if this recommended
instance has the same type as the reference.

70

7.5. Model Element Recognition

Matching Strategy Precision Recall F1 Miss rate
occurrences 25.58 50.00 33.85 50.00
name 9.30 18.18 12.30 81.82
name + type 2.33 4.77 3.13 95.46

Table 7.6.: The results of the evaluation of the instances of the �rst task in percent
by matching decisions. Only references with more than four points were
considered.

As can be seen in Table 7.6, the results are strongly dependent from the matching
decision. As described, I think the lack of knowledge is responsible for the bad results.
Moreover, the misunderstanding of the participants at this task could have lead to the bad
matchings, since they inserted types that were not contained in the text. However, the
approach suggests instances even if only their occurrences contain 50% of the names given
by the reference. Therefore, the second question can be a�rmed and the goal is reached.

7.5. Model Element Recognition

The goal of this section is to verify and measure the recognition of model elements explicitly
named in the text. For this reason the second part of the gold standard is taken for the
evaluation. The general question behind this goal is subdivided in multiple parts:

1. Does the approach recognize described model elements in the text?

a) Does the approach recognize the names and types of model instances?

b) Does the approach recognize the combination of name and type as one instance?

c) Does the approach recognize the mention of multiple instances in a relation as
one relation?

For the �rst question the tags of the documentation of task three is compared to the
results of the approach. Like in Section 7.4, the certainty points of the participants are
summed up. Then, the reference is partitioned in sets with di�erent con�dence thresholds.
For every set the results of the metrics are calculated.

Reference set Precision Recall F1 Miss rate
>4 points 39.85 85.04 54.27 14.96
>2 points 46.13 81.70 58.96 18.30
all 48.71 81.99 61.11 18.01

Table 7.7.: The results of the evaluation of the tags of the third task in percent per reference
sets

71

7. Evaluation

The results in Table 7.7 show that the approach identi�es at least 80% of the names and
types given by the participants. If only names and types with more than four points are
considered, the recall increases. At this point, the miss rate is under 15%. With an F1-Score
of 54% this is a good baseline for the selecting, combining, and suggesting of the further
steps.

For answering the second partial question, the instance table of the third task is com-
pared to the recommended instance found by the approach. Since there were mulitple
participants, multiple possibilities per instance exist in the table. I decided to summarize
the possibilities such that only one possibility per model instance would be in the gold
standard. Thus, the possibilities with the highest points (per model instance) were taken.
The result consists of 24 name-type combinations with more than four points. With the
exception of one case with only three points. Like in the instance table of part one, the
types of the gold standard include German terms. The basic components of the theoret-
ical PCM were mostly identi�ed as packages. For the comparison to the recommended
instances, I chose multiple matching strategies. This matching strategies de�ne whether
a true positive or a false negative is created. The �rst strategy is occurrences. With this
strategy, a hit is created if one of the names of the instance is mentioned in the occurrences
of any matching. Thus, this strategy represents the existence of the name. It could be
wrongly mapped to another name, instance or type. The correct naming is checked in
the next strategy. If a recommended instance with a similar name exist, a hit is created.
As similar all names were taken that could be interesting for users that would get such a
suggestion. For example: driver instead of Test.driver, Logic API instead of logic.api, as well
as util/ utility instead of E2e.util. If explicitly substructures (basic components/ packages)
like logic.api were named in the gold standard, the name of the main structure (e.g. logic)
was not accepted as a name. This is an important detail when looking at Table 7.8, because
the name mappings of the packages were often collected in the name mappings of the
component. Thus, the packages were not identi�ed as a single instance.

Matching Strategy Precision Recall F1 Miss rate
occurrences 23.30 96.00 37.50 4.00
name 14.56 60.00 23.44 40.00
name + type 4.85 20.00 7.81 80.00

Table 7.8.: The results of the evaluation of the instances of the third task in percent by
matching decisions.

Table 7.8 shows the results of the evaluation. As expected the matching strategy
containing the types underperforms, since only components were recognized. The recall
of the instance names in the occurrences of the recommended instances is pretty good,
even if the recall decreases to 60% when the names are compared. For a �rst try I rate this
as ok. Since recommended instances are in general not the last step of the approach, the
low precision can be seen as su�cient.

The last question deals with the recognition of relations in the recommendation state.
As described in Section 7.2.4 the table that was thought to be compared to the results of
the approach did not include contain\in relations at all. Since these are the only relations

72

7.6. Creating Tracelinks

that are identi�ed in this thesis, the comparison to the table is not expressive. Instead of
comparing the relations to the textual extraction of the gold standard, I compared them to
the 18 in relations de�ned by the model. Thereby, the recall is only a lower bound, since it
is not veri�ed that every relation of the model could be found in the text.

Matching Strategy Precision Recall F1 Miss rate
rough 50.00 52.94 51.43 47.06
exact 11.11 11.77 11.43 88.24

Table 7.9.: The results of the evaluation of the recommended relations compared to the
existing in relations of the model, in percent by matching decisions.

Table 7.9 shows the results of the comparison divided in two matching strategies. The
rough strategy does not need a similar name. Thereby, the strategy allows many faults
and should be seen more as values what could be, if the instances were named correctly.
The results of the comparison with the actual names of the instances can be seen in the
row with the exact matching strategy. Here names had to be as similar as in the instance
table. The results show that an F1-Score of 51% could be possible if the names of the
recommended instances were selected more appropriately. Therefore, the names of the
instances have to improve. Currently, when matching the exact names of the instances
of a relation only 11% could be reached. But, as described before, these are lower bounds
for this documentation and model and could be higher if the comparable set had been
generated with the information from the text.

Nevertheless, the goal of the model element recognition is reached. The approach is
able to identify names and types of the model with a recall over 80% while the precision is
about 40%. Moreover, the approach identi�es name and type combinations. The quality of
them depends heavily on the matching strategy. Additionally, I assume that it is dependent
from the type names of the underlying model, since packages were not declared as model
types. Also, recommended relations were found. The lower bound for the F1-Score is
about 11%. This should be improved in future work.

7.6. Creating Tracelinks

The goal of the link identi�cation can be formulated as the question: Does the approach
suggest textually described model elements and link them to their corresponding elements
in the model? To answer the question, I di�erentiate between instances and relations.

For the evaluation of that question in relation to instances, the gold standard of the
instance table of part two is used. Like in Section 7.5, the user study matchings with
the highest points per model instance were chosen. Thereby, every instance is described
unambiguous by the standard. I compared the instance links of the connection state with
the results of the gold standard. This procedure was pretty similar to the one in Section 7.5.
Additionally, two metrics were used: The name + instanceNo metric checks if the name is
correct and mapped to the correct instance number of the model. The other metric (name
+ type + instanceNo) checks additionally if the type is correct. Since the names of the types
di�er from the ones de�ned in the PCM, this is not often the case.

73

7. Evaluation

The results of the evaluation are shown in Table 7.10. Precision as well as recall are at
80%, if the occurrences strategy is followed. If the strategy is changed to the comparison of
the names, the F1-Score drops to 45%. But as the matching strategy of name + instanceNo
shows, 81.8% of them are mapped to the correct instance. If the type is included to the
matching, the F1-Score decreases about 17% points at least. As described in Section 7.5, I
think that the names of the types in the underlying model are responsible for this. Without
considering them, the values especially for the matching by names and instance number
has to improve. Nevertheless, the results are promising.

Matching Strategy Precision Recall F1 Miss rate
occurrences 86.96 80.00 83.33 20.00
name 47.83 44.00 45.83 56.00
name + type 26.09 24.00 25.00 76.00
name + instanceNo 39.13 36.00 37.50 64.00
name + type + instanceNo 21.74 20.00 20.83 80.00

Table 7.10.: The results of the evaluation of the instances of the third task in percent
per matching decisions.

For the evaluation related to relations the in relations of the model were used. Thereby,
as explained in Section 7.5, the results represent a lower bound for the suggestions of
relation links. The procedure was similar to the one in Section 7.5. Instead of comparing
the relations of the recommendation state, the relation links from the connection state
were used.

Matching Strategy Precision Recall F1 Miss rate
rough 45.46 29.41 35.71 70.59
exact 18.18 11.77 14.29 88.24

Table 7.11.: The results of the evaluation of the recommended relations compared to the
existing in relations of the model, in percent per matching decisions.

With the rough matching strategy, the precision is similar to the one of the comparison
with the recommended relations. In contrast to them, the recall is about 20% points lower,
when using the relation links. In case of the exact name matching for the instances, the
recall for both cases is equal, but when comparing the relations of the connection state the
precision is 8% points higher. As described in the previous case (Section 7.5), the values of
the second matching strategy would improve, if the naming would be better. If the values
of the rough matching strategy could be reached, the results would increase to a good level.
This is especially the case, since they are only a lower bound.

Since the links are the last stage of the approach and are thereby directly suggested
to the user, the results should have had a good mean between precision and recall. In
both cases, the F1-Score that represents that mean is too low. However, since the links are
created only by two solvers, there is potential to improve their strategies with additional
analyzers or solvers. Nevertheless, the approach is able to �nd model elements and connect
them to textual elements.

74

7.7. Threats To Validity

7.7. Threats To Validity

The evaluation implies multiple threats to validity. Since the user study only used one
documentation and similar tasks and tables for the �rst and second part the history e�ect
could have been occurred. The history represents a learning e�ect that is caused by
repetitions in a study. To avoid it, the second task (with the model) was only handed out
if the participant �nished the �rst part. Moreover, the second task was more restrictive
and detailed what should be marked in the text or inserted in the table. Therefore, the
e�ect should have no great in�uence on the second task. However, the text was already
known and the novelty e�ect exhausted. It could have been happened that the participants
worked less precisely in the second part. Additionally, an instrumentality e�ect could
have been occurred. Since the user study was done from home and at a computer, the
environment of the participants was not controllable. After the study, a participant said
that he was not concentrated during the study. Since one participant took a pause in the
second part of the study, a maturation may also have e�ect. In addition to the o�cial
e�ects that may have been happened in the user study, the creation of the gold standard
may also contain threats to validity. If some participant only speci�ed the name as an
instance, I counted it as one point in the gold standard. Furthermore, some participants
got the �rst and third task wrong and entered German terms as types instead of terms that
were contained in the text. I treated them as similar if the German term was the translation
of the English term. This could be a threat to the validity, since the German term is not
contained in the text. Nevertheless, the semantic were the same and could have come
from the text. However, the dimensions of the e�ect can not be measured. Moreover, some
participants did not insert the names of the model elements in the instance table of the
second part. Since the numbers of the model instances were given, I entered the names of
the model elements in the column. However, the occurrence of these terms in the text is
not veri�ed. Nevertheless, only results, comparing the occurrences of the instances are
under in�uence of this e�ect, since the approach does not use internally the whole names
of the model elements.

75

8. Conclusion And Future Work

In software engineering, consistency between artifacts is an important topic. This thesis
provides structures and processes that are �rst steps to deal with consistency violations
between an architecture documentation and its models. The focus of this analysis are
instances and relations of the model. The approach suggests links between textual elements
and their counterparts in the model. Moreover, it generates recommendations for elements
that are not in the model. These recommendations can support a user who checks the
consistency of software artifacts.

This thesis di�erentiates di�erent levels of agents for a modular goal-oriented approach.
Since INDIRECT preprocesses the given documentation and adds linguistic information to
it, the approach is based on the resulting graph. To remain the structure of PARSE, the
agents on the di�erent stages of this approach inherit from PARSE agents. In contrast to
them, their gained knowledge departs from the textual basis. Thereby, the new information
is not added to the graph as usual, but stored in decentralized states. Since the later agents
are dependent from the agents before them, agents have access to the states of every agent
that ran before. The most underlying agent is the text extraction agent. The agent is based
on the PARSE graph and uses linguistic information to extract and classify nouns from the
input text. The goal is to extract terms that could be used as names or types of elements in
the model. For this, the agent has multiple analyzers and solvers. Analyzers run through
the PARSE graph and transmit the gained information into the state. Solvers look up
that state and calculate conclusions. If an analyzer or solver �nds relevant information, it
transfers them with a con�dence to the state. The state decides what is done with this
information. Thereby, the approach enables a voting between multiple analyzers and
solvers. Moreover, the state merges multiple information. At the text extraction level
information is stored as noun mappings. Noun mappings unify di�erent words under
one reference. Whether a new information is added to an existing noun mapping or a
new one depends on the behavior of the state and the reference. The reference is given
by the analyzers when they transfer their information to the state. As result of the �rst
step of this approach the text extraction state includes multiple grouped nouns (as noun
mappings) that are classi�ed as a name, type, or possibly both. The next agent building
on the knowledge of the text extraction state is the recommendation agent. The goal of
the agent is to identify textually described elements. Since the text extraction agent only
provides names and types the recommendation agent combines these to gain recommended
instances and relations. For this the agent has access to the text extraction state and all
underlying information, as well as the model. Moreover, the agent �nds instances and
relations that are textually described but missed in the model. For a uniform structure, the
di�erent analyses are outsourced in analyzers and solvers. The last stage of the approach
is the connection agent. This agent builds links between the recommended elements
and model elements. The built links are similar to trace links. Furthermore, each links

77

8. Conclusion And Future Work

has a probability that represents the likelihood for the connection. Thereby, di�erent
graduations and suggestions for links can be made. The model is accessed by the model
extraction state. The state is designed to contain multiple types of models. To provide
a uniform interface for di�erent models only relevant information, like name, type, and
a unique identi�er are stored in the elements. As the other states the model extraction
state can be �lled by analyzers of the model extraction agent. The implementation of this
feature is part of the future work.

The evaluation is based on the open-source project TEAMMATES. TEAMMATES is a
software for managing peer-reviews. A user study was made to get a comparable gold
standard to the approach. The user study contains two tasks per part. The �rst part is
done without knowledge of the model. Thus, it is comparable to the text extraction and
partial recommendation generation of the approach. The second part was done with a
model that is contained in the original documentation. The �rst task of each part is to
mark names and types of textually described model elements. The three participants
had the possibility to mark the words in three di�erent colors regarding their con�dence.
In concern of the evaluation the colors were translated into a scale from one to three
points. These points were summed up in the gold standard to get graduations of multiple
solutions. Furthermore, the �rst task includes to combine names and types and build
instances that should be contained by an architecture model. For every identi�ed instance
the participants set a con�dence. The second task is similar to the �rst. Instead of instances
relations should be build. The second part is equal to the �rst, except that the participants
have knowledge of the underlying model. Both results of the relation tasks were not used
in the evaluation as they were not applicable for it. Instead of them, the in-relations of the
model were taken for comparison.

The approach identi�ed 80% of the names and types marked by the participants without
model knowledge. If only names and types with more than four points are concerned, the
approach reaches a recall of 68%. The names of the instances of the gold standard are found
with an F1-Score of 33.85% in the occurrences of the recommended instances. This means
that the names were identi�ed as names of an instance, but not as reference for it. For
more speci�c matching strategies, like a comparison of the names, the results di�er very
much. Thereby, the conclusion is that without model knowledge such comparisons are
not promising. For the second part of the evaluation the model knowledge was available
for the participants and the approach. The approach identi�es at least 80% of the names
and types of textually described instances. Moreover, the recall even increases with the
con�dence of the participants: For results with more than four points the F1-Score was
54%. Therefore, the approach has a good base to build recommendations out of it. Also
in the combination part of the �rst task the approach is better if the model is known. In
96% of the cases the names of the instances de�ned by the gold standard are found in
the occurrences of recommended instances. Furthermore, 60% are also used as the name
of the recommended instance. The recommended relations reached a lower bound of
11% as F1-Score when the names of the instance have to be similar. When the names
are compared only roughly it is possible to reach an F1-Score of 51%. A similar e�ect is
observed in the evaluation of the relation links. When comparing exactly the names of
the participating instance links, the F1-Score is at 14%. Otherwise, it is at 35%. Since, the
names of the participating instance links are decisive for the matching of the relation, the

78

results for the identi�cation of instance links show the same: When matching the instance
links of the gold standard with the ones of the approach by occurrences an F1-Score of 83%
is reached. When choosing a matching strategy that requires similar names, the F1-Score
sinks to 45%. In 36% of the gold standard de�ned instance links the approach matches
the names and model instances. The precision and recall are almost the same across the
di�erent strategies.

Since this approach is only a �rst step towards the main goal, there is some future work
that need to be done. At �rst, the model extraction should be implemented for at least
one model type (e.g. PCM). Thereby, the approach could be applied automatically. The
probability feature is another feature that is also anchored in the approach, but currently
not used. By implementing a meaningful probability function the precision and decisions
could be improved on multiple stages. Moreover, a reasonable probability function allows
the suggesting of recommendations or links in a rated order to the user. Furthermore,
the exact in�uences on the thresholds and thus the results are interesting for a better
understanding of the correlations. Maybe the thresholds could be adapted to di�erent
documentations to get the best results. For this purpose an automated learning algorithm
could be feasible. In general, more analyzers and solvers would improve and extend the
results of the approach. Especially respecting further relations, additional analyzers and
solvers should be written. For the disambiguation of noun mappings and further structures,
I recommend a context based analysis. This can be done with di�erent strategies. One
example is a sliding context window that examines the close surrounding of a word.
However, a semantic database could also help with the disambiguation. Furthermore, it
could be useful to analyze the distribution of noun mappings in multiple sections of the
text. Thus, mappings that appear lonely in multiple sections and more frequently in one
section could be indicators to have multiple meanings. In general, the frequency of terms
could be helpful to evaluate the importance of it. Moreover, the frequency and structure
in the text could be related to the structure in the model. To prevent the recognition of
common terms as noun mappings (e.g. system test), an ontology of these terms could help
to exclude them from the classi�cation. Furthermore, the ontology could not only be used
for exclude terms, but also to emphasize others. Eventually, a list of general model element
types like component or class could help recognize instances. In general, the matching
strategies need to be improved. As the evaluation shows the matching by name could
be tweaked. There are two possibilities for improvement. The �rst option is to revise
the naming of noun mappings and further structures. On the other hand, the matching
strategies could be revised or extended. Moreover, another evaluation should be done to
verify that the approach is applicable in di�erent projects the future evaluation should
use other projects. This would be especially important for a more accurate evaluation of
the relations. Finally, an open question is how much the exclusion of �gures and other
graphics a�ects the results and understanding of the remaining documentation.Instead of
formulate the graphics in natural language these are currently excluded. The reason for
this are the costs and unexplored bene�ts of including the graphics. It would be interesting
to evaluate the approach with textually described graphics to see if the results di�er.

79

Bibliography

[1] url: https://corenlp.run/ (visited on 09/22/2020).
[2] Michele Banko et al. “Open information extraction from the web”. In: Communica-

tions of the ACM 51.12 (Dec. 1, 2008), p. 68. issn: 00010782. doi: 10.1145/1409360.
1409378. url: http://portal.acm.org/citation.cfm?doid=1409360.1409378
(visited on 02/17/2020).

[3] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software.
Special Issue: Software Performance - Modeling and Analysis 82.1 (Jan. 1, 2009),
pp. 3–22. issn: 0164-1212. doi: 10 . 1016 / j . jss . 2008 . 03 . 066. url: http : / /
www.sciencedirect.com/science/article/pii/S0164121208001015 (visited on
02/14/2020).

[4] Ste�en Becker et al. Modeling and Simulating Software Architectures - The Palladio
Approach. 2016. isbn: 978-0-262-03476-0.

[5] Sergey Brin. “Extracting Patterns and Relations from the World Wide Web”. In:
The World Wide Web and Databases. Ed. by Paolo Atzeni, Alberto Mendelzon, and
Giansalvatore Mecca. Red. by Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen.
Vol. 1590. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 172–183. isbn:
978-3-540-65890-0 978-3-540-48909-2. doi: 10.1007/10704656_11. url: http://
link.springer.com/10.1007/10704656_11 (visited on 02/17/2020).

[6] Erik Johannes Burger. “Flexible views for view-based model-driven development”.
In: ACM Press, 2013, p. 25. isbn: 978-1-4503-2125-9. doi: 10.1145/2465498.2465501.
url: http://dl.acm.org/citation.cfm?doid=2465498.2465501 (visited on
05/20/2018).

[7] Erik Burger, Victoria Mittelbach, and Anne Koziolek. “View-based and Model-driven
Outage Management for the Smart Grid”. In: Proceedings of the 11th Workshop
on Models@run.time co-located with ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2016). Saint Malo,
France, p. 8.

[8] Kai-Uwe Carstensen et al.Computerlinguistik und Sprachtechnologie: Eine Einführung.
Google-Books-ID: OiogBAAAQBAJ. Springer-Verlag, Nov. 4, 2009. 750 pp. isbn:
978-3-8274-2224-8.

81

https://corenlp.run/
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/1409360.1409378
http://portal.acm.org/citation.cfm?doid=1409360.1409378
https://doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://www.sciencedirect.com/science/article/pii/S0164121208001015
https://doi.org/10.1007/10704656_11
http://link.springer.com/10.1007/10704656_11
http://link.springer.com/10.1007/10704656_11
https://doi.org/10.1145/2465498.2465501
http://dl.acm.org/citation.cfm?doid=2465498.2465501

Bibliography

[9] Deva Kumar Deeptimahanti and Muhammad Ali Babar. “An Automated Tool for
Generating UML Models from Natural Language Requirements”. In: 2009 IEEE/ACM
International Conference on Automated Software Engineering. 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering. ISSN: 1938-4300. Nov.
2009, pp. 680–682. doi: 10.1109/ASE.2009.48.

[10] Oren Etzioni et al. “Unsupervised named-entity extraction from the Web: An experi-
mental study”. In: Arti�cial Intelligence 165.1 (June 2005), pp. 91–134. issn: 00043702.
doi: 10.1016/j.artint.2005.03.001. url: https://linkinghub.elsevier.com/
retrieve/pii/S0004370205000366 (visited on 02/17/2020).

[11] Oren Etzioni et al. “Web-Scale Information Extraction in KnowItAll (Preliminary
Results)”. In: ACM 1-58113-844-X/04/0005. 2004, p. 11.

[12] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced Software
Traceability Using Deep Learning Techniques”. In: 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE). 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). ISSN: 1558-1225. May 2017, pp. 3–14.
doi: 10.1109/ICSE.2017.9.

[13] Marti A. Hearst. “Automatic Acquisition of Hyponyms from Large Text Corpora”.
In: COLING 1992 Volume 2: The 15th International Conference on Computational
Linguistics. COLING 1992. 1992. url: https://www.aclweb.org/anthology/C92-
2082 (visited on 02/17/2020).

[14] Tobias Hey. “INDIRECT: Intent-Driven Requirements-to-Code Traceability”. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). ISSN: 2574-1934.
May 2019, pp. 190–191. doi: 10.1109/ICSE-Companion.2019.00078.

[15] Mohd Ibrahim and Rodina Ahmad. “Class Diagram Extraction from Textual Re-
quirements Using Natural Language Processing (NLP) Techniques”. In: 2010 Second
International Conference on Computer Research and Development. 2010 Second Inter-
national Conference on Computer Research and Development. May 2010, pp. 200–
204. doi: 10.1109/ICCRD.2010.71.

[16] Leonid Kof. “An Application of Natural Language Processing to Domain Modelling
– Two Case Studies”. In: International Journal on Computer Systems Science Engi-
neering, p. 27.

[17] Leonid Kof. “Natural Language Processing: Mature Enough for Requirements Doc-
uments Analysis?” In: Natural Language Processing and Information Systems. Ed.
by Andrés Montoyo, Rafael Muńoz, and Elisabeth Métais. Red. by David Hutchi-
son et al. Vol. 3513. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 91–
102. isbn: 978-3-540-26031-8 978-3-540-32110-1. doi: 10.1007/11428817_9. url:
http://link.springer.com/10.1007/11428817_9 (visited on 02/29/2020).

[18] Leonid Kof. “Using Application Domain Ontology to Construct an Initial System
Model”. In: IASTED International Conference on Software Engineering, p. 6.

82

https://doi.org/10.1109/ASE.2009.48
https://doi.org/10.1016/j.artint.2005.03.001
https://linkinghub.elsevier.com/retrieve/pii/S0004370205000366
https://linkinghub.elsevier.com/retrieve/pii/S0004370205000366
https://doi.org/10.1109/ICSE.2017.9
https://www.aclweb.org/anthology/C92-2082
https://www.aclweb.org/anthology/C92-2082
https://doi.org/10.1109/ICSE-Companion.2019.00078
https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.1007/11428817_9
http://link.springer.com/10.1007/11428817_9

[19] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric engineering
with synchronized heterogeneous models”. In: ACM Press, 2013, pp. 1–6. isbn: 978-
1-4503-2070-2. doi: 10.1145/2489861.2489864. url: http://dl.acm.org/citation.
cfm?doid=2489861.2489864 (visited on 06/05/2018).

[20] Marie-Catherine de Marne�e and Christopher D Manning. Stanford typed depen-
dencies manual. Tech. rep. Stanford University.

[21] Mike Mintz et al. “Distant supervision for relation extraction without labeled data”.
In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP.
ACL-IJCNLP 2009. Suntec, Singapore: Association for Computational Linguistics,
Aug. 2009, pp. 1003–1011. url: https://www.aclweb.org/anthology/P09-1113
(visited on 02/17/2020).

[22] Sabine Molenaar et al. “Explicit Alignment of Requirements and Architecture in
Agile Development”. In: Requirements Engineering: Foundation for Software Quality.
Ed. by Nazim Madhavji and Liliana Pasquale. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2020, pp. 169–185. isbn: 978-3-030-44429-7.
doi: 10.1007/978-3-030-44429-7_13.

[23] Natural Language Toolkit — NLTK 3.5 documentation. url: https://www.nltk.org/
(visited on 09/17/2020).

[24] Ralf H. Reussner et al. Modeling and Simulating Software Architectures – The Palladio
Approach. Cambridge, MA: MIT Press, Oct. 2016. 408 pp. isbn: 9780262034760.
url: http://mitpress.mit.edu/books/modeling-and-simulating-software-
architectures.

[25] Sandra Schröder and Georg Buchgeher. “Applicability of Controlled Natural Lan-
guages for Architecture Analysis and Documentation: An Industrial Case Study”.
In: Proceedings of the 13th European Conference on Software Architecture - Volume 2.
ECSA ’19. event-place: Paris, France. New York, NY, USA: ACM, 2019, pp. 190–196.
isbn: 978-1-4503-7142-1. doi: 10.1145/3344948.3344981. url: http://doi.acm.
org/10.1145/3344948.3344981 (visited on 10/02/2019).

[26] Sandra Schröder and Matthias Riebisch. “An Ontology-based Approach for Docu-
menting and Validating Architecture Rules”. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings. ECSA ’18. New York,
NY, USA: ACM, 2018, 52:1–52:7. isbn: 978-1-4503-6483-6. doi: 10.1145/3241403.
3241457. url: http : / / doi . acm . org / 10 . 1145 / 3241403 . 3241457 (visited on
01/18/2019).

[27] Sandra Schröder and Matthias Riebisch. “Architecture Conformance Checking with
Description Logics”. In: Proceedings of the 11th European Conference on Software
Architecture: Companion Proceedings. ECSA ’17. event-place: Canterbury, United
Kingdom. New York, NY, USA: ACM, 2017, pp. 166–172. isbn: 978-1-4503-5217-8. doi:
10.1145/3129790.3129812. url: http://doi.acm.org/10.1145/3129790.3129812
(visited on 04/01/2019).

83

https://doi.org/10.1145/2489861.2489864
http://dl.acm.org/citation.cfm?doid=2489861.2489864
http://dl.acm.org/citation.cfm?doid=2489861.2489864
https://www.aclweb.org/anthology/P09-1113
https://doi.org/10.1007/978-3-030-44429-7_13
https://www.nltk.org/
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://doi.org/10.1145/3344948.3344981
http://doi.acm.org/10.1145/3344948.3344981
http://doi.acm.org/10.1145/3344948.3344981
https://doi.org/10.1145/3241403.3241457
https://doi.org/10.1145/3241403.3241457
http://doi.acm.org/10.1145/3241403.3241457
https://doi.org/10.1145/3129790.3129812
http://doi.acm.org/10.1145/3129790.3129812

Bibliography

[28] Antony Tang et al. “Traceability in the Co-evolution of Architectural Requirements
and Design”. In: Relating Software Requirements and Architectures. Ed. by Paris
Avgeriou et al. Berlin, Heidelberg: Springer, 2011, pp. 35–60. isbn: 978-3-642-21001-
3. doi: 10.1007/978-3-642-21001-3_4. url: https://doi.org/10.1007/978-3-
642-21001-3_4 (visited on 03/29/2020).

[29] TEAMMATES/teammates. GitHub. url: https://github.com/TEAMMATES/teammates
(visited on 09/26/2020).

[30] Universal Dependency Relations. url: https://universaldependencies.org/u/dep/
(visited on 09/17/2020).

[31] Sebastian Weigelt and Walter F. Tichy. “Poster: ProNat: An Agent-Based System
Design for Programming in Spoken Natural Language”. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. Vol. 2. ISSN: 1558-1225. May
2015, pp. 819–820. doi: 10.1109/ICSE.2015.264.

84

https://doi.org/10.1007/978-3-642-21001-3_4
https://doi.org/10.1007/978-3-642-21001-3_4
https://doi.org/10.1007/978-3-642-21001-3_4
https://github.com/TEAMMATES/teammates
https://universaldependencies.org/u/dep/
https://doi.org/10.1109/ICSE.2015.264

A. Appendix

A.1. Implementation

Type Name Description
String documentation_Path relative path to the textual documentation. The �le

should be a .txt �le.
String testDocumentation_Path optional relative path to a textual example.
String �leForInput_Path relative path to write which is used to write the

read in input into.
String �leForResults_Path relative path to a �le in which the results are writ-

ten. If the �le is not existing it will be created.

Table A.1.: The general con�gurations that can be set in the con�guration �le.

Type Name Description
List<String> ModelConnectionAgent

_Analyzers
The list of analyzer types that should
run on the connection state.

List<String> ModelConnectionAgent
_Solvers

The list of solver types that should run
on the connection state.

double RelationConnectionSolver
_Probability

The probability for the identi�ed link in
the relation connection solver.

double InstanceConnectionSolver
_Probability

The probability for the identi�ed link in
the instance mapping connection solver.

double InstanceConnectionSolver
_ProbabilityWithoutType

The probability of the instance map-
ping connection solver, if the connec-
tion does not include the comparison of
a type.

Table A.2.: The con�gurations that can be set for the connection generator.

85

A. Appendix

Type Name Description
List<String> separators

_ToContain
the separators that are used for the sep-
aration features of the approach. The
separators have to be in a form that they
can be used with the contains function-
ality in Java.

List<String> separators
_ToSplit

the speparators that in a form that the
split function of string can work with it.
Therefore, some separators need escape
sequences.

int areWordsSimilar
_MinLength

minimal length of word similarity for
methods in SimilarityUtils.

int areWordsSimilar
_MaxLDist

maximal Levensthein distance for two
words to be similar for methods in Simi-
larityUtils.

double areWordsSimilar
_DefaultThreshold

default threshold for similarity of two
words of SimilarityUtils.

double areWordsOfListsSimilar
_WordSimilarityThreshold

threshold for the similarity of two words
in the similarity function of two lists in
SimilarityUtils.

double areWordsOfListsSimilar
_DefaultThreshold

default threshold for the similarity of
two lists in SimilarityUtils.

double getMostRecommendedIByRef
_MinProportion

minimal proportion of two lists that
need to be similar that both are handled
as similar. Used in SimilarityUtils.

double getMostRecommendedIByRef
_Increase

increase for the method getMostRecom-
mendedInstancesByReference in Simi-
larityUtils.

double getMostLikelyMpByReference
_Threshold

start threshold for the method getMost-
LikelyMappingByReference in Similari-
tyUtils.

double getMostLikelyMpBReference
_Increase

increase for the method getMostLike-
lyMappingByReference in SimilarityU-
tils.

Table A.3.: The con�gurations for helper classes, such as SimilarityUtils

86

A.1. Implementation

Type Name Description
List<String> TextExtractionAgent

_Analyzers
the list of text extraction agent ana-
lyzers that should run, given as the
name of their enums and separated
by spaces.

List<String> TextExtractionAgent
_Solvers

the list of text extraction agent
solvers that should run, given as
the name of their enum and sepa-
rated by spaces.

double TextExtractionState
_AddWithSeparators-
AddProbability

probability that the mapping kind
can be identi�ed correctly in the
out dep arcs analyzer.

double SeparatedNamesAnalyzer
_Probability

probability that the mapping kind
can be identi�ed correctly in the
separated names analyzer.

double OutDepArcsAnalyzer
_Probability

probability that the mapping kind
can be identi�ed correctly in the
out dep arcs analyzer.

double NounAnalyzer
_Probability

probability that the mapping kind
can be identi�ed correctly in the
noun analyzer.

double MultiplePartSolver
_Probability

probability that the mapping kind
can be identi�ed correctly in the
multiple part solver.

double InDepArcsAnalyzer
_Probability

probability that the mapping kind
can be identi�ed correctly in the in
dep arcs analyzer.

double ArticleTypeNameAnalyzer
_Probability

probability that the mapping kind
can be identi�ed correctly in the
article type name analyzer.

int ExtractionState
_MinTypeParts

minimal amount of parts of the
type that the type is splitted and
can be denti�ed by parts.

Table A.4.: The con�gurations of all parts of the text extraction level.

87

A. Appendix

Type Name Description
List<String> RecommendationAgent

_Analyzers
the list of analyzer types that
should run on the recommendation
state.

List<String> RecommendationAgent_Solvers the list of solver types that should
run on the recommendation state.

double ExtractionDependentOccurrence-
Analyzer_Probability

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance in the
extraction dependent occurrence
analyzer.

double NameTypeAnalyzer
_Probability

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance in the
name type analyzer

double ExtractedTermsAnalyzer
_ProbabilityAdjacentNoun

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance, when
one of them is a term and the other
is an adjacent noun mapping.

double ExtractedTermsAnalyzer
_ProbabilityJustName

probability for terms with no adja-
cent nouns and therefore without
type, to be recommended.

double ExtractedTermsAnalyzer
_ProbabilityAdjacentTerm

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance, when
both are terms.

double SeparatedRelationsSolver
_Probability

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance in the
separated relations solver.

double ReferenceSolver
_Probability

probability for the correct connec-
tion of name and type of an identi-
�ed recommended instance in the
reference solver.

double ReferenceSolver
_ProportionalDecrease

decrease of the probability in the
reference solver.

double ReferenceSolver
_AreNamesSimilarThreshold

threshold for words similarities in
the reference solver.

Table A.5.: The con�gurations that can be set for the recommendation generator.

88

A.2. Evaluation

A.2. Evaluation

89

A. Appendix

Beispiel:

 Im folgenden wird Ihnen ein Beispielsatz dargestellt:
Die Klasse Keks enthält Schokoladenstücke. Die Klasse Schokostücke liegt im Modul Süßkram

In Aufgabenteil a) stimmt der Annotator in diesem Beispiel voll und ganz zu, dass Klasse und
Süßkram in dem Modell vorkommen sollten. Bei Keks und Schokoladenstücke stimmt er zu,

wohingegen er bei Modul weder zustimmt noch ablehnt. Dies ist durch die Farbcodierung aus dem
Text ablesbar.

In Aufgabenteil b) bestimmt der Studienteilnehmer alle Namen und listet diese auf. Falls seiner
Meinung nach mehrere Namen die gleiche Instanz referenzieren, werden sie in der gleichen Zeile
gelistet. Durch die Auslegung der einzelnen Teilnehmer kann es bereits hier zu unterschiedlichen
Lösungsmöglichkeiten kommen.

In Aufgabenteil c) ergänzen beide Studienteilnehmer aus dem Beispiel die von ihnen durch Namen
identifizierten Instanzen um Typen. Da in dem Text keine genauere Angaben zu dem Typen von
Schokoladenstücke vorliegen lässt Teilnehmer 2 den Typ dieser möglichen Instanz frei. Teilnehmer

1 hat jedoch Schokoladenstücke und Schokostücke einer Instanz zugeordnet. Da er zu
Schokostücke den Typen Klasse zuordnet, wird dieser Typ für die gesamte Insanz eingetragen.

In Aufgabenteil d) kreuzen beide Teilnehmer graduell Ihre Zustimmung für die Kombination aus
Name und Typ an. Während Teilnehmer 1 voll und ganz zustimmt, dass es eine Keks Klasse im Modell
geben sollte stimmt Teilnehmer 2 dem zu. Beachten Sie: Die Wahrscheinlichkeit von einer
Kombination aus Name und Typ ist unabhängig von der gewählten Farbcodierung aus dem Text.

Mögliche Lösung (Teilnehmer 1):

 Namen Typen Stimme
werder zu
noch lehne
ab

Stimme zu Stimme voll
und ganz zu

Instanz 1 Keks Klasse x
Instanz 2 Schokoladenstücke,

Schokostücke
Klasse x

Instanz 3 Süßkram Modul x

Mögliche andere Lösung (Teilnehmer 2):

 Namen Typen Stimme
werder zu
noch lehne
ab

Stimme zu Stimme voll
und ganz zu

Instanz 1 Keks Klasse x
Instanz 2 Schokoladenstücke
Instanz 3 Schokostücke Klasse x

Instanz 4 Süßkram Modul x

90

A.2. Evaluation

Aufgabe 2: Eintragen aller Relationsbezeichner und -teilnehmer

Tragen Sie alle Relationen in die Tabelle ein, die sie im Text zwischen von Ihnen identifizierten
Instanzen finden können. Tragen Sie für jede Relation einen semantischen Namen und alle
Relationsteilnehmer ein. Fügen Sie bei jedem Auftreten der Relation in dieser Konstellation die
Satznummer hinzu. Falls eine Relation mit unterschiedlichen Instanzen auftritt, listen Sie sie bitte
extra auf. Geben Sie anschließen an, wie sehr Sie der Relation zustimmen.

Beispiel:

Die Klasse Keks enthält Schokoladenstücke. Die Klasse Schokostücke liegt im Modul Süßkram
Mögliche Lösung:

 Semantischer
Name

Verbundene
Instanzen

Vorkommen (in
Satznummern)

Stimme
weder
zu noch
lehne ab

Stimme zu Stimme voll
und ganz zu

Relation 1 enthält A, C 1 x
Relation 2 liegt in C, B 2 x

91

A. Appendix

Aufgabe 3: Markieren Sie alle Namen und Typen von Instanzen, die im Modell vorkommen

Markieren Sie alle Namen und Typen von Instanzen im Text über TEAMMATES, die auch im Modell
vorkommen. Gehen Sie dabei vor wie in Aufgabe 1. Führen Sie die Aufgabenteile nacheinander aus.
Tragen Sie zusätzlich die Nummer der Modellinstanz, sowie die Satznummer in der Tabelle ein.

Instanz
no.

Namen Typen Vorkommen (in
Satznummern)

Stimme
weder zu
noch
lehne ab

Stimme zu Stimme
voll und
ganz zu

92

A.2. Evaluation

Aufgabe 4: Eintragen aller Relationsbezeichner und teilnehmer, die im Modell vorkommen

Tragen Sie alle Relationen in die Tabelle ein, die im Modell vorkommen. Gehen Sie dabei vor wie in
Aufgabe 2. Führen Sie die Aufgabenteile nacheinander aus. Tragen Sie zusätzlich die Nummer der
Relation in der Tabelle ein.

Relation
no.

Semantischer
Name

Verbundene
Instanzen

Vorkommen (in
Satznummern)

Stimme
weder zu
noch
lehne ab

Stimme zu Stimme
voll und
ganz zu

93

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Information Retrieval
	Generating Artifacts
	Finding Trace Links
	Consistency Tests

	Fundamentals
	Palladio Component Model
	PARSE And INDIRECT

	Approach
	Overview
	Example 1: Introduction To Hint And Trace Links

	Detailed Approach
	Text Extraction
	Model Extraction
	Recommendation Generation
	Link Generation

	Architecture
	High-level Architecture
	Analyzers And Solvers

	Detailed Architecture
	Text Extractor
	Model Extractor
	Recommendation Generator
	Connection Generator

	Implementation
	Text Extractor
	The Adding Of Basic NounMappings
	The Adding Of NounMappings Containing Separators
	Similarity
	Adding Term Mappings And Relation Mappings
	Analyzers And Solvers

	Recommendation Generator
	Analyzers And Solvers

	Connection Generator
	Analyzers And Solvers

	Configuration

	Evaluation
	Representing Links
	Creation Of A Gold Standard For Evaluation
	Preparation
	Concept Of The User Study
	Execution Of The User Study
	Creation Of The Gold Standard

	Metrics
	Textual Element Recognition
	Model Element Recognition
	Creating Tracelinks
	Threats To Validity

	Conclusion And Future Work
	Bibliography
	Appendix
	Implementation
	Evaluation

